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Abstract

We provide a general mathematical framework for group and set equivariance in machine
learning. We define group equivariant non-expansive operators (GENEOs) as maps between
function spaces associated with groups of transformations. We study the topological and
metric properties of the space of GENEOs to evaluate their approximating power and set
the basis for general strategies to initialise and compose operators. We define suitable
pseudo-metrics for the function spaces, the equivariance groups, and the set of non-expansive
operators. We prove that, under suitable assumptions, the space of GENEOs is compact and
convex. These results provide fundamental guarantees in a machine learning perspective. By
considering isometry-equivariant non-expansive operators, we describe a simple strategy to
select and sample operators. Thereafter, we show how selected and sampled operators can
be used both to perform classical metric learning and to inject knowledge in artificial neural
networks.

Keywords: Group equivariant non-expansive operator, invariance group, natural
pseudo-distance, group action, persistent homology, persistence diagram, bottleneck
distance, agent, perception pair, topological data analysis
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Introduction

Deep learning-based algorithms have reached human or superhuman performance in many
real-world tasks (see, e.g. [1, 2]). Currently, Convolutional Neural Networks (CNNs) [3]
are one of the most successful and flexible deep learning architectures, used in a range of
applications spanning from image [4] to sentence classification [5], among others. CNNs are
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characterised by the election of convolution as the operator of choice to act on the data. The
convolutional kernels learned by optimising a loss function are operators that map the input
data to new representations that are, for instance, more easily classifiable.

We provide a formal mathematical framework, in which data are represented as function
spaces endowed with characteristics that allow us to guarantee basic results for learning,
e.g. approximability and convexity. We do this by studying geometrical and topological
properties of a space of operators acting on the function space of data, that are naturally
robust to geometrical transformations (e.g. rotation), and reduce the dimensionality of the
input data. While we acknowledge the relevance of statistical properties of data for machine
learning [6], such as its distribution, we do not consider this here.

Equivariance in machine learning. An operator is called equivariant with respect to a
group if the action of the group commutes with the operator. One of the main strengths of
CNNs is the natural equivariance of the convolution operator with respect to interpretable
transformations, namely the group of planar translations, at least in the ideal, continuous case.
However, when working with images, volumes or even time series, oftentimes invariance with
respect to transformations such as rotations, reflexions, or other deformations is fundamental
to speed up the learning process, or even to reach satisfying accuracy. Currently, data
augmentation, or heavy preprocessing (e.g. accurate image alignment) are the most common
strategies used to produce networks resistant to even simple data transformations. Recently,
there has been a growing interest for invariant representations in machine learning [7, 8, 9].
The reason is twofold. On one hand, the use of operators equivariant with respect to specific
transformations allows one to inject pre-existing knowledge in the system, thus gaining
control of the nature of the learned operators [10]. On the other hand, equivariance with
respect to the action of a group (or a set) of transformations corresponds to the introduction
of symmetries in the data space, hence drastically reducing the dimensionality of the space
to be explored during optimisation, and opening the way to alternative kinds of abstract
representation. Indeed, it is well known that incorporating prior domain knowledge helps
machine learning.

Ours is not the first attempt to describe the role of mathematical transformations in
the context of machine learning. From an information-theoretic viewpoint, the goal of
machine learning can be described as a tradeoff between compression (i.e. the generation of
meaningful, low-dimensional data representations) and prediction [11]. In [12, 13], invariant
and non-expansive operators are studied to reduce the data variability in directions of local
symmetries, using the language of filters. Finally, equivariant transformations in deep learning
are studied in [14, 7, 15], by focusing on learning symmetries.

Our contribution is the definition of a mathematical model where data are represented as
function spaces associated with groups of transformations. Data are manipulated through
Group Equivariant Non-Expansive Operators (GENEOs) [16], which are in layman’s terms,
blind to the action of the group on the data. We prove that, under the assumption that the
function spaces are compact, the space of GENEOs is compact with respect to a suitable
pseudo-metric. The compactness guarantees that any operator belonging to a certain space
can be approximated by a finite number of operators sampled in the same space. Also,
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we prove that, under the assumption that the function spaces are convex, the spaces of
GENEOs are convex. The convexity guarantees that we can generate new operators by
convex combination of existing ones. Finally, we define and discretise a family of isometry
equivariant non-expansive operators (IENEOs), that will be used in the presented applications
on image classification.

We believe our research complements the current approaches. Our framework rests on a
clear epistemological approach, focusing on the analysis of the data-agent pairs, rather than
the data per se. Agents are GENEOs operating on data represented as samples of a function
space. Thus, data are visible to a GENEO only under its action, which generates stable,
compressed representations of data, while respecting the chosen equivariance constraint.
Moreover, our framework applies to any kind of data that can be described by real or
vector valued functions—including images, 3D data, and time series—and is grounded on
the topological and geometrical study of the space of all group-equivariant non-expansive
operators. Moving from the study of single operators to the metric analysis of the space of
all GENEOs opens the way for discovering general principles in machine learning, instead
of focusing on particular methods. The formal proofs of the compactness, approximability
and convexity of the space of GENEOs under suitable assumptions are examples of results
produced in this general setting. Consider for instance how requesting non-expansivity of
operators translates into the quest for meaningful compressions of the input data. In the
framework we propose, this request becomes a necessary hypothesis to build compact spaces
of operators, where one can get effective representations of the input data through a finite
number of operators.

Furthermore, the topological and metric properties we prove in the space of GENEOs
set the basis for general strategies to initialise and compose operators. In this respect, it
is important to notice how our framework allows for the definition of operations between
operators, whose function spaces and groups of equivariance are different. This feature is
fundamental, because it allows one to compose operators to form networks, in the same
fashion as computational units are connected in an artificial neural network. Finally, an
important advantage of having a general mathematical theory of GENEOs is the availability
of simple and practical methods to build group equivariant non-expansive operators [17],
without integrating on large groups [18].

Topological data analysis and machine learning. Two main challenges need to be tackled to
implement our framework in a machine learning context. First, the space of operators has to
be endowed with an easily computable metric, to be rapidly explored. Moreover, data under
the action of operators must be comparable via an efficient metric. Indeed, it is necessary to
quantify and compare the performance of operators, to learn and choose the ones compatible
with a given task. While several methods to compare data represented by functions are
illustrated in literature (see, e.g., the concept of derived kernel [19]), we propose the use
of existing and novel tools in topological data analysis (TDA), and in particular persistent
homology, to define computationally efficient metrics for comparing both GENEOs and
transformed data. We do this by taking advantage of the desirable computational properties
of TDA, deriving from its efficiency in extracting relevant information from data.
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TDA is an emerging field of research which studies topological approaches to explore
and provide meaningful, tight representations of complex, high-dimensional data drawn for
instance from artificial and biological networks [20, 21]. The basic idea is that topology can
help to recognise patterns within data, and therefore to turn data into compressed, useful
knowledge. One of the main concepts in TDA is persistent homology (PH), a mathematical
tool that captures topological information at multiple scales, and enables a fast comparison
of functions defined on data.

The synergy between TDA and machine learning is currently studied along two main
research lines. On one hand, topological and geometrical features of the data are extracted
via TDA before applying classical machine learning techniques [22, 23]. On the other hand,
recent works have shown how the analysis of the topology of the space of filters learned by
CNNs can give insights into the internal representation of knowledge acquired by different
networks [24, 25]. Our approach opens a new research direction. Indeed, we use tools in
TDA to define novel metrics to navigate the space of operators. Instead of studying the
topology of the internal representation of a given CNN, we consider the entire space of group
equivariant non-expansive operators, endowed with a suitable pseudo-metric, and study its
topological and geometrical properties from a theoretical point of view.

In particular, we propose an integration between the theory of group actions and persistent
homology to define a strongly group-invariant pseudo-metric to compare data under the action
of operators. We also define a pseudo-metric between GENEOs. The two pseudo-metrics
are used to define two algorithms providing strategies to select and sample from a space of
operators, given a dataset labelled for a classification task. These procedures allow one to first
select a subset of operators belonging to a certain GENEOs space, which give a meaningful,
compressed representation of data with respect to their labelling, always invariant under the
transformations induced by the action of the invariance group. Thenceforth, the sampling
algorithm allows one to eliminate redundant operators.

Applications. We show how the selection and sampling strategy can be used to perform
metric learning on MNIST and fashion-MNIST. In addition, we show how convolutional filters
initialised by selecting and sampling on few samples effectively grasp useful knowledge, which
can be utilised to classify the remainder of the samples, for instance by a dense classifier.

A major advantage brought by the introduction of persistent homology is that the
approach can be generalised to obtain equivariance with respect to a set of transformations,
instead of to a group of transformations. This property is fundamental for those applications
which require operators equivariant with respect to a finite set of transformations that is not
closed with respect to composition and computation of the inverse, for example, isometric
deformations only up to a certain degree.

Results

Theoretical results

Our mathematical approach is based on the choice of the sup-norm metric DΦ on the
function space Φ. According to the central role of measurements in our epistemological
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setting, we introduce the pseudo-metric DX(x1, x2) = supϕ∈Φ |ϕ(x1)− ϕ(x2)| on the set X
and the pseudo-metric DG(g1, g2) := supϕ∈ΦDΦ(ϕ ◦ g1, ϕ ◦ g2) on the group G, so that all
the topologies and metrics used in our model are inherited by the topology and metric used
to compare the data we are interested in. We recall that a pseudo-metric is just a distance
d without the property that d(a, b) = 0 implies a = b. The group G acts on Φ by right
composition and we can prove that this action is continuous (cf. Supplementary Methods,
Theorem 2.7).

Our model is based on the study of the topological and geometrical properties of the space
of GENEOs, seen as mathematical descriptions of agents acting on data. Each GENEO F is
an operator that a) transforms the data represented by the functions belonging to a space Φ
into functions belonging to another, possibly different, space Ψ, and b) transforms the group
G acting on Φ into a group H acting on Ψ. After fixing a homomorphism T : G→ H, we
require that the operator F is equivariant, i.e. F (ϕ◦ g) = F (ϕ)◦T (g) for every ϕ ∈ Φ, g ∈ G,
and non-expansive, i.e. DΨ (F (ϕ1), F (ϕ2)) ≤ DΦ (ϕ1, ϕ2) for every ϕ1, ϕ2 ∈ Φ.

We can endow the set of all GENEOs with the pseudo-metric DGENEO (F1, F2) :=
supϕ∈ΦDΨ (F1(ϕ), F2(ϕ)). Our main theoretical results consist in proving that, under the
assumption that the function spaces are compact and convex, the topological spaces of all
GENEOs are compact and convex too (Theorems 7 and 8). It is important to observe that,
because of its compactness, every space of GENEOs can be approximated with arbitrary
precision by a finite set of operators.

We are interested in comparing the functions in Φ as seen by a set F of GENEOs, i.e.
in studying the pseudo-metric DF,Φ(ϕ1, ϕ2) := supF∈FDΨ(F (ϕ1), F (ϕ2)), for ϕ1, ϕ2 ∈ Φ.
The computation of the pseudo-metrics DF,Φ and DGENEO can be expensive, but persistent

homology allows us to replace such pseudo-distances with two suitable pseudo-metrics DF,k
match

and ∆GENEO. The definitions of D
F,k
match and ∆GENEO are given by linking the theory of

GENEOs to TDA, by means of the comparison of persistence diagrams via the matching
distance δmatch. For details on the matching distances see Supplementary Methods,
Background on persistent homology. The metrics D

F,k
match and ∆GENEO are defined in

Methods, Eq. 9 and 12, respectively. As a consequence, the efficient and powerful machinery
developed in persistent homology can be used in our mathematical approach as a proxy
for the comparison of functions and the metric analysis of the spaces of GENEOs. We
observe that D

F,k
match is stable and strongly invariant with respect to the action of the group

G (Proposition 9).
Further properties of the pseudo-metrics and topologies used in this paper can be found

in the Supplementary Methods.

Applications and experiments

Our mathematical model and theorems are based on the assumption that data can be
treated as points in a space of continuous functions. We test the validity of such results on
the classification of real-world datasets, namely, the image datasets MNIST [28], fashion-
MNIST [29] and CIFAR-10 [30]. We first define a parametric family of discrete non-expansive
operators which are equivariant with respect to Euclidean plane isometries. Then, we define
an algorithm enabling the selection and sampling of GENEOs in order to learn the metric
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Isometry equivariant non-expansive operators on MNIST
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Figure 1: Isometry equivariant non-expansive operators on MNIST. Although the operator space is
constrained by the symmetries induced by the equivariance with respect to the group of planar isometries, we
observe that the operators are expressive and have a clear topological interpretation. Among other functions,
these example operators are specialised in border detection and voids (cycles in topological terms) filling,
similar to the classical Vietoris-Rips construction [26]. Finally, the cutter operator–depicted in the last
column–disconnects the image approximately according to its distance transform [27].

induced on a dataset by a labelling function. We show that selection and sampling can
approximate an agent able to express the underlying metric of the datasets by observing only
20 or 40 examples per class. Thereafter, we show how the metric learned is still expressive
when used to represent distances among validation samples transformed according to the
equivariances of the GENEOs of choice. Finally, we use selected and sampled GENEOs to
inject knowledge in an artificial neural network.

Isometry Equivariant Non-Expansive Operators (IENEOs). We define and discretise a para-
metric family of non-expansive operators which are equivariant with respect to Euclidean plane
isometries. We set (Φ, I) = (Ψ, I), and Φ = {ϕ : R2 → R, continuous, with compact support}
and T the identity homomorphism. Given a continuous, real-valued, non-null function g : R→
R with compact support, we get a function G : R2 → R by taking G(x, y) = g

(√
x2 + y2

)
,

normalized by its L1 norm to guarantee non-expansivity. Then, the convolutional operator
F mapping each continuous function with compact support ϕ : R2 → R to F (ϕ) = ϕ ∗ G
is a group equivariant non-expansive operator with respect to the group I of Euclidean
plane isometries. We generate a parametric family of IENEOs by considering g as a convex
combination of Gaussians parametrised by their widths and centres. See Methods, Section
Isometry equivariant non-expansive operators, for the formal definition of IENEOs. Figure 1
shows some IENEOs, discretised as kernels and applied to images in the MNIST dataset.
The examples include operators with a clear semantic interpretation, always equivariant with



A Topological-Geometrical Theory for Data Analysis and Machine Learning 7
7.2. FROM HOMOLOGY TO PERSISTENT HOMOLOGY 103

f

c1

c2

c3

c4

c5

c6

Figure 7.8: An example of persistence barcode and persistence diagram. Noisy
classes are represented as short bars in the barcodes and as points near the diagonal
in the diagram representation. The critical points of the height function are denoted
by red circles. According to their labels, the pairing is given by (c1,Œ), (c2, c4),
(c3, c5) and (c6,Œ).

filtration induced by the sub-level sets of a tame functions f . Moreover, the lifespan
of the homology classes represented by a cornerpoint corresponds to its distance
from the diagonal. Thus, noisy and persistent homological classes are represented
by cornerpoints lying near to or far from the diagonal, respectively.

Bottleneck distance

Persistence diagrams are simpler than the shape they represents and describe its
topological and geometrical properties, as they are highlighted by the homological
critical values of the function used to build the filtration. The bottleneck distance
allows to compare such diagrams.

Definition 7.2.7. Let X be a triangulable topological space and f, g : X æ R two
tame functions. The bottleneck distance between Dk(f) and Dk(g) is

dB (Dk(f), Dk(g)) = inf
“

sup
pœDk(f)

Îp ≠ “(p)ÎŒ ,

where “ : Dk(f) æ Dk(g) is a bijection and Îp ≠ “(p)ÎŒ = maxpœDk(f) |p ≠ “(p)|.

In Figure 7.9 a bijection between two k-persistence diagrams is depicted. Corner
points belonging to the two diagrams are depicted in orange and yellow, respectively.
Observe how the inclusions of the points of � allows the comparison of multisets of
points whose underlying set has di�erent cardinality (see Section 3.1 for a definition
of multiset) by associating one of the purple points to one of the points lying on the
diagonal.

An important property of persistence diagrams is their stability. A small pertur-
bation of the tame function f produces small variations in the persistence diagram
with respect to the bottleneck distance.

104 CHAPTER 7. TOPOLOGICAL PERSISTENCE

Figure 7.9: A matching between two k-persistence diagrams. The bijections between
elements of the diagrams is denoted using left-right arrows.

Theorem 7.2.1. Let X be a triangulable topological space and f, g : X æ R two
tame functions. For every integer k, the inequality

dB (Dk(f), Dk(g)) 6 Îf ≠ gÎŒ ,

where Îf ≠ gÎŒ = supx |f(x) ≠ g(x)|, holds.

7.2.3 An algorithm for computing persistence
Persistence is computed through an algorithm mirroring the one we described
in Algorithm 7.1. Let K be a triangulation of X, and f̃ : K æ X a monotone
function such that f̃ (·) 6 f̃ (‡) if · is a face of ‡. Consider an ordering of the
simplices of K, such that each simplex is preceded by its faces and f̃ is non-decreasing.

This ordering allows to store the simplicial complex in a boundary matrix B,
whose entries are defined as

B (i, j) =
; 1 if ‡i < ‡j

0 otherwise . (7.2.1)

The algorithm receives in input a boundary matrix B and reduces it to a new
0≠1 matrix R via elementary column operations. Let J = { 1, . . . , n } be the indices
of the columns of B and

lowR : J æ N
j ‘æ l,

where l is the lower row index of the last 1 entry of the jth column. If a column has
only 0 entries lowR (j) is undefined. A matrix R is reduced if for every couple of

Persistent homology

A. Filtered topological space. B. Persistence diagram C. Matching

φ

7.2. FROM HOMOLOGY TO PERSISTENT HOMOLOGY 103

f

c1

c2

c3

c4

c5

c6

Figure 7.8: An example of persistence barcode and persistence diagram. Noisy
classes are represented as short bars in the barcodes and as points near the diagonal
in the diagram representation. The critical points of the height function are denoted
by red circles. According to their labels, the pairing is given by (c1,Œ), (c2, c4),
(c3, c5) and (c6,Œ).

filtration induced by the sub-level sets of a tame functions f . Moreover, the lifespan
of the homology classes represented by a cornerpoint corresponds to its distance
from the diagonal. Thus, noisy and persistent homological classes are represented
by cornerpoints lying near to or far from the diagonal, respectively.

Bottleneck distance

Persistence diagrams are simpler than the shape they represents and describe its
topological and geometrical properties, as they are highlighted by the homological
critical values of the function used to build the filtration. The bottleneck distance
allows to compare such diagrams.

Definition 7.2.7. Let X be a triangulable topological space and f, g : X æ R two
tame functions. The bottleneck distance between Dk(f) and Dk(g) is

dB (Dk(f), Dk(g)) = inf
“

sup
pœDk(f)

Îp ≠ “(p)ÎŒ ,

where “ : Dk(f) æ Dk(g) is a bijection and Îp ≠ “(p)ÎŒ = maxpœDk(f) |p ≠ “(p)|.

In Figure 7.9 a bijection between two k-persistence diagrams is depicted. Corner
points belonging to the two diagrams are depicted in orange and yellow, respectively.
Observe how the inclusions of the points of � allows the comparison of multisets of
points whose underlying set has di�erent cardinality (see Section 3.1 for a definition
of multiset) by associating one of the purple points to one of the points lying on the
diagonal.

An important property of persistence diagrams is their stability. A small pertur-
bation of the tame function f produces small variations in the persistence diagram
with respect to the bottleneck distance.

104 CHAPTER 7. TOPOLOGICAL PERSISTENCE

Figure 7.9: A matching between two k-persistence diagrams. The bijections between
elements of the diagrams is denoted using left-right arrows.

Theorem 7.2.1. Let X be a triangulable topological space and f, g : X æ R two
tame functions. For every integer k, the inequality

dB (Dk(f), Dk(g)) 6 Îf ≠ gÎŒ ,

where Îf ≠ gÎŒ = supx |f(x) ≠ g(x)|, holds.

7.2.3 An algorithm for computing persistence
Persistence is computed through an algorithm mirroring the one we described
in Algorithm 7.1. Let K be a triangulation of X, and f̃ : K æ X a monotone
function such that f̃ (·) 6 f̃ (‡) if · is a face of ‡. Consider an ordering of the
simplices of K, such that each simplex is preceded by its faces and f̃ is non-decreasing.

This ordering allows to store the simplicial complex in a boundary matrix B,
whose entries are defined as

B (i, j) =
; 1 if ‡i < ‡j

0 otherwise . (7.2.1)

The algorithm receives in input a boundary matrix B and reduces it to a new
0≠1 matrix R via elementary column operations. Let J = { 1, . . . , n } be the indices
of the columns of B and

lowR : J æ N
j ‘æ l,

where l is the lower row index of the last 1 entry of the jth column. If a column has
only 0 entries lowR (j) is undefined. A matrix R is reduced if for every couple of

Persistent homology

A. Filtered topological space. B. Persistence diagram C. Matching

φ

7.2. FROM HOMOLOGY TO PERSISTENT HOMOLOGY 103

f

c1

c2

c3

c4

c5

c6

Figure 7.8: An example of persistence barcode and persistence diagram. Noisy
classes are represented as short bars in the barcodes and as points near the diagonal
in the diagram representation. The critical points of the height function are denoted
by red circles. According to their labels, the pairing is given by (c1,Œ), (c2, c4),
(c3, c5) and (c6,Œ).

filtration induced by the sub-level sets of a tame functions f . Moreover, the lifespan
of the homology classes represented by a cornerpoint corresponds to its distance
from the diagonal. Thus, noisy and persistent homological classes are represented
by cornerpoints lying near to or far from the diagonal, respectively.

Bottleneck distance

Persistence diagrams are simpler than the shape they represents and describe its
topological and geometrical properties, as they are highlighted by the homological
critical values of the function used to build the filtration. The bottleneck distance
allows to compare such diagrams.

Definition 7.2.7. Let X be a triangulable topological space and f, g : X æ R two
tame functions. The bottleneck distance between Dk(f) and Dk(g) is

dB (Dk(f), Dk(g)) = inf
“

sup
pœDk(f)

Îp ≠ “(p)ÎŒ ,

where “ : Dk(f) æ Dk(g) is a bijection and Îp ≠ “(p)ÎŒ = maxpœDk(f) |p ≠ “(p)|.

In Figure 7.9 a bijection between two k-persistence diagrams is depicted. Corner
points belonging to the two diagrams are depicted in orange and yellow, respectively.
Observe how the inclusions of the points of � allows the comparison of multisets of
points whose underlying set has di�erent cardinality (see Section 3.1 for a definition
of multiset) by associating one of the purple points to one of the points lying on the
diagonal.

An important property of persistence diagrams is their stability. A small pertur-
bation of the tame function f produces small variations in the persistence diagram
with respect to the bottleneck distance.

104 CHAPTER 7. TOPOLOGICAL PERSISTENCE

Figure 7.9: A matching between two k-persistence diagrams. The bijections between
elements of the diagrams is denoted using left-right arrows.

Theorem 7.2.1. Let X be a triangulable topological space and f, g : X æ R two
tame functions. For every integer k, the inequality

dB (Dk(f), Dk(g)) 6 Îf ≠ gÎŒ ,

where Îf ≠ gÎŒ = supx |f(x) ≠ g(x)|, holds.

7.2.3 An algorithm for computing persistence
Persistence is computed through an algorithm mirroring the one we described
in Algorithm 7.1. Let K be a triangulation of X, and f̃ : K æ X a monotone
function such that f̃ (·) 6 f̃ (‡) if · is a face of ‡. Consider an ordering of the
simplices of K, such that each simplex is preceded by its faces and f̃ is non-decreasing.

This ordering allows to store the simplicial complex in a boundary matrix B,
whose entries are defined as

B (i, j) =
; 1 if ‡i < ‡j

0 otherwise . (7.2.1)

The algorithm receives in input a boundary matrix B and reduces it to a new
0≠1 matrix R via elementary column operations. Let J = { 1, . . . , n } be the indices
of the columns of B and

lowR : J æ N
j ‘æ l,

where l is the lower row index of the last 1 entry of the jth column. If a column has
only 0 entries lowR (j) is undefined. A matrix R is reduced if for every couple of

Persistent homology

A. Filtered topological space. B. Persistence diagram C. Matching

φ

Figure 2: Persistent homology background. In persistent homology we consider pairs composed by a
topological space and a continuous function defined on the topological space of interest. The (homological)
critical values of the function induce naturally a sublevel set filtration of the topological space. In panel A, a
topological sphere is filtered by considering the critical values of the height function. We obtain a filtration
by considering the sequence of nested sublevel sets ordered according to the natural order on the critical
values. The evolution throughout the filtration of the number of generators of the kth homology groups (i.e.
the number of k-dimensional holes) is represented as a persistence diagram in Panel B. 0-dimensional holes,
or connected components are represented as green cornerpoints. The void generated when considering the
last sublevel set, corresponding to the entire space, generates the cornerline depicted in blue. A distance
between two persistence diagrams can be computed as an optimal matching of cornerpoint. The matching
process is depicted in Panel C. Note how non-matchable cornerpoints can be associated to their projection
on the diagonal.

respect to rotation, translation and reflexion.

Operators selection and sampling on labelled datasets. We start from the assumption that
data with the same label share common features with respect to the agent we want to
approximate. Thus, we suggest an algorithm for metric learning based on the metrics D

F,k
match

and ∆GENEO we introduced on the space of GENEOs grounded on persistent homology, see
Methods, Equations (9) and (12).

Briefly, we start by selecting randomly a certain number of operators, IENEOs in our
experiments. Afterwards, we apply them to the labelled images, and compare the transformed
images using the matching distance between their persistence diagrams. In this way, we take
advantage of the fact that the representation of images as persistence diagrams (in Figure 2)
is invariant with respect to the action of the equivariance group of the operators, planar
isometries in our case. Then, we select operators that have small distances for the samples
associated to the same label.

The selection criterion does not guarantee that the operators are maximally diverse, when
evaluated within and between classes. The important advantage of working on metric spaces
is that we can sample the selected elements to avoid storing operators that would focus on
the same or similar feature. Always profiting from the property of the matching distance
to be lower bound of the metric defined on the space of operators, we sample the operators
using the metric ∆GENEO. Thereafter, by sampling operators which are distant from each
other, we obtain a minimal set of non-redundant operators. The selection and sampling
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Image preprocessing

Reshape (128, 128)

Gaussian blur (3, 3) kernel

Standardisation

Selection Sampling

Random initialisation

Computation of selection 
score: how an operator 
behaves on pairs signals 

belonging to the same class.

Selection by thresholding

Computation of pairwise 
sampling distance between 

operators: how two operators 
behave on the signals 

belonging to the same class 

Computation of the inter-class 
contrastive score for each 

selected operator

Figure 3: Experimental pipeline. In the preprocessing step images are reshaped, smoothed and standardised.
Subsequently, operators are initialised randomly. Thereafter, they are selected according to their output
when evaluated on objects belonging to a chosen class. The final sampling step allows us to exclude operators
that appear to be too similar, and thus redundant.

algorithm is formally described in Methods, Sec. Experimental Setting.
Operators that have been selected and sampled on labelled examples are expected to

grasp geometrical and topological features characterising samples belonging to the same class.
Thus, metric learning is a natural application, as shown below.

Metric learning. We use selected and sampled operators to measure distances between pairs
of validation samples, via the metric D

F,k
match. This choice implies that two samples have

distance 0, and hence are considered the same by the collection of selected operators (agents),
only if every operator sees them as identical. Again, the invariance with respect to the action
of the group of planar isometries is naturally inherited by the usage of metrics based on
persistent homology.

After computing the pairwise distance induced by the selected and sampled operators
between validation samples, we use hierarchical clustering [32] to visualise in a dendrogram,
how samples have been organised by the learned metric. We find that few examples per class
are enough to learn a metric that generalises to new validation samples, and solve a binary
classification task on the MNIST dataset.

We proceed as follows:

1. Select a dataset D ∈ {MNIST, fashion-MNIST,CIFAR-10}
2. Select two random classes l1, l2 among the classes labelling D and consider the sets

Φ1,Φ2 of samples associated to the selected classes.

3. Preprocess the images according to the procedure described in Figure 3

4. Choose randomly n << |Φi| samples per class (|Φi| = 6000 for every i and n ∈ {20, 40}
in our experiments).

5. Initialise, select and sample IENEOs by evaluating them on the random samples
extracted at the previous step.

6. Use the selected and sampled IENEOs to compute distances between validation samples
(ten per class).
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Metric learning via GENEO selection and sampling

A. MNIST samples B. Metric on validation examples varying filter     

     size. Here           px7 × 7

C. Metric learned with filters of size              px
11 × 11 D. Metric learned with filters of size              px
21 × 21

5 5 5

7 7 7

Figure 4: IENEO-based metric learning on MNIST and CIFAR-10. A. Samples from the classes
7 and 5 from the MNIST dataset. Panels B, C and D show the hierarchical clustering obtained by using
selected and sampled IENEOs of different dimensions to measure the distance between validation samples
belonging to the two considered classes. For all filter sizes 500 operators were randomly initialised, then
selected and sampled. We observe how samples belonging to the two classes are clearly separated by filters
of all the considered dimensions.

We also test the impact of changes of the kernel size s ∈ {7px, 11px, 21px} , on the learned
metric. Results on the three datasets, with different kernel sizes are displayed in Figures 4
and 5.

Generalisation to transformed samples. As an additional experiment, we evaluated the
capacity of the selected and sampled operators to discriminate validation samples that have
been transformed with random planar isometries. The validation on augmented sampling
application aims at testing the aforementioned equivariance of the distance DF,k

match. To do this,
we consider a set of operators selected and sampled on non-transformed samples of MNIST,
while we transform the set of validation samples by applying a random transformation among
translations, rotations and reflexions parametrised as follows:

1. rotations are selected randomly to be between 1 and 30 degrees;

2. translations can be in both the x and y-axis directions in a range between 1 and 2
pixels;
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A. Fashion-MNIST samples
 B. Metric learned with filters of size              px
21 × 21

0 - shirt 0 0

7 - shoe 7 7

C. CIFAR10 samples D. Metric learned with filters of size           px7 × 7

6 - frog 6 6

9 - truck 9 9

Figure 5: IENEO-based metric learning on fashion-MNIST and CIFAR-10. Panels A and C show
some samples from the fashion-MNIST [29] and CIFAR-10 [31, 30] datasets. The dendrograms in Panels
B and D represent as dendrograms the metric learnt after selecting and sampling 500 randomly initialised
IENEOs on 20 examples per class. We evaluated the metric encoded by the selected operators on a validation
set consisting of 10 examples per class.

3. reflexions are computed randomly with respect to one of the two axes.

The transformed samples along with the dendrograms obtained by considering the metric
induced by the selected and sampled operators are shown in Figure 6.

Knowledge injection. As a final application, we discuss the possibility of using selected
and sampled operators as feature extractors for a simple artificial neural network model.
The aim of this experiment is twofold. First, we provide additional evidence that the filters
obtained through the selection and sampling procedures are informative with respect to a
chosen dataset, even when evaluated on few samples per class. Second, we aim at showing
that this information can be used for classification and hence injected as prior knowledge in
an artificial neural network architecture under the form of fixed convolutional kernels. The
architecture of the model is shown in Figure 7.

After preprocessing the samples of MNIST, and applying the selection and sampling
algorithms as described in the previous experiment, we consider as feature extractors three
different sets of IENEOs generated by considering as many sets of initialisation parameters
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Metric learning on augmented MNIST validation samples
A. Metric learned with filters of size            px on selected and sampled IENEOs on classes (3,8) and (5,7), 

    respectively

7 × 7

B. Metric learned with filters of size                px11 × 11 B. Metric learned with filters of size                px21 × 21

Figure 6: Metric learning on transformed MNIST validation samples. The metric obtained by
considering selected and sampled IENEOs can be used to cluster samples transformed according to the
group of equivariances (in this case planar isometries) of the family of operators of choice. In panel A we
compare the cluster of transformed validation samples obtained on two different pairs of MNIST classes.
The dendrogram on the right of panel A, panels B and C show how a variation in the size and number
of Gaussian components of the IENEO affects the clustering of validation samples randomly transformed
through planar isometries.

for selection and sampling. Each experiment is repeated three times per dataset and new
classes are extracted randomly at each repetition. As a control, we compare the classification
performance (accuracy on the validation set) of the classifiers with IENEO injected knowledge,
with the same classifiers receiving features extracted with random filters [33].

Selected and sampled operators effectively carry relevant information about the dataset
samples, as shown by the classification performance summarised in Table 1.

Discussion

The rationale of our approach is that the main interest in machine learning does not
consist in the analysis and the approximation of data, but rather in the analysis and the
approximation of the observers looking at the data. A simple example can make this idea
clearer: if we consider images representing skin lesions, we are not mainly interested in the
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Input Convolution andmax-pooling
(non-trainable) Fully-connected and ReLU Softmax

Figure 7: Convolutional neural network architecture used in the knowledge injection experiment.
The two first layers are a convolutional and maxpooling layer, respectively. The parameters of these layers
are fixed. Two fully-connected layers counting 64 and 2 units respectively are trained to classify the two
selected classes. The first fully-connected layer uses a rectified linear unit (ReLU) and the second a softmax
as activation functions.

images per se, but rather in approximating the judgement given by the physicians about
such images.

With this motivation in mind, the first contribution of this paper consists in describing
a formal framework for machine learning, based on the study of metric and topological
properties of operator spaces acting on function spaces. Of all possible types of operators,
we study the space of non-expansive, group equivariant operators (GENEOs). Being non-
expansive, operators of this kind enable us to find compressed representations of the original
input. Group equivariance, i.e. commutativity of the operator with respect to the action of
a chosen group, makes these operators able to provide stable representations of the data,
even when transformed by the action of elements of the groups.

Suitable pseudo-metrics allow us to define a topology on the function space of data and
then induce a topology on the space of GENEOs. We build the necessary machinery to define
operations between GENEOs whose groups of equivariance are different. This definition is
fundamental, because it allows one to compose operators hierarchically, in the same fashion
as computational units are linked in an artificial neural network. Thereafter, by taking
advantage of known and novel results in persistent homology, we prove compactness and
convexity of the space of GENEOs under suitable hypotheses. On the side of applications, we
give two algorithms to select and sample from a space of GENEOs, given a dataset labelled
for a classification task. These procedures allow one to first select a subset of operators that
give meaningful representations of the data with respect to their labelling. Thenceforth, the
sampling algorithm allows one to eliminate redundant operators. These two strategies are
used to perform metric learning on the MNIST, fashion-MNIST and CIFAR-10 datasets.
In addition, we show how convolutional filters initialised by selecting and sampling on few
samples, effectively grasp useful knowledge that can be utilised to train and validate an
artificial neural network.

We believe that our model, at the interface of functional analysis and topology, opens



A Topological-Geometrical Theory for Data Analysis and Machine Learning 13

Dataset
500 operators
20 examples

500 operators
40 examples

750 operators
20 examples

Random
filters

MNIST 0.988591 0.963282 0.991158 0.506815
MNIST 0.989732 0.949096 0.987450 0.960501
MNIST 0.990588 0.960501 0.989447 0.506815

f-MNIST 0.984598 0.960223 0.986309 0.506815
f-MNIST 0.990017 0.958275 0.990588 0.958554
f-MNIST 0.990302 0.963561 0.988591 0.506815

CIFAR-10 0.982886 0.960223 0.987735 0.506815
CIFAR-10 0.992299 0.962170 0.988876 0.506815
CIFAR-10 0.982316 0.960501 0.989732 0.971627

MNIST µ(σ) 0.989(0.001) 0.958(0.007) 0.989(0.001) 0.658(0.262)
f-MNIST µ(σ) 0.988(0.003) 0.961(0.002) 0.988(0.002) 0.657(0.261)

CIFAR-10 µ(σ) 0.985(0.005) 0.961(0.001) 0.988(0.001) 0.661(0.268)
All µ(σ) 0.988(0.003) 0.959(0.004) 0.988(0.001) 0.659(0.228)

Table 1: Evaluating the knowledge injection capability of GENEOs. Comparison between the
performance obtained by classifying two classes of MNIST, fashion-MNIST and CIFAR-10 with a dense
classifier fed with features extracted by convolutional filters obtained by selecting and sampling IENEOs.
Column headers specify the dataset and the initialisation parameters used to select and sample the IENEOs.
The last column is the control for our experiments, where the classification is based upon features extracted
with random filters. Experiments have been repeated three times for each dataset and initialisation parameters.
In the columns, the accuracy obtained by the classifier on the validation set (3000 images per class) is
reported, along with the dataset-wise and overall mean accuracy and standard deviation.

new avenues for further research. Our main forward-looking goal is the definition of a novel
artificial neural network model based on functional modules. Modules would be more complex
computational units than standard artificial neurons, with the same flavour of [34, 35]. The
core of each module would be a collection of GENEOs, thus each module would be defined a
priori to be equivariant with respect to a set of transformations. On one hand, this choice
would result in a significant reduction of the dimensionality of the manifold to be studied
during optimisation. On the other hand, choosing the transformation equivariance to be
respected at each layer would allow us to inject knowledge in the networks before training,
and would assure that information is not acquired by relying on unwanted noisy regularities
in the training data. We recall that in this context, it will be necessary to investigate
the minimal statistical properties that a dataset needs to obey in our framework. Module
networks would learn optimal transformations of the data to achieve a task, rather than
operating on data themselves. To achieve the goal, new methods for building GENEOs
should be developed, in order to get good approximations of the spaces of GENEOs for given
equivariance groups and function spaces. Moreover, as some sets of GENEOs appear to have
a structure of a Lie group and a Riemannian manifold, these structures seem worthy of study
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and analysis.
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Epistemological setting. Our mathematical model is justified by an epistemological back-
ground which revolves around the following assumptions:

1. Data are represented as functions defined on topological spaces, since only data that are
stable with respect to a certain criterion (e.g., with respect to some kind of measurement)
can be considered for applications, and stability requires a topological structure.

2. Data cannot be studied in a direct and absolute way. They are only knowable through
acts of transformation made by an agent. From the point of view of data analysis, only
the pair (data, agent) matters. In general terms, agents are not necessarily endowed
with purposes or goals: they are just ways and methods to transform data. Acts of
measurement are a particular class of acts of transformation, that can or not be at the
service of a global goal quantified by a loss or a reward function.

3. Agents are described by the way they transform data while respecting some kind of
invariance. In other words, any agent can be seen as a group equivariant operator
acting on a function space.

4. Data similarity depends on the output of the considered agent.

In other words, in our framework we assume that the analysis of data is replaced by the
analysis of the pair (data, agent). Since an agent can be seen as a group equivariant operator,
from the mathematical viewpoint our purpose consists in presenting a good topological
theory of suitable operators of this kind, representing agents. For more details, we refer the
interested reader to [36].

Data representation. In our mathematical model, data are represented as function spaces,
that is, as sets Φ of bounded real-valued functions ϕ : X → R, with X a set. We assume
that Φ is compact with respect to the topology induced by the distance

DΦ(ϕ1, ϕ2) := ‖ϕ1 − ϕ2‖∞ . (1)

We can think of X as the space where one makes measurements, and of Φ as the set of
admissible measurements. For example, an image can be represented as a function ϕ from
the real plane X to the real numbers. X inherits the structure of a topological space from
the pseudo-metric DX which distinguishes points only if they are seen as different by some
measurement:

DX(x1, x2) = sup
ϕ∈Φ
|ϕ(x1)− ϕ(x2)| (2)

for every x1, x2 ∈ X. We recall that a pseudo-metric is just a distance d without the property
that d(a, b) = 0 implies a = b. The reason to consider a topological space X rather than
considering just a set follows from the need of formalising the assumption that data are
stable. Note that our choice of topology allows to deal with non-continuous functions, with
respect to the Euclidean topology (see Supplementary Methods, Theorem 2.1).

In general X is not compact with respect to the topology induced by DX , even if Φ is
compact. For example, if X is the open interval ]0, 1[ and Φ contains only the identity from
]0, 1[ to ]0, 1[, the topology induced by DX is simply the Euclidean topology and hence X is
not compact. However, the next result holds.
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Theorem 1. If Φ is compact and X is complete then X is also compact.

Proof. Supplementary Methods, Theorem 2.2.

In our paper we will assume that X is complete and hence compact.
Most types of data can be represented according with the hypotheses of our framework.

Time series can be seen as functions defined on the real line. 3D objects represented as
points clouds can be encoded as real functions defined on R3, for example via Radial Basis
Functions approximation [37, 38]. Oftentimes, in data analysis, samples are represented
as filtrations in metric spaces, i.e. a sample is seen as a sequence of nested sublevels with
respect to a given property. See e.g. Panel A of Figure 2 and Vietoris-Rips filtration [39].
Our approach can be used without loss of generality in this case as well, since it has been
shown that every compact and stable 1-dimensional filtration of a compact metric space is
induced by a continuous function [40].

Transformations on data and equivariance. We assume that data can be transformed through
maps from X to X which are Φ-preserving homeomorphisms, namely, homeomorphisms
g : X → X such that ϕ ◦ g ∈ Φ and ϕ ◦ g−1 ∈ Φ for every ϕ ∈ Φ. The set of these
homeomorphisms will be denoted by the symbol HomeoΦ(X).

The following Proposition 2 implies that HomeoΦ(X) is exactly the set of all bijections
g : X → X such that ϕ◦g ∈ Φ and ϕ◦g−1 ∈ Φ for every ϕ ∈ Φ. Before stating the proposition,
it is necessary to observe that an isometry between pseudo-metric spaces can be defined
naturally, by generalising the concept of isometry between metric spaces. Let (X1, d1) and
(X2, d2) be two pseudo-metric spaces. It is easy to check that if f : X1 −→ X2 is a function
verifying the equality d1(x, y) = d2(f(x), f(y)) for every x, y ∈ X1, then f is continuous with
respect to the topologies induced by d1 and d2. If f verifies the previous equality and is
bijective, we say that it is an isometry between the considered pseudo-metric spaces. If f is
an isometry, it is clear that f−1 is also an isometry, and that f is a homeomorphism.

Proposition 2. If g is a bijection from X to X such that ϕ ◦ g ∈ Φ and ϕ ◦ g−1 ∈ Φ for
every ϕ ∈ Φ, then g is an isometry (and hence a homeomorphism) with respect to DX .

Proof. Supplementary Methods, Proposition 2.3.

We now consider a subgroup G of the group HomeoΦ(X). G represents the set of
transformations on data for which we require equivariance to be respected. We can prove
(see Supplementary Methods, Theorem 2.7) that G is a topological group with respect
to the topology induced by the pseudo-metric defined by setting

DG(g1, g2) := sup
ϕ∈Φ

DΦ(ϕ ◦ g1, ϕ ◦ g2) (3)

for every g1, g2 ∈ G, and that the action of G on Φ through right composition is continuous.
DG measures the distance between two homeomorphisms as the difference of their actions on
the set Φ of possible measurements.
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In general G is not compact with respect to the topology induced by DG, even if Φ
is compact. For example, if Φ is the set containing all the 1-Lipschitz functions from
X = S1 = {(x, y) ∈ R2 : x2 + y2 = 1} to [0, 1], and G is the group of all rotations ρ2πq of X
of 2πq radians with q rational number, then the space (G,DG) is not compact. However, the
next result holds.

Theorem 3. If G is complete then it is also compact with respect to DG.

Proof. Supplementary Methods, Theorem 2.8.

From now on we will suppose that G is complete (and hence compact) with respect to
the topology induced by DG.

The pair (Φ,G) is called a perception pair. The group G of transformations can be either
learned, or fixed as part of prior knowledge.

The natural pseudo-distance. In addition to the pseudo-metric DΦ, we define another pseudo-
distance dG on the space Φ [16]. It represents the ground truth in our model. Indeed,
it allows for comparison between functions and it vanishes for pairs of functions that are
equivalent with respect to the action of our group of homeomorphisms G, which expresses
the equivalences between data.

Definition 4. The pseudo-distance dG : Φ× Φ→ R is defined by setting

dG(ϕ1, ϕ2) = inf
g∈G

DΦ(ϕ1, ϕ2 ◦ g). (4)

It is called the natural pseudo-distance associated with the group G acting on Φ.

If G = {Id : x 7→ x}, then dG equals the sup-norm distance DΦ on Φ. If G1 and G2 are
subgroups of HomeoΦ(X) and G1 ⊆ G2, then the definition of dG implies that

dHomeoΦ(X)(ϕ1, ϕ2) ≤ dG2(ϕ1, ϕ2) ≤ dG1(ϕ1, ϕ2) ≤ DΦ(ϕ1, ϕ2) (5)

for every ϕ1, ϕ2 ∈ Φ.
The choice of grounding our approach on homeomorphisms could appear restrictive.

However, it is important to notice that the spaces required to be homeomorphic are not the
data per se, but their support. For instance, grayscale images are represented as functions
from R2 to R, and it is not relevant if the objects represented in them are non-homeomorphic,
but simply that the functions are defined on homeomorphic spaces, R2 in this example.

Group Equivariant Non-Expansive Operators. The operators on data are defined as Group
Equivariant Non-Expansive Operators (GENEOs).

Assume that two perception pairs (Φ,G), (Ψ,H) are given together with a fixed homo-
morphism T : G → H. Each function F : Φ → Ψ such that F (ϕ ◦ g) = F (ϕ) ◦ T (g) for
every ϕ ∈ Φ, g ∈ G is said to be a perception map from (Φ,G) to (Ψ,H) associated with the
homomorphism T . For brevity and when no ambiguity can arise, we will also say that F is a
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group equivariant operator. If (Φ,G) = (Ψ,H) and T is equal to the identity homomorphism
I : G −→ G, we can say that F is a G-map.

We observe that the functions in Φ and the functions in Ψ are defined on spaces that are
generally different from each other, and the groups of invariance can be different as well.
This is important, as it allows one to compose operators hierarchically.

Definition 5. Assume that (Φ,G),(Ψ,H) are two perception pairs and that a homomorphism
T : G → H has been fixed. If F is a perception map from (Φ,G) to (Ψ,H) with respect
to T and F is non-expansive (i.e., DΨ (F (ϕ1), F (ϕ2)) ≤ DΦ (ϕ1, ϕ2) for every ϕ1, ϕ2 ∈ Φ),
then F is called a Group Equivariant Non-Expansive Operator (GENEO) associated with
T : G→ H.

Example 6. As a reference for the reader, we give the following basic example of GENEO. Let
Φ be the set containing all 1-Lipschitz functions from X = S2 = {(x, y, z) ∈ R3 : x2+y2+z2 =
1} to [0, 1], and G be the group of all rotations of S2 around the z-axis. Let Ψ be the set
containing all 1-Lipschitz functions from Y = S1 = {(x, y, z) ∈ R3 : x2 + y2 = 1 and z = 0}
to [0, 1], and H be the group of all rotations of S1. We observe that (Φ,G) and (Ψ,H) are
two perception pairs. Now, let us consider the map F : Φ→ Ψ taking each function ϕ ∈ Φ to
the function average on meridians ψ ∈ Ψ defined by setting ψ(θ) := 1

π

∫ π
0 ϕ(θ, α) dα (where

θ and α are the azimuthal and polar angles, respectively), and the homomorphism T taking
the rotation of S2 of θ radians around the z-axis positively oriented to the counter-clock
rotation of θ radians of S1. We can easily check that F is a perception map and a GENEO
from (Φ,G) to (Ψ,H), associated with the homomorphism T . In this example F and T are
surjective, but an example where F and T are not surjective can be easily found, e.g. by
restricting Φ to the singleton Φ̄ containing only the null function and G to the trivial group
Ḡ containing only the identical homomorphism.

Compactness and convexity of the space of GENEOs. We can prove that if the function
spaces are compact and convex, then the space of GENEOs is compact and convex too. The
compactness guarantees that the space of GENEOs can be approximated by a finite set. The
convexity implies that new GENEOs can be obtained by convex combinations of pre-existing
GENEOs.

If Fall := GENEO ((Φ,G), (Ψ,H)) denotes the set of GENEOs between two perception
pairs (Φ,G), (Ψ, H) associated with the homomorphism T : G → H, then the following
theorem holds:

Theorem 7. If Φ and Ψ are compact with respect to DΦ and DΨ, respectively, then Fall is
compact with respect to the pseudo-metric

DGENEO (F1, F2) := sup
ϕ∈Φ

DΨ (F1(ϕ), F2(ϕ)) . (6)

Proof. Supplementary Methods, Theorem 3.1.

Now let F1, F2, . . . , Fn ∈ Fall. If (a1, a2, . . . , an) ∈ Rn with
∑n
i=1 |ai| ≤ 1 and Ψ is convex,

then

FΣ(ϕ) :=
n∑
i=1

aiFi(ϕ) (7)
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is a GENEO from (Φ,G) to (Ψ,H) with respect to T . Therefore, the following theorem holds:

Theorem 8. If Ψ is convex, then the set of GENEOs from (Φ,G) to (Ψ,H) with respect to
T is convex.

Proof. Supplementary Methods, Theorem 3.3.

Pseudo-metrics induced by persistent homology. To compare data under the action of a set
F of GENEOs, one could simply define, for ϕ1, ϕ2 ∈ Φ,

DF,Φ(ϕ1, ϕ2) := sup
F∈F
‖F (ϕ1)− F (ϕ2)‖∞. (8)

Though, the computation of DF,Φ(ϕ1, ϕ2) for every pair (ϕ1, ϕ2) of admissible functions is
computationally expensive. Persistent homology allows us to replace DF,Φ with a pseudo-

metric D
F,k
match computationally more efficient, but still stable and strongly invariant. Where,

a pseudo-metric d̂ on Φ is strongly G-invariant if it is invariant under the action of G with
respect to each variable, that is, if

d̂(ϕ1, ϕ2) = d̂(ϕ1 ◦ g, ϕ2) = d̂(ϕ1, ϕ2 ◦ g) = d̂(ϕ1 ◦ g, ϕ2 ◦ g)

for every ϕ1, ϕ2 ∈ Φ and every g ∈ G.
We briefly recall that persistent homology allows to represent the topological and geo-

metrical features of a topological space X (e.g. an image, a 3-dimensional mesh) as it is
seen by a continuous, real-valued function ϕ defined on the space. The homology functor
(see for instance [41]) is used to encode the information of the pair (X,ϕ) in the form of
persistence diagrams. In other words, for every k ∈ N we can associate each continuous
function ϕ : X → R with a persistence diagram Dk

ϕ, that is represented by a discrete collection
of points in the real plane. See Figure 2. Persistence diagrams can be represented by suitable
functions called persistent Betti numbers and denoted by rk(ϕ). The matching distance δmatch

between persistence diagrams depicted in panel C of Figure 2, corresponds to the metric dmatch

between persistent Betti numbers. For details see [42]. Beyond the technicalities that are
needed to define the concept of persistence diagram, two important points are to be stressed.
First, persistent Betti numbers can be rapidly computed. Second, the distance dmatch between
persistent Betti numbers is efficiently computable and gives a lower bound for the max-norm
distance between functions: δmatch(Dk

ϕ1
,Dk

ϕ2
) = dmatch(rk(ϕ1), rk(ϕ2)) ≤ ‖ϕ1 − ϕ2‖∞. It

follows that the distance dmatch can be used as an efficient proxy for the max-norm distance
between real-valued functions. We refer the reader to [43, 44, 45] for further details.

Let us consider a subset F 6= ∅ of Fall. For every fixed k, we define the pseudo-metric
D

F,k
match on Φ:

D
F,k
match(ϕ1, ϕ2) := sup

F∈F
dmatch(rk(F (ϕ1)), rk(F (ϕ2))) (9)

for every ϕ1, ϕ2 ∈ Φ, where rk(ϕ) denotes the kth persistent Betti numbers function with
respect to the function ϕ : X → R. Observe that this pseudo-metric is an optimal lower
bound for the metric defined in Equation (8). Then:
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Proposition 9. D
F,k
match is a strongly G-invariant pseudo-metric on Φ.

Proof. Supplementary Methods, Proposition 4.3.

The pseudo-distance D
F,k
match is stable with respect to both the pseudo-metric dG and the

metric DΦ. This fact guarantees that D
F,k
match can be used in the presence of noise as it is

stated in the following result.

Theorem 10. If F is a non-empty subset of Fall, then

D
F,k
match ≤ dG ≤ DΦ. (10)

Proof. Supplementary Methods, Theorem 4.5.

The definitions of the natural pseudo-distance dG and the pseudo-distance D
F,k
match come

from different theoretical concepts. The former is based on a variational approach involving
the set of all homeomorphisms in G, while the latter refers only to a comparison of persistent
homologies depending on a family of group equivariant non-expansive operators. Thus, the
next result may appear unexpected. Indeed, the role of the group G is not explicitly expressed
in the definition of DF,k

match, but implicitly encoded in the GENEOs that are equivariant with
respect to G. Moreover, the information contained in each single persistence diagram used
in the definition of DF,k

match is generally much smaller than the one expressed by the natural
pseudo-distance dG.

Theorem 11. Let us assume that Φ = Ψ, every function in Φ is non-negative, the k-th Betti
number of X does not vanish, and Φ contains each constant function c for which a function

ϕ ∈ Φ exists such that 0 ≤ c ≤ ‖ϕ‖∞. Then D
Fall,k
match = dG.

Proof. Supplementary Methods, Theorem 4.6.

We observe that if Φ is bounded, the assumption that every function in Φ is non-negative
is not quite restrictive. Indeed, we can obtain it by adding a suitable constant value to every
admissible function.

Here we show how D
F,k
match can be approximated arbitrarily well with a finite subset of

operators:

Proposition 12. Let F be a non-empty subset of Fall. For every ε > 0, a finite subset F∗

of F exists, such that
|DF∗,k

match(ϕ1, ϕ2)−D
F,k
match(ϕ1, ϕ2)| ≤ ε (11)

for every ϕ1, ϕ2 ∈ Φ.

Proof. Supplementary Methods, Proposition 4.8.



A Topological-Geometrical Theory for Data Analysis and Machine Learning 21

Since the compactness of the space Fall guarantees we can cover F by a finite set of balls
in Fall of radius ε, centered at points of a finite set F′ ⊆ F, the proposition above states that
the approximation of DF,k

match(ϕ1, ϕ2) can be reduced to the computation of DF′,k
match(ϕ1, ϕ2),

i.e. the maximum of a finite set of bottleneck distances between persistence diagrams, which
are well-known to be computable by means of efficient algorithms.

Finally, we use persistent homology to define a computable and stable pseudo-metric
between GENEOs. If F1, F2 ∈ Fall, for every fixed k ∈ N, we can set

∆GENEO (F1, F2) := sup
ϕ∈Φ

dmatch(rk(F1(ϕ)), rk(F2(ϕ))) (12)

for which it holds ∆GENEO ≤ DGENEO. The approximations of the pseudo-metrics ∆GENEO

and D
F,k
match are used in the experiments shown.

As a final remark, we observe that our approach based on GENEOs and persistent
homology can be used also when we wish to have equivariance with respect to a set instead
of a group of homeomorphisms. Indeed, whereas the definition of the natural pseudo-distance
dG requires that G has the structure of a group, the definition of DF,k

match does not need this
assumption.

Experimental setting

Isometry equivariant non-expansive operators. We define a parametric family of non-expansive
operators which are equivariant with respect to Euclidean plane isometries.

Given σ > 0 and τ ∈ R, we consider the 1-dimensional Gaussian function with width σ
and centre τ

gτ (t) := e−
(t−τ)2

2σ2 ,

where gτ : R→ R. For a positive integer k, we take the set S of the 2k-tuples (a1, τ1, . . . , ak, τk) ∈
R2k for which

∑k
i=1 a

2
i =

∑k
i=1 τ

2
i = 1. S is a submanifold of R2k.

For each p = (a1, τ1, . . . , ak, τk) ∈ S, we then consider the function Gp : R2 → R defined
as

Gp(x, y) :=
k∑
i=1

aigτi

(√
x2 + y2

)
.

We denote by Fp the convolutional operator mapping each continuous function with
compact support ϕ : R2 → R to the continuous and compactly supported function ψ : R2 → R
defined as

ψ(x, y) :=
∫
R2
ϕ(α, β) · Gp(x− α, y − β)

‖Gp‖L1

dα dβ.

Then, the operator Fp is a group equivariant non-expansive operator with respect to the group
I of Euclidean plane isometries. We call Fp a IENEO (Isometry Equivariant Non-Expansive
Operator).

The IENEO Fp is parametric with respect to the 2k-tuple p = (a1, τ1, . . . , ak, τk) ∈ S.
Therefore, we define a parametric family of IENEOs F = {Fp}p∈S.
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Image preprocessing. Images are preprocessed according to the pipeline described in the first
column of Figure 3. Every image ι is first reshaped to size (128, 128), then blurred with a

3× 3 Gaussian kernel and finally standardised as ιs = ι−mean(ι)
σ(ι)

. The same preprocessing is
applied in all experiments and to all datasets.

Operators selection and sampling on labelled datasets. Let Φ = {ϕ1, . . . , ϕn} be a dataset
equipped with a labelling function l : Φ → J ⊂ N. We assume that the dataset can be
written as the disjoint union Φ = ti∈JΦi where Φi contains samples labelled by i. Let F

be the space of operators that will act on the samples. We begin by randomly sampling
N candidate operators in F, let us denote them as the set C = {Fk}k∈{1,...,N}. We then
select those operators that consider as similar the objects belonging to the same class. Let
us consider the samples in Φl, for each of the candidate operators F ∈ C, we define the
label-dependent value

sl (F ) = max
ϕli,ϕ

l
j

dmatch

(
rk
(
F
(
ϕli
))
, rk

(
F
(
ϕlj
)))

,

in these experiments we set k = 1, although any degree could be used. A candidate operator
F is selected if sl (F ) is smaller than a fixed threshold ε for every l. Let us denote by S the
set of selected operators.

As the selection criterion does not guarantee that the operators are maximally diverse,
when evaluated within and in-between classes, we sample the elements of S which focus on
different shape characteristics. Given a class l, we define the distance between two operators
Fp and Fq (cf. Equation (12))

∆l
GENEO (Fp, Fq) := max

ϕli

dmatch

(
rk
(
Fp
(
ϕli
))
, rk

(
Fq
(
ϕli
)))

.

For every label l, we sort the pairs (Fp, Fq) in ascending order of ∆l
GENEO, and assign to

each pair of operators its index in the sorted list of distances. We then define the interclass
contrastive score of the pair (Fp, Fq) as the sum of its indices over all classes. Finally, we
remove from S redundant operators, i.e. we select only one operators for pairs whose score is
below a fixed threshold t.

Finally, two objects ϕ1 and ϕ2 can be compared by computing the strongly G-invariant
pseudo-metric D

S,1
match(ϕ1, ϕ2), defined in Equation (9).

Metric learning through selection and sampling. Selected and sampled operators Fi ∈ S can
be used to measure distances between pairs of validation samples as

dS (ϕ, ϕ′) = max
F∈S

dmatch (r1 (F (ϕ)) , r1 (F (ϕ′))) . (13)

Note that dS is invariant with respect to the action of the group of planar isometries.
This invariance is naturally inherited by the usage of dmatch.
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