
25 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

PAElla: Edge AI-Based Real-Time Malware Detection in Data Centers / Libri A.; Bartolini A.; Benini L.. - In:
IEEE INTERNET OF THINGS JOURNAL. - ISSN 2327-4662. - ELETTRONICO. - 7:10(2020), pp. 9060937.9589-
9060937.9599. [10.1109/JIOT.2020.2986702]

Published Version:

PAElla: Edge AI-Based Real-Time Malware Detection in Data Centers

Published:
DOI: http://doi.org/10.1109/JIOT.2020.2986702

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/788587 since: 2021-01-13

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/JIOT.2020.2986702
https://hdl.handle.net/11585/788587

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

A. Libri, A. Bartolini and L. Benini, "pAElla: Edge AI-Based Real-Time Malware
Detection in Data Centers," in IEEE Internet of Things Journal, vol. 7, no. 10, pp.
9589-9599, Oct. 2020, doi: 10.1109/JIOT.2020.2986702.

The final published version is available online at:
https://doi.org/10.1109/JIOT.2020.2986702

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi.org/10.1109/JIOT.2020.2986702

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX XXXX 1

pAElla: Edge-AI based Real-Time Malware
Detection in Data Centers

Antonio Libri, Member, IEEE, Andrea Bartolini, Member, IEEE, and Luca Benini, Fellow, IEEE

Abstract—The increasing use of Internet-of-Things (IoT) de-
vices for monitoring a wide spectrum of applications, along with
the challenges of “big data” streaming support they often require
for data analysis, is nowadays pushing for an increased attention
to the emerging edge computing paradigm. In particular, smart
approaches to manage and analyze data directly on the network
edge, are more and more investigated, and Artificial Intelligence
(AI) powered edge computing is envisaged to be a promising
direction. In this paper, we focus on Data Centers (DCs) and
Supercomputers (SCs), where a new generation of high-resolution
monitoring systems is being deployed, opening new opportunities
for analysis like anomaly detection and security, but introducing
new challenges for handling the vast amount of data it produces.
In detail, we report on a novel lightweight and scalable approach
to increase the security of DCs / SCs, that involves AI-powered
edge computing on high-resolution power consumption. The
method - called pAElla - targets real-time Malware Detection
(MD), it runs on an out-of-band IoT-based monitoring system
for DCs / SCs, and involves Power Spectral Density of power
measurements, along with AutoEncoders. Results are promising,
with an F1-score close to 1, and a False Alarm and Malware Miss
rate close to 0%. We compare our method with State-of-the-Art
MD techniques and show that, in the context of DCs / SCs, pAElla
can cover a wider range of malware, significantly outperforming
SoA approaches in terms of accuracy. Moreover, we propose
a methodology for online training suitable for DCs / SCs in
production, and release open dataset and code.

Index Terms—Artificial Intelligence, Edge Computing, Mal-
ware Detection, IoT monitoring, Data Center, Supercomputer.

I. INTRODUCTION

IN the era of the Internet-of-Things (IoT), commodity
devices such as low-cost embedded systems can easily

compose sensor networks and are increasingly used as moni-
toring infrastructures, from household appliances to industrial
environments [1]–[4]. Depending on the target application,
they can produce a massive amount of data that needs to
be handled, and to tackle this challenge the emerging edge
computing paradigm is receiving a tremendous amount of
interest [5]–[7]. Indeed, by pushing data storage and analysis
closer to the network edge, this approach allows to mitigate
the network traffic load and meet requirements such as high
scalability, low latency, and real-time response. However, at its
basis, smart techniques to manage and analyze data directly on
edge are of crucial importance. With this motivation, emerging

A. Libri and L. Benini are with D-ITET, ETH Zurich, Zurich, Switzerland
(e-mail: {a.libri,lbenini}@iis.ee.ethz.ch).

A. Bartolini is with DEI, University of Bologna, Bologna, Italy (e-
mail: a.bartolini@unibo.it).

L. Benini is also with DEI, University of Bologna, Bologna, Italy (e-
mail: luca.benini@unibo.it).

Manuscript received December 13, 2019; revised XXXX XX, XXXX.

methods based on Artificial Intelligence (AI) running on edge
devices (a.k.a. edge AI or edge intelligence) are envisioned as
a promising solution to address this challenge [8], [9].

This is true also in the context of Supercomputers (SCs) and
Data Centers (DCs), where a new generation of high-resolution
monitoring systems is being deployed [10]–[12], pushing the
research boundaries over new opportunities to support their
automation, analytics, and control. In particular, DiG [10] is
the first out-of-band monitoring system for DCs / SCs that
allows real-time edge intelligence on high-resolution measure-
ments, and is already installed in a SC in production (i.e.,
D.A.V.I.D.E., ranked 18th most efficient SC in the world,
based on Green500 November 2017 [13]–[15]). DiG is based
on low-cost IoT embedded computers, which are essential to
interface with analog power sensors to collect very fine-grain
power measurements of the DC servers (i.e., up to 20 µs).
Moreover, the system provides real-time on-board processing
capabilities, coupled with ultra-precise time stamping (i.e.,
below microseconds) and a vertical integration in a scalable
distributed data analytics framework (i.e., ExaMon [16]).

Edge Monitoring
& Analytics

Low
Data-Rate

Huge
Data-Rate

Bottlenecks:
• Network BW
• Storage
• SW Overhead

(1) (2)

CRAC
PDU

Computing
Nodes

ENV.

CRAC
PDU

Computing
Nodes

ENV.

Centralized
Monitoring

&
Analytics

Centralized
Monitoring

&
Analytics

Fig. 1. High-Resolution monitoring bottlenecks in DCs.

These unique features allow us to carry out real-time high-
frequency analysis that would not be possible otherwise: with
in-band monitoring, like Intel RAPL, the time granularity is
limited to the order of millisecond [17], while with current
out-of-band monitoring solutions it is not possible to carry out
on-board edge analytics [10]. As depicted in Figure 1.1, using
an out-of-band monitoring with high-resolution measurements
(i.e., below millisecond) and no edge computing capabilities,
would result in crucial bottlenecks, such as (i) overhead on
the network bandwidth, (ii) overhead on the data storage
capacity (to save measurements for post-processing analysis),
(iii) and overhead on the software tools that have to handle the
measurements (in real-time and offline) [10]. As matter of ex-
ample, supposing to install a high-resolution power monitoring

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX XXXX 2

system like HAEC [12], with a sampling rate of 500 kS/s (kilo
Samples per second) on 4 custom sensors, on a large-scale
SC like Sunway TaihuLight (3rd in Top500 of June 2019, and
involving around 41 thousand compute nodes [18]), it would
require a data collection network bandwidth of ~82 GS/s,
with obvious overheads on software and storage to handle it.
Instead, with a DiG-like monitoring infrastructure (Figure 1.2)
we can exploit distributed computing resources to carry out
dedicated analysis for each server (server-level analytics), and
send at a much lower rate the detected events to a centralized
monitoring unit, which has the complete view and holistic
knowledge of the whole cluster (cluster-level analytics).

However, to perform real-time high-frequency analysis at
the edge, smart data science approaches are essential. In this
paper, we show how a novel approach involving AI and Ma-
chine Learning (ML) running on IoT monitoring devices, can
allow increasing the cybersecurity of DCs, which is nowadays
a high impact research topic [19]–[21]. Our edge AI approach
targets real-time Malware Detection (MD) for DCs / SCs, and
involves feature extraction analysis based on Power Spectral
Density (PSD) estimation with the Welch method, along with
an AutoEncoder (AE) - which is a particular Neural Network
(NN) suitable for Anomaly Detection (AD) - to identify
patterns of malware. While similar approaches are already
used in the context of speech recognition [22], [23], to the best
of our knowledge, this is the first time is used together with
high-resolution power measurements for malware - and more
in general anomaly - detection. We called the approach pAElla,
which stands for “Power-AutoEncoder-WeLch for anomaLy
and Attacks”.

Contributions of the work:

1) A novel out-of-band approach, pAElla, running on IoT-
based monitoring systems for real-time MD in DCs.
Results in our big dataset (i.e., more than ninety mal-
ware + 7 benchmarks, representative of SC and DC
activity) report an overall F1-score close to 1, and a
False Alarm and Malware Miss rate close to 0 %. We
compare our approach with other State-of-the-Art (SoA)
ML techniques for MD and show that, in the context of
DCs / SCs, pAElla can cover a wider range of malware,
outperforming the best SoA method by 24 % in terms
of accuracy. In addition, notice that this approach can
be used more in general also for AD, in cases where
high resolution becomes essential to identify patterns,
opening new opportunities for researchers.

2) We propose a methodology for online training in the DC
infrastructure suitable to be run in a system in production
like DiG.

3) The approach involves zero overhead on the servers
processing elements, and it is suitable for large-scale
systems, thanks to the on-board ML inference running
at the edge, on each compute node.

4) We release both dataset and software we used for the
analysis [24]. The dataset includes 7 benchmarks (6 sci-
entific applications for SCs + the signature of the system
in idle) and 95 malware of different sort. Notice that this
is the first dataset of its kind, providing to the security

research community high-resolution measurements (i.e.,
power measurements @20 µs + performance measure-
ments @20 ms) for carrying out and benchmarking novel
analyses.

Finally, we highlight the fact that pAElla is suitable to be
used in a real DC / SC in production, such as in D.A.V.I.D.E.,
that integrates DiG [13].

Outline: Section II introduces background information on
performance counters based MD. Section III reports the related
work. Section IV provides an overview of the DiG infras-
tructure that we use to carry out our analysis. Section V
presents both the pAElla algorithm and its implementation
on DiG, along with the methodology to run online training
in a DC. Finally, we show in Section VI how we built the
dataset for our analysis, together with the results of the MD
and a comparison with SoA. We also report an analysis of the
overheads in running pAElla on DiG, and some considerations
on its scalability to large-scale DCs. We conclude the paper
in Section VII.

II. BACKGROUND ON MALWARE DETECTION

The threat of malware and more in general cyber attacks
is nowadays considerably increasing, and countermeasures to
detect them are becoming more critical than ever. Examples
spread from different kinds of backdoors, to trojans and
ransomware, each of them having different Operating System
(OS) and computational usage characteristics [25]. A promi-
nent SoA technique for MD - and more in general for AD - is
based on catching their dynamic micro-architectural execution
patterns, employing monitoring the hardware performance
counters available in modern processors [25]–[29]. By using
this approach, we can benefit of (i) a lower overhead than
using higher-level approaches - e.g., monitoring patterns at
application and OS level -, and (ii) also of the fact that these
micro-architectural features are efficient to audit and harder
for attackers to control, when they want to avoid detection in
evasion attacks [25].

There are mainly two ways to train the anomaly-based
detector to catch malware: (i) training on malware signa-
tures [26], or (ii) training on “healthy” operating conditions
of the system that we want to protect by malware attacks,
to be able to identify possible changes that indicate an in-
fection [25]. While the first method is a supervised learning
approach, the second one can be seen as “semi-supervised”
learning as we do not need any prior knowledge of the malware
signatures, thus we can detect even zero-days attacks (i.e.,
attacks which are never seen before) [25], [30]. The idea
behind the second method can also be applied within the
context of DCs and SCs: the supercomputing center can study
the “regular” activity of their users, and thus create models on
healthy machine states.

Drawbacks:
• it is not possible to monitor all the performance counters

at the same time (e.g., Intel allows the selection of only
4 performance counter at a time via the Performance
Monitoring Unit - PMU -, which can become 8 by
disabling the Hyperthreading [31]). This does not allow

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX XXXX 3

to be flexible, as some malware are better described by
certain performance counters rather than others, with a
consequent degradation on the malware accuracy detec-
tion (we do not know a priori which malware is running,
so which performance counter is better to select).

• Depending on the running malware, the time granular-
ity of the monitoring becomes of primary importance
to be able to catch their micro-architectural execution
patterns [25]. However, as described in the Introduction
Section, current SoA built-in tools to monitor perfor-
mance counters are limited by sampling rate and edge
computing capabilities.

As we show in our results, these drawbacks can be a
limitation to discover malware in real-time in a DC.

Our Approach: To bridge this gap, we propose a solution
that exploits the out-of-band and very high resolution power
consumption measurements of DiG (no performance counters
involved), in a lightweight algorithm that can run in real-time
on the IoT devices at the edge of the DC. This method allows
catching fine-grain activities of the malware that are not visible
with the performance counter based approach.

III. RELATED WORK

Perf-Counters-based MD: In recent years, several works in
the literature focused on the usage of performance counters for
Anomaly and Malware Detection. In particular, [26] showed
the feasibility of the technique by testing them with several
supervised learning approaches (i.e., k-Nearest Neighbors,
decision tree, random forest, and Artificial Neural Networks)
after training models on known malware. Later, [25] showed
the feasibility of this method with an unsupervised learning
approach, namely the one-class Support Vector Machine (oc-
SVM), by training the model on healthy programs. Moreover,
they suggested a list of performance counters that can, on
average, better describe the malware signatures (we use this
list - reported in Table I - to compare this method with our
approach). In this direction, different methods were proposed
to improve the technique, not only for MD, but also more in
general for AD. In the context of DCs, works in [28]–[30], [32]
showed how to use performance counters to detect anomalies,
while [33] showed how to use them for detecting covert
cryptocurrency mining. However, very recent works in [34],
[35] bring into question the robustness of this technique for
security, carrying out a study with a big dataset with more
than ninety malware and reporting poor results in accuracy
detection.

Power-based MD: Similar to the performance-counters-
based approach, several works in literature proposed methods
to detect malicious activity in IoT networks by mean of
energy consumption footprint. To provide some examples,
[36] presented a machine learning based approach to detect
ransomware attacks by monitoring the power consumption of
Android devices, or [37] proposed a cloud-assisted framework
to defend connected vehicles against malware. While all these
works targeted the security of embedded systems, a proof
of concept toward the feasibility of power-based malware
detection for general-purpose computers was proposed in [38].

In this paper, Bridges et al. use an unsupervised one-class
anomaly detection ensemble, based on statistical features
(e.g., mean, variance, skewness and Kurtosis), with a power
consumption sampling rate of 17 ms. However, as they claim
in their paper, further research to increase the sampling rate
is necessary, especially for accurate baselining of very small
instructions sequences of malware. Moreover, although this
was the first step on this kind of approach, to the best of our
knowledge: (i) no other works proved yet the feasibility in a
DC where embedded monitoring networks are involved, and
edge intelligence for real-time analytics is required; (ii) there
is not yet a robust dataset with several malware that proves
the robustness of the technique.

Data Center Monitoring: Off-the-shelf methods to measure
power and performance of DC compute nodes rely on in-
band or out-of-band telemetry depending on the technology
vendors. In particular, an example of in-band solution is Intel
RAPL [17], which can provide a time granularity up to 1 ms,
while examples of out-of-band solutions are IBM Amester [39]
and IPMI [40], which can provide a resolutions of 250 µs and
1 s, respectively, but not AI-powered edge computing. Towards
high-resolution monitoring of DCs, several works in recent
years proposed solutions, such as [12], [41], and DiG [10]
is the best-in-class SoA infrastructure that bridges the gap of
very fine-grain monitoring (i.e., 20 µs of time granularity) and
edge computing.

PSD and NNs: While NNs, and more in particular AEs, are
already used for anomaly and malware detection in different
domains, including DCs [30], [42], the use of Fourier analysis
together with NNs is a well-known procedure in speech
recognition [22], [23]. We use a similar approach for malware
detection in our study, involving PSD with Welch method,
and an AE for ML inference on-board. To the best of our
knowledge, this is the first work proving its feasibility for the
cybersecurity of DCs.

IV. DIG & AD ON THE EDGE OF A TOP500’S
SUPERCOMPUTER

Centralized
Monitoring

Edge Analytics & ML Inference

PSU Power
Monitoring

Node-2

Node-1

Node-3

Node-n

DC
DC

PEPE

PEPE

Embedded
Computer Perf Monitoring

?!
Cluster-level Analytics

Datacenter
Nodes

MQTT

Fig. 2. Sketch of the DiG architecture.

DiG [10] is the first monitoring system for DCs / SCs
already in production, that allows (i) very high frequency
monitoring (i.e., up to 20 µs), (ii) real-time on-board process-
ing for AI on the edge of the cluster (e.g., feature extraction

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX XXXX 4

algorithms and ML inference), (iii) ultra-precise time stamping
(i.e., sub-microseconds synchronizations - below the sampling
period - between the cluster nodes) and (iv) vertical integration
in a scalable distributed data analytics framework (i.e., the
open source ExaMon system [16]). The monitoring infras-
tructure is completely out-of-band, scalable, and low cost.
Moreover, DiG is technology agnostic - it is already installed
on several HPC systems, based on different CPU architectures
(i.e., ARM, Intel, and IBM).

As depicted in Figure 2, the monitoring system architecture
involves:

• a power sensor, which is placed on each DC compute
node, between the power supply unit and the DC-DC
(Direct Current to Direct Current) converters that provide
power for all the processing elements (PE) / electrical
components within the node. The power sensing is based
on a current mirror and shunt resistor to measure the
current, and on a voltage divider to measure the voltage.
We use it to acquire SoA high-resolution power measure-
ments, with a time granularity of 20 µs and a precision
below 1 % (σ);

• an IoT embedded computer (i.e., BeagleBone Black -
BBB) dedicated for each compute node, that we use to
carry out server-level analytics. The system is interfaced
with the power sensor via a 12-bit 8-channels SAR ADC,
and with existing in-band / out-of-band telemetries to col-
lect hardware performance counters (e.g., Amester [39],
IPMI [40], and RAPL [17]). Moreover, it includes (i)
hardware support for the Precision Time Protocol (PTP),
which allows sub-microsecond measurements synchro-
nization [43], [44], (ii) two Programmable Real-Time
Units (PRU0 and PRU1), that we exploit for real-time
feature extraction on-board, and (iii) an ARM Cortex-
A8 processor with NEON technology, useful for DSP
processing and edge ML inference (e.g., by leveraging the
ARM NN SDK [45], which enables efficient translation
of existing NN frameworks - such as TensorFlow - to
ARM Cortex-A CPUs);

• a scalable distributed data analytics framework, namely
ExaMon [15], [16], that we use to collect at a lower rate
- from seconds to milliseconds - power and performance
activity of the all cluster and thus to carry out cluster-level
analytics. To send data from the distributed monitoring
agents (i.e., daemons running on the BBBs) to the cen-
tralized monitoring unit, we adopted MQTT [46], which
is a robust, lightweight and scalable publish-subscribe
protocol, already used for large-scale systems both in
industry and academia (e.g., Amazon, Facebook, [46],
[47]). Moreover, we use Apache Cassandra [48] to store
data in a scalable database and exploit Apache Spark [49]
as Big Data engine to perform cluster-level ML analytics
both in streaming and batch mode.

DiG provides a flexible platform to collect fine-grain mea-
surements of the compute nodes activity, and prototype novel
anomaly detection methods. Furthermore, DiG allows to test
new strategies for data-science on-board, to handle both the
considerable amount of data that otherwise would impact on

the communication network and the real-time processing.

V. pAElla: ALGORITHM & IMPLEMENTATION

In this section, we explain the different phases of the pAElla
approach, namely (i) real-time Feature Extraction and (ii) on-
board MD inference, and their implementation in the DiG
infrastructure. Furthermore, we propose a methodology for
online training in a DC.

A. Edge Real-Time Feature Extraction

For the Feature Extraction phase, we use the PSD with
the Welch method [50]. This technique is based on the
periodogram method, with the difference that the estimated
power spectrum contains less noise, but with a penalty in the
frequency resolution. In particular, the signal is split up into
overlapping segments, which are then windowed and used to
compute periodograms with the Fast Fourier Transform (FFT).
Finally, it is computed the squared magnitude of the result, and
the individual periodograms are averaged. We selected it over
other approaches - e.g., Discrete Wavelet Transform (DWT)
or Wavelet Packet Transform (WPT) - for (i) its capability
to unveiling relevant frequency components in all the signal
bandwidth (w.r.t. DWT and WPT, which instead provide tem-
poral information at a price of a lower frequency resolution)
and (ii) for its low computational complexity [50]. Moreover,
PSDs already proved to be a robust feature extraction method
to be used together with NNs, in applications such as speech
recognition [22], [23].

To find a good time window to use for the FFTs, we
run on the monitored compute node a synthetic benchmark
that generates a known pattern, and we monitored it with
DiG. In particular, we use a pulse train of instructions at
1 kHz, where we alternate high load computational phases
with idle phases. Figure 3 shows the results of the PSD
analysis in a time window of ~164 ms (i.e., 8192 data samples),
and different lengths of the FFTs, namely 4096, 2048 and
1024 points (i.e., ~82 ms, ~41 ms and ~20.5 ms, respectively).
Except for the one at 1024 samples, the other two can detect
with an approximately good precision the main peak at 1 kHz
(magnitude greater than 5 dB), plus its harmonics in all the
signal bandwidth 0–25 kHz.

To respect the real-time constraints in the DiG IoT de-
vices, we selected the PSD with FFTs at 2048 samples,
which correspond to an output of 1025 data samples - i.e.,
(FFT samples/2)+1 - that we use as input features for the
phase of MD inference. Finally, we compute consecutive PSDs
with sliding windows of 20 ms (1000 power samples). As
shown in Section VI, this decision proved to be a good choice
in terms of both (i) MD accuracy and (ii) to create a consistent
dataset to compare with SoA MD techniques. However, future
works can investigate the results of the MD inference also with
different lengths of the PSD, FFTs, and sliding windows, to
deploy pAElla in other kinds of IoT devices, with different
memory / processing requirements.

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX XXXX 5

0 5 10 15 20 25freq [kHz]
-60

-40

-20

0

20

40

P
w

r/f
re

q
[d

B
/H

z]
PSD of Pulse Train Instr. @1kHz, PSD_win=163.84ms (8192 samples) FFT_win=81.92ms (4096 samples)

0
-60

-40

-20

0

20

40

5 10 15 20 25

P
w

r/f
re

q
[d

B
/H

z]

freq [kHz]

PSD of Pulse Train Instr. @1kHz, PSD_win=163.84ms (8192 samples) FFT_win=81.92ms (4096 samples)

0
-60

-40

-20

0

20

40

5 10 15 20 25

P
w

r/f
re

q
[d

B
/H

z]

freq [kHz]

PSD of Pulse Train Instr. @1kHz, PSD_win=163.84ms (8192 samples) FFT_win=81.92ms (4096 samples)

Fig. 3. Comparison between PSDs of a Pulse Train of instructions at 1 kHz
for different FFT lengths.

B. Edge Malware Detection Inference

For the ML inference phase, we use an AE, which is
a particular kind of Neural Network suitable for Anomaly
Detection [30], [42]. As described in Section II, the idea is
to train a model on “healthy” activity of the DC (i.e., with
no malware involved), and try to identify possible anomalies
in these signatures when a malware is running in background.
With an AE we can do exactly this. By learning to replicate
the most salient features in the training data, the AE tries to
reconstruct its input x on its output y. When facing anomalies,
the model it worsens its reconstruction performance.

In particular, the AE consists of one or more internal
(hidden) layers H , and involves mainly 2 phases: an encoding
phase H = enc(x), and a decoding phase that tries to
reconstruct the input y = dec(H) under certain constraints
(e.g., the dimension of the hidden layers can be smaller than
the dimension of the input). These constraints allow to not just
simply learn how to reconstruct a perfect copy of the input,
namely the identity function dec(enc(x)) = x, but instead
to learn an approximation to the identity function, so as to
output x̂ that is similar to x, and thus to discover interesting
structures about the data. The difference between input and
output is the reconstruction error Er, and we can use it as an
anomaly score to detect malware. Indeed, after training, the AE
can reconstruct healthy data very well (i.e., Er is small and
comparable to the error at training time), while failing to do
so with anomalous signatures that the AE has not encountered
yet (i.e., large Er w.r.t. the training error).

After an empirical evaluation, we chose a network with
4 fully-connected layers (3 hidden layers plus the output
layer), where we implement the phases of encoding-encoding-
decoding-decoding, respectively. As shown in our results, this
network proved to be a good option in terms of accuracy and
computational demands, especially for training and inference
time. In particular, the 3 hidden layers employ {8,4,4} neu-
rons, while - as in every AE - the output layer has the same
dimension of the input, that in our case corresponds to 1025

features (i.e., PSD dimension). As regularization term, we
employ the L1-norm [51], while as activation functions for the
neurons we use the hyperbolic tangent (tanh) and the rectified
linear unit (relu), in the sequence {tanh-relu-relu-tanh} for the
4 layers, respectively. Moreover, before processing the PSDs
as input features, we pre-process them, by removing the mean
and scaling to unit variance.

Lastly, we adopted a threshold-based method, with 2 thresh-
olds, to distinguish between malware and healthy states. The
first threshold, namely TE , is related to the reconstruction error
and allows us to understand if a PSD is an outlier. To compute
Er, we use the Mean Square Error (MSE) between input and
output of the AE. Then we tag as anomalies all the PSDs
where Er is greater than TE . The second threshold, TO, is
related to the percentage of outliers detected. If this percentage
is greater than TO, we detected a potential malware running
in the server, and thus we can raise an alarm for the system
admin of the DC.

C. Algorithm Implementation in the DiG IoT Devices

The on-board implementation of the pAElla algorithm in-
volves mainly 3 phases: (i) real-time acquisition of the power
consumption measurements, that we carry out with the PRU,
(ii) real-time computation of the PSD, that we perform in
floating-point on the ARM processor, and (iii) real-time MD
inference, where we exploit the NEON SIMD architecture
extension. Figure 4 highlights their implementation in the
BBB.

HW-FIFO

ADC
ADC

Input Pins

MQTT
Centralized

Unit

PRU Shared Mem
(12 kB)

Buffer 20μs

ARM
• Load ML model
• Compute PSD
• Run ML inf. w. NEON
• Send Alarm?

ADC HW
Module

User-space

FsADCFs

Kernel-space

AVG

(2)

PRU0 NEON
• ML Inference

?!

(1) (3)

• Flush FIFO
• Interrupts to ARM

Fig. 4. Implementation of pAElla in the IoT embedded systems of DiG.

Phase1: The bottom layer represents the ADC hardware
module. We exploit the ADC continuous sampling mode to
continuously sample the two input channels (i.e., current and
voltage), and store them in a hardware FIFO (HW-FIFO).
By tuning the ADC sampling frequency (FsADC) and the
hardware averaging (AVG), it is possible to set the frequency
(Fs) at which samples enter the software layers. The best
trade-off corresponds to a sampling rate (FsADC) of 800 kS/s
per channel - maximum rate when using two channels - and
hardware average every 16 samples. This is equivalent to
50 kS/s (i.e., Fs equals to 20 µs) and allows to (i) cover the
entire signal bandwidth of the server power consumption,
and (ii) reach a measurement precision below 1 % (σ) of
uncertainty (a.k.a. oversampling and averaging method [52]).

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX XXXX 6

When the HW-FIFO reaches a watermark on the number of
samples acquired (we set it to 32), an interrupt is raised and
the samples are flushed by the PRU0 into the PRU Shared
memory (12 kB).

Phase2: When a given number of samples is collected (we
set it to 2048 samples, which correspond to 4 kB in memory -
2 B each), the PRU0 raises an interrupt to the ARM through a
message passing protocol named RPMsg. The ARM can then
access the PRU Shared Memory to read the samples and store
them in RAM. As soon as it reaches a time window of 8192
samples (163.84 ms) it uses the samples to compute the PSD.
In this way, we can achieve 100 % hard real-time demand by
not losing power samples, and completely offload the data
acquisition phase to the PRU, making the ARM processor
available for other tasks, such as computing the PSD and
carrying out ML inference. Moreover, by computing the PSD
in the ARM processor, we can exploit the Floating Point Unit
(which is not available in the PRU) to avoid losing precision
when computing the PSD.

Phase3: When the PSD is calculated, the ARM stores it in
RAM. After the collection of a batch of PSDs, we exploit the
NEON SIMD architecture extension of the ARM to run MD
inference. In particular, depending on the activity is currently
running in the DC (e.g., system in idle, or application X),
the centralized monitoring unit - which has the complete
knowledge of the status of the cluster - communicate to the
ARM which ML model to load for inference. At this point, if
a malware is detected, we send an alarm to the system admins
of the DC.

D. Methodology for Online Training

For the training phase, we propose a methodology that is
suitable to run online on DCs / SCs in production, which inte-
grate a DiG-like monitoring infrastructure (e.g., D.A.V.I.D.E.).
It is noteworthy that this approach can be used more in general
also for AD, in cases where high-resolution analysis plays a
key role in identifying anomalous patterns. In particular, we
take acquisitions during healthy-states of the DC. We compute
for these acquisitions the PSDs on DiG, and pass these data to
the corresponding compute nodes for training the AE models
(i.e., each node trains its AE - for example with GPUs).

This distributed approach allows to (i) reduce both data pre-
processing and training time, along with the amount of data to
be communicated on the network if using instead a centralized
method (e.g., pre-processing and training on the centralized
monitoring unit); (ii) scale to large DCs / SCs. Moreover, the
training time and overhead are not a critical concern for the
servers, since (i) the training phase takes place only at the
beginning, and then at a very low rate, and mostly depending
on new applications - or substantially modified versions of
previously trained applications - that are running; and (ii) this
activity can be scheduled during maintenance periods.

After some experiments, we use for training in our tests the
Adagrad algorithm [53], with MSE as loss function, a batch
size equal to 8, and 5 epochs. After the training phase, the
ML models are loaded on the embedded monitoring boards,
ready for inference on new data. Notice that each AE is trained

with data coming from its corresponding node. This allows to
take into account specific activity related to that node, such as
particular programs installed and running in background, but
also possible differences in the hardware (e.g., large variations
of material properties when moving to 10–7 nm chips [54]).

VI. EXPERIMENTAL EVALUATION

In this chapter, we report the results of the experimental
evaluation carried out with our approach to detect malware -
and anomalies - in a DC / SC, and a comparison with SoA
techniques that exploit performance counters. We conclude
the section by reporting on the performance of the pAElla
algorithm running in the DiG infrastructure.

A. Building Dataset for Analysis and Comparison with SoA

To create a robust dataset of malware, for testing our
approach and compare it with SoA techniques, we downloaded
a collection of 95 malware from virusshare.com, which is a
repository of malware samples available for security research.
The collected malware are of any kind, spreading from differ-
ent type of backdoors, trojans, and ransomware. To emulate
a normal activity of the cluster, we acquired signatures of 7
benchmarks, namely the system in idle, plus 6 scientific ap-
plications which are widely used for parallel computing, such
as Quantum Espresso (QE) [55], HPLinpack (HPL) [56], High
Performance Conjugate Gradients (HPCG) [57], Gromacs [58]
and NAS Parallel Benchmarks (NPB) [59], that we use in 2
versions, the one that exploits 9 cores (NPB btC9) and the
one that uses 16 cores (NPB btC16).

For safety reasons, we run the tests on a compute node
that is completely isolated from the rest of the network
available to the users of our facilities. The node is an Intel
Xeon E5-2600 v3 (Haswell). To compare pAElla with SoA
techniques, we collected for each acquisition both (i) hardware
performance counters and (ii) PSDs computed from the high-
resolution power measurements. In particular, we analyzed
the performance counters suggested by Tang et al. [25], plus
further metrics available with our open source monitoring tool,
ExaMon [16]. We summarize a list of the selected metrics
in Table I (per-core metrics) and Table II (per-cpu metrics).
Each table shows the “raw” metrics, which are the ones we
can directly select and monitor, and “derived” metrics, which
are the ones we compute with ExaMon on top of the raw
metrics (e.g., per-core load, IPS, DRAM energy). As reported
in Section II, the PMU of Haswell Intel processors allows to
sample a maximum of only 8 performance counters simultane-
ously. For this reason, we collected all the listed performance
counters in multiple runs of the benchmarks / malware.

For the performance metrics, we use a time granularity of
20 ms i.e., in line with SoA DCs / SCs monitoring tools [15]),
dedicating 2 cores for ExaMon to prevent that the in-band
monitoring can affect the measurements with noise. For this
purpose, we exploit isolcpus, which is a kernel parameter that
can be set from the boot loader configurations. Instead, for the
high-resolution power measurements, we can benefit of a time
granularity of 20 µs, thanks to the out-of-band monitoring of
DiG that allows to do not subtract computing resources from

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX XXXX 7

TABLE I
SELECTED PER-CORE PERF COUNTERS BASING ON SOA [25]

Raw Metrics

UOPS RETIRED (Retired Micro-ops)
ICACHE (Instruction Cache misses)
LONGEST LAT CACHE (Core cacheable demand req. missed L3)
MEM LOAD UOPS L3 HIT RETIRED (Retired load uops in L3)
BR MISP RETIRED (Mispredicted branch instr. retired)
UOPS ISSUED (Uops issued to Reservation Station - RS)
IDQ UOPS NOT DELIVERED (Uops not deliv. to RAT per thread)
INT MISC (Core Cycles the allocator was stalled)
BR INST RETIRED.NEAR RETURN (Instr. retired direct near calls)
BR INST RETIRED.NEAR CALL (Direct and indirect near call ret.)
BR INST EXEC.ALL DIRECT NEAR CALL (Retired direct calls)
BR INST EXEC.TAKEN INDIRECT NEAR CALL (Ret. indir. calls)
DTLB STORE MISSES.STLB HIT (Store operations miss first TLB)
ARITH.DIVIDER UOPS (Any uop executed by the Divider)
DTLB LOAD MISSES.STLB HIT (Load operations miss first DTLB)
MEM LOAD UOPS RETIRED.L3 MISS (Miss in last-level L3)
MEM LOAD UOPS RETIRED.L2 MISS (Miss in mid-level L2)
MEM LOAD UOPS RETIRED.L1 MISS (Ret. load uops miss in L1)
BR MISP EXEC.ALL BRANCHES (Retired mispr conditional branch)
BR MISP EXEC.TAKEN RETURN NEAR (Retired mispr. indir. br.)
C3 (Clock cycles in C3 state)
C3res (C3 residency - Clock cycl. in C3 state between 2 sampling time)
C6 (Clock cycles in C6 state)
C6res (C6 residency - Clock cycl. in C6 state between 2 sampling time)
temp (Cores temperature)

Derived Metrics

load core (per-core load)
IPS (Instructions per Second)
CPI (Cycles per Instruction)

Note. More info about the metrics are available in [16], [25], [60].

TABLE II
SELECTED PER-CPU PERF COUNTERS

Raw Metrics

C2 (Clock cycles in C2 state)
C3 (Clock cycles in C3 state)
C6 (Clock cycles in C6 state)
C2res (C2 residency)
C3res (C3 residency)
C6res (C6 residency)
freq ref (Core frequency)
erg units (Energy units)
temp pkg (Package temperature)

Derived Metrics

erg dram (Energy DRAM consumed)
erg pkg (Package Energy consumed)

Note. More info in [16], [60].

users. In particular, we compute the PSDs in time windows
of 163.84 ms (8192 samples), with FFT of 2048 points, and
sliding windows of 1000 samples between two consecutive
PSDs. Notice that the sliding window corresponds to 20 ms,
which is consistent with the granularity of the performance
counters. In this way, we can construct a dataset that has for
each row the different samples acquired over time, and for each
column the several features (i.e., performance counters and
PSDs). Moreover, to show that simple coarse grain statistics
of the power measurements are not enough to detect malware,

we include as features also standard deviation, mean, max, and
min value in the interval of 20 ms.

To build the dataset, we acquired first signatures of healthy
benchmarks (normal activity of the DC with no malware
involved), and then signatures of the same benchmarks but
with malware in background. In particular, we collected 30
acquisitions for each benchmark and 2 acquisitions for each of
the 95 malware running in background with every benchmark.
Notice that for each run of the malware, we use a completely
fresh installation of the OS, to prevent that different malicious
activities can interfere and thus invalidate the analysis. We
release both dataset and software to analyze the data open
source, at the following link [24].

B. Malware Detection Results

To evaluate the performance of our approach, and compare
it with SoA techniques for MD, we tested the acquisitions in
our dataset with both performance metrics and PSD features,
and with different ML algorithms suitable for Anomaly and
Malware Detection, namely oc-SVM [25], Isolation Forest
(IF) [61] and Autoencoders. For oc-SVM and IF, we use the
Scikit-learn [62] implementation developed in python, while
for the AE we use Keras [63] with TensorFlow [64] as back-
end.

After an empirical evaluation, we adopted standardiza-
tion (Scikit-learn StandardScaler) like in pAElla (settings
described in Section V-B), to pre-process the features also
for oc-SVM and IF. Moreover, for the oc-SVM we use the
Principal Component Analysis (PCA) to reduce the dimension
of the feature space to 25 components (a.k.a. dimensionality
reduction), and the polynomial kernel with 0.1 as kernel
coefficient (i.e., “gamma” in the Scikit-learn API). Instead,
for IF we obtain better results without PCA, and with the
contamination parameter set to “auto” (i.e., decision function
threshold determined as in [61]). Finally, as in pAElla, we use
for oc-SVM and IF a threshold-based method, but in their case
with only one threshold on the percentage of outliers found
in the benchmark, that we set to 30 % (i.e., if the number of
anomalous samples is above this threshold, we label it as a
malware).

To train the ML models (1 model for each benchmark), we
use only healthy benchmarks, while for validation (useful to
find proper settings for our models without incurring to overfit-
ting) and test, we use both healthy and malicious signatures. In
particular, we split the healthy benchmarks subset to 60 % for
training, 20 % for validation and 20 % for test, while we split
the malicious subset to 50 % for validation and 50 % for test.
Notice also that together with the analysis of the performance
counters, we include the coarse-grain power statistics at 20 ms.

Table III reports the results of our analysis in the test set.
Namely, the (i) False Alarm (FA) rate (= False Positive -
FP - rate) - i.e., healthy benchmarks erroneously labeled as
malware; (ii) the Malware Miss (MM) rate (= False Negative
- FN - rate) - i.e., malware not detected; and (iii) the weighted
F1-score [28] (best value at 1, and worst at 0), which measure
the test accuracy based on the following formula:

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX XXXX 8

TABLE III
FINAL RESULTS OF THE MD ANALYSIS AND COMPARISON WITH SOA APPROACHES

Perf Metrics + Power Statistics @20ms PSD of Power @20us

ML Approach Benchmark False Alarm Malware Miss F1-score False Alarm Malware Miss F1-score

Idle 1.000 0.042 0.645 1.000 0.000 0.664
QE 1.000 0.011 0.660 0.000 0.221 0.876
HPL 1.000 0.095 0.621 0.167 0.968 0.053

oc-SVM HPCG 1.000 0.600 0.332 0.167 0.032 0.906
Gromacs 1.000 0.074 0.631 0.000 0.032 0.984
NPB btC9 1.000 0.853 0.137 0.000 1.000 0.000
NPB btC16 1.000 0.884 0.109 0.000 0.042 0.978

Overall 1.000 0.365 0.480 0.190 0.328 0.721

Idle 0.000 0.053 0.973 0.000 0.979 0.041
QE 0.000 0.137 0.927 0.000 0.968 0.061
HPL 0.000 0.642 0.527 0.000 0.979 0.041

IF HPCG 0.000 0.000 1.000 0.000 1.000 0.000
Gromacs 0.000 0.874 0.224 0.000 1.000 0.000
NPB btC9 1.000 0.000 0.664 0.000 1.000 0.000
NPB btC16 0.667 0.000 0.748 0.000 0.958 0.081

Overall 0.238 0.244 0.758 0.000 0.983 0.033

Idle 0.000 0.579 0.593 0.000 0.032 0.984
QE 0.000 0.937 0.119 0.000 0.000 1.000
HPL 0.000 0.947 0.100 0.000 0.000 1.000

AE HPCG 0.167 0.042 0.901 0.000 0.000 1.000
Gromacs 0.000 0.947 0.100 0.000 0.000 1.000
NPB btC9 0.000 0.084 0.956 0.000 0.000 1.000
NPB btC16 0.000 0.189 0.895 0.000 0.000 1.000

Overall 0.024 0.532 0.627 0.000 0.005 0.998

Note. For best results we want False Alarm rate (healthy benchmarks seen as malware) and Malware Miss rate
(malware not detected) close to 0, while F1-score close to 1. Results related to pAElla are highlighted in bold.

F1score =
2TP ·WM

2TP ·WM + FP ·WH + FN ·WM
(1)

where we weighted the True Positives (TP), FP, and FN by
the number of instances of each class (Malware and Healthy),
via the two weights WM and WH, to take into account the
imbalance of the dataset between number of malware and
number of healthy acquisitions. Indeed, if we do not consider
a weighted F1-score, then a naive classifier that marks every
sample as malware would achieve an overall F1-score of 0.95,
as approximately 95 % of our dataset consists of malware
acquisitions. Moreover, notice that, as we are focusing on the
detection of malware, it is really important that the MM rate is
close to zero, and of course, also that the FA rate is reasonably
low, to avoid too many false alarms to handle, and the F1-score
is close to 1 (best accuracy).

Notice that, to the best of our knowledge, this is the
first work based on fine grain monitoring of power and
performance, that targets SCs and DC compute nodes, along
with their requirements (e.g., scalability, and reasonable over-
head for in-band monitoring, to do not impact computing
resources), and that reports a comprehensive analysis with a
vast number of malware. When comparing with the analysis
via performance counters, in line with other SoA works in
literature targeting anomaly detection in SCs [28], [65], we
obtain superior results when using IF and AE, rather than oc-
SVM. In particular, in our experience the main problem with
oc-SVM is that the feature space is not well separable for

performance counters, and thus it is difficult to find a good
tuning (e.g., kernel coefficient, PCA components, etc.) and
set a proper threshold to distinguish between normal activity
and malware (i.e., both healthy and malicious signatures are
always seen as anomaly, leading to a FA rate of 1 and an
overall F1-score of 0.48).

Instead, when using IF with performance metrics (+ coarse-
grain power statistics) we observed a high F1-score, with 0 %
of FA rate, in the system in idle, HPCG, and QE, while
we obtained a poor F1-score for Gromacs and HPL, and a
really low F1-score with high FA rate for NPB btC9, and
NPB btC16. When looking at the overall F1-score, we obtain
a low value of 0.758, which is in line with results in [34],
[35], when using tree-based models with performance counters
for malware detection (reason why they do not advice this
technique for security purposes). Finally, in the case of AE,
we obtain poor scores for all benchmarks, except for HPCG,
NPB btC9, and NPB btC16, and an overall F1-score of 0.627.

To understand which ML algorithm performs better with
PSDs of fine-grain power measurements as input features, we
tested all previous methods, and report the results in the three
rightmost columns of Table III. In particular, when using oc-
SVM we can find slightly better outcomes than using the
same approach with performance counters, with an overall
F1-score od 0.721 and a FA rate of 0.19. In particular, we
observed a good F1-score with 0 % of FA rate for Gromacs
and NPB btC16 (0.978 and 0.984, respectively), while slightly
worse results for QE and HPCG (where the model was not able

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX XXXX 9

to detect all healthy benchmarks). We obtained then a poor
F1-score with HPL and NPB btC9, and even did not find a
good threshold for the system in idle (i.e., the model always
sees everything as malware). In the case of IF, the results drop
to really poor performance, with an overall F1-score close to
zero as the MM rate is close to 1 (i.e., the model struggles to
distinguish between the malicious and healthy patterns).

Lastly, the combination AEs + PSDs (i.e., pAElla method,
highlighted in bold in the table) shows promising results. In
particular, we found that the reconstruction error is definitely
larger during anomalous periods compared to the normal
ones, and thus by setting proper thresholds (e.g., 0.91 for the
reconstruction error, and 30 % for the quantity of anomalous
samples in the benchmarks) we can obtain an F1-score equal
to 1 for almost all benchmarks (overall F1-score equal to
0.998), and both a FA and MM rate close to 0 %. Comparing
these scores with previous results, pAElla outperforms the best
tested SoA method (IF) with an improvement in accuracy
of 24 %. As the pAElla approach is completely out-of-band
(zero overhead on the computing resources) and simple to
implement in off-the-shelf low-cost IoT devices, we believe
it can push the boundaries of security in DCs to new levels.

C. Computational Load & Scalability

With respect to the computational load, pAElla is a very
lightweight approach. Thanks to the PRU offloading, we can
run the whole feature extraction phase in the DiG IoT devices
with less than 1 % of the ARM CPU (used to transfer data
from the PRU shared memory into the main RAM). Moreover,
we can compute PSDs in the ARM - length of 8129 samples,
FFTs of 2048 samples, and sliding window of 1000 samples
(i.e., 20 ms) - within ~19 ms, respecting the real-time constraint
of the PSD sliding window. It is noteworthy that we used not
optimized code for the implementation of the PSD (i.e., Welch
method in python), which means we can further improve this
performance. Then, we can run edge ML inference in batch
of 500 PSDs (i.e., every 10 s, considering a sliding window
of 20 ms), exploiting the NEON with Keras and TensorFlow,
in less than 0.8 s. Future works can study the performance
of lightweight frameworks, such as TensorFlow Light [66] or
ARM NN [45], and also the accuracy of pAElla with different
length of PSD, FFTs and sliding windows. Finally, the training
phase took for us around 36 s on a DC server equipped with a
GeForce GTX 1080 NVIDIA (GPU usage between 14–15 %),
and with code written in Keras plus TensorFlow for GPU as
a back-end.

We highlight also that pAElla is a highly scalable AI
approach, thanks to the edge computing paradigm. As a matter
of example, supposing to carrying out the approach without
edge computing in a SoA large-scale system, such as Sunway
TaihuLight (~41 thousand compute nodes [18]), we should
handle a rate of ~20.5 GB/s (i.e., 41 k nodes × 50 kS/s per
node × 10 B for each sample, which includes raw power
and timestamp). Considering that it would be impossible to
analyze this amount of data offline (the database capacity
would reach its limit in few minutes), and that for real-time
computing with only a centralized monitoring unit several

bottlenecks would arise (e.g., high-latency, high SW overhead
to handle the data, high network traffic burden, and also the
possibility to loose samples), edge AI is the right direction to
face this challenge. With its design, pAElla requires only few
megabytes for training and a few bytes to send alarms when
potential malware are detected.

Moreover, we underline the fact that using performance
metrics, like in SoA techniques, but with a high monitoring
rate to detect malware, would be hard in Top 500 clusters,
like Sunway TaihuLight. Indeed, just as matter of example,
supposing to collect all 25 per-core performance metrics
reported in Table I at the granularity of 20 µs, and considering
that Sunway TaihuLight integrates 260 cores per CPU [18],
this would result to a rate of 325 MS/s to be handled either
in-band in the compute servers with live analysis (with the
consequent overhead in the computing resources), or out-of-
band by sending these data to a centralized monitoring unit,
with the consequent overhead in the network infrastructure
(i.e., roughly 13.3 TS/s).

Finally, an interesting extension of our approach is to use
open-source distributed stream processing systems, like Storm,
Flink, or Spark Streaming [67]–[69] to carry our real-time
analytics. As shown in several works in literature (e.g., [70]–
[72]), the common use-case exploits a distributed messaging
system, like Apache Kafka [73], that runs on the IoT devices
and sends data to dedicated servers hosting the streaming
analytics software. These servers carry out the distributed
real-time analytics services, with frameworks such as Storm.
As an example, as reported in [74], Storm can handle a
data rate of 1 MS/s per node with messages of 100 B on
servers that include 2 Intel Xeon E5645, running at 2.4 GHz
and with 24 GB of memory. In other words, at the cost of
using additional dedicated servers it is possible to benefit
from a robust and flexible approach for training, and also for
maintenance, deployment, and update of the streaming service
on the edge. Of course, drawbacks in our case are that (i) to
do not overwhelm the data network, the processing servers
have to be as close as possible to the data source (i.e., BBB),
and (ii) the cost of the extra servers for distributed processing
would grow with the size of the data center.

Other possibilities would be (i) to run pAElla on the DiG
IoT devices as we do, and then use these distributed systems
only for training and deployment of the ML models; or (ii)
execute these stream services directly on the IoT devices.
However, as shown in [67], which benchmarks them in a
Raspberry Pi 3 (ARMv8 Quad-Core 1 GB RAM vs. ARM A8
Single-Core 1 GB RAM in our BBB), the resources needed
(memory and CPU load) for running these services are not
negligible, even considering only data ingestion and delivery
and not considering actual computation. A more detailed
quantitative assessment of the feasibility of this approach with
our specific edge hardware platform (BBB) is an interesting
topic for future work.

VII. CONCLUSION

This work reports on novel method - namely pAElla- to in-
creasing the cybersecurity of DCs / SCs, involving AI-powered

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX XXXX 10

edge computing. The method targets real-time malware detec-
tion running on an out-of-band IoT-based monitoring system
for DCs, and involves feature extraction analysis based on
Power Spectral Density of power measurements, along with
AE Neural Networks. Results obtained with a robust dataset
of malware are promising, outperforming SoA techniques by
24 % in accuracy, with an overall F1-score close to 1, and a
False Alarm and Malware Miss rate close to 0 %. Moreover,
we propose a methodology suitable for online training in
DCs / SCs in production, and release SW code and dataset
open source [24]. We envisage this approach as support (pre-
filter) for Intrusion Detection Systems (IDS), and encourage
further research in this direction. Finally, the approach can
also be used in a more general context of Anomaly Detection,
opening new perspectives for future works.

ACKNOWLEDGMENT

This work has been partially supported by the EU H2020
project IoTwins (g.a. 857191).

REFERENCES

[1] S. S. I. Samuel, “A review of connectivity challenges in iot-smart home,”
in 2016 3rd MEC International Conference on Big Data and Smart City
(ICBDSC), March 2016, pp. 1–4.

[2] J. Pan and J. McElhannon, “Future edge cloud and edge computing for
internet of things applications,” IEEE Internet of Things Journal, vol. 5,
no. 1, pp. 439–449, Feb 2018.

[3] F. Zhang, M. Liu, Z. Zhou, and W. Shen, “An iot-based online mon-
itoring system for continuous steel casting,” IEEE Internet of Things
Journal, vol. 3, no. 6, pp. 1355–1363, Dec 2016.

[4] M. Magno, L. Sigrist, A. Gomez, L. Cavigelli, A. Libri, E. Popovici,
and L. Benini, “Smarteg: An autonomous wireless sensor node for
high accuracy accelerometer-based monitoring,” Sensors, vol. 19,
no. 12, 2019. [Online]. Available: https://www.mdpi.com/1424-8220/
19/12/2747

[5] Z. Zhou, Q. Wu, and X. Chen, “Online orchestration of cross-edge
service function chaining for cost-efficient edge computing,” IEEE
Journal on Selected Areas in Communications, vol. 37, no. 8, pp. 1866–
1880, Aug 2019.

[6] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge ai: On-demand accelerating
deep neural network inference via edge computing,” 2019.

[7] X. An, X. Zhou, X. Lü, F. Lin, and L. Yang, “Sample selected extreme
learning machine based intrusion detection in fog computing and mec,”
Wireless Communications and Mobile Computing, vol. 2018, 2018.

[8] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-edge
ai: Intelligentizing mobile edge computing, caching and communication
by federated learning,” IEEE Network, vol. 33, no. 5, pp. 156–165, Sep.
2019.

[9] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” 2019.

[10] A. Libri, A. Bartolini, and L. Benini, “Dig: Enabling out-of-band
scalable high-resolution monitoring for data-center analytics, automation
and control,” in The 2nd International Industry/University Workshop on
Data-center Automation, Analytics, and Control, 2018.

[11] ——, “Dig: Enabling out-of-band scalable high-resolution monitoring
for data-center analytics, automation and control (extended),” 2018.

[12] T. Ilsche, D. Hackenberg, S. Graul, R. Schöne, and J. Schuchart, “Power
measurements for compute nodes: Improving sampling rates, granularity
and accuracy,” in Green Computing Conference and Sustainable Com-
puting Conference (IGSC), 2015 Sixth International, Dec 2015, pp. 1–8.

[13] W. A. Ahmad, A. Bartolini, F. Beneventi, L. Benini, A. Borghesi,
M. Cicala, P. Forestieri, C. Gianfreda, D. Gregori, A. Libri, F. Spiga,
and S. Tinti, “Design of an energy aware petaflops class high perfor-
mance cluster based on power architecture,” in 2017 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
May 2017, pp. 964–973.

[14] A. Bartolini, A. Borghesi, A. Libri, F. Beneventi, D. Gregori, S. Tinti,
C. Gianfreda, and P. Altoè, “The D.A.V.I.D.E. big-data-powered
fine-grain power and performance monitoring support,” in Proceedings
of the 15th ACM International Conference on Computing Frontiers, ser.
CF ’18. New York, NY, USA: ACM, 2018, pp. 303–308. [Online].
Available: http://doi.acm.org/10.1145/3203217.3205863

[15] A. Bartolini, F. Beneventi, A. Borghesi, D. Cesarini, A. Libri,
L. Benini, and C. Cavazzoni, “Paving the way toward energy-aware
and automated datacentre,” in Proceedings of the 48th International
Conference on Parallel Processing: Workshops, ser. ICPP 2019. New
York, NY, USA: ACM, 2019, pp. 8:1–8:8. [Online]. Available:
http://doi.acm.org/10.1145/3339186.3339215

[16] A. Bartolini, A. Borghesi, A. Libri, and F. Beneventi, Examon HPC
Monitoring. [Online]. Available: https://github.com/EEESlab/examon

[17] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “Rapl:
Memory power estimation and capping,” in 2010 ACM/IEEE Interna-
tional Symposium on Low-Power Electronics and Design (ISLPED), Aug
2010, pp. 189–194.

[18] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang, W. Xue,
F. Liu, F. Qiao, W. Zhao, X. Yin, C. Hou, C. Zhang, W. Ge, J. Zhang,
Y. Wang, C. Zhou, and G. Yang, “The sunway taihulight supercomputer:
system and applications,” Science China Information Sciences, vol. 59,
no. 7, p. 072001, Jun 2016.

[19] M. Jensen, J. Schwenk, N. Gruschka, and L. L. Iacono, “On technical
security issues in cloud computing,” in 2009 IEEE International Con-
ference on Cloud Computing, Sep. 2009, pp. 109–116.

[20] M. R. Watson, N. Shirazi, A. K. Marnerides, A. Mauthe, and D. Hutchi-
son, “Malware detection in cloud computing infrastructures,” IEEE
Transactions on Dependable and Secure Computing, vol. 13, no. 2, pp.
192–205, March 2016.

[21] K. Popović and Ž. Hocenski, “Cloud computing security issues and
challenges,” in The 33rd International Convention MIPRO, May 2010,
pp. 344–349.

[22] L. Deng, M. L. Seltzer, D. Yu, A. Acero, A.-r. Mohamed, and G. Hinton,
“Binary coding of speech spectrograms using a deep auto-encoder,” in
Eleventh Annual Conference of the International Speech Communication
Association, 2010.

[23] V. Wan, Y. Agiomyrgiannakis, H. Silen, and J. Vit, “Google’s
next-generation real-time unit-selection synthesizer using sequence-to-
sequence lstm-based autoencoders.” in INTERSPEECH, 2017, pp. 1143–
1147.

[24] A. Libri, pAElla open source software and dataset, 2019, https://github.
com/alibriee/paella.

[25] A. Tang, S. Sethumadhavan, and S. J. Stolfo, “Unsupervised anomaly-
based malware detection using hardware features,” in Research in At-
tacks, Intrusions and Defenses, A. Stavrou, H. Bos, and G. Portokalidis,
Eds. Cham: Springer International Publishing, 2014, pp. 109–129.

[26] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman,
S. Sethumadhavan, and S. Stolfo, “On the feasibility of online malware
detection with performance counters,” SIGARCH Comput. Archit.
News, vol. 41, no. 3, pp. 559–570, Jun. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2508148.2485970

[27] H. Sayadi, N. Patel, S. M. P D, A. Sasan, S. Rafatirad, and H. Homay-
oun, “Ensemble learning for effective run-time hardware-based malware
detection: A comprehensive analysis and classification,” in 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), June 2018, pp.
1–6.

[28] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt, V. J. Leung, M. Egele,
and A. K. Coskun, “Online diagnosis of performance variation in hpc
systems using machine learning,” IEEE Transactions on Parallel and
Distributed Systems, vol. 30, no. 4, pp. 883–896, April 2019.

[29] T. Zhang, Y. Zhang, and R. B. Lee, “Dos attacks on your memory
in cloud,” in Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, ser. ASIA CCS ’17.
New York, NY, USA: ACM, 2017, pp. 253–265. [Online]. Available:
http://doi.acm.org/10.1145/3052973.3052978

[30] A. Borghesi, A. Libri, L. Benini, and A. Bartolini, “Online anomaly
detection in hpc systems,” 2019.

[31] Intel Corporation, Intel® 64 and IA32 Architectures Performance Mon-
itoring Events, 2017 December, Revision1.0.

[32] E. Ates, O. Tuncer, A. Turk, V. J. Leung, J. Brandt, M. Egele, and A. K.
Coskun, “Taxonomist: Application detection through rich monitoring
data,” in Euro-Par 2018: Parallel Processing, M. Aldinucci, L. Padovani,
and M. Torquati, Eds. Cham: Springer International Publishing, 2018,
pp. 92–105.

[33] R. Tahir, M. Huzaifa, A. Das, M. Ahmad, C. Gunter, F. Zaffar, M. Cae-
sar, and N. Borisov, “Mining on someone else’s dime: Mitigating covert

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX XXXX 11

mining operations in clouds and enterprises,” in Research in Attacks,
Intrusions, and Defenses, M. Dacier, M. Bailey, M. Polychronakis, and
M. Antonakakis, Eds. Cham: Springer International Publishing, 2017,
pp. 287–310.

[34] B. Zhou, A. Gupta, R. Jahanshahi, M. Egele, and A. Joshi,
“Hardware performance counters can detect malware: Myth or fact?”
in Proceedings of the 2018 on Asia Conference on Computer
and Communications Security, ser. ASIACCS ’18. New York,
NY, USA: ACM, 2018, pp. 457–468. [Online]. Available: http:
//doi.acm.org/10.1145/3196494.3196515

[35] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose,
“Sok: The challenges, pitfalls, and perils of using hardware performance
counters for security,” in Proceedings of 40th IEEE Symposium on
Security and Privacy (S&P19), 2019.

[36] A. Azmoodeh, A. Dehghantanha, M. Conti, and K.-K. R. Choo,
“Detecting crypto-ransomware in iot networks based on energy
consumption footprint,” Journal of Ambient Intelligence and Humanized
Computing, vol. 9, no. 4, pp. 1141–1152, Aug 2018. [Online]. Available:
https://doi.org/10.1007/s12652-017-0558-5

[37] T. Zhang, H. Antunes, and S. Aggarwal, “Defending connected vehicles
against malware: Challenges and a solution framework,” IEEE Internet
of Things Journal, vol. 1, no. 1, pp. 10–21, Feb 2014.

[38] R. Bridges, J. Hernández Jiménez, J. Nichols, K. Goseva-Popstojanova,
and S. Prowell, “Towards malware detection via cpu power consumption:
Data collection design and analytics,” in 2018 17th IEEE International
Conference On Trust, Security And Privacy In Computing And Com-
munications/ 12th IEEE International Conference On Big Data Science
And Engineering (TrustCom/BigDataSE), Aug 2018, pp. 1680–1684.

[39] T. Rosedahl, M. Broyles, C. Lefurgy, B. Christensen, and W. Feng,
“Power/Performance Controlling Techniques in OpenPOWER,” in High
Performance Computing, J. M. Kunkel, R. Yokota, M. Taufer, and
J. Shalf, Eds. Cham: Springer International Publishing, 2017, pp. 275–
289.

[40] Intel, Hewlett-Packard, NEC, Dell, and T. Rep., IPMI Specification,
V2.0, Rev. 1.1, 2013.

[41] D. Hackenberg, T. Ilsche, J. Schuchart, R. Schöne, W. E. Nagel,
M. Simon, and Y. Georgiou, “Hdeem: High definition energy efficiency
monitoring,” in Energy Efficient Supercomputing Workshop (E2SC),
2014, Nov 2014, pp. 1–10.

[42] W. Wang, M. Zhao, and J. Wang, “Effective android malware detection
with a hybrid model based on deep autoencoder and convolutional
neural network,” Journal of Ambient Intelligence and Humanized
Computing, vol. 10, no. 8, pp. 3035–3043, Aug 2019. [Online].
Available: https://doi.org/10.1007/s12652-018-0803-6

[43] A. Libri, A. Bartolini, M. Magno, and L. Benini, “Evaluation of
synchronization protocols for fine-grain hpc sensor data time-stamping
and collection,” in 2016 International Conference on High Performance
Computing Simulation (HPCS), July 2016, pp. 818–825.

[44] A. Libri, A. Bartolini, D. Cesarini, and L. Benini, “Evaluation of
ntp/ptp fine-grain synchronization performance in hpc clusters,” in
2nd Workshop on AutotuniNg and aDaptivity AppRoaches for Energy
efficient HPC Systems (ANDARE 2018), 2018.

[45] Arm NN SDK. [Online]. Available: https://developer.arm.com/products/
processors/machine-learning/arm-nn

[46] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “Mqtt-s – a pub-
lish/subscribe protocol for wireless sensor networks,” in Communication
Systems Software and Middleware and Workshops, 2008. COMSWARE
2008. 3rd International Conference on, Jan 2008, pp. 791–798.

[47] F. Beneventi, A. Bartolini, C. Cavazzoni, and L. Benini, “Continuous
learning of hpc infrastructure models using big data analytics and
in-memory processing tools,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2017, March 2017, pp. 1038–1043.

[48] Apache cassandra. [Online]. Available: http://cassandra.apache.org/
[49] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,

X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica, “Apache spark: A unified engine
for big data processing,” Commun. ACM, vol. 59, no. 11, pp. 56–65,
Oct. 2016.

[50] P. Welch, “The use of fast fourier transform for the estimation of power
spectra: a method based on time averaging over short, modified peri-
odograms,” IEEE Transactions on audio and electroacoustics, vol. 15,
no. 2, pp. 70–73, 1967.

[51] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, “Deep learning.
vol. 1,” 2016.

[52] C. Villa-Angulo, I. O. Hernandez-Fuentes, R. Villa-Angulo, and
E. Donkor, “Bit-resolution improvement of an optically sampled time-
interleaved analog-to-digital converter based on data averaging,” IEEE

Transactions on Instrumentation and Measurement, vol. 61, no. 4, pp.
1099–1104, April 2012.

[53] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

[54] C. Kachris, B. Falsafi, and D. Soudris, Hardware Accelerators in Data
Centers. Springer International Publishing, 2018. [Online]. Available:
https://books.google.ch/books?id=XnhqDwAAQBAJ

[55] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni,
D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso,
S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann,
C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari,
F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto,
C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov,
P. Umari, and R. M. Wentzcovitch, “Quantum espresso: a modular and
open-source software project for quantum simulations of materials,”
Journal of Physics: Condensed Matter, vol. 21, no. 39, p. 395502, 2009.

[56] J. J. Dongarra, P. Luszczek, and A. Petitet, “The linpack benchmark:
past, present and future,” Concurrency and Computation: Practice and
Experience, vol. 15, no. 9, pp. 803–820, 2003. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.728

[57] J. Dongarra, M. A. Heroux, and P. Luszczek, “High-performance
conjugate-gradient benchmark: A new metric for ranking high-
performance computing systems,” The International Journal of High
Performance Computing Applications, vol. 30, no. 1, pp. 3–10, 2016.
[Online]. Available: https://doi.org/10.1177/1094342015593158

[58] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark,
and H. J. C. Berendsen, “Gromacs: Fast, flexible, and free,” Journal
of Computational Chemistry, vol. 26, no. 16, pp. 1701–1718, 2005.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.
20291

[59] D. H. Bailey, NAS Parallel Benchmarks. Boston, MA: Springer
US, 2011, pp. 1254–1259. [Online]. Available: https://doi.org/10.1007/
978-0-387-09766-4 133

[60] Intel, Intel Haswell Performance Counters List, 2019, https://download.
01.org/perfmon/HSX/.

[61] F. T. Liu, K. M. Ting, and Z. Zhou, “Isolation forest,” in 2008 Eighth
IEEE International Conference on Data Mining, Dec 2008, pp. 413–422.

[62] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[63] F. Chollet et al., “Keras,” https://keras.io, 2015.
[64] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). Savannah, GA: USENIX
Association, Nov. 2016, pp. 265–283. [Online]. Available: https://www.
usenix.org/conference/osdi16/technical-sessions/presentation/abadi

[65] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini,
“A semisupervised autoencoder-based approach for anomaly detection
in high performance computing systems,” Engineering Applications of
Artificial Intelligence, vol. 85, pp. 634 – 644, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0952197619301721

[66] TensorFlow Lite. [Online]. Available: https://www.tensorflow.org/
mobile/tflite/

[67] H. Lee and J. Oh and K. Kim and H. Yeon, “A data streaming
performance evaluation using resource constrained edge device,” in
2017 International Conference on Information and Communication
Technology Convergence (ICTC), Oct 2017, pp. 628–633.

[68] P. Ta-Shma and A. Akbar and G. Gerson-Golan and G. Hadash and F.
Carrez and K. Moessner, “An Ingestion and Analytics Architecture for
IoT Applied to Smart City Use Cases,” IEEE Internet of Things Journal,
vol. 5, no. 2, pp. 765–774, April 2018.

[69] H. Isah and T. Abughofa and S. Mahfuz and D. Ajerla and F. Zulk-
ernine and S. Khan, “A Survey of Distributed Data Stream Processing
Frameworks,” IEEE Access, vol. 7, pp. 154 300–154 316, 2019.

[70] S. Chanthakit and P. Keeratiwintakorn and C. Rattanapoka, “An IoT
System Design with Real-Time Stream Processing and Data Flow
Integration,” in 2019 Research, Invention, and Innovation Congress
(RI2C), Dec 2019, pp. 1–5.

[71] Syafrudin, Muhammad and Alfian, Ganjar and Fitriyani, Norma Latif
and Rhee, Jongtae, “Performance Analysis of IoT-Based Sensor,
Big Data Processing, and Machine Learning Model for Real-Time

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX XXXX 12

Monitoring System in Automotive Manufacturing,” Sensors, vol. 18,
no. 9, 2018. [Online]. Available: https://www.mdpi.com/1424-8220/18/
9/2946

[72] S. Chintapalli and D. Dagit and B. Evans and R. Farivar and T. Graves
and M. Holderbaugh and Z. Liu and K. Nusbaum and K. Patil and
B. J. Peng and P. Poulosky, “Benchmarking Streaming Computation
Engines: Storm, Flink and Spark Streaming,” in 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
May 2016, pp. 1789–1792.

[73] Thein, Khin Me Me, “Apache kafka: Next generation distributed mes-
saging system,” International Journal of Scientific Engineering and
Technology Research, vol. 3, no. 47, pp. 9478–9483, 2014.

[74] Apache Storm. [Online]. Available: https://storm.apache.org/about/
scalable.html

Antonio Libri received a M.Sc. degree in electrical
engineering from the University of Genova, Italy,
in 2013, with a thesis on Wireless Sensor Networks
carried out at University College Cork, Ireland. After
two years of working as an embedded software en-
gineer in Socowave Ltd, Cork, Ireland, he joined in
2015 ETH Zurich, Switzerland, pursuing a Ph.D. de-
gree. His research interests focus on data monitoring,
synchronization, and AI analytics for automation and
control of Data Centers / Supercomputers.

Andrea Bartolini received the PhD degree in elec-
trical engineering from University of Bologna, Italy,
in 2011. He is currently assistant professor at the
Department of Electrical, Electronic and Information
Engineering (DEI), University of Bologna. Before,
he was post-doctoral researcher in ETH Zurich,
Switzerland. His research interests concern dynamic
resource management, ranging from embedded to
HPC systems with special emphasis on software-
level thermal and power-aware techniques.

Luca Benini is professor of Digital Circuits and
Systems at ETH Zurich, Switzerland, and is also pro-
fessor at University of Bologna, Italy. His research
interests are in energy-efficient multicore SoC and
system design, smart sensors and sensor networks.
He has published more than 1000 papers in peer-
reviewed international journals and conferences, four
books and several book chapters. He is a fellow of
the ACM and Member of the Academia Europea,
and is the recipient of the IEEE CAS Mac Van
Valkenburg Award 2016.

