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Thermal model identification of computing nodes
in High Performance Computing systems

Roberto Diversi, Andrea Bartolini, Member, IEEE, and Luca Benini, Fellow, IEEE

Abstract—Thermal-aware design and on-line optimiza-
tion of the cooling effort are becoming increasingly im-
portant in current and future high performance computing
(HPC) systems. A fundamental requirement to effectively
develop such techniques is the availability of distributed
and compact models representing the system thermal be-
havior. System identification algorithms allow to extract
models directly from the thermal response of the target
device. This paper proposes a novel thermal identification
approach for real, in-production HPC systems, which is
capable of extracting thermal models from a computing
node affected by quantization noise on the temperature
measurements as well as operating in free-cooling mode,
with variable ambient temperature. The approach allows
also to identify the physical floorplan of the CPU dies in
supercomputing nodes. The effectiveness of the proposed
methodology has been tested on a node of the CINECA
Galileo Tier-1 supercomputer system.

Index Terms—Thermal modelling, system identification,
supercomputing nodes, HPC systems.

I. INTRODUCTION

AFTER the end of Dennard’s scaling, one of the prominent
limiting factor of the performance of today’s and future

computing systems is the so called “Thermal and Power Wall”
[1]. Indeed, the power density of computing devices ha s
increased across generations: higher power density increases
silicon temperature, which in turn increases cooling costs
and/or jeopardizes performance.

High Performance Computing (HPC) systems, warehouse-
scale computing, and datacenters are gaining importance in
today’s society and industry [2]. Recent reports quantify the
Return on Investment (ROI) produced by applying HPC in
an industrial environment: in Europe each euro invested in
HPC generates in average 867e of increased revenues and
69e in profit, while in the US a single dollar invested in HPC
generates in average 43$ of profit [2].

Datacenters and supercomputing centers are large and
complex industrial plants by their own [3]. These systems
are composed of several computing rooms each filled with
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several racks containing tens/hundreds of computing nodes.
Each computing node is composed of few computing ele-
ments (CPUs/GPUs) based on multi/many-core processors.
The power consumption of these installations ranges from few
to tens of MWatts. To remove the heat generated by the active
electronics, additional power is required. A recent study of
Gao shows that in average today’s datacenters of Google pay
an additional 12% of power consumption for power delivery
and cooling dissipation [4].

Traditional cooling methods, based on computer room air
conditioners (CRAC), or computer room air handlers (CRAH)
have been enhanced with free-cooling mode, i.e., the capability
to exploit the outside air, using only the AC blowers to
circulate it in the room [5]. Moreover, cooling energy can be
significantly reduced if hot water cooling is used to remove
the heat [6]. In both these cases a hotter-than-nominal coolant
is used to remove the heat, leading often to a higher silicon
temperature in the computing unit [3], [7].

Today’s processors use two mechanisms to protect the
silicon die from over-temperature (referred as thermal manage-
ment): (i) dynamic voltage and frequency scaling (DVFS) as
well as (ii) duty-cycling (Thermal Throttling). While DVFS is
used as primarily control mechanism for power management in
firmware and operating systems, duty-cycling is used as a fail-
safe HW protection mechanism when die temperature exceeds
a critical threshold. Indeed, with DVFS the performance loss
increases sub-linearly with the power reduction, while with
thermal throttling the performance loss increases linearly with
the power reduction and thus the latter has worse impact on
the core performance.

One could think that today’s best-in class computing ele-
ments are thermally stable for the entire commercial operating
temperature range, however Moskovsky et al. [7] show that
built-in mechanisms can use effectively the DVFS only for
power management and fails in preventing thermal throttling
[7]. This is primarily due to the reactive nature of the DVFS-
based thermal controllers which take corrective actions when
the chip is already too hot.

Optimal control and thermal-aware resource management
strategies can ease this problem provided that a predictive
thermal model and a thermal interaction map can be ex-
tracted from the deployed silicon die [3], [8]. In digital
electronic devices temperature depends on power dissipated,
which depends on the utilization, instruction composition and
operating point (voltage supply and clock frequency). These
parameters can be monitored directly form each deployed
computing element by means of integrated power, temperature
and performance sensors. System Identification algorithms can
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be used to extract a thermal model to predict the future thermal
evolution directly from these sensor’s traces.

Previous works [9], [10] have shown that classical AutoRe-
gressive eXogenous (ARX) models do not lead to a physically
meaningful model, which is expected to be passive (i.e with
only stable poles) and with real and positive poles. Indeed,
ARX models are widely used in system identification, as they
constitute the simplest way of representing a dynamic process
in the presence of uncertainties [11]–[15]. ARX models are
suitable to represent the so-called “process noise”, whose aim
is to represent unavoidable model approximations, but are not
able to represent input and output measurement noise [11],
[12]. However, the thermal sensors embedded in the silicon
die of server’s class processors are affected by thermal [9],
[10] and quantization [16] noise. To account for the presence
of this noise, the relation between the core temperature and
the dissipated power has been described by means of Multi-
Input Single-Output (MISO) ARX models with additive noise
on the output [9], [10], [16].

A. Related Works

Several works in the state on the art focused on extracting
thermal models from real computing systems. We cluster these
approaches in (i) Output Error, (ii) AutoRegressive, and (iii)
AutoRegressive plus noise methods.

(i) The Output Error approaches are based on the solution of
an optimization problem to extract the model parameters from
input-output data without introducing a specific disturbance
model. In the domain of multicore thermal modelling, Ben-
eventi et al. [17] present an Output Error system identification
strategy that is robust to quantization noise on the input
temperature measurements. This is achieved by adding to the
basic optimization problem a set of linear constraints that
filters out the model parameters that are not physically valid.
The approach is validated on a quad-core server platform and
shows that a 2nd order model is required. This method can
capture error in the output variable but cannot handle “process
noise”.

(ii) In contrast, AutoRegressive approaches do account for
process noise but not for the input and output measurement
noise. The simplest methods consist in extracting first-order
dynamic thermal models by solving a linear least squares (LS)
optimization problem [18], [19]. Coskun et al. [20] propose
an AutoRegressive Moving Average (ARMA) technique for
predicting the future thermal evolution of each core. The
derived model predicts future temperature by using only
its previous values. Since it does not account directly for
workload-to-power dependency, a Sequential Probability Ratio
Test (SPRT) technique is used to rapidly detect changes in the
statistical residual distribution (average, variance) and, then,
to re-train the model, when it is no longer accurate. Juan
et al. [21] use a combination of a K-means clustering and
an Auto-Regressive (AR) model to learn a compact model
for fast thermal simulation. This approach is effective only
when starting from a highly accurate thermal model of the
HW. Moreover, the missing exogenous terms in both of the
above approaches leads to neglecting the direct link between

dissipated power and temperature. Bartolini et al. [22] present
a distributed model learning approach based on a set of
classical ARX models. Each core executes its own model
learning routine generating a local thermal model. The model
is used internally, in each core, by a local model-predictive
controller. However this approach has been applied only to
simulated systems and it is based on the assumption that per-
core power traces and thermal sensor outputs are accurate
and without noise. Reda et al. [23] describe a method for
identifying thermal models and power consumption starting
from the measurements of thermal sensors and total power
consumption. This approach is based on a multivariable ARX
model.

(iii) In [9] Diversi et al. introduced a bias compensated least
squares (BCLS) approach for identifying MISO ARX with
noisy output (MISO ARX + noise) models, which has been
extended in [10] with a distributed implementation. MISO
ARX + noise models allow to take into account the presence
of both process noise and measurement noise. These works
have been conducted on the Intel Single Chip Cloud computer
test device which featured “cheap” ring oscillators as thermal
sensors. Nevertheless, as shown in [16], the performance of the
BCLS identification algorithm is not satisfactory when applied
to the thermal modelling of supercomputing nodes within in-
production HPC systems, affected by quantization noise on the
temperature measurements as well as operating in free-cooling
mode, with variable ambient temperature. In [16], the identifi-
cation of noisy ARX models has been performed by combining
an ad hoc Frisch scheme and the instrumental variable method.
This approach has proved to be more effective than previous
ones for the considered real-life production HPC system.

B. Contribution
This paper extends the work in [16] by: (a) proposing

an identification algorithm based on a bilinear system of
equations whose unknowns are the model parameters and the
additive noise variance. The proposed approach is computa-
tionally simpler than [16] since it is based on the iterative
application of two least squares formulas. On the contrary,
the method described in [16] is based on the constrained
minimization of a loss function requiring a numerical search
methods. Another advantage of the new algorithm concerns
the possibility of obtaining a recursive version, which is of
interest for online thermal management where the model has to
be updated in order to track parameter changes. The proposed
approach can effectively learn thermal models which are phys-
ically valid and capable of predicting the core’s temperature
with errors within the quantization noise. (b) we propose a
formulation to extract directly from the identified core models
the physical floorplan of the supercomputers’ CPU dies. This
is of primarily interest for optimizing the thermal map of the
processors and mitigating hot spots. The spatial information
that can be extracted from the CPU die floorplan can also ease
the complexity of the cores’ thermal model for online model
predictive control and optimization algorithms.

The reminder of the paper is organized as follows. Section
II describes the adopted identification methodology, highlight-
ing the experimental framework and the adopted workloads.
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Section III focuses on the thermal model of the node. Section
IV described the identification of the core models by means of
a two-step iterative least squares algorithm. Section V shows
how to identify the CPU die floorplan starting from the core
models. In Section VI, the experimental results obtained by
applying the proposed approach to a node of the CINECA
Galileo Tier-1 HPC system are reported and discussed. Section
VII concludes the paper.

II. THERMAL MODEL IDENTIFICATION METHODOLOGY

A HPC cluster is a composition of several computing nodes.
Each computing node is composed of several computing
engine. We consider as computing engine high-performance
multicore CPUs, which are the most common case (more
than 77% of Top500 systems use Intel Xeon Processors, as
reported by the June 2018 Top500 list). Each parallel processor
(CPU/socket) is internally composed of NC cores and uncore
logic. The uncore logic accounts mainly for the memory
controllers, last level cache and I/O. Processor, cores and
uncore are equipped with sensors which can be read peri-
odically from the software stack. These sensors can monitor
different architectural events as well as physical parameters.
We consider three main classes of sensors: per-core activity
sensors, per-core thermal sensors, and per-CPU power gauges.

The proposed methodology to extract the thermal model
consists of three steps: (i) Binary workload (1 = active/0 =
idle) sequences are applied to each core to recreate a Pseudo
Random Binary Sequence (PRBS) of power stress in each
core. We schedule one power stressmark on each core and
use POSIX signals to schedule and de-schedule it to follow
the PRBS sequence. The power consumption values for each
core are obtained by linear regression on the cores activities
(cycles in active state and cycles in idle state) and per CPU
power consumption. (ii) During this stress pattern, we monitor
the sensors present on each core and CPU synchronously with
the PRBS sampling time. The sampling time is fixed to two
seconds to avoid interference of the monitoring and stress
pattern injection. For lower sampling time the overhead of the
monitoring becomes noticeable. It is worth noting that this
choice does not prevent to estimate the fast time constants,
see Table I. Due to the inherent difference of the speed at
which PRBS power traces are applied and monitored, and
at which power vary in silicon the binary power variations
appear instantaneous. The values collected are pre-processed
to translate each core activity in a per-core power profile.
Finally, (iii) the proposed system identification algorithm is
applied to the power traces and thermal responses to extract
the thermal model.

III. THERMAL MODELLING OF THE NODE

By following a distributed approach, the thermal dynamic
profile of each CPU socket of each supercomputer’s node
with Nc cores is represented by a set of MISO ARX models
with additive output noise, one for each core. The model of
the generic k–th core is represented in Fig. 1, where T̄k(t)
is the actual core temperature and Tk(t) is the measured
core temperature corrupted by the additive measurement noise

P (t) B(z−1)

A(z−1)
+
T̄k(t)

+
Tk(t)

vk(t)

1

A(z−1)

wk(t)

Fig. 1. MISO ARX + noise model of a single core.

vk(t). T̄k(t) is considered as affected by all the core powers
P0(t), P1(t), . . . , PNc−1(t) and by the uncore power Punc(t)
so that the input P (t) is the following Nc + 1-dimensional
vector

P (t) =
[
P0(t) P1(t) · · · PNc−1(t) PNc

(t)
]T
, (1)

where, for the sake of notation, the uncore power Punc(t) is
denoted as PNc

(t). The actual core temperature T̄k(t) is linked
to the input P (t) through the difference equation

A(z−1) T̄k(t) = B(z−1)P (t) + wk(t) (2)

where A(z−1) is the polynomial

A(z−1) = 1 + a1 z
−1 + · · ·+ an z

−n, (3)

B(z−1) is the 1×Nc polynomial matrix

B(z−1) =
[
B0(z−1) B1(z−1) · · · BNc(z−1)

]
Bi(z

−1) = bi1 z
−1 + · · ·+ bin z

−n i = 0, . . . , Nc
(4)

n is the system order and z−1 is the backward shift operator,
i.e z−1 x(t) = x(t− 1). wk(t) is an input noise that generates
the process disturbance 1/A(z−1)wk(t).

The ARX model (2) is often used in system identification
because it can be consistently estimated by means of the least
squares method [11]. However, this model is not suitable for
describing the thermal dynamics of the core [16]. In fact, all
the identified ARX models present some negative real poles
and/or complex conjugate poles so that they do not comply
with the dynamic of thermal systems where only positive
real poles have a physical meaning. The insufficient modeling
power of ARX models may be explained by the presence of
a relevant quantization noise on the temperature readings. For
this reason, it is important to consider also the presence of an
additive measurement noise vk(t) corrupting the (unknown)
actual temperature T̄k(t). Therefore, the available (measured)
temperature Tk(t) of core k is given by

Tk(t) = T̄k(t) + vk(t). (5)

The thermal dynamic of the core is thus described by a
MISO ARX + noise model described by equations (2) and (5).
This model allows to take into account the presence of both
a process disturbance 1/A(z−1)wk(t) and a measurement
noise vk(t), see Fig. 1. The following assumptions will be
considered.
A1. The input signals P0(t), . . . , PNc(t) are persistently ex-

citing of a suitable high order.
A2. wk(t) is a zero-mean white process with variance σ2

wk.
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A3. The measurement noise vk(t) is a zero-mean white pro-
cess with variance σ2

vk.
A4. wk(t) and the measurement noise vk(t) are mutually

uncorrelated.
A5. The input signals are uncorrelated with both wk(t) and

the measurement noise vk(t).
Remark 1: Assumption A1 is required to get a consistent

estimation [11], [12] and is guaranteed by choosing a suitable
PRBS sequence as input. A2 is a property of ARX models
[11], [12]. A3 is a consequence of the quantization noise in
the temperature measurements which is often considered as a
white noise [24]. Assumptions A4 and A5 are quite standard in
system identification and are required by the method described
in Section IV. The correctness of all these assumption is
empirically validated in Section VI.
The identification problem to be solved can be stated as
follows.

Problem 1: Estimate, for each core, the coefficients
of A(z−1), Bi(z

−1), (i = 0, . . . , Nc) starting
from a set of N input–output collected samples
P (1), . . . , P (N), Tk(1), . . . , Tk(N).

IV. THERMAL MODEL IDENTIFICATION

The solution of Problem 1 cannot be obtained by using the
least squares (LS) method. In fact, because of the presence
of the additive noise vk(t), the LS estimate is asymptotically
biased, as shown in the following. To get a consistent estimate
it is necessary to identify also the variance σ2

vk of vk(t) so
that the effect of the noise can be removed. In the sequel,
we present our approach showing how it is possible to write a
bilinear system of equations whose unknowns are the variance
σ2
vk and the coefficients to be identified. This system can thus

be solved by iteratively applying two least squares formulas.
With reference to the generic k–th core, model (2) can be

rewritten as follows

T̄k(t) +

n∑
i=1

ai T̄k(t− i) =

Nc∑
j=0

n∑
i=1

bji Pj(t− i) +wk(t). (6)

Define the regressor vector

ϕ̄k(t)=[−T̄k(t− 1) . . . − T̄k(t− n)P0(t− 1) . . . P0(t− n)

P1(t− 1) . . . P1(t− n) . . . PNc(t− 1) . . . PNc(t− n) ]T (7)

and the parameter vector

θk =
[
a1 · · · an b01 · · · b0n · · · bNc1 · · · bNcn

]T
. (8)

Eq. (6) leads to the regression form

T̄k(t) = ϕ̄Tk (t) θk + wk(t). (9)

By introducing also the vectors

ϕk(t)=[−Tk(t− 1) . . . − Tk(t− n)P0(t− 1) . . . P0(t− n)

P1(t− 1) . . . P1(t− n) . . . PNc(t− 1) . . . PNc(t− n) ]T (10)

ϕvk(t) = [−vk(t− 1) . . . − vk(t− n) 0 . . . 0 ]T (11)

and taking into account (5) we have

ϕk(t) = ϕ̄k(t) + ϕvk(t). (12)

Finally, by inserting (5) and (12) in (9) we get the regression
form of the MISO ARX + noise model:

Tk(t) = ϕTk (t) θk + wk(t) + vk(t)− ϕvTk (t) θk. (13)

Multiplying both sides of (13) by ϕk(t) and applying the
expectation operator E[·] we get

rk = Rk θk + E[ϕk(t) (wk(t) + vk(t)− ϕvTk (t) θk)] (14)

where
rk = E[ϕk(t)Tk(t)], Rk = E[ϕk(t)ϕTk (t)]. (15)

By taking into account (12) and Assumptions A3-A5 we obtain

rk = Rk θk − E[ϕvk(t)ϕvTk (t)] θk (16)

and finally, because of Assumption A3

rk = Rk θk − σ2
vk J θk (17)

where J =

[
In 0
0 0

]
. From (17) it is clear that, due to the

presence of the measurement noise vk(t) (i.e. of the variance
σ2
vk) the least squares estimate θ̂LS = R−1k rk is biased. Note

that both the entries of θk and the noise variance σ2
vk are

unknown and the number of relations in (17) coincides with
the dimension of θk. Therefore, at least one more equation is
needed to get a consistent estimate. For this purpose, consider
first the vector of input samples

ϕdP (t)= [P0(t− 1) . . . P0(t− d)P1(t− 1) . . . P1(t− d) . . .

. . . PNc
(t− 1) . . . PNc

(t− d) ]T , (18)

where d is a user-chosen parameter (d ≥ 1). If we multiply
both sides of (13) by ϕdP (t) and apply the expectation operator
by taking into account Assumption A5 we get

rdk = Rdk θk (19)
where

rdk = E[ϕdP (t)Tk(t)], Rdk = E[ϕdP (t)ϕTk (t)]. (20)

This is a set of additional equations whose number depends
on the free parameter d. Relations (17) and (19) constitutes a
system of equations in the unknonws θk and σ2

vk. This set is
nonlinear because of the term σ2

vk J θk in (17). Nevertheless,
Eq. (17) exhibits a bilinear structure so that it is possible
to solve the system by means of an iterative least squares
algorithm. To this end define the following vector and matrix

ρk =

[
rk
rdk

]
, Σ(σ2

vk) =

[
Rk − σ2

vk J
Rdk

]
. (21)

The system of equations (17), (19) can thus be written in the
compact form

ρk = Σ(σ2
vk) θk. (22)

An estimate of θk and σ2
vk can thus be found by solving the

following minimization problem

min
θk,σ2

vk

f(θk, σ
2
vk) = ‖ρk − Σ(σ2

vk) θk‖2. (23)

The bilinear parametrization of the loss function allows to
split the minimization problem into two standard least squares
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problems. Indeed, if σ2
vk is known the parameter vector θk can

be estimated as
θ̂k = Σ(σ2

vk)+ρk (24)

where Σ(σ2
vk)+ denotes the pseudoinverse of Σ(σ2

vk). On the
other hand, given θk, an estimate of σ2

vk can be obtained from
(17):

σ̂2
vk =

θTk J
T (Rk θk − rk)

θTk J
TJθk

. (25)

It is thus possible to identify the unknowns θk and σ2
vk by

means of an iterative least squares algorithm, as shown in
Subsection IV-A. To determine an estimate of the driving
noise variance σ2

wk we can still exploit the regression form
(13). Multiplying both sides of (13) by Tk(t) and applying
the expectation we get

σ2
Tk

= rTk θk + E[Tk(t) (wk(t) + vk(t)− ϕvTk (t) θk)], (26)

where σ2
Tk

= E[T 2
k (t)] and rk has been defined in (16). By

considering (5) and Assumptions A2-A5 it is easy to get

σ2
Tk

= rTk θk + σ2
wk + σ2

vk. (27)

from which it is possible to compute an estimate of σ2
wk once

that the estimates of θk and σ2
vk have been computed. It is

worth noting that the estimate of σ2
wk plays a key role in

both model validation and actual temperature estimation, see
Subsections IV-C and IV-D.

A. Identification algorithm

This subsection summarizes the whole procedure for iden-
tifying the thermal model of the generic k–th core of a CPU
die. Since the CPU is composed of Nc cores, to identify
the thermal dynamics of the whole CPU the identification
algorithm described in the following has to be applied Nc
times.
Iterative least squares (ILS) algorithm
The outputs of the algorithm are:
– an estimate of the parameter vector

θk =
[
a1 · · · an b01 · · · b0n · · · bNc1 · · · bNcn

]T
describing the thermal dynamics of the core, see (2) and (6);
– an estimate of the variance σ2

vk of the measurement noise
vk(t), see (5);
– an estimate of the variance σ2

wk of the driving noise wk(t),
see (2) and (6);
These estimates are computed starting from N samples of
the measured k–th core temperature Tk(1), Tk(2), . . . , Tk(N)
and N samples of the cores powers and uncore
power P1(t), P2(t), . . . , PNc

(t), collected in the vectors
P (1), P (2), . . . , P (N), see (1). The identification procedure
consists in the following steps.
(i) Compute, on the basis of the available input-output data,

the sample estimates r̂k, R̂k, r̂dk, R̂dk of the vectors and
matrices rk, Rk, rdk, Rdk defined in (15) and (20):

r̂k =
1

N

N∑
t=n+1

ϕk(t)Tk(t), R̂k =
1

N

N∑
t=n+1

ϕk(t)ϕTk (t)

r̂dk =
1

N

N∑
t=d+1

ϕdP (t)Tk(t), R̂dk =
1

N

N∑
t=d+1

ϕdP (t)ϕTk (t)

where

ϕk(t)=[−Tk(t− 1) . . . − Tk(t− n)P0(t− 1) . . . P0(t− n)

P1(t− 1) . . . P1(t− n) . . . PNc(t− 1) . . . PNc(t− n) ]T

ϕdP (t)=[P0(t− 1) . . . P0(t− d)P1(t− 1) . . . P1(t− d)

. . . PNc(t− 1) . . . PNc(t− d) ]T ,

The integer d ≥ 1 in ϕdP (t) is a user-chosen parameter.
We suggest to choose d ≥ n. Finally, construct the vector
ρ̂k as in (21) and the matrix J :

ρ̂k =

[
r̂k
r̂dk

]
, J =

[
In 0
0 0

]
.

(ii) Set i = 0 and compute an initial estimate of the parameter
vector θk. For instance, it is possible to start from the LS
estimate θ̂k(0) = θ̂LS = R̂−1k r̂k.
REPEAT

(iii) Set i = i+ 1
(iv) Compute, on the basis of θ̂k(i − 1), an estimate of the

measurement noise variance:

σ̂2
vk(i) =

θ̂Tk (i− 1)JT (R̂k θ̂
T
k (i− 1)− r̂k)

θ̂Tk (i− 1)JTJθ̂k(i− 1)
. (28)

(v) Construct the matrix Σ̂
(
σ̂2
vk(i)

)
as in (21)

Σ̂(σ2
vk(i)) =

[
R̂k − σ̂2

vk(i) J

R̂dk

]
and compute an estimate of the model parameters:

θ̂k(i) = Σ̂
(
σ̂2
vk(i)

)+
ρ̂k. (29)

where Σ̂
(
σ̂2
vk(i)

)+
is the pseudoinverse of Σ̂

(
σ̂2
vk(i)

)
UNTIL

‖θ̂k(i)− θ̂k(i− 1)‖
‖θ̂k(i)‖

< ε, (30)

where ε is a small positive number (the convergence
threshold).

(vi) From the estimates θ̂k and σ̂2
vk obtained after conver-

gence, it is possible to get an estimate of the variance
σ2
wk. To this end compute first an estimate σ̂2

Tk
of the

temperature variance: σ̂2
Tk

= 1/N
∑N
t=n+1 Tk(t)2. Then,

compute an estimate of σ2
wk as follows

σ̂2
wk = σ̂2

Tk
− r̂Tk θ̂k − σ̂2

vk. (31)

Remark 2: Note that step (iv) solves the LS problem

min
σ2
vk

f(θ̂k(i− 1), σ2
vk) (32)

whereas step (v) solves the LS problem

min
θk

f(θk, σ̂
2
vk(i)). (33)

It follows that

f(θ̂k(i), σ̂2
vk(i)) ≤ f(θ̂k(i− 1), σ̂2

vk(i))

≤ f(θ̂k(i− 1), σ̂2
vk(i− 1)). (34)

The above property guarantees the convergence of the iterative
algorithm.
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B. Comparison with [16]
Compared with the Frisch scheme-based identification algo-

rithm proposed in [16], the proposed ILS algorithm is simpler
from the computational point of view. Indeed, it is based on the
iterative application of the closed form expressions (29) and
(28) whereas the Frich scheme-based method described in [16]
relies on the minimization of a constrained loss function. The
rationale behind the Frisch scheme consists in searching for
the solution of the identification problem within a locus of so-
lutions which are compatible with the covariance matrix of the
noisy data. Therefore, the minimization has to be performed
by means of some numerical search methods. For instance in
[16], the MATLAB function fminsearch was exploited, that is
based on the downhill simplex method. As shown in Section
VI, the time requested by the ILS algorithm to identify the
thermal model of a node (measured in MATLAB) is about two
orders of magnitude lower than that requested by the algorithm
in [16]. This feature plays an important role when the number
of cores of a node is high.

Another advantage of the ILS algorithm is that it allows
to develop a recursive version, which is of interest for online
thermal management where the model has to updated to track
parameter changes. The development of a recursive algorithm
goes beyond the scope of the paper, however in the following
we give a high-level outline:
– Eq. (22) can be rewritten as follows

ρk = R̄k θk − σ2
vk J̄ θk (35)

where (see (21)) R̄k =

[
Rk
Rdk

]
and J̄ =

[
J
0

]
.

– From (35) it is easy to get

θk = θ̄k + R̄+
k σ

2
vk J̄ θk (36)

where θ̄k = R̄+
k ρk and R̄+

k is the pseudoinverse of R̄k.
– An estimation of θ̄k can be computed directly from the
available data. If σ2

vk were zero (no additive noise), θ̄k would
be an extended instrumental variable estimate of θk [12]. The
estimate θ̄k can be computed in a recursive way [12].
– A recursive estimation of θk can thus be derived starting
from (36) and the online estimate of θ̄k.
Note that it is hard to get a recursive version of the algorithm
in [16]. In fact, the locus of solutions within which estimating
the thermal model of a core changes when new input-output
samples become available.

C. Model validation
To validate the goodness of the proposed identification

method and of the related assumptions A1-A5 it is possible to
exploit the statistical properties of the residual of the MISO
ARX + noise model described by Eqs. (2) and (5). By inserting
(5) into (2) we get

A(z−1)Tk(t) = B(z−1)P (t) + wk(t)−A(z−1) vk(t). (37)

By comparing the standard ARX model (2) with the noisy
ARX model (37), it is easy to see that the residual of the
latter is no longer a white process because it is given by

ek(t) = A(z−1)Tk(t)−B(z−1)P (t) = wk(t)−A(z−1) vk(t).
(38)

According to Assumptions A2 and A3, the stochastic process
ek(t) is the sum of the white process wk(t) and the moving
average (MA) process A(z−1) vk(t) so that its autocorrelation
function rek(τ) = E[ek(t) ek(t− τ)] is given by

rek (0) = σ2
vk

( n∑
i=0

a2i +

Nc∑
j=1

n∑
i=1

b2ji

)
+ σ2

wk

rek (τ) = σ2
vk

(n−τ∑
i=0

ai ai+τ +

Nc∑
j=1

n−τ∑
i=1

bji bj(i+τ)

)
, 0 < τ ≤ n

rek (τ) = 0, ∀τ > n,

then, it behaves like the autocorrelation function of a moving
average process of order n. It is thus possible to consider the
normalized autocorrelation function

γk(τ) =
rek(τ)

rek(0)
, τ > 0 (39)

and check its statistical properties [25]. In practice, to validate
the methodology the following steps must be performed.
Once that an identified model of the core Â(z−1), B̂(z−1)
has been obtained, the residuals are first computed by using
(38): êk(t) = Â(z−1) yk(t)− B̂(z−1)P (t). Then, the sample
estimates r̂ek(0), r̂ek(1), r̂ek(2), . . . , r̂ek(M) of the autocorre-
lations can be computed, where M > n . Finally, the sta-
tistical properties of the normalized autocorrelation sequence
γ̂k(1), γ̂k(2), . . . , γ̂k(M) will be tested by using the Bartlett’s
approximation in order to check whether êk(t) behaves like a
MA(n) process [25]. This test allows to validate Assumptions
A2-A4. The validation of Assumption A5 can be performed
from the sample cross-correlations between the residual êk(t)
and the input signals P0(t), P1(t), . . . , PNc

(t). In fact, if A5
is true, this cross-correlation has to be “very small”, indicating
that the residual does not contain any further information
generated by the input signals. Statistical tests to check this
assumption are available in the identification literature [11],
[12].

D. Estimation of the actual core temperature

The core models θ̂1, θ̂2, . . . , θ̂Nc identified by means of the
ILS algorithm, may be used to estimate the corresponding
actual core temperatures T̄1(t), T̄2(t), . . . , T̄Nc

(t). To this end,
consider the following state space representation of the k–th
core ARX + noise model (2), (5):

xk(t+ 1) = Axk(t) +B P (t) +Gwk(t+ 1) (40)
Tk(t) = C xk(t) + vk(t) = T̄k(t) + vk(t) (41)

where

A =



−a1 1 0 · · · 0

−a2 0
. . .

. . .
...

...
. . .

...
... 1

−an 0 · · · · · · 0


B =



b01 · · · bNc1

b02 · · · bNc2

...
...

...
...

b0n · · · bNcn


C =

[
1 0 · · · 0

]
G = CT .

Starting form this state space model, a Kalman filter can be
implemented by using the previously estimated parameters and
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noise variances (θ̂k, σ̂2
wk, σ̂

2
vk). It is thus possible to compute

the filtered temperature ˆ̄Tk(t|t), which is the minimum vari-
ance estimate of the actual core temperature T̄k(t) [26]. As
shown in Section VI, the filtering error

εF (t) = T̄k(t)− ˆ̄Tk(t|t), t = 1, 2, . . . (42)

can also be used to assess the model performance.

V. CPU DIE FLOORPLAN IDENTIFICATION

The estimated core models θ̂1, θ̂2, . . . , θ̂Nc can be exploited
to identify the CPU die floorplan. This allows to evaluate the
influence of each core on the other ones from the thermal point
of view and is of primary interest for optimizing the thermal
map of the processor and mitigating hot spots.

Consider the following partition of the k–th core parameter
vector θk, see (8):

θk =
[
θak θ

0
bk θ

1
bk · · · θ

Nc

bk

]T
(43)

where

θak =
[
a1 · · · an

]T
, θjbk =

[
bj1 · · · bjn

]T
, (44)

and j = 0, . . . , Nc. The dissipated power Pj(t) of the core j
affects the actual temperature T̄k(t) of the k–th core through
the coefficients of θjbk, see (8),(9) (the effects of the uncore
power are represented by θNc

bk ), then, a quantitative index for
measuring the influence of the j–th core’s power on the k–th
core’s temperature is given by

ηk(j) = ‖θjbk‖/η
M
k , (45)

where ηMk = max {‖θ0bk‖, ‖θ1bk‖, . . . , ‖θ
Nc

bk ‖}. Each
core will be thus characterized by a set of indexes
ηk(0), ηk(1), . . . , ηk(Nc) and the whole node will be
described by Nc(Nc + 1) indexes from which it is possible
to identify the node floorplan. Indeed, it is expected that:

– From the thermal viewpoint, the k–th core is mostly
influenced by its dissipated power, so that ηMk = ‖θkbk‖
and then ηk(k) = 1.

– Among all other cores, only those in the neighborhood of
the k–th one have a significant influence. The influence
of the uncore power could be not negligible as well.

The neighbors of the k–th core can be identified as those
whose dissipated powers are associated with an index ηk(j)
that exceeds a given threshold. It is worth noting that the
knowledge of the node floorplan allows also to reduce the com-
plexity of the cores’ models. In fact, once that the neighbors
of the generic k–th core have been detected, we can assume
that only their dissipated powers have an influence on T̄k(t).
As a consequence, the input signals in the vector P (t) (1) can
be limited to the neighbors’ powers and then the number of
parameters in (8) can be reduced. The reduction in the model
complexity can be a major factor when the number of cores
of the node is quite high, especially in online applications. In
this case, the identification procedure of the whole node can
be divided in the following steps.

1) A first offline identification is performed for every core
of the node. In particular, for each core, a MISO
ARX + noise model is estimated by considering in

the input vector P (t) all the dissipated core powers
P0(t), P1(t), . . . , PNc(t).

2) The node floorplan is identified. First, for every
core k = 0, 1, . . . , Nc − 1, the set of indexes
ηk(0), ηk(1), . . . , ηk(Nc) is evaluated. Then, the neigh-
bors of the k–th core are identified by comparing the
indexes with a given threshold η̄k, for instance η̄k =
0.1 ηMk . More precisely, the j–th core is assumed as a
neighbor of the k–th core if ηk(j) > η̄k.

3) Once that the neighbors of each core have been de-
tected, the identification procedure is repeated by con-
sidering different input vectors P k(t) for every core k =
0, 1, . . . , Nc− 1. In particular, the elements of the vector
P k(t) are the dissipated powers of the neighbors of core
k. Of course, it is expected that Pk(t) belongs to P k(t).
The number of parameters of the MISO ARX core models
can thus be significantly reduced, see (8). The models
with reduced complexity will thus be considered in the
online identification, where the estimated parameters have
to be updated to track model changes.

Remark 3: If the energy content of the input signals present
remarkable differences, this must be taken into account in
order to avoid misleading results. In this case the index ηk(j)
should be weighted by the normalized root mean square of the
input signal Pj(t): ηk(j)′ = ηk(j) ∗RMSj/RMSmax where
RMSj is the root mean square of Pj(t) and RMSmax =
max {RMS0, RMS1, . . . , RMSNc}.

VI. EXPERIMENTAL RESULTS

To evaluate the proposed methodology in an industrial
relevant use case we use as a testbed a Tier-1 HPC system
(namely Galileo, and located at CINECA) based on an IBM
NeXtScale cluster. Each node of the system is equipped with
2 Intel Haswell E5-2630 v3 CPUs, with 8 cores with 2.4 GHz
nominal clock speed and 85W Thermal Design Power (TDP).
As regards the software infrastructure, SMP CentOS Linux
distribution version 7.0 with kernel 3.10, runs on each node
of the system.

We applied the methodology described in Section II to
extract the thermal models of the eight core’s CPU of a single
node of this system. The sampling time was set to Tsamp = 2s
and the considered data set consists in input-output sequences
of length 5000s so that the number of available samples of
each input and output signal is N = 2500. All the experiments
have been performed in the presence of ambient temperature
variations up to 6 ◦C. To account for the effects of ambient
temperature variations on the estimated thermal models, the
measured ambient temperature Tamb(t) is subtracted from
the measured core temperature Tk(t) before applying the
identification procedure. Therefore, the identified models will
be effective in predicting the difference between the core and
the ambient temperatures under constant or slowly-varying
ambient temperatures, which is the most common scenario.
The order n of each MISO ARX model has been set to 2
as in [16]. This choice has been validated by means of the
procedure described in Subsection IV-C (see below). The ILS
algorithm has been performed by setting d = 10 in step (i).
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TABLE I
ESTIMATED DISCRETE-TIME POLES p1, p2 FOR EACH CORE AND ASSOCIATED TIME CONSTANTS τ1, τ2 IN THE CONTINUOUS-TIME DOMAIN.

ILS algorithm Approach [16] ARX OE

p1 p2 τ1(s) τ2(s) p1 p2 τ1(s) τ2(s) p1 p2 p1 p2

Core 0 0.850 0.016 12.31 0.48 0.846 0.024 11.97 0.54 0.440 −0.022 1.000 0.654

Core 1 0.843 0.004 11.74 0.36 0.841 0.007 11.57 0.41 0.488 −0.060 0.922 −0.055
Core 2 0.856 0.006 13.02 0.39 0.861 0.005 13.45 0.38 0.481 −0.048 0.757 0.009

Core 3 0.881 0.011 15.76 0.45 0.880 0.020 15.71 0.51 0.415 −0.046 0.654 0.366

Core 4 0.869 0.017 14.27 0.49 0.863 0.021 13.58 0.52 0.402 −0.036 0.907 0.019

Core 5 0.904 0.029 19.73 0.56 0.904 0.031 19.79 0.57 0.512 −0.031 0.872 0.134

Core 6 0.885 0.006 16.32 0.39 0.882 0.006 15.88 0.39 0.459 −0.064 0.999 0.119

Core 7 0.886 0.009 16.45 0.42 0.879 0.011 15.42 0.44 0.452 −0.065 0.828 −0.213

The convergence threshold in (30) has been fixed to ε = 10−3.
It has been observed that smaller values of ε increase the
computational time without changing the obtained results.
To compare the proposed approach with the state-of-the-art
techniques adopted in the literature, the following approaches
have been considered (see Subsection I-A concerning the
related works): the Frisch-scheme based method described in
[16], that belongs to the AutoRegressive plus noise methods
(group (iii) in Subsection I-A); the ARX model identification,
belonging to the family of AutoRegressive methods (group
(ii)) and the Output Error (OE) model identification (group
(i)).

Table I reports the discrete-time estimated poles of the eight
cores and the associated time constants in the continuous-
time domain. The results summarized in Table I lead to the
following remarks:
– All the poles identified by means of the ILS algorithm are
real and positive, according to the physics of thermal systems.
– The obtained poles and the associated time constants are in
line with those estimated by means of the Frisch scheme-based
method [16].
– The ARX and OE methods lead to some negative poles
(the OE method presents also an unstable pole), that are
not compliant with the physics of thermal systems, where
only positive and stable poles can exist. For this reason, the
associated time constants have not been reported.
This confirms that ARX and OE method are not suitable for
extracting thermal models in the presence of a significant
quantization noise.

The models obtained with the proposed method have been
validated by means of the procedure described in Subsection
IV-C. The middle picture of Fig. 2, that refers to core 0, reports
the normalized autocorrelation γ0(τ) for τ = 1, 2, . . . , 20 of
the residual ê0(t) of the identified second order MISO ARX
model. All values of γ0(τ) for τ > 2 lie within the 95%
confidence level so that ê0(t) behaves like an MA(2) process
and Assumptions A2-A4 are validated. As a comparison, the
upper picture of Fig. 2 reports the normalized autocorrelation
of the residual of an identified model of order n = 1. In this
case, the model is not validated since there are a lot of values
γ0(τ) for τ > 1 that falls outside the confidence level. It is thus
possible to confirm that n = 2 is a proper order for the thermal
model of the core. The models of the cores 1, 2, . . . , 7 lead
to similar results. The cross-correlations between the residual
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Fig. 2. Normalized autocorrelation function of the residual ê0(t) of core
0 for identified models of order n = 1 (upper picture) and n = 2 (middle
picture). Normalized cross-correlation function between the residual
ê0(t) and the input signal P0(t) (lower picture).

and the input signals have also been tested. As an example, the
lower picture of Fig.2 reports the normalized cross-correlation
between e0(t) and P0(t) and the 95% confidence level. This
confirms the validity of Assumptions A5. This test has been
applied to other input signals and/or residuals and the obtained
results are similar.

Another index that has been used for evaluating the iden-
tification performance is based on the filtering error Tk(t) −
ˆ̄Tk(t|t), see Subsection IV-D. In fact, since ˆ̄Tk(t|t) is the best
estimate of the actual core temperature that can be obtained
from the data and the identified model, the corresponding esti-
mation error should be contained within the ±1◦C confidence
interval, which is the precision of the quantized temperature
readings. In particular, for each core, the percentage of ele-
ments of the error sequence (42) that falls within this interval
has been adopted as performance index. The obtained values
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range in the interval 94%−97%. This confirms the goodness of
the approach. As an example, Figure 3 (middle figures) reports
a 500s-long part of the power P0(t) dissipated by Core 0, the
measured temperature of Core 0 and the associated filtered
temperature.The filtering error T (t)− ˆ̄Tk(t|t) is also reported
(lower figure). The upper figure reports a zoom of the power
and measured temperature of the dashed box, normalized for
fitting a range 0− 1 and without offset. This subfigure shows
that the temperature od core 0 is affected mainly by the power
P0(t) even if the influence of the neighbors’ powers and
uncore power may be not negligible, see the discussion at
the end of the section.

To compare the proposed method with the approach [16]
w.r.t. the computation time we have collected 20 input-output
traces each of 12 hours from the Tier-1 HPC system nodes.
For each of these trace, a MISO ARX + noise model for each
core has been identified by using both ILS algorithm and the
approach [16]. Since each trace refers to two 8-core CPUs,
the total number of identified model is 320 (16 models for
each trace). The mean time requested to identify the thermal
model of a node (measured by using the MATLAB function
cputime) is reported below:

ILS algorithm Approach [16]

Mean time per node 0.0040 0.1975

It can be seen that the computation time associated with
the proposed identification algorithm is about two orders of
magnitude lower than that requested by the algorithm in [16],
making the proposed approach more suitable for online usage,
especially when the number of cores per node is high.

The estimated MISO ARX models of the eight cores
can be exploited to identify the CPU die floorplan, as dis-
cussed in Section V. Figure 4(b) reports, for each core k,
the set of indexes ηk(0), ηk(1), . . . , ηk(8) computed by us-

ing (45), describing the influence of the dissipated powers
P0(t), P1(t), . . . , P8(t) on the core temperature Tk(t) (P8(t)
denotes the uncore power Punc(t)). As expected, each core is
affected mainly by its dissipated power (ηk(k) = 1 for every
core k = 0, . . . , 7). By taking a closer look at Fig. 4(b) it is
possible to divide the cores into two groups. For instance, we
can note note that Core 0, apart from the effect of its dissipated
power P0(t), is mainly influenced by the dissipated power
of another core (Core 2). Similar behaviors are exhibited by
Cores 1, 6 and 7. A different behavior characterizes Cores 2,
4, 3 and 5 that, apart from their dissipated powers, are mainly
affected by the powers of two other cores. For example, Core
4 is mainly influenced by Cores 2 and 6. It is thus possible to
infer that Cores 0, 1, 6 and 7 are side cores whereas Cores 2,
3, 4 and 5 are central cores. This leads to the estimated CPU
die floorplan shown in Fig. 4(a).

VII. CONCLUSION

In this manuscript we have proposed a novel approach to
identify the thermal models of real datacenter’s processor, and
the core’s relative position in the die. In this scenario standard
ARX approaches cannot extract physical valid models. For
this reason, the thermal dynamics of each core has been rep-
resented by means of a MISO ARX model with additive noise
on the output. The proposed approach is capable of estimating
the variance of the additive noise and to compensate it in the
estimation of ARX model parameter. Thanks to the proposed
methodology we are capable of extracting physically-valid
thermal models from real in production compute nodes with
a prediction error within the quantization error.

In future works we will combine these thermal models with
model predictive controllers to maximize the computing per-
formance and cooling efficiency of the datacenter’s computing
elements.
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