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Abstract

What happens in forecasting problems when high frequency and high spatial detail

data encounter significant publication delays? In this paper, we consider a monthly

dynamic panel data model, augmented by Google Trends search query volume data,

for tourism demand forecasting at high spatial detail, in which one of the main

aspects is represented by a publication delay ranging from 8 to 15 months. Some

findings in the tourism literature already specify forecasting/nowcasting applications

considering a realistic time delay but not for more than 3 months.
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1 | INTRODUCTION

Over the past decades, the understanding of tourism dynamics and

trend forecasting has emerged as fundamental to enhancing manage-

ment planning and policy strategies, especially at mass or multiproduct

tourism destinations (Frechtling, 2001). In this context, two crucial

aspects of the published data are the temporal and the spatial details.

Unfortunately, official information on tourism activity is usually publi-

shed with long delays and as aggregated (areal) measures, under-

mining the efficiency of the decision-making processes (Gunter &

Onder, 2015). Although different statistical and econometric instru-

ments and solutions have been widely investigated, in the field of

tourism, several aspects regarding the availability of temporal and spa-

tial detailed data have been almost completely ignored. This paper

aims to fill these gaps and create a realistic prediction framework by

evaluating a dynamic panel data model augmented by data that are

well suited from a temporal and spatial perspective to forecasting and

nowcasting the tourism demand at a fine territorial detail (i.e., at the

municipality level).

Panel data analysis has not been widely employed in tourism

research (Garín-Muñoz, 2004; Narajan et al., 2010; Sequeira &

Maç~as-Nunes, 2008), especially with variables observed at frequen-

cies higher than yearly. The availability of informative data is crucial in

these cases. Recently, in order to overcome the shortage of official

information, the literature has focused on augmenting the model

directly from Big Data (for a review, see Hassani & Silva, 2015). In

fact, from a business and economic point of view, potential customers,

who are online, produce a large amount of cost-free, informative,

timely, and spatially detailed market information, which can be

analysed in real time (ex ante). Nowadays, the predictive power of

web-related data has generated a strong interest in modelling by

means of augmented forecasting time-series specifications with a

wide set of variables on Internet volumes. This is an important sup-

port for innovation, competition, and productivity (Manyika et al.,

2011). Tourism research has seized this opportunity to investigate

both tourism demand (analysis of a tourist's desires and preferences,

e.g., Song & Liu, 2017; Chen et al., 2019) and supply (investigating

knowledge of competitors' interests and attractiveness, market posi-

tion, and information about target product design, e.g., De Mauro,

Greco, & Karuga, 2015).

The Google Trends index (GT index) for search query data has

received great attention as a result of its ability to predict upcoming

trends in different economic sectors (Askitas & Zimmermann, 2009;

D'Amuri & Marcucci, 2009; Ginsberg et al., 2009), as well as in the

tourism market. The increasing number of tourists exploiting online

channels for information on holidays and purchases guarantees that

the GT index is a representative proxy for ex ante tourism demand of

a destination (Choi & Varian, 2009); it also generates a significant

strand of tourism literature employing search query data, starting from

basic specification (e.g., Varian, 2014; Rivera, 2016) to advanced

instruments such as mixed-data sampling equations (Bangwayo-

Skeete & Skeete, 2015), linear dynamic models (Rivera, 2016), and
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generalized dynamic factor models (Li, Pan, Law, & Huang, 2017).

Most of these studies, however, focus primarily on macro tourism

areas (i.e., nations or metropolitan areas), without considering data

realization and real-time vintages. Camacho and Pacce (2017) are the

only exception to the tourism literature with their consideration of

publication delays, data releases, and updates. The authors focus on

forecasting the demand for Spain at a national level, dealing with a

3-month publication delay of official data. However, enhancing the

territorial detail of the information causes a clear increase in this

delay.

To overcome these shortcomings in forecasting tourism demand,

this study incorporates the following novelties.

1.1 | Fine territorial detail

The first aspect to be considered and enhanced, in this paper, is the

prediction of fine territorial detailed data (i.e., municipalities). In the lit-

erature, analysis of a specific small area is rare (Goffi & Cucculelli,

2019), and the finest spatial detail considered by scholars is metropol-

itan cities or cities characterized by high tourism flows (Gunter &

Onder, 2015, 2016; Emili, Figini, & Guizzardi, 2019). Small towns,

where the tourism industry is at the core of the local economy, may

benefit from an accurate analysis of the dynamics of tourism flows to

a larger extent than metropolitan areas. This issue is highly relevant to

both (a) seasonal destinations, where the predictability of tourism

arrivals is fundamental to destination management; and (b) areas char-

acterized by different attractions (i.e., clusters of municipalities)

responding to alternative segments of the tourism market.

1.2 | Panel data model

A second important aspect in this paper is found in the methodologi-

cal approach. In this sense, seasonality, multiproduct destinations, and

spatial proximity require coordinated marketing and management

actions to deal with and control for potential tourism pull factors in a

timely manner. To account for these issues, we suggest using an

econometric panel approach, where municipalities within an area rep-

resent the unit of the analysis. Song and Li (2008) highlight panel data

analysis of tourism demand as an approach embodying “some advan-

tages over the time series econometric models. It incorporates much

richer information from both time series and cross sectional data. This

approach also reduces the problem of multicollinearity and provides

more degrees of freedom in the model estimation”.

1.3 | Nowcasting approach with real (long)
publication delay and GT data

Encouraged by the temporal mismatch between timely prediction for

hospitality-firm management and tourism-destination urban policies

(Jackman & Naitram, 2015) and long delays in the publication of

official statistics, the third contribution of this paper is the forecast-

ing/nowcasting schemes with horizons ranging from 8 to 15 months.

This is in line with real availability of fine territorial tourism data. Intro-

ducing ex ante demand variable information, on the basis of selected

keywords of a Google search-volume index, we estimate timely mea-

sures of production activities at the destination level with the inclu-

sion of GT data. In addition, the panel nowcasting model allows us to

account for the possible spatial relationships among the tourism desti-

nations in the area, thereby improving the quality of the predictions.

In Italy, foreign visitors bring in €37.2 billion (7.5% of total Italian

exports), supporting 5.5% of the direct and 12.6% of total employ-

ment. The heterogeneous geographical wealth of Italy along with a

rich offering of tourism attractions leads to tourism earnings playing

an important role in both the public and private budgets of the local

areas. The province of Rimini can be considered one of the most rep-

resentative examples in Italy of local territories strongly connected to

tourism earnings.

The province of Rimini is an interesting setting to evaluate the

proposed panel specification for several reasons. First, it is a top Ital-

ian tourism destination—ranking second for tourism GDP per capita—

where 30% of the total product in the whole area is provided by the

tourism sector.1 Second, it comprises different typologies of munici-

palities, from the cities located on the Adriatic Sea coast (from north

to south, Bellaria, Rimini, Riccione, Misano, and Cattolica) to the inland

towns, rich in historical attractions, boasting Romans relics and Medi-

aeval castles. Furthermore, Rimini area is a mass and multiproduct

destination offering solutions to different demand segments including

leisure, meeting and conference, sport, and culture.

The remainder of this paper is organized as follows. Section 2

reviews the forecasting and nowcasting literature, especially focusing

on the use of search query volumes to enhance accuracy and a lack of

interest in publication delays and data vintages. In Section 3, we spec-

ify the panel data forecasting model, and we present the case study.

Section 4 reports results of both forecasting and nowcasting applica-

tions. Finally, in Section 5, we analyse the main findings and the

related managerial implications.

2 | LITERATURE REVIEW

2.1 | Tourism forecasting and big data

In general, the tourism forecasting literature is composed of two

strands (Song & Li, 2008): econometric models (Uysal & O'Leary,

1986; Lim & McAleer, 2001; Rossellò-Nadal, 2001; Song et al., 2009)

and pure time-series models (Witt & Witt, 1991; Hyndman et al.,

2002; Gil-Alana, 2005; Athanasopoulos et al., 2011). In this strand of

the literature, the first possible causes of failure in tourism modelling

and forecasting might be the high spatial substitutability among neigh-

bouring cities or destinations with comparable tourism attractions. A

second source of failure in forecasting time-series tourism data may

be found in the high unpredictability of tourism choices, which are

contingent on war, terrorism, and geopolitical instability in addition to
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atmospheric conditions, environmental crises, fad swings, and so

forth. To address these possible causes of failure in tourism modelling

and forecasting, we combine the exploration of (a) the use of Big Data

generated by Internet traffic in order to assess changes in tourism

flows from those factors a timely manner and (b) the inclusion of

these data in the context of panel data models, accounting for the vol-

atility due to spillovers from substitutable tourism destinations and

innovations resulting from changes in tourist preferences.

As clearly pointed out by Song and Liu (2017), in the framework

of tourism demand analysis, the decision process and implicit charac-

teristics of the demand can be easily controlled for and studied

through the digital tracks left by travellers on the web. The Internet

has already assumed a key role in fashions and consumer trends

(Horrigan, 2008); holiday preferences revealed by individual searches

on an Internet browser provide a new set of empirical evidence, which

could furnish real-time information about the main indicators of tour-

ism activities and improve scientific analysis of tourism-demand

dynamics.

Since the release of the GT index (in previous years, as well

known as Google Insight for Searches), numerous applications have

been created to evaluate the information behind the volume of online

searches. For instance, Ettredge, Gerdes, and Karuga (2005) focused

on the analysis of the unemployment rate. Askitas and Zimmermann

(2009) and D'Amuri and Marcucci (2009) investigated developing

short-term forecasting labour-market models including Google data.

Ginsberg et al. (2009) used Google data to detect the flu epidemic.

Smith (2012) applied GT indices in modelling the volatility dynamics

of financial markets. In the tourism framework, Choi and Varian

(2009, 2012) first explored the possibility of adding the Google search

index to a simple autoregressive model of tourism arrivals in order to

improve the forecasting performance of tourism demand. Recently,

Bangwayo-Skeete and Skeete (2015) and Hirashima et al. (2017)

implemented Autoregressive-Mixed Data Sampling (AR-MIDAS)

regressions to forecast and nowcast tourism demand. Yang, Pan,

Evans, and Lv (2015) evaluated the power of GT data and similar sea-

rch engine volumes in predicting arrivals in China, depicting the impor-

tance of reliable web source information. Rivera (2016) defined a

dynamic linear model to evaluate the ability to forecast hotel stays in

Puerto Rico, considering GT data as the realization of an unobservable

process. Dergiades, Mavragani, and Pan (2018) investigated the pre-

dictive ability of their corrected Google index (from language bias and

platform bias) to analyse causality relationships of the search data and

monthly arrivals in Cyprus.

In the present work, we combine the effect of GT data on the

accuracy of tourism demand forecasting in neighbourhood small areas

with panel data techniques. This class of models has been found rele-

vant to many consumer goods, such as liquor (Baltagi & Griffin, 1995)

and cigarettes (Baltagi & Griffin, 2001), but has had very few applica-

tions on tourism-demand analysis (Gallego, Rodríguez-Serrano, &

Casanueva, 2019; Garín-Muñoz, 2004; Narajan et al., 2010;

Sequeira & Maç~as-Nunes, 2008), especially related to tourism quanti-

ties sampled at frequencies higher than quarterly and rarely with a

forecasting purpose. A general detailed review of the literature on

panel forecasting models is provided by Baltagi (2007), presenting evi-

dence about the superiority of panel techniques with respect to the

time-series approach. Baltagi et al. (2003) found unstable variability of

the single regional estimates and worst out-of-sample forecasts.

Hoogstrate, Palm, and Pfan (2000) compared forecast accuracy of

pooling techniques and single country forecasts, specifically referring

to the cases of N fixed and T large. They argued that, when there are

similarities among estimated parameters, pooling may improve fore-

cast accuracy. Similar findings have been demonstrated by Gavin and

Theodorou (2005) and Fok, Dijk, and Franses (2005) who find that the

panel model forecasts of disaggregated series can be more accurate

than forecasts of aggregates measures (e.g., total output or unemploy-

ment of 48 states).

2.2 | Nowcasting literature

The representativeness and predicting capabilities of GT data can

overcome an important problem with the official data: In the real

world, most of the quantities and relative measures closely related to

tourism and this economic segment are published with a delay that

increases when the territorial detail is enhanced. The result is a seri-

ous lack of information. In many cases, an evaluation of the forecast-

ing accuracy can only be completed 1 year after the data are

published. Fifteen years ago, nowcasting was introduced as a solution

to this problem: a new class of econometric methodologies to forecast

the timely measure of economic variables. This methodological

approach, which takes its name from the combination of the terms

now and forecasting (Banbura, Giannone, & Reichlin, 2011), can help

mitigate the problems from publication delays in official statistics

when measuring tourism activities.

The first contributions to the nowcasting literature were developed

in the macroeconomic context (Giannone et al., 2008; Kuzin et al.,

2011; Aastveit et al., 2014), with the aim of anticipating variables char-

acterized by low-frequency (e.g., quarterly or yearly data) release. Only

recently have the aspects of real-time adjustment and data realization

contaminated the tourism framework. This literature provides a set of

applications to evaluate nowcast predictions, where time-series models

have been augmented by search-volume indices. However, there are a

limited number of contributions that address the specific problems

related to delay in publication and data vintages. In particular, Camacho

and Pacce (2017) considered a dynamic factor model for a real-time

database of vintages, finding that the models augmented by Google

indices outperform the benchmark models. The authors, in collaboration

with Google, built a collection of search-volume index series, tracing the

evolution of different tourism queries in real time. They evaluated their

nowcasting model referring to short horizons, ranging from 1 to

3 months. This way, the authors completely ignored possible problems

caused by publication delays.

The research strategy proposed below overcomes this gap, all-

owing for different aspects of real-time analysis for local public and

private agents: (a) high spatial and frequency detail, (b) a related long

delay in publication of official data, and (c) possible substitutive and
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complementary effects caused by multiproducts for spatially close

destinations.

3 | RESEARCH STRATEGIES

3.1 | Model specification

The dynamic panel data model for the tourism demand for the six

neighbourhood territories is defined by

yi,t = ρ0 + ρ1yi,t−1 + ρ12yi,t−12 +D
0
i,tδ+ ηi + εi,t, ð1Þ

where i = 1, …, N, N = 6, indicates the statistical unit (destinations);

and t =1, …, T is the temporal instant at which we evaluate the depen-

dent variables yi, t (logarithm of the arrivals). ηi is the individual specific

effect, and εi, t is the remainder error; Di, t is a matrix of seasonal dummies

(11 dummies, the last variable omitted to avoid multicollinearity problems)

introduced to detect deterministic seasonal patterns and furnishing an

interpretation of the seasonal fluctuations and their effects on the depen-

dent variable (Shen, Li &, Song, 2008). This choice is supported by Canova

and Hansen's (1995) test results reported in the last column of Table 1

for seasonality stability of the series. Specifically, the tests do not reject

stable seasonal pattern in the series.

In the methodological literature on dynamic panel analysis, the

main problem consists in the dependence between the individual

effects and the lagged dependent variable yi, t − 1. In order to over-

come the resulting estimation problems, alternative transformations

have been proposed in the literature with the aim of evaluating panel

dynamic relationships and wiping out the individual effects

(Anderson & Hsiao 1982; Arellano & Bond 1991; Arellano & Bover

1995; Blundell & Bond 1998). In this paper, we consider the differ-

ence generalized method of moments (GMM) estimation approach

proposed by Arellano (1988) and Arellano and Bond (1991). In addi-

tion to having good asymptotic properties,2 difference GMM, unlike

IV estimators, permits both the use of internal-lagged variables as

instruments and increasing efficiency. Furthermore, differently from

system GMM, difference GMM is not affected by the likelihood of

strong proliferation of instruments and then by overidentification

problems (Gallego, Rodríguez-Serrano, & Casanueva, 2019).

To assess the predictive power of GT data, we augment the panel

data model introducing the variables GT0
i,t−12 of Google searches at lag

t−12 (after log transformation) to exploit the information from the

search engine query for the specified keywords. GT variables are

introduced to account for holiday destination preferences as well as

for possible structural changes caused by general economic quadra-

ture, word of mouth phenomena, exchange-rate changes, and specific

regional situations (e.g., terrorism, wars, and political turbulence).

Choosing lag t−12 for both the lagged dependent variable and the

explanatory variable, we can consider one of the main characteristics

of the tourism demand for Rimini: loyalty. In 2014, the European

Union-funded SEE Project for territorial cooperation—InTourAct

(Province of Rimini, the University of Bologna, and the Piepoli Insti-

tute)—loyal tourists were found to count for 60% of the total, with

nearly 90% intending to return (next year).

Starting from the baseline model of Equation (1), the augmented

forecasting panel model is given by

yi,t = ρ0 + ρ1yi,t−1 + ρ12yi,t−12 +D
0
i,tδ+GT

0
i,t−12γ + ηi + εi,t: ð2Þ

TABLE 1 Descriptive statistics for tourist arrivals in the province, January 2009–December 2016

Mean Median Minimum Maximum CV DH CH

Riccione 61,601 42,034 9,582 February 12 173,623 August 15 0.821 57.470*** 0.296

Rimini 133,590 96,082 27,248 February 14 361,327 August 15 0.881 51.658*** 0.404*

Cattolica 25,111 9,153 1,292 November 16 94,846 August 15 1.033 90.285*** 0.119

Misano 10,770 2,363 124 February 13 41,896 August 15 1.035 90.763*** 0.139

Bellaria 29,062 15,072 748 February 15 110,686 August 15 1.033 76.546*** 0.157

Hinterland 5,056 4,461 1,644 January 09 12,865 August 16 1.152 48.056*** 0.213

Province 265,190 167,650 43,487 February 14 794,490 August 16 0.927 63.218*** -

Tests

Chow (poolability) 3.519***

Wooldridge (p = 1 autocorrelation) 45.911***

Born–Breitungt (p > 1 autocorrelation) 12.90***

LR (heteroskedasticity) 290.05***

Pedroni (cointegration) 19.29*** −23.99*** −14.31*** −3.24*** −20.07*** −14.37*** 1.82**

Abbreviations: CH, Canova and Hansen test; CV, coefficient of variation; DH, Doornik-Hansen test; LR, likelihood ratio.

***1% significance level.

**5% significance level.

*10% significance level.
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3.2 | The data

The geographical position and layout (see Figure 1) are defining fea-

tures of the area around Rimini. The largest municipalities are along

the Adriatic Sea coast, and the inland areas are rich in historical attrac-

tions, including Roman relics and Mediaeval castles.

Rimini offers a wide set of attractions and tourism products over

an area of only 863.6 km2. As a result, tourism plays a significant role

in the economic balance of the province, accounting for 30% of the

total product of the whole area and has the second largest tourism

GDP per capita among Italian provinces. In 2016, the international

tourism demand in Rimini provided €579 million, with monthly tour-

ism arrivals (total, as the sum of international and Italian) ranging from

55,610 in February to 764,443 in August.

Data on monthly tourism arrivals are obtained from the Emilia

Romagna region website (https://www.regione.emilia-romagna.it) for

the interval January 2009–December 2016. Specifically, we use

arrivals as a proxy for the Rimini Province tourism demand. The

highest spatial detail for which data are available is defined by six des-

tinations across the territory: Riccione, Rimini, Cattolica, Misano,

Bellaria, and the inland areas of the province. In contrast to the first

five seaside locations, the inland area has more than one municipality,

each offering different magnitudes of attractions but with similar

characteristics of tourism supply. As seen in Figure 2, tourism arrivals

(solid lines) at each destination show strong summer flows and a wea-

ker flow in the winter.

Table 1 provides some basic statistics of tourism demand, includ-

ing Chow's (1960) poolability test (significance obtained with

bootstrapped critical values provided in Bun, 2004), Wooldridge

(2002) and Born and Breitung's (2016) tests for autocorrelation, likeli-

hood ratio test for detecting heteroskedasticity, Canova and Hansen

(1995) stability test, and Pedroni's (1999) test for cointegration. All

test results support the proposed specification.

Findings on Rimini and Riccione are very similar, especially in the

coefficient of variation and the Doornik–Hansen normality test.

Moreover, we note that the coastal destinations of Cattolica, Misano,

and Bellaria are defined by the weakest tourist flows and show closed

coefficient of variation and Doornik–Hansen normality values. The

inland area presents different results from the other territories, still

referring to the instant at which the maximum appears (August 2016).

Last column (CH) in Table 1 shows the results from the Canova and

Hansen (1995) stability test at Lag 12. For each destination, we do

not reject the null of stable seasonality at the 5% significance level.

The search query volumes are obtained from the website https://

trends.google.com/trends/. Since 2004, Google has provided a search

query index that reflects the magnitude of World Wide Web searches

for all possible keywords. The Google algorithm provides tracked and

categorized searches for a specific query, which includes the searches

made around the keywords. This aims to deal with and identify the

searches performed using all possible meanings of a specific term.

F IGURE 1 Province of Rimini

F IGURE 2 Arrivals and GT data for the six destinations, from
January 2009 to December 2016
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Through this perspective, GT allows the queries to be refined in two

ways: selecting specific categories (all categories, travels, finance, food

and drink, etc.) and suggesting the meaning of an inquirer's answers.

Hence, for this study, the category of interest is the first important

aspect to be defined when downloading the GT.

Even though the literature shows different procedures have been

adopted to choose the most informative combination of keywords

and categories (for a survey, see Li et al. (2017)), in our study, we

refine the searches in the category “Hotel & Accommodation”: first, in

Rimini, the tourism sector of second homes can be considered mar-

ginal with respect to hotel accommodations; and second, the Emilia

Romagna region quantifies the arrivals using hotel accommodations.

The search query variables are obtained for the keywords

“rimini,” “riccione,” “cattolica,” “misano,” “bellaria,” and a sixth query

built as a composite of the names of several villages in the hinterland

inland areas. This last choice basically covers the unavailability of a

unique measure of search volume for this territory due to the lack of a

specific name that identifies one GT series for the whole destination.

We suggest building this search query index with the names of the

five main destinations (in terms of arrivals). The final query for the

inland area of the province is then given by “san leo” + “santarcangelo

di romagna” + “pennabilli” + “verucchio” + “mondaino”.

A third aspect that must be considered is the time interval of the

downloaded data. Every week, the (absolute) number of searches is

obtained referring to a different sample of IP addresses and then is

normalized by the total searches of the week. This adjustment pro-

vides not only a data update on the maximum of the series (the cases

in which a new maximum of searches is identified or when the set and

investigated time interval exclude the observed maximum) but also

some small differences among the same series downloaded in two dif-

ferent weeks. In this way, every time we update the training set, we

cannot add a new observation to the GT series, but we have to down-

load all of the data again. Both dependent and independent variables

are plotted in Figure 2, with solid and dotted lines, respectively. The

seasonal pattern of the arrivals is also observed for the GT series, with

peaks emerging mostly in July and troughs in winter. Contrary to the

other series, the volumes of the searches for inland areas show a not-

smoothed seasonal dynamic.

4 | RESULTS

In Table 2, we show baseline and augmented model estimates and

tests on linear restrictions and serial correlation of two specific train-

ing sets: the first from January 2009 to December 2014 and the last

from January 2009 to December 2015 (from left to right). In particu-

lar, we refer to the Wald test for H0, b : ρ1 = ρ12 for baseline models

cases and H0, a : ρ1 = ρ12 = γ = 0 for the augmented ones. In the last

row of Table 3, we summarize the results of Arellano–Bond test from

the second to the 12th-order autocorrelation in first-differenced

errors (Arellano & Bond, 1991). Specifically, we refer to the number of

times that the tests cannot be rejected at 1% significance level.

Findings suggest that autocorrelation coefficients and the esti-

mates of the GT variables impacts are always positive and significant,

TABLE 2 Estimates of the baseline
and the augmented models for the two
training sets: January 2009–December
2014 and January 2009–December 2015

January 2009–December 2014 January 2009–December 2015

Base Augmented Base Augmented

ρ1 0.235*** 0.229*** 0.197*** 0.171***

ρ12 0.707*** 0.694*** 0.752*** 0.761***

γ 0.125*** 0.003**

δ1 −0.024 −0.026 −0.038 −0.031

δ2 −0.078 −0.136** −0.138** −0.175***

δ3 0.106 0.129** 0.058 0.074

δ4 0.369** 0.286*** 0.261* 0.179**

δ5 0.159 0.042 0.151* 0.056

δ6 0.329** 0.232** 0.236* 0.140

δ7 0.226** 0.098 0.174* 0.063

δ8 0.224** 0.116 0.165* 0.067

δ9 −0.101*** −0.112 −0.105** −0.113*

δ10 −0.23** −0.229*** −0.230** −0.228**

δ11 −0.162*** −0.129** −0.176*** −0.157***

ρ0 0.483 0.277*** 0.469 0.319***

Wald χ2ν 3,173.20 7,329.57 2,793.00 9,323.99

Autocorr. Accep. 0 0 0 0

***1% significance level.

**5% significance level.

*10% significance level.
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as also confirmed by the Wald tests. The sign of the dummy variables

remain constant over the two samples: we observe negative signs for

autumn and winter dummies (δ1, δ2, δ9, δ10, and δ11), and positive

impacts in spring and summer dummies(δ3, δ4, δ5, δ6, δ7, and δ8). The

0 values in the last rows guarantee the absence of correlation and so

the validity of the moment conditions used by the Arellano–Bond

estimator for the four applications.

The forecasting and nowcasting abilities of the two models have

been evaluated also referring to further rival specifications. In particu-

lar, we consider the univariate time series models defined by

yi,t =ϕ0 + yi,t−12 + ϵi,t, ð4Þ

for i = 1, …, 6, and

Δ12yi,t =ϕ0 +ϕ12Δ12yi,t−12 + βΔ12GTi,t−12 + ui,t, ð5Þ

where Δ12�i,t − 12 = �i,t − �i,t − 12 is the 12 differences of both depen-

dent and independent variables. The third and fourth rival specifica-

tions are naïve forecasting models, identified below by N and defined

by ŷi,T +1 = yi,T , and Holt–Winters' triple exponential smoothing (fol-

lowing Gunter & Onder, 2015) from the class of exponential smooth-

ing method.

The forecast accuracy measures employed in this work are the

mean absolute error (MAE) and the root mean square error (RMSE); as

pointed out by Gunter and Onder (2015), the characteristic of these

quantities, calculated on the logarithmic series, is to approximate the

related percentage indices (mean absolute percent error and root

mean square percent error) of the untransformed variables. We also

consider a third measure of accuracy, built as a ratio of the absolute

errors. Specifically, the relative quantities are defined by the ratios of

the absolute errors done with the benchmark models relative to the

absolute error obtained with the augmented model, specifically

defined by

RT + h =
j yT + h− ŷT + h,b j
j yT + h− ŷT + h,a j

, h=1,…,12 , ð6Þ

where yT + h is the variable observed h steps forward the end of the

estimation period T; and ŷT + h,b and ŷT + h,a are the forecasts for the

benchmark and the augmented models, respectively. Through these

quantities, we obtain a direct measure of comparison because values

equal to 1 represent equal errors for the two models, RT+ h>1

assesses a better performance of the benchmark model, and RT+ h>1

confirms the goodness of the augmented forecasting model.

Moreover, the lack of information caused by the publication delay

for official data aggravates the difficulty of obtaining reliable out-of-

sample results. Thus we further implement a nowcasting application.

We collect the GT variables raising alternative samples of search-

volume data: specifically, we start from the period January 2009–May

2016, and we add 1 month to this sample, until the interval January

2009–September 2016, obtaining a different series for the search

query indices for each interval. To enhance the characteristic of reli-

ability of the nowcasting application, we evaluate horizons h ≥ 8 in

line with availability of high (temporal and spatial) detailed official

data, where classical delays range from 8 to 15 months.

To summarize, we consider two specific forecast evaluation

schemes: the first one general to evaluate the accuracy of the whole

yearly performances of each destination; and second, the prediction

of summer months when they appear as 1, 2, …,12 steps ahead. For

the nowcasting scheme, first we focus on the predicting capability of

the model measuring MAEs and RMSEs for the period May–

September 2016; hence, we investigate the nowcasting performances

of the rivals in summer months of June, July, and August when they

appear as horizons h = 8, 10, 12, and 15.

4.1 | Forecasting.1

The first training set is defined by January 2009–December 2014

(T = 60), and the second training sample is obtained adding 12 months

to the previous interval (until December 2015, T = 72). In Table 3, we

evaluate the forecast performances of the benchmark and augmented

models through MAEs and RMSEs for the following 12 months of

2015 and 2016, respectively.

Even if the magnitude of the errors is quite strong in both training

sets (MAEs ranging from 0.1315 to 0.3037 for the benchmark and

from 0.1134 to 0.2875 for the augmented model; benchmark RMSEs

vary between 0.1686 and 0.4509 and 0.1407 and 0.4382 for the aug-

mented specification), the augmented model generally produces

smaller errors than the baselines (in bold). For the forecasting period

January–December 2016 in particular (fourth and fifth columns), we

observe five augmented model MAEs and all the RMSEs, lower than

TABLE 3 Mean absolute error and the root mean square error
indexes calculated on the forecasting periods January–December
2015 and January–December 2016

January–December 2015 January–December 2016

MAE Base Augmented Base Augmented

Riccione 0.1992 0.1948 0.2160 0.1963

Rimini 0.2099 0.1412 0.2649 0.1850

Cattolica 0.1934 0.1898 0.2527 0.2297

Misano 0.1823 0.1569 0.3037 0.2875

Bellaria 0.2426 0.2400 0.2653 0.2671

Hinterland 0.1525 0.1550 0.1315 0.1134

RMSE

Riccione 0.2707 0.2565 0.2692 0.2398

Rimini 0.2467 0.1694 0.3103 0.2303

Cattolica 0.2444 0.2196 0.3629 0.3436

Misano 0.2675 0.2200 0.4470 0.4265

Bellaria 0.3360 0.3462 0.4509 0.4382

Hinterland 0.1836 0.1858 0.1686 0.1407

Abbreviations: MAE, mean absolute error; RMSE, the root mean square

error.
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TABLE 4 Comparison of the summer forecasting performances of the benchmark and the augmented model through RT + h, and mean
absolute error values for the six rival models

h Riccione Rimini Cattolica Misano Bellaria Hinterland

June 1 1.19 1.22 1.01 0.85 0.99 0.60

2 0.86 1.33 0.91 0.45 1.29 0.72

3 0.99 1.46 0.92 0.40 1.22 0.73

4 1.05 1.45 1.23 1.23 2.02 0.42

5 1.02 1.43 1.23 1.31 2.01 0.44

6 1.01 1.07 1.18 1.70 2.15 0.40

7 0.58 0.74 0.93 0.79 0.18 0.47

8 0.50 0.72 0.61 0.23 0.06 1.18

9 0.30 0.52 0.99 1.13 0.18 0.46

10 0.32 0.53 0.99 1.12 0.18 0.46

11 0.32 0.53 0.99 1.13 0.18 0.46

12 0.33 0.54 0.99 1.13 0.16 0.46

MAEa 0.05 0.11 0.11 0.06 0.03 0.12

MAEb 0.07 0.13 0.12 0.07 0.04 0.22

MAERW 0.06 0.12 0.13 0.09 0.07 0.02

MAEAR + GT 0.07 0.10 0.12 0.19 0.05 0.07

MAEN 0.49 0.42 0.99 0.92 0.71 0.15

MAEETS 0.25 0.14 0.19 0.07 0.22 0.18

July 1 1.02 0.92 1.31 2.14 0.67 2.59

2 0.92 0.86 1.17 1.46 0.84 0.38

3 0.94 0.89 1.10 0.57 0.58 0.80

4 0.93 0.89 1.11 0.54 0.58 0.78

5 0.69 0.68 1.00 0.85 0.38 0.73

6 0.73 0.71 1.03 0.92 0.39 0.57

7 0.96 0.86 1.18 1.02 0.50 0.51

8 0.80 0.85 0.99 1.19 0.49 0.75

9 2.72 1.57 2.60 2.13 2.37 0.35

10 0.65 0.74 1.01 1.60 0.48 0.94

11 0.66 0.75 1.01 1.63 0.48 0.85

12 0.65 0.74 1.01 1.62 0.47 0.80

MAEa 0.09 0.16 0.09 0.04 0.04 0.04

MAEb 0.10 0.19 0.08 0.03 0.07 0.06

MAERW 0.06 0.09 0.14 0.09 0.10 0.06

MAEAR + GT 0.08 0.10 0.15 0.20 0.12 0.12

MAEN 0.17 0.31 0.19 0.26 0.28 0.45

MAEETS 0.27 0.15 0.21 0.09 0.20 0.13

August 1 0.42 0.65 1.00 1.05 1.36 0.80

2 0.85 0.84 0.55 0.72 0.87 0.41

3 0.95 0.80 0.51 0.73 0.99 0.41

4 0.59 0.84 1.24 0.95 0.90 0.71

5 0.59 0.83 1.23 0.94 0.90 0.70

6 1.27 0.45 1.43 0.90 1.27 0.44

7 1.35 0.48 1.45 0.90 1.25 0.46

8 2.04 0.77 1.77 0.84 1.42 0.50

9 1.70 0.37 1.09 0.95 2.04 0.42

(Continues)
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their benchmark counterparts, highlighting a general performance

enhancement after inclusion of the GT variables.

4.2 | Forecasting.2

Given the seasonal nature of arrivals in the province, we propose fur-

ther considerations. In particular, we implement a recursive procedure

to forecast h = 1, …, 12 horizons, starting from the estimation sample

January 2009–December 2014, and we focus on the predicted values

for summer (June, July, and August), differentiating by the horizon at

which these months appear as forecasts. Even if the number of train-

ing sets, and hence forecasts, is small, several results and implications

can be derived.

For each month we report in Table 4, the ratio RT + h of Equa-

tion (5) for the baseline and the augmented models and the mean of

the 12 horizons' absolute errors for all rival specifications, that is,

MAEb is the mean of the absolute errors with the benchmark panel

specification; MAEa refers to the absolute errors of the augmented

models; MAERW is calculated for the forecasts obtained through the

specification in Equation (3); MAEAR + GT for Equation (4); and MAEN

and MAEETS for naïve and exponential smoothing model, respectively.

If we compare MAEs in Table 3 and MAEs in Table 4, we see that

both the baseline and the augmented model provide forecasts that

are more accurate in summer than in the other periods of the year.

Referring to the RT + h quantities, most of the ratios in June and July

are lower than 1, assessing the forecasting ability of the augmented

model.

Focusing on each destination, the main advantages including GT

variables can be noted for the inland area and Rimini, especially in July

and August. A different result is obtained for Cattolica (for which only

12 RT + h ratios over 36 are lower than 1) and for Misano, the only

bathing destination close to Cattolica in the province. The worst ratios

are shown for Riccione when August represents horizons h = 11 and

h = 12. However, if we observe the terms of these relative measures,

we show that the RT + h are given by

TABLE 4 (Continued)

h Riccione Rimini Cattolica Misano Bellaria Hinterland

10 0.22 1.84 0.71 0.89 1.11 0.78

11 3.06 0.13 1.13 0.86 2.26 0.24

12 3.24 0.16 1.12 0.86 2.28 0.25

MAEa 0.03 0.06 0.06 0.09 0.07 0.07

MAEb 0.03 0.09 0.06 0.10 0.05 0.13

MAERW 0.07 0.03 0.04 0.07 0.06 0.01

MAEAR + GT 0.07 0.03 0.01 0.03 0.06 0.03

MAEN 0.06 0.09 0.11 0.09 0.15 0.10

MAEETS 0.35 0.18 0.17 0.09 0.35 0.22

Abbreviation: MAE, mean absolute error.

TABLE 5 Mean absolute error and
the root mean square error indexes
calculated on the nowcasting period May
2016–September 2016

h = 8 h = 10 h = 12 h = 15

MAE Base Augm. Base Augm. Base Augm. Base Augm.

Riccione 0.1380 0.1323 0.1325 0.1151 0.1271 0.1077 0.1201 0.1849

Rimini 0.1726 0.1365 0.1562 0.1228 0.1667 0.1273 0.1636 0.2049

Cattolica 0.1570 0.1519 0.1513 0.1436 0.1448 0.1382 0.1368 0.1449

Misano 0.1469 0.1307 0.1365 0.1412 0.1315 0.1409 0.1204 0.0979

Bellaria 0.1452 0.1400 0.1374 0.1288 0.1292 0.1164 0.1207 0.0463

Hinterland 0.1418 0.1159 0.1676 0.1407 0.1648 0.1578 0.1605 0.2240

RMSE

Riccione 0.1604 0.1502 0.1532 0.1407 0.1526 0.1314 0.1408 0.2120

Rimini 0.1811 0.1516 0.1684 0.1319 0.1748 0.1308 0.1748 0.2074

Cattolica 0.1986 0.1840 0.1905 0.1802 0.1872 0.1705 0.1682 0.1755

Misano 0.2243 0.1994 0.1902 0.2030 0.1916 0.1966 0.1691 0.1165

Bellaria 0.2935 0.2208 0.2612 0.2173 0.2640 0.2025 0.1889 0.0537

Hinterland 0.2515 0.1721 0.2388 0.1822 0.2398 0.1875 0.2030 0.2500

Abbreviations: MAE, mean absolute error; RMSE, the root mean square error.
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RT +11 =
j yT +11− ŷT +11,b j
j yT +11− ŷT +11,a j

=
0:015
0:047

, RT +12 =
0:014
0:044

,

highlighting the goodness of the augmented model performances with

MAE indices less than 0.05 (representing approximately a mean abso-

lute percent error of 5% of the arrivals).

4.3 | Nowcasting.1

In the nowcasting application, we focus on the predictions of

arrivals in May, June, July, August, and September 2016, only

when these months appear as h = 8, 10, 12, and 15 for the best

four rival models identified in Table 4—the benchmark panel speci-

fication, the augmented model, the random walk specification, and

the Autoregressive (AR) model augmented by GT. In Table 5, we

show the MAE and the RMSE indices of the 5-month forecasts

evaluated at each horizon.

For h = 8, we confirm an enhancement of the results for all the

destinations after introducing the GT variables. In the cases of h = 10

and h = 12, only Misano exhibits better results with the baseline

model. For the largest horizon, h = 15, we find the performance over-

turned, all MAEs of the benchmark are lower than MAEs of aug-

mented specifications despite the cases of Misano and Bellaria.

4.4 | Nowcasting.2

We show results for summer in Table 6, through RT + h ratios for the

best four rival models identified in Table 4—the benchmark panel

specification, the augmented model, the random walk specification,

and the AR model augmented by GT. In this case, no one model

clearly outperforms the others.

Considering the first rival, that is, the baseline panel model, the

main advantages in forecast accuracy can be noted for horizons

h = 10, and 12, where most of ratios are less than 1. The worst

TABLE 6 Comparison of the summer
nowcasting performances of the best
four rival models through RT + h

Base RW AR + GT

h = 8 June July August June July August June July August

Riccione 0.51 1.18 2.88 1.02 1.71 0.76 0.90 1.24 0.74

Rimini 0.71 1.08 0.15 1.18 2.13 0.40 1.42 2.21 0.34

Cattolica 0.54 1.03 1.26 0.81 0.71 2.30 1.17 0.70 2.13

Misano 0.14 0.83 1.06 0.20 0.39 1.99 0.25 0.17 2.77

Bellaria 0.04 0.70 2.17 0.05 0.54 2.07 0.25 0.44 1.43

Hinterland 1.27 0.12 0.29 9.19 0.08 6.16 2.88 0.04 0.92

h = 10

Riccione 0.97 0.73 0.24 1.03 1.05 0.20 0.90 0.74 0.20

Rimini 1.03 0.70 0.67 1.27 1.45 1.25 1.44 1.49 1.23

Cattolica 0.82 0.83 0.64 0.83 0.61 1.58 1.17 0.61 1.39

Misano 0.29 1.10 0.79 0.20 0.50 1.78 0.22 0.22 2.30

Bellaria 0.17 0.30 1.31 0.08 0.23 2.24 0.39 0.19 1.72

Hinterland 0.90 1.38 0.17 9.71 1.25 4.18 3.09 0.68 0.68

h = 12

Riccione 0.98 0.73 0.04 1.05 1.06 0.01 0.91 0.75 0.01

Rimini 1.04 0.71 0.95 1.22 1.61 2.70 1.43 1.53 3.57

Cattolica 0.82 0.82 0.95 0.82 0.59 1.64 1.12 0.59 1.45

Misano 0.26 1.08 1.12 0.18 0.47 2.10 0.19 0.20 2.58

Bellaria 0.18 0.28 1.63 0.08 0.22 1.77 0.37 0.18 1.28

Hinterland 0.90 1.24 0.80 9.50 1.22 20.54 2.96 0.65 2.95

h = 15

Riccione 1.91 1.52 5.77 2.22 1.08 0.90 1.40 1.05 1.37

Rimini 1.34 1.08 2.26 2.40 1.32 31.72 2.82 1.51 16.68

Cattolica 1.25 1.58 0.50 1.16 0.68 1.23 1.67 0.81 1.47

Misano 0.25 2.10 1.72 0.56 0.74 2.86 0.17 0.28 1.52

Bellaria 0.88 0.84 1.55 0.53 0.39 18.74 1.23 0.34 1.34

Hinterland 1.54 1.68 1.63 5.77 0.71 22.07 2.72 0.38 2.14

Abbreviations: AR, autoregressive; GT, Google Trends; RW, random walk.
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situation is represented by h = 15. If we consider the univariate time-

series models, the predictive power of the augmented panel specifica-

tion is not so clear. However, we can find that the enhancement of

accuracy is obtained for destinations representative of similar prod-

ucts and with the weakest tourist flows among the six territories: Cat-

tolica, Misano, and Bellaria. As for forecasting results, the summer

evaluation in Table 6 shows errors that are quite different from the

mean obtained in Table 5, finding the goodness of the model, and

therefore of the GT data, to capture the summer dynamic.

From a practitioner point of view, it is extremely important for

public and private agents operating at different spatial detail to under-

stand, model, and accurately predict the number of tourists coming to

the destination. The aims are to prevent and sustain low-level demand

conditions (e.g., in winter months and local inefficiency of smaller des-

tinations, this one often characterized by a low level of attractiveness)

while planning and programming both an adequate number of avail-

able accommodations and employees. Accurately predicting the

specific-municipality demand provides the opportunity to track the

performance of competing destinations (as in the case of h = 15 for

Cattolica, Misano, and Bellaria), the opportunity for minor destinations

(inland areas and Misano) to monitor the role of events in

neighbourhood municipalities in the off-peak as well as peak season,

and the opportunity to detect the impact of shocks at different micro-

economic levels on tourist arrivals in real time through contractions in

search volumes. These issues also suggest that greater access to tour-

ism destinations could be improved by means of greater visibility and

a more accurate and proper marketing strategy on the Internet, espe-

cially for small isolated municipalities with small magnitude attractions

(e.g., inland areas of the province). All these practical aspects require

opportune and prompt predictions of tourist flows dealing with data

availability and publication delays of official data. Despite the impor-

tance, both availability and delay are usually disregarded in tourism lit-

erature often leading researchers to highlight accuracy of

inappropriate and almost unrealistic forecasting schemes.

5 | CONCLUSIONS AND IMPLICATIONS

Short- and long-term predictions provide answers to different ques-

tions of economic agents. Frechtling (2001) summarized the relation-

ship between tourism managerial requirements and the temporal

intervals to adopt efficient and effective economic, managerial, and

marketing actions. For local destinations, the gap in official data,

which affects either short- and long-term predictions, becomes dra-

matic, strongly undermining the efficiency of the decision-making pro-

cesses. However, small towns where the tourism industry is at the

core of the local economy may benefit from an accurate analysis of

the dynamics of the tourism flows to a larger extent than the metro-

politan areas. The aim of this paper is to respond to this shortcoming

by combining relevant concepts introduced (separately) in the tourism

framework over the past decade.

First, the use of a panel specification to model and forecast tour-

ism demand of both complementary and substitutive neighbourhoods.

Second, the use of GT indices to enhance the predictive capability of

forecasting and nowcasting models. This strand of statistical and

econometric literature has been recently introduced to define models

able to predict the present, the very near future, and the very recent

past. Researchers either become interested in building specific instru-

ments (for a review, see Banbura, Giannone, & Reichlin (2011)) able to

deal with mixed frequency data or augmenting forecasting models

with ex ante measures of the interesting variables. Following the latter

direction, tourism literature focuses on using advanced techniques to

deal with models augmented by online search data, usually avoiding

important aspects of forecasting and nowcasting approaches. The

third and fourth relevant concepts are found in two important and

ignored problems of local economic agents: the availability of official

data and the spatial detail of the quantities involved in the analysis.

Even if results differ across municipalities and forecast horizons

(Witt & Witt, 1995), focusing on weak summer tourism flows and

adopting a more realistic forecasting scheme, the augmented panel

data model proposed in this paper provides more accurate forecasts

than the baseline counterpart and four rival univariate specifications,

which underscore the importance of jointly modelling weak and

strong tourism demand for neighbouring destinations at monthly

frequency.

Despite the advantages identified with this approach, limitations

and further developments can be illustrated. First, the combination of

temporal availability and the model specification: in fact, due to the

size of the data set joint with the number of parameters in the panel

specification, we avoid increasing the number of training sets, taking

care of the general advantages of panel-data techniques. Further

developments should consider increasing the temporal dimension

and/or the number of destinations. Second, given the geographic

proximity of the analysed municipalities, the analysis would be

improved by increasing the data set from a spatial point of view,3 spe-

cifically increasing the number of neighbouring territories and provid-

ing a spatiotemporal panel data investigation.
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ENDNOTES
1 From the Italian National Institute of Statistics available at http://dati.

istat.it/.
2 In our case, N = 6 and T > 60. As pointed out by Alvarez and Arellano

(2003), these generalized method of moment panel data estimators are

asymptotically normal distributed and unbiased if the number of individ-

uals N is fixed and T is infinity.
3 We thank an anonymous referee for this suggestion.
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