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The role of histidine dipeptides on postmortem acidification of
broiler muscles with different energy metabolism
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ABSTRACT It is generally held that the content of
several free amino acids and dipeptides is closely related
to the energy-supplyingmetabolism of skeletal muscles.
Metabolic characteristics of muscles are involved in the
variability of meat quality due to their ability to in-
fluence the patterns of energy metabolism not only in
living animal but also during postmortem time. Within
this context, this study aimed at establishing whether
the concentration of histidine dipeptides can affect
muscle postmortem metabolism, examining the glyco-
lytic pathway of 3 chicken muscles (pectoralis major,
extensor iliotibialis lateralis, and gastrocnemius inter-
nus as glycolytic, intermediate, and oxidative-type,
respectively) selected based on their histidine di-
peptides content and ultimate pH. Thus, a total of 8
carcasses were obtained from the same flock of broiler
chickens (Ross 308 strain, females, 49 d of age, 2.8 kg
body weight at slaughter) and selected immediately
after evisceration from the line of a commercial pro-
cessing plant. Meat samples of about 1 cm3 were excised
from bone-in muscles at 15, 60, 120, and 1,440 min
postmortem, instantly frozen in liquid nitrogen and
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used for the determination of pH, glycolytic metabo-
lites, buffering capacity as well as histidine dipeptides
content through 1H-NMR. Overall results suggest that
glycolysis in leg muscles ceased already after 2 h post-
mortem, whereas in breast muscle continued until 24 h,
when it exhibited significantly lower pH values (P ,
0.05). However, considering its remarkable glycolytic
potential, pectoralis major muscle should have exhibi-
ted a greater and faster acidification, suggesting that its
higher (P , 0.05) histidine dipeptides’ content might
have prevented a potentially stronger acidification
process. Accordingly, breast muscle also showed
greater (P, 0.05) buffering ability in the pH range 6.0–
7.0. Therefore, anserine and carnosine, being highly
positively correlated with muscle’s buffering capacity
(P , 0.001), might play a role in regulating postmor-
tem pH decline, thus exerting an effect on muscle
metabolism during prerigor phase and the quality of the
forthcoming meat. Overall results also suggest that
total histidine dipeptides content along with muscular
ultimate pH represent good indicators for the energy-
supplying metabolism of chicken muscles.
Key words: histidine dipeptides, broiler, post-m
ortem metabolism, glycolysis, buffering capacity
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INTRODUCTION

Skeletal muscles have to withstand a large range of
activities, from supporting the body weight during pe-
riods of standing to perform rapid movements
following sudden threats. To deal with a huge variety
of activities, muscles are composed by various types
of fibers, which differ in their contractility, metabolic
activity as well physiological, morphological, and other
distinctive characteristics (Ryu and Kim, 2005; Lee
et al., 2010; Westerblad et al., 2010). Two major meta-
bolic pathways are used to produce energy (i.e., ATP)
in skeletal muscles: the first is the oxidative pathway,
through which carbohydrates, lipids, and amino acids
are oxidized in the mitochondria with a high oxygen
requirement, whereas the second is the glycolytic
pathway, through which glycogen stores are rapidly
converted into lactate without any oxygen requirement
(Scheffler and Gerrard, 2007; Aberle et al., 2012).
These two metabolic pathways have been used to
generally type myofibers as oxidative, glycolytic, or
oxidoglycolytic (i.e., intermediate). In accordance
with their fiber composition, muscles possess different
abilities to release and seize Ca21, activate ATPases,
stimulate glycolysis, produce lactate, and decrease
postmortem muscular pH (Lefaucheur, 2010; Zhang
et al., 2017). Both in mammals and birds, metabolic
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Figure 1. Muscles selected for the experiment and relative anatomic
location.
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characteristics of skeletal muscles are one of the focal
factors associated to the variability of meat quality
due to their ability to influence the pattern of energy-
supplying metabolism in living animal, as well as dur-
ing the conversion of muscle to meat occurring during
postmortem time (Lee et al., 2016; Petracci et al.,
2017; Chauhan and England, 2018). In the past de-
cades, several authors have suggested myoglobin con-
centration and lactate dehydrogenase activity to
rapidly distinguish the oxidative or glycolytic muscle’s
patterns of energy generation, respectively (Flores
et al., 1996; Hern�andez et al., 1998). More recently,
based on the assumption that the content of several di-
peptides and free amino acids is tightly linked to the
muscle’s metabolic type (Cornet and Bousset, 1999),
Mora et al. (2008) have proposed carnosine content
as a good indicator of muscle glycolytic metabolism
because it has been widely reported that its muscular
concentration increases with the glycolytic activity of
the muscle (Boldyrev and Severin, 1990; Aristoy and
Toldra, 1991; Intarapichet and Maikhunthod, 2005).
Carnosine (b-alanyl-L-histidine) and anserine (b-
alanyl-l-N-methylhistidine) are histidine-containing
dipeptides widely abundant in the skeletal muscles of
mammals and other vertebrates, exploiting several bio-
logical functions (Barbaresi et al., 2019). Their amount
greatly varies depending on the species and the muscle
considered (Gil-Agustí et al., 2008). However, because
poultry meat is particularly rich of histidine-
containing dipeptides (Tinbergen and Slump, 1976),
both carnosine and anserine have been the object of
several poultry science–based studies because of their
biological importance (Kai et al., 2015; Kim et al.,
2018; Barbaresi et al., 2019). Indeed, being highly
involved in the homeostasis of muscles, a reduction of
their concentrations has been recently found to be asso-
ciated with the occurrence of emerging muscle abnor-
malities in chickens (Sundekilde et al., 2017; Soglia
et al., 2019; Baldi et al., 2020a). These compounds
act as metal ion chelators, free radical scavengers and
natural buffers to contrast the acidic end-products
(e.g., lactic acid and hydrogen ions) generated during
the anaerobic metabolism in vivo, because their pKa
is close to the physiological pH of animal tissues
(Castellini and Somero, 1981; Decker, 2001; Wu
et al., 2003). It is believed that, as in vivo, also during
postmortem, anserine and carnosine regulate muscular
pH (Puolanne and Kivikari, 2000). With this in mind,
it is reasonable to hypothesize that the muscular con-
centration of histidine dipeptides might provide a
sort of resistance to pH drop after the death of the an-
imal, thus having consequences on muscle metabolism
during the prerigor phase. Within this scenario, the
main objective of the study was establishing the rela-
tion between the content of histidine dipeptides and
muscle postmortem metabolism, examining the meta-
bolic pathways of chicken muscles selected on the basis
of their amount of anserine and carnosine to represent
the main metabolic types (glycolytic, intermediate,
and oxidative).
MATERIALS AND METHODS

Muscle Sampling

For the purpose of the study, 3 different chicken mus-
cles were needed to represent the main energy-yielding
patterns (oxidative, glycolytic, and intermediate), to
investigate the relation between the amount of
histidine-containing compounds andmuscle postmortem
metabolism. Muscles needed to meet the following
criteria: first, they must be supposedly characterized
by a different in vivo energy metabolism, they must be
of interest for human consumption, and, finally, be
readily available for easy sampling postmortem. Thus,
considering that both the amount of histidine dipeptides
and the pHu of a muscle are somehow related to its
energy-generating pathway (Mora et al., 2008;
Westerblad et al., 2010), a preliminary study has been
carried out to select 3 muscles chosen on the basis of
both their histidine dipeptides content and pHu to repre-
sent the best compromise among the aforementioned
criteria (see Supplementary Material 1). On a batch of
10 chicken muscles belonging to different anatomical re-
gions, those selected for the experiment to represent the
3 main metabolic types were pectoralis major (PM;
breast) as the glycolytic-type muscle (pHu: 5.84; histi-
dine dipeptides: 521.9 mg/100 g meat); extensor ilioti-
bialis lateralis (EIL; thigh) as the intermediate-type
muscle (pHu: 6.38; histidine dipeptides: 269.3 mg/100 g
meat) and gastrocnemius internus (GI; drumstick) cho-
sen to represent a predominantly oxidative-type of mus-
cle (pHu: 6.57; histidine dipeptides: 196.2 mg/100 g
meat) (Figure 1).
A total of 8 carcasses were obtained from the same
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of age, 2.8 kg body weight at slaughter) farmed and har-
vested under standard commercial conditions. Before
slaughter, animals were subjected to a total feed with-
drawal of 8 h, including a 2 h lairage time at the process-
ing plant. Birds were electrically stunned (150 mA/bird,
400 Hz), killed by severing the jugular vein and carotid
artery with an automatic device and bled for 180 s. Sub-
sequently, birds were scalded 51�C to 52�C for 215 s,
plucked, and eviscerated. Carcasses were selected imme-
diately after evisceration from the line of the processing
plant andmeat samples of about 1 cm3 were excised from
bone-in PM, EIL, and GI muscles at 15, 60, 120, and
1,440 min postmortem, instantly frozen in liquid nitro-
gen and stored at 280�C until analyses. Carcasses
were stored at 4�C 6 1�C for the whole duration of the
trial and muscle internal temperature was monitored
in the cranial part of the left pectoralis major muscle
through a digital temperature thermal probe sensor
(Hanna Instruments, Italy). Birds were housed, handled,
transported from farm to slaughterhouse, and slaugh-
tered in accordance with the principles stated in EU
Legislation regarding the protection of farmed animals
(European Commission, 2005, 2007, 2009).
pH Measurements and Metabolite Analysis

Samples were processed as described by Matarneh
et al. (2018) with slight modifications. Briefly, frozen
meat samples (n 5 8/muscle/sampling time) were
powdered under liquid nitrogen using a mortar and
pestle. For pH analysis, powdered samples (0.1 g)
were homogenized for 3 min using a Multi-Vortexer
(Thomas Scientific) in 0.8 mL of ice-cold 5 mM sodium
iodoacetate and 150 mM KCl solution (pH 5 7.0). Af-
ter centrifugation at 17,000 ! g for 5 min and equili-
bration to 25�C, pH of supernatants was directly
measured using a pH glass electrode (Jenway, UK). Al-
iquots of 0.1 g of frozen powdered samples designated
for glucose, glucose-6-phosphate (G6P) and lactate
analysis were homogenized for 3 min using a Multi-
Vortexer (Thomas Scientific) in 1 mL of ice-cold
0.5 M perchloric acid and incubated on ice for
20 min. Homogenates were centrifuged at 17,000 ! g
for 5 min, then supernatants were transferred into
new tubes and neutralized with 2M KOH. As for mus-
cle glycogen analysis, another aliquot of powdered
sample was homogenized for 3 min using a Multi-
Vortexer (Thomas Scientific) in 1 mL of 1.25 M HCl,
heated at 90�C for 2 h, and centrifuged at 17,000 ! g
for 5 min. Supernatants were transferred into new
tubes and neutralized with 1.25 M KOH. Glycogen,
glucose, G6P, and lactate concentrations (expressed
as mmol/g) were determined using enzymatic methods
modified for a 96-well plate as described by
Hammelman et al. (2003). In addition, glycolytic po-
tential (GP) was calculated following the equation:
GP (mmol lactate/g muscle) 5 2 *
(glucose 1 G6P 1 glycogen) 1 lactate, as proposed
by Scheffler et al. (2013).
Buffering Capacity

Buffering capacity of meat samples was determined in
accordance with the method proposed by Matarneh
et al. (2015) with slight modifications. About 2.5 g of
the 1,440 min postmortem meat (n 5 8/muscle) was ho-
mogenized with an Ultra-Turrax T-25 (IKA-Werke,
Germany) in 25 mL of ice-cold 5 mM sodium iodoacetate
and 150 mM KCl solution (pH 5 7.0). After equilibra-
tion to 25�C, the homogenate was transferred into a
beaker and the initial pH (pHi) was measured while stir-
ring. The pH of homogenate was adjusted to 6.0 by add-
ing HCl or NaOH and then titrated to 7.0 using 0.5 M
NaOH. Samples pH was measured using a pH glass elec-
trode (Jenway, UK) and buffering capacity was calcu-
lated as follows: buffering capacity 5 DB/DpH, where
DB is the increment of base expressed as mmol NaOH/
g of tissue and DpH is the corresponding pH variation af-
ter the addition of NaOH.
Histidine Dipeptides

The concentration of anserine and carnosine in
chicken meat samples was assessed through proton nu-
clear magnetic resonance spectroscopy (1H-NMR), as
previously described by Marcolini et al. (2015) with
slight modifications. Briefly, about 0.5 g of the
1,440 min postmortem meat (n 5 8/muscle) were ho-
mogenized in 3 mL of distilled water by Ultra-Turrax
T25 basic (IKA-Werke, Germany) (20 s at
11,000 rpm). Then, 1 mL of homogenate was transferred
into a new tube and centrifuged at 14,000 rpm for
10 min at 4�C. An aliquot (700 mL) of supernatant was
added into a new tube with 800 mL of chloroform, vor-
texed, and centrifuged as before. Subsequently, 500 mL
of the supernatant were added to 200 mL of potassium
phosphate buffer (1M, 2 mM sodium azide; pH 7.0) in
D2O and 10 mM 3-(trimethylsilyl) propionic-2,2,3,3-d4
acid sodium salt. Samples were centrifuged at
14,000 rpm for 10 min and 700 mL of the supernatant
were transferred into NMR tube. 1H-NMR spectra
were then recorded at 25�C with a Bruker Avance III
spectrometer operating at 600 MHz, equipped with a
BBI-z probe and a B-ACS 60 sampler for automation
(Bruker BioSpin, Germany). Spectra were collected
with a 90� pulse of 14 ms with a power of 10 W, a relax-
ation delay of 5 s, and an acquisition time of 2.28 s.
Statistical Analysis

Data concerning pH and glycolytic metabolites were
analyzed using the ANOVA for repeated measurements
by using the GLM procedure of SAS software (SAS Insti-
tute Inc.), testing the effect of the sampling time (15, 60,
120, and 1,440 min). The same data set was also pro-
cessed with the one-way ANOVA to test the main effect
of the muscle type (PM-glycolytic, EIL-intermediate,
and GI-oxidative) on pH and glycolytic metabolites for
each sampling time. Data concerning buffering capacity
and histidine dipeptides were analyzed using one-way
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ANOVA, considering the muscle type as a main effect.
Differences among mean values were then investigated
by Tukey’s HSD test, by considering a significance level
of P, 0.05. Furthermore, to investigate the relationship
between histidine dipeptides concentration, buffering ca-
pacity and muscles glycolytic potential, correlation coef-
ficients between the variables were generated using the
Pearson’s correlation option present in SAS software
(SAS Institute Inc.).
RESULTS AND DISCUSSION

pH Decline

The rate and the extent of muscular acidification
occurring postmortem can exert profound effects on
meat quality and depend on several aspects, such as
environmental factors, the species considered, the phys-
iological state of the muscle, as well as its energy-
supplying metabolism (Eskin et al., 2013; Lonergan
et al., 2019). The patterns of pH decline of selected mus-
cles during postmortem time are shown in Figure 2.
Intriguingly, within the first 120 min postmortem, PM
and GI muscles showed the same acidification onset,
whereas EIL outpaced showing significantly lower pH
values in the same postmortem time frame (P , 0.05).
However, both GI and EIL muscles did not show any
further significant decrease in pH value between 120
and 1,440 min postmortem, meaning that the acidifica-
tion process of these muscles reached a plateau already
at 2 h postmortem, whereas PM muscle’s pH continued
to drop until 24 h postmortem. Indeed, at 1,440 min, PM
exhibited significantly lower pH values if compared with
both thigh and drumstick muscles (5.88 vs. 6.12 and
6.35, respectively; P , 0.05). The overall extent of mus-
cle acidification was greatly different between muscles,
with PM showing a DpH of 1.02 units, EIL of 0.37 and,
finally, GI muscle of 0.26. These divergences in the acid-
ification extent are ascribable to several factors, among
Figure 2. Average pH values of chicken pectoralis major (PM),
extensor iliotibialis lateralis (EIL), and gastrocnemius internus (GI)
muscles at 15, 60, 120, and 1,440 min postmortem (n 5 8/group). a-
d means lacking a common letter significantly differ among the time
points within the same muscle (P , 0.05). x-z means lacking a common
letter significantly differ among the muscles within the same time point
(P , 0.05). Error bars indicate standard error of means.
which we found the different type of fibers composing
the muscles themselves and, consequently, the amount
of substrates available at death to enter into the glyco-
lytic pathway (i.e., glycolytic potential) (Pearson and
Young, 1989; Schreurs, 2000; Young et al., 2004; P€os€o
and Puolanne, 2005). Most skeletal muscles are
composed by a mixture of fiber types (Pollard et al.,
2017). It is generally held that locomotor muscle, desig-
nated for low-intensity exercise, is mainly made up by a
combination of type I and IIa fibers (i.e., oxidative and
intermediate, respectively) in most farmed animals
(Valberg, 2008; Zhang et al., 2017). On the contrary,
muscles that must withstand maximal exercise intensity
are mainly composed by glycolytic fibers, such as in the
case of pectoralis major in broilers (Schreurs, 2000;
Branciari et al., 2009). Thus, from an energy metabolism
perspective, glycolytic muscles such as chicken breast
usually exhibit higher glycolytic potential and contrac-
tion speed that lead to great and fast acidification pat-
terns postmortem, whereas leg muscles usually display
slow acidification rates and pHu values higher than 6.0
(Valberg, 2008; Petracci et al., 2017). Having this in
mind, PM should have exhibited a faster and greater
pH decline, especially in the first 2 h postmortem
when, unexpectedly, PM and GI showed an analogous
acidification process despite their different in vivo
energy-yielding pathways.
Glycolytic Metabolites

For better understanding of postmortem metabolism
and tracking the progression of anaerobic glycolysis,
the concentrations of glycolytic metabolites were
measured in chicken PM, EIL, and GI muscles
(Figure 3). Patterns of lactate formation followed pH
decline and confirmed the differences in both acidifica-
tion rate and extent detected among the muscles of
different energy-yielding metabolism (Figure 3A). Ac-
cording to pH results, at 24 h postmortem, PM showed
significantly higher (P , 0.05) lactate concentrations if
compared with both leg muscles, in agreement with
what previously found by Berri et al. (2005). However,
it is noteworthy to highlight that, considering the
average lactate levels detected in PM at 15 min postmor-
tem (19 mmol/g), breast muscle should have exhibited a
lower pH at the same time point. Indeed, EIL muscle,
showing analogous lactate concentration (18.9 mmol/
g), exhibited a significantly (P , 0.05) lower pH at
15 min if compared with breast (6.49 vs. 6.62, respec-
tively; Figure 2).
Mobilization of muscle glycogen during postmortem

glycolysis likely drives pH decline and might provide use-
ful information concerning substrate utilization in mus-
cles of different energy-supplying metabolism
(Matarneh et al., 2018). Patterns of glycogen depletion
during postmortem time are shown in Figure 3B. If
compared with thigh and drumstick, breast muscles
showed significantly higher content of glycogen at 15,
60, and 120 min postmortem (P , 0.05) and the fastest
glycogen depletion rates (i.e., greater glycogenolytic



Figure 3. Average lactate (A, mmol/g), glycogen (B, mmol/g), glucose (C, mmol/g), and glucose-6-phosphate (D, mmol/g) of chicken pectoralis ma-
jor (PM), extensor iliotibialis lateralis (EIL), and gastrocnemius internus (GI) muscles (n 5 8/group) at 15, 60, 120, and 1,440 min postmortem. a-c
means lacking a common letter significantly differ among the time points within the same muscle (P, 0.05). x-z means lacking a common letter signif-
icantly differ among the muscles within the same time point (P , 0.05). Error bars indicate standard error of means.
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activities) confirming what observed by Villa Moruzzi
et al. (1981) in glycolytic and oxidative muscles from
rats. Fast-twitch, glycolytic fibers generally have great
glycogen storages because they need to quickly take it
up to sustain brief and intense movements (i.e., wing
flapping in flightless birds such as chickens and turkeys),
whereas slow-twitch, oxidative fibers are highly efficient
in ATP synthesis, thus needing less glycogen and glucose
to provide energy through glycolysis (Schreurs, 2000;
Shen et al., 2015; Zhang et al., 2017). Accordingly,
chicken PM possessed a greater carbohydrate flux
entering the postmortem glycolysis, justifying the signif-
icantly lower ultimate pH and higher lactate concentra-
tion at 1,440 min postmortem if compared with leg
muscles (see Figures 2 and 3A, respectively). Glycogen
was almost depleted within 120 min postmortem in GI
and EIL muscles, which did not show any further
decrease between 2 and 24 h postmortem, corroborating
the achievement of their pHu (i.e., cessation of postmor-
tem glycolysis) after 2 hours from the death of the ani-
mal. On the contrary, glycogenolysis proceeded in PM
muscle until 1,440 min postmortem, where residual
glycogen (2.30 mmol/g) found in meat samples suggest
that glycolysis could have further continued. Indeed,
glycogen is not usually a glycolysis rate-limiting factor
in chicken breast muscles (Baldi et al., 2020b).
Glycogen degradation yields nonphosphorylated
glucose molecules and glucose 1-phosphate, which is iso-
merized to G6P and enters the glycolytic pathway,
whereas free glucose molecules are either converted by
hexokinase to G6P or accumulated in postmortem mus-
cle (England et al., 2017; Matarneh et al., 2018). Pat-
terns of glucose utilization and G6P generation
(Figures 3C and 3D, respectively) reflect the balance be-
tween glycogen depletion and lactate production as
glycolysis proceeds (Aliani et al., 2013). At 15 min post-
mortem, GI muscles showed significantly lower glucose
and G6P concentrations (P , 0.05), supporting once
again the reduced flux of substrates entering the post-
mortem glycolysis that led to higher pHu values. As pre-
viously found for cattle (Koutsidis et al., 2008) and
chicken muscles (Matarneh et al., 2018), a reduction in
both glucose and G6P concentrations was observed in
the first hours postmortem. While from 120 min post-
mortem onward glucose levels in both EIL and GI
remain stable (P . 0.05), PM muscles showed a signifi-
cant increase in glucose concentration, showing the high-
est values at 1,440 min postmortem. This remarkable
build-up of glucose in PMmuscle from 120 min postmor-
tem onward might be explained with a possible
expanded activity of glucose 6-phosphatase, an enzyme
that hydrolyzes G6P into free glucose and a phosphate

mailto:Image of Figure 3|tif
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group (Van Schaftingen and Gerin, 2002). Albeit few in-
formation is available for avian species, the activity of
this enzyme was found to be increased in glycolytic
rather that oxidative fibers of mice during early post-
mortem period (Watanabe et al., 1986). Apart from
the muscle type, from 120 min postmortem onward
G6P accumulates in the muscles thus corroborating
what has been previously found for porcine, cattle, and
chicken muscles (England et al., 2014; Scheffler et al.,
2015; Matarneh et al., 2018). Intriguingly, overall
reduced G6P concentrations detected in GI muscle dur-
ing postmortem might suggest that G6P is generated at
a rate comparable with its consumption because hexoki-
nase (i.e., the enzyme that catalyzes the conversion of
glucose into G6P) activity is greater in muscle mainly
composed by oxidative fibers (Lefaucheur, 2010).

Muscle glycolytic metabolites can be combined
into a single measure termed as glycolytic potential,
a sum of all the compounds that can be potentially
converted into lactate, useful to indicate the mus-
cle’s capacity to extend postmortem glycolysis
(Monin and Sellier, 1985; Laack et al., 2001;
Scheffler and Gerrard, 2007). As shown in
Figure 4, the type of muscle significantly affected
the glycolytic potential. Breast muscle showed signif-
icantly higher (P , 0.05) glycolytic potential rather
than leg muscles, among which GI showed the lowest
value (35.3 mmol lactate/g). In more detail, glyco-
lytic potential was found to be 2-fold higher in PM
if compared with GI, whereas EIL muscle showed in-
termediate values. In the living animal, glycolytic
potential is closely related to the myosin heavy chain
isoforms expressed by the muscle fiber types, that is,
to their speed contraction (Shen et al., 2015). Fast-
twitch fibers are characterized by a higher rate of
ATP consumption as well as a greater glycolytic
Figure 4. Average glycolytic potential (mmol lactate/g muscle) of
chicken pectoralis major (PM), extensor iliotibialis lateralis (EIL), and
gastrocnemius internus (GI) muscles (n 5 8/group). a-c means lacking
a common letter significantly differ (P, 0.05). Error bars indicate stan-
dard error of means.
potential than slow-twitch ones (Zhang et al.,
2017). As a consequence, a higher glycolytic poten-
tial will lead to a greater production of lactate and
the achievement of a lower ultimate pH (Berri
et al., 2005; Choe et al., 2008), such in the case of
PM muscle. In this regard, the strong relationship
between glycolytic potential, meat pHu, and muscle
metabolism has been widely proved (Monin et al.,
1987; Berri et al., 2005). Thus, glycolytic potential
outcomes further support our initial hypothesis
that PM, EIL, and GI muscles, chosen on the basis
of their histidine dipeptides content, are presumably
characterized by a different in vivo energy-supplying
metabolism.
Buffering Capacity

The onset of postmortem metabolism can also be
affected by muscle buffering capacity, that is the ability
of intracellular fluids to buffer the acidic end-products
formed during periods of anaerobic metabolism
(Castellini and Somero, 1981). Most biological tissues
are adapted to operate at pH near to 7.0. In vivo, if skel-
etal muscle has no buffers, the simultaneous production
of lactate and protons during short-term bursts of anaer-
obic glycolysis will result in a fast pH drop that may
inhibit the effective function of some regulatory and vital
enzymes (Hand and Somero, 1982; Robergs et al., 2004).
As a general rule, buffering capacity is higher in muscle
mainly composed by fast-twitch, glycolytic fibers
because in vivo they generate ATP through anaerobic
glycolysis by producing great amounts of lactate, and
for this reason, they are accustomed to prevent excessive
drops in pH (P€os€o and Puolanne, 2005). Accordingly, in
the pH range of 6.0–7.0, PM exhibited significantly
higher (P , 0.05) buffering capacity values compared
with leg muscles, among which GI showed the lowest
ones (Figure 5). It is widely reported that the buffering
ability of a muscle is due by half to myofibrillar proteins,
whereas compounds such as lactate, phosphate, as well
as histidine dipeptides contributed to the other half
(Matarneh et al., 2017). Because poultry meat is known
to possess high amounts of histidine-containing com-
pounds (Barbaresi et al., 2019), the variations in buff-
ering capacity between selected chicken muscles might
be ascribable to the concentration of histidine dipep-
tides, which are believed to be accountable for the differ-
ences in buffering capacity both within and between
animal species (Castellini and Somero, 1981; Rao and
Gault, 1989; Decker, 2001; Jung et al., 2013). It is essen-
tial to mention that the distribution of histidine dipep-
tides is species specific. Indeed, anserine was found to
be plentiful in lamb and chicken meat but scarce in
beef, pork, and turkey, that in turn usually exhibits
higher amounts of carnosine (Chan and Decker, 1994).
Therefore, although carnosine could be the major
discriminating factor for dissimilarities in buffering ca-
pacity among porcine and bovine muscles, anserine can
help to better explain differences detected within chicken
meats.



Figure 5. Buffering capacity (mmol H1$pH21 g21) (pH range 6.0-
7.0) in chicken pectoralis major (PM), extensor iliotibialis lateralis
(EIL), and gastrocnemius internus (GI) muscles (n 5 8/group). a-c
means lacking a common letter significantly differ among the same pH
range (P , 0.05). Error bars indicate standard error of means.
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Histidine Dipeptides

The concentration of anserine and carnosine in
chicken meat greatly varies depending on the breed,
the gender, the age of the animals as well as the muscle
considered (Peiretti and Meineri, 2015; Barbaresi
et al., 2019; Cheol Kim et al., 2020). In agreement with
what previously observed by several authors (Chan
and Decker, 1994; Barbaresi et al., 2019), beside the
muscle type, chicken meat was found to be characterized
by higher amounts of anserine rather than carnosine
(Figure 6). Furthermore, the concentration of
histidine-containing dipeptides significantly differed
depending on the energy-supplying metabolism of mus-
cles, confirming the outcomes of previous studies
(Intarapichet and Maikhunthod, 2005; Jung et al.,
2013). Pectoralis major muscle, being totally composed
by fast-twitch, glycolytic fibers (Branciari et al., 2009),
accordingly showed the highest amount of both anserine
and carnosine, which resulted to be correspondingly 3.4-
and 3.0-fold higher than GI muscles (409.0 vs. 118.1 and
136.5 vs. 45.6 mg/g meat, respectively; P, 0.05), that in
turn exhibited the lowest glycolytic rates (Figure 4). On
the other hand, EIL supposedly having an intermediate
Figure 6. Average values of anserine and carnosine concentrations
(mg/100 g meat) in chicken pectoralis major (PM), extensor iliotibialis
lateralis (EIL), and gastrocnemius internus (GI) muscles (n5 8/group).
a-c means lacking a common letter significantly differ among muscles
(P , 0.05). Error bars indicate standard error of means.
metabolism exhibited also intermediate amounts of
these compounds. The remarkably higher level of
anserine and carnosine in chicken breast meat is ascrib-
able to its in vivo metabolic behavior that makes the
muscle more needy of endogenous buffers able to
contrast the protons produced through anaerobic glycol-
ysis, resulting in a buildup of histidine compounds in the
muscle (Puolanne and Kivikari, 2000). In accordance
with this hypothesis, both thigh and drumstick muscles
exhibited reduced concentrations of histidine dipeptides
because they do not necessitate to contrast large amount
of acidic end-products in vivo. These results seem to
corroborate the strong relationship existing between
the amounts of histidine dipeptides and the energy meta-
bolism of muscle, as already suggested by previous
studies conducted on porcine muscles (Cornet and
Bousset, 1999; Mora et al., 2008). In this regard, Pearson
correlation coefficients showed that both anserine and
carnosine were highly positively correlated (P , 0.001)
with overall buffering capacity and glycolytic potential
of chicken muscles (Table 1; see Supplementary
Material 2 for Pearson correlation matrixes calculated
for each muscle). Considering these aspects, it might
be reasonable to assume that the content of histidine di-
peptides might be one of the key factors regulating mus-
cle postmortem metabolism. Indeed, in virtue of its
glycolytic potential (Figure 4) as well as the high
contraction speed of its fast-twitch, glycolytic fibers,
PM should have exhibited a faster and greater acidifica-
tion within the first 120 min postmortem (i.e., when
muscle pH drops from 6.60 to 6.30), suggesting that
the remarkable concentration of histidine dipeptides
might have buffered a potentially stronger acidification
in the first hour postmortem. This hypothesis is further
supported by anserine and carnosine’s pKa values that,
being, respectively, 6.38 and 7.04, guarantee the
maximal buffering capacity at pH ranges included from
6.4 to 7.0 (Boldyrev and Severin, 1990; P€os€o and
Puolanne, 2005) This scenario would confirm that histi-
dine compounds exert their buffering activity not only
in vivo, but also during postmortem period, at least in
the first hour after the death of the birds where muscle’s
pH is still close to its physiological value. Furthermore, it
should be emphasized that, considering its glycogen con-
tent at 15 min, PM should have also exhibited lower pHu
values in absolute terms (,5.7–5.8). This trend further
supports the hypothesis that histidine dipeptides might
Table 1. Pearson correlation coefficients between the overall con-
centration of histidine dipeptides, buffering capacity, and glyco-
lytic potential assessed in chicken pectoralis major (PM), extensor
iliotibialis lateralis (EIL), and gastrocnemius internus (GI) mus-
cles (n 5 24).

Histidine dipeptide Buffering capacity1 Glycolytic potential

Anserine 10.86*** 10.91***
Carnosine 10.79*** 10.87***

*** 5 P , 0.001.
1Overall buffering capacity of PM, EIL, and GI muscles calculated as

the average of buffering capacity values detected in the pH range 6.0–7.0.
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have limited not only the rate, but also the extent of
early postmortem acidification of PM muscle by buff-
ering the acidic end-products of anaerobic glycolysis.
Within this context, it is reasonable to speculate that
the muscular concentration of histidine-containing com-
pounds, having great outcomes on muscle buffering abil-
ity, might provide resistance to postmortem pH decline,
thus exerting an effect on muscle metabolism during pre-
rigor phase and the quality of the forthcoming meat.
CONCLUSION

This study establishes the solid relationship existing
between the content of anserine and carnosine and mus-
cle postmortem metabolism, indicating that the selec-
tion of PM, EIL, and GI chicken muscles based on
their histidine dipeptides thoroughly reflects their pre-
dominant energy-supplying metabolism. Being remark-
ably responsible for the buffering capacity of skeletal
muscles, histidine dipeptides provide a resistance to
postmortem pH decline, thus explaining the slower and
reduced extent of muscular acidification of PM muscle
that, being markedly glycolytic, should have exhibited
a lower pHu in absolute terms. Thus, it could be hypoth-
esized that the concentration of anserine and carnosine
might also account for differences in pHu values existing
both within and between different mammalian and
poultry muscles characterized by the similar energy
metabolism.
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