
20 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Static analysis of cloud elasticity / Abel, Garcia; Laneve, Cosimo; Lienhardt, Michael. - In: SCIENCE OF
COMPUTER PROGRAMMING. - ISSN 0167-6423. - STAMPA. - 147:(2017), pp. 27-53.
[10.1016/j.scico.2017.03.008]

Published Version:

Static analysis of cloud elasticity

Published:
DOI: http://doi.org/10.1016/j.scico.2017.03.008

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/619228 since: 2020-12-23

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.scico.2017.03.008
https://hdl.handle.net/11585/619228

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Garcia, A., Laneve, C., & Lienhardt, M. (2017). Static analysis of cloud elasticity. Science of Computer
Programming, 147, 27-53.

The final published version is available online at:
http://dx.doi.org/10.1016/j.scico.2017.03.008

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
http://dx.doi.org/10.1016/j.scico.2017.03.008

Static analysis of cloud elasticity

Abel Garciaa, Cosimo Lanevea, Michael Lienhardtb

aDepartment of Computer Science and Engineering, University of Bologna – INRIA Focus
bComputer Science Department, University of Torino, Italy

Abstract

We propose a static analysis technique that computes upper bounds of virtual machine usages in a concurrent lan-
guage with explicit acquire and release operations of virtual machines. In our language it is possible to delegate other
(ad-hoc or third party) concurrent code to release virtual machines (by passing them as arguments of invocations).
Our technique is modular and consists of (i) a type system associating programs with behavioural types that record
relevant information for resource usage (creations, releases, and concurrent operations), (ii) a translation function that
takes behavioural types and returns cost equations, and (iii) an automatic off-the-shelf solver for the cost equations.

A soundness proof of the type system establishes the correctness of our technique with respect to the cost equa-
tions. We have experimentally evaluated our technique using a cost analysis solver and we report some results.

Keywords: Resource consumption analysis, cloud computing, behavioural type system, subject reduction, static
analysis, concurrent programming

1. Introduction

The analysis of resource usage in a program is of great interest because an accurate assessment could reduce,
for example, energy consumption and allocation costs. These two criteria are even more important today, in modern
architectures like mobile devices or cloud computing, where resources, such as virtual machines, have hourly or
monthly rates. In fact, cloud computing introduces the concept of elasticity, namely the possibility for virtual machines
to scale according to the software needs. In order to support elasticity, cloud providers, including Amazon, Google,
and Microsoft Azure, (i) have pricing models that allow one to hire on demand virtual machine instances and paying
them for the time they are in use, and (ii) have APIs that include instructions for requesting and releasing virtual
machine instances.

While it is relatively easy to estimate worst-case costs for simple code examples, extrapolating this information
for fully real-life complex programs could be cumbersome and highly error-sensitive. The first attempts about the
analysis of resource usage dates back to Wegbreit’s pioneering work in 1975 [28], which develops a technique for
deriving closed-form expressions out of programs. The evaluation of these expressions would return upper-bound
costs that are parametrised by programs’ inputs.

Wegbreit’s contribution has two limitations: it addresses a simple functional language and it does not formalize
the connection between the language and the closed-form expressions. A number of techniques have been developed
afterwards to cope with more expressive languages (see for instance [3, 10]) and to make the connection between
programs and closed-form expressions precise (see for instance [12, 20]). A more detailed discussion of the related
work in the literature is presented in Section 7.

To the best of our knowledge, current cost analysis techniques always address (concurrent) languages featuring
only addition of resources. When removal of resources is considered, the techniques are used in a very constrained
way [5]. On the other hand, cloud computing elasticity needs powerful acquire operations as well as release ones
(see for instance the Amazon Elastic Compute Cloud [26] or the Docker Fiware). Let us consider the following

Email addresses: abel.garcia2@unibo.it (Abel Garcia), cosimo.laneve@unibo.it (Cosimo Laneve),
michael.lienhardt@di.unito.it (Michael Lienhardt)

Preprint submitted to Science of Computer Programming October 3, 2019

problem: given a pool of virtual machine instances and a program that acquires and releases these instances, what is
the minimal cardinality of the pool guaranteeing the execution of the program without interruptions caused by lack of
virtual machines? A solution to this problem, under the assumption that one can acquire a virtual machine that has
been previously released, is useful both for cloud providers and for cloud customers. For the formers, it represents the
possibility to estimate in advance the resources to allocate to a specific service. For the latter ones, it represents the
possibility to pay exactly for the resources that are needed.

It is worth to notice that, without a full-fledged release operation, the cost of a concurrent program may be modeled
by simply aggregating the sets of operations that can occur in parallel, as in [4]. By full-fledged release operation we
mean that it is possible to delegate other (ad-hoc or third party) methods to release resources (by passing them as
arguments of invocations). For example, consider the following method

Int double_release(Vm x, Vm y) {
release x; release y; return 0 ;

}

that takes two machines and simply releases them. The cost of this method depends on the machines in input:

– it may be -2 when x and y are different and active;

– it may be -1 when one machine is active and the other is released, or when x and y are equal and active –
consider the invocation double_release(x,x);

– it may be 0 when the two machines have been already released.

In this case, one might over-approximate the cost of double_release to 0. However this leads to disregard releases
and makes the analysis (too) imprecise.

In order to compute a precise cost of methods like double_release, in Section 4 we associate methods with
abstract descriptions that carry information about resource usages. These descriptions are called behavioural types
and are formally connected to the programs by means of a type system. The analysis of behavioural types is defined
in Section 5 by translating them in a code that is adequate for an off-the-shelf solver – the CoFloCo solver [13]. As
discussed in [7], in order to compute tight upper bounds, we have two functions per method: a function computing the
peak cost – i.e. the worst case cost for the method to complete – and a function computing the net cost – i.e. the cost
of the method after its completion. In fact, the functions that we associate to a method are much more than two. The
point is that, if a method has two arguments – see double_release – and it is invoked with two equal arguments
then its cost cannot be computed by a function taking two arguments, but it must be computed by a function with one
argument only. This means that, for every method and every partition of its arguments, we define two cost functions:
one for the peak cost and the other for the net cost.

The translation of behavioural types into CoFloCo input code has been prototyped and we are therefore able to
automatically compute the cost of programs. In Section 6 we examine our prototype implementation and we report
the results of some of our experiments. In particular, our technique excels in analyzing conditional branches, while it
is less precise than multivariate amortized analysis [19] in presence of multi-variate arguments. We address this topic
in Sections 6 and 7.

Our technique targets a simple concurrent language with explicit operations of creation and release of virtual
machines. The language is defined in Section 2 and we discuss simplifications that ease the development of our
technique in Section 3. In Section 8 we deliver concluding remarks. The correctness proof of the type system and
with respect to the cost equations is reported in Appendix A. In the language we use the metaphor of cloud computing
and virtual machines to illustrate our approach. However it is worth to observe that our technique may be also used
for resource analysis of concurrent languages that bear operations of acquire (or creation) and release (such as heaps)
as long as these operations are “simple”. For example, our technique might cover functions such as malloc and free
as long as the sizes of memories that are allocated/freed are expressed in presburger arithmetics [9].

This article is a revised and enhanced version of [15] that includes a new semantics of the language, the full proofs
of all the results and a discussion about our prototype implementation that includes the type inference system and the
experimental assessments we did.

2

2. The language vml

The language vml is a future-based concurrent object-oriented language1 with explicit acquire and release oper-
ations of virtual machines. In future-based languages, function/method invocations are executed asynchronously to
the caller and are bound to variables called futures. The caller synchronises with the callee by using the future vari-
ables when the return value is strictly needed. The syntax and the semantics of vml are defined in the following two
subsections; the third subsection discusses a number of examples.

Syntax. In vml we distinguish between simple types T , which are either integers Int or virtual machines VM, and
future types Fut<T>, which type asynchronous invocations. The future argument T is instantiated with the return type
of the invoked function. We use F to range over simple and future types. The notation T x denotes any finite sequence
of name declaration T x separated by commas. Similarly we write T x ; for a finite sequence of name declaration
separated by semicolons.

A vml program is a sequence of method definitions T m(T x){ F y ; s }, ranged over by M, plus a main body
{F z ; s′}. The syntax of statements s, expressions z and pure expressions e of vml is defined by the following
grammar:

s ::= x = z | if e { s } else { s } | return e | s ; s | release e statements
z ::= e | e!m(e) | e.get | new VM() expressions
e ::= this | se | nse pure expressions

A statement s may be either one of the standard operations of an imperative language plus the release e operation
that disposes the virtual machine e.

An expression z may change the state of the system. In particular, it may be an asynchronous method call e!m(e)
where e is the virtual machine that will execute the call, and e are the arguments of the call. This invocation does
not suspend caller’s execution: when the value computed by the invocation is needed then the caller performs a non
blocking get operation, if the value needed by a process is not available then an awaiting process is scheduled and
executed. Expressions z also include new VM() that creates a new virtual machine. The intended meaning of operations
taking place on different virtual machines is that they may execute in parallel, while operations in the same virtual
machine interleave their evaluation (even if in the following operational semantics the parallelism is not explicit).

A (pure) expression e may be the reserved identifier this, a virtual machines identifier or an integer expression.
Since our analysis will be parametric with respect to the inputs, we parse integer expressions in a careful way. In
particular we split them into size expressions se, which are expressions in Presburger arithmetics [9] (this is a decidable
fragment of Peano arithmetics that only contains addition), and non-size expressions nse, which are the other type of
expressions. The syntax of size and non-size expressions is the following:

nse ::= k | x | nse ≤ nse | ¬nse | nse and nse | nse or nse | nse + nse | nse − nse | nse × nse | nse/nse non-size expressions
se ::= ve | ve ≤ ve | ¬se | se and se | se or se size expressions
ve ::= k | x | ve + ve | k × ve integer size expressions
k ::= integer constants | err

We will use the term nse = nse′ as an abbreviation of “(nse ≤ nse′) and (nse′ ≤ nse)”, and similarly for se.
We notice that (non-size and size) expressions also contain the value err – see below the definition of [[e]]l for the
semantics of arithmetics expressions that contain err. In the whole paper, we assume that sequences of declarations
T x and method declarations M do not contain duplicate names. We also assume that return statements never have
a continuation.

Semantics. vml semantics is defined as a transition relation between configurations, noted cn and defined below

cn ::= ε | fut(f , v) | vm(o, a, p, q) | invoc(o, f , m, v) | cn cn configurations
p ::= {l | ε} | {l | s} process
q ::= ε | p | q q sets of processes
v ::= integer constants | o | f | ⊥ | err run-time values
a ::= > | ⊥ machine states
l ::= [· · · , x 7→ v, · · ·] maps

1See [17] for more details on a similar language

3

(Assign)
v = [[e]]l

vm(o,>, {l | x = e; s}, q)
→ vm(o,>, {l[x 7→ v] | s}, q)

(Read-Fut)
f = [[e]]l v , ⊥

vm(o,>, {l | x = e.get; s}, q) fut(f , v)
→ vm(o,>, {l | x = v; s}, q) fut(f , v)

(Async-Call)
o′ = [[e]]l v = [[e]]l f = fresh()

vm(o,>, {l | x = e!m(e); s}, q)
→ vm(o,>, {l | x = f ; s}, q) invoc(o′, f , m, v)

(Bind-Mtd)
{l | s} = bind(o, f , m, v)

vm(o,>, p, q) invoc(o, f , m, v)
→ vm(o,>, p, q ∪ {l | s}) fut(f ,⊥)

(Cond-True)
[[e]]l , 0 [[e]]l , err

vm(o,>, {l | if e then {s1} else {s2}; s}, q)
→ vm(o,>, {l | s1; s}, q)

(Cond-False)
[[e]]l = 0 or [[e]]l = err

vm(o,>, {l | if e then {s1} else {s2}; s}, q)
→ vm(o,>, {l | s2; s}, q)

(New-VM)
o′ = fresh(VM)

vm(o,>, {l | x = new VM(); s}, q)
→ vm(o,>, {l | x = o′; s}, q) vm(o′,>, {∅|ε},∅)

(Release-VM)
o′ = [[e]]l o , o′

vm(o,>, {l | release e; s}, q) vm(o′, a′, p′, q′)
→ vm(o,>, {l | s}, q) vm(o′,⊥, p′, q′)

(Release-VM-self)
o = [[e]]l

vm(o,>, {l | release e; s}, q)
→ vm(o,⊥, {l | s}, q)

(Activate)
vm(o, a, {l′ | ε}, q ∪ {l | s})
→ vm(o, a, {l | s}, q)

(Activate-Get)
f = [[e]]l′

vm(o,>, {l′ | x = e.get; s}, q ∪ {l | s}) fut(f ,⊥)
→ vm(o,>, {l | s}, q ∪ {l′ | x = e.get; s}) fut(f ,⊥)

(Return)
v = [[e]]l f = l(destiny)

vm(o,>, {l | return e}, q) fut(f ,⊥)
→ vm(o,>, {l | ε}, q) fut(f , v)

(VM-Err-Return)
f = l(destiny)

vm(o,⊥, {l | s}, q) fut(f ,⊥)
→ vm(o,⊥, {l; ε}, q) fut(f , err)

(Bind-Mtd-Err)
vm(o,⊥, p, q) invoc(o, f , m, v)
→ vm(o,⊥, p, q) fut(f , err)

(Bind-Partial)
invoc(err, f , m, v)
→ fut(f , err)

(Context)
cn→ cn′

cn cn′′ → cn′ cn′′

Figure 1: Semantics of vml.

Configurations are sets of elements – therefore we identify configurations that are equal up-to associativity and com-
mutativity – and are denoted by the juxtaposition of the elements cn cn; the empty configuration is denoted by ε. The
transition relation uses two infinite sets of names: vm names, ranged over by o, o′, · · · and future names, ranged over
by f , f ′, · · · . The function fresh() returns either a fresh vm name or a fresh future name; the context will disambiguate
between the twos. The elements of configurations are

– virtual machines vm(o, a, p, q) where o is a vm name; a is either > or ⊥ depending on whether the machine is
alive or dead; p is either {l | ε}, representing a terminated statement, or {l | s}, representing an active process,
where l maps each local variable to its value and s is the statement to execute; and q is the set of processes to
evaluate.

– future binders fut(f , v). When the value v is ⊥ then the actual value of f has still to be computed.

– method invocation messages invoc(o, f , m, v).

Runtime values v are either integers or virtual machines and future names, or ⊥, meaning an un-computed value,
or an erroneous value err. The following auxiliary functions are used in the semantic rules (we assume a fixed vml
program):

– dom(l) returns the domain of l.

– l[x 7→ v] is the function such that (l[x 7→ v])(x) = v and (l[x 7→ v])(y) = l(y), when y , x.

– [[e]]l returns the value of e, possibly retrieving the values of the names that are stored in l. As regards boolean
operations, as usual, false is represented by 0 and true is represented by a value different from 0. Arithmetic
operations in vml are also defined on the value err: when one of the arguments is err, every arithmetic operation
returns err. [[e]]l returns the tuple of values of e. When e is a future name, the function [[·]]l is the identity.
Namely [[f]]l = f . It is worth to notice that [[e]]l is undefined whenever e contains a name that is not defined in
l.

– bind(o, f , m, v) = {[x 7→ v, destiny 7→ f] | s[o/this]}, where T m(T x){T ′ z; s} is a method of the program. We
observe that, because of bind, the map l in processes {l | s} also binds the special name destiny to a future value.
We also observe that the local names z do not belong to dom([x 7→ v, destiny 7→ f]).

4

The transition relation rules are collected in Figure 1. The rules are almost standard, except those about the
management of virtual machines and method invocations, which we are going to discuss.

Rule (New-VM) creates a virtual machine and makes it alive. Rules (Release-VM) and (Release-VM-self) dis-
pose a virtual machine by means of the operation release x: this amounts to update its state a to ⊥. Once a virtual
machine has been released, no operation can be performed anymore by it, except letting the processes on the queue
returning err – see rules (Activate), (VM-Err-Return), and (Bind-Mtd-Err).

Rule (Async-Call) defines asynchronous method invocation x = e!m(e). This rule creates a fresh future name
that is assigned to the identifier x. Rule (Bind-Mtd) applies an invocation message by adding to the live callee virtual
machine a process corresponding to the called method. In case the callee virtual machine is not live, either (Bind-Mtd-
Err) or (Bind-Partial) is applied, which binds err to the future name. Rule (Read-Fut) allows the caller to retrieve
the value returned by the callee. It is worth to notice that the semantics of get is different from that of ABS [25] or
of [17] because it is not blocking with respect to other processes waiting to be executed on the same machine, see rule
(Activate-Get). In fact, deadlock freedom is out of the scope of this contribution; in any case we refer to [17] for an
algorithm (and a prototype) verifying deadlock freedom in ABS.

The initial configuration of a vml program with main body {F x ; s} is

vm(start,>, {[destiny 7→ fstart] | s[start/this]},∅)

where start is a special vm name and fstart is a fresh future name. As usual, let −→∗ be the reflexive and transitive
closure of −→ and represents (part of) computations.

Examples. We illustrate vml by discussing few examples and, for every example, we also examine the output we
expect from our cost analysis. We begin with two methods computing the factorial function:

Int fact(Int n){
Fut<Int> x ; Int m ;
if (n==0) { return 1 ; }
else { x = this!fact(n-1) ;

m = x.get ;
return m*n ;

}
}

Int costly_fact(Int n){
Fut<Int> x ; Int m ; VM z ;
if (n==0) { return 1 ; }
else { z = new VM();

x = z!costly_fact(n-1) ; m = x.get ;
release z; return m*n;

}
}

The method fact is the standard definition of factorial with the recursive invocation fact(n-1) always performed
on the same machine. That is, the computation of fact(n) only requires one virtual machine. On the contrary, the
method costly_fact performs the recursive invocation on a new virtual machine z. The caller waits for its result,
let it be m, then it releases z and delivers the value m*n. Since every virtual machine creation occurs before any release
operation, costly_fact will create as many virtual machines as the argument n. That is, if the available resources
are k virtual machines, then costly_fact can compute factorials up-to k.

The analysis of costly_fact has been easy because the release operation is applied to a locally created virtual
machine. Yet, in vml, release can be also applied to method arguments and the presence of this feature in concurrent
codes is a major source of difficulties for the analysis. A paradigmatic example is the double_release method
discussed in Section 1 that may have either a cost of -2 or of -1 or of 0.

It is worth to observe that, while over-approximations (e.g not counting releases) return (too) imprecise costs,
under-approximations may return wrong costs. For example, the following method creates two virtual machines and
releases the second one with this!double_release(x,x) before the recursive invocation.

Int fake_method(Int n) {
if (n=0) return 0 ;
else { VM x, y ; Fut<Int> f, g; Int u, v;

x = new VM() ; y = new VM() ;
f = this!double_release(x,x) ; u = f.get ;
g = this!fake_method(n-1) ; v = g.get ;
return 0 ; }

}

5

The cost of fake_method(n) should be n. However this is not the case if double_release is under-approximated
with cost -2: In such case, one would wrongly derive a cost 0 of fake_method(n). In Section 6.2 we consider
an erroneous fake_method that increases the argument of the recursive invocation (instead of decreasing it) and
discuss the corresponding cost equations returned by our technique. We notice that, in this case, the amount of virtual
machines used by the erroneous method is infinite. The aim of the following sections is to present a technique for
determining the cost of method invocations. Such a technique has to be sensible to the identity, and to the state of
method’s arguments before and after the invocation.

Alive machines. Given a configuration cn, a term vm(o,>, p, q) ∈ cn is called alive machine in cn. Let alive(cn)
be the number of different alive machines in cn. The objective of this paper is to define a technique such that, given
a configuration cn, it returns a n satisfying, for every cn −→∗ cn′, alive(cn′) ≤ n (n is an upper bound to the alive
machines in computations rooted at cn).

3. Determinacy of releases of method’s arguments

Our cost analysis of virtual machines uses abstract descriptions that carry informations about concurrent method
invocations and about creations and removals of virtual machines. In order to ease the compositional reasonings,
method’s abstract descriptions also define the arguments the method releases upon termination, called method’s effects.
In this contribution we stick to method descriptions that are as simple as possible, namely we assume that method’s
effects are sets. In turn, this requires methods’ behaviours to be deterministic with respect to method’s effects and, to
enforce this determinacy, we define the following simplification properties.

The following simplifications allow us to focus on the relevant problems of the resource analysis of vml. It is
possible to drop most of the simplifications by extending the approach presented in this article using almost standard
solutions (for instance, with guarded or nondeterministic effects, see below). However these solutions would entangle
a lot the technicalities of the paper, making more difficult its reading and comprehension.

Simplification 1: the branches in a method body always release the same set of method’s arguments. For example,
methods like

Int foo1(VM x, Int n) {
if (n = 0) return 0 ;
else { release x ; return 0; }

}

does not follow this simplification because the then-branch does not release anything while the else-branch
releases the argument x.

This simplification is typical in type systems with (deterministic) effects. Usually people takes the least-upper
bound of effects; however we cannot take least-upper bounds of removals because it would mean to under-
estimate the machines effectively used. We cannot take the greatest lower bound of removals either, because
it would mean to over-estimate the machines used and perform erroneous releases in the continuations. In-
deed, to analyse the above program, one would just have to extend the approach presented in this article with
guarded effects, i.e., mapping from execution branches to effects, which can precisely identify the effects of
each execution branch of the method.

Simplification 2: method invocations are always synchronized within caller’s body. This implies that method’s ef-
fects occur upon method termination. For example, in

Int foo2(VM x, VM y) {
this!double_release(x,y) ; return 0 ;

}

6

the method’s effects of foo2 is not deteministic because double_release might still be running after foo2
termination. This means that the termination of foo2 has no impact on the termination of double_release.
Hence, the effect of foo2 is empty – the caller cannot assume that x and y have been released upon synchroniz-
ing with foo2. Overall, this simplification supports a more precise analysis and can be easily dropped (at the
cost of returning larger upper bounds).

Simplification 3: machines executing methods with nonempty effects must be alive. (This includes the carrier ma-
chine, e.g. method bodies cannot release the this machine.) At static time “alive” means that the machine is
either the caller or has been locally created and has not been/is not being released. For example, in foo3

Int simple_release(VM x) { release x; return 0; }
Int foo3(VM x) {

VM z ; Fut<Int> f ; Int u ;
z = new VM() ; f = z!simple_release(x) ;
release z ; u = f.get ; return 0;

}

Int foo4(VM x, VM y) {
Fut<Int> f ; Int u ;
f = x!simple_release(y) ;
u = f.get ; return 0 ;

}

the machine z is released before the synchronisation with the simple_release – statement f.get. This means
that the disposal of x depends on scheduler’s choice and, in turn, it is not possible to determine whether foo3
will release x or not. A similar non-determinism arises when the callee of a method releasing arguments is itself
an argument. For example, in the above foo4 method, it is not possible to determine whether y is released or
not because we have no clue about x, being it an argument of foo4.

To analyse such programs, one would simply need to extend the approach presented in this article with non-
deterministic effects.

Simplification 4: if a method returns a machine, the machine must be new. For example, consider the following code:

VM identity(VM x) { return x; }
{

VM x ; VM y ; VM z ; Fut<VM> f ; Fut<Int> g ; Int m ;
x = new VM() ; y = new VM() ;
f = y!identity(x) ; g = this!simple_release(y);
z = f.get ; m = g.get ;
release z ;

}

In this case it is not possible to determine whether the value of z is x or err and, therefore, it is not clear whether
the cost of release z is 0 or -1. The non-determinism is caused by identity, which returns the argument
that is going to be released by a parallel method.

To analyse programs with such methods, one would simply need to extend the approach presented in this article
with non-deterministic effects.

Simplifications 1, 3, and 4 are enforced by the type system in Section 4, in particular simplification 1 by rule
(T-Method), simplification 3 by rules (T-Invoke) and (T-Release), and simplification 4 by rules (T-Invoke) and (T-
Return).

4. The behavioural type system of vml

Behavioural types are abstract codes highlighting the features of vml programs that are relevant for the resource
cost analysis in Section 5. These types support compositional reasonings and are associated to programs by means of
a type system that is defined in this section.

The syntax of behavioural types uses vm names α, β, γ, · · · , and future names f , f ′, · · · . Sets of vm names will be
ranged over by S, S′, R, · · · , and sets of future names will be ranged over by F, F′, · · · . We assume that err is a special

7

o ::= _ | α basic value
t ::= α | α↓ | ∂ | ⊥ | > vm value

op′ ::= + | − | = | ≤ | ≥ | ∧ | ∨ linear operation
r, s ::= o | se typing value
z ::= (o, α, Ft, R) | o future value
x ::= _ | Ft | f | z extended value
a ::= 0 | να | ν f : m α(s) | αX | foX atom
c ::= a . Γ | a # c | (se){c} | c + c behavioural type

Figure 2: Behavioural Types Syntax

(T-Var)
x ∈ dom(Γ)

Γ ` x : Γ(x)

(T-Primitive)
Γ ` k : k

(T-Op)
Γ ` e1 : se1 Γ ` e2 : se2

Γ ` e1 op′ e2 : se1 op′ se2

T-Unit
Γ ` e : se

Γ ` e : _

(T-Op-Unit)
Γ ` e1 : _ or Γ ` e2 : _ or op ∈ {∗, /}

Γ ` e1 op e2 : _

(T-Pure)
Γ ` e : x

Γ ` e : x, 0 . Γ

(T-Method-Sig)
Γ(m) = α(r) : o, R β ⊆ fv(α, r,o)

σ is a vm renaming such that o < fv(α, r) implies σ(o) fresh

Γ ` m σ(α)(σ(r)) : σ(o), σ(R)

Figure 3: Typing rules for pure expressions

vm name representing the erroneous machine; therefore vm names will also range over err. The syntactic rules are
presented in Figure 2.

Behavioural types να and αX express creations of virtual machines and their removal, respectively. The type
ν f : m α(s) defines method invocations and foX defines the corresponding synchronisation with the computation of
the future f , in this case o may be either α, which acts like a binder to the name of the returned virtual machine, or
_ if the target of f returns a different type. The conditional type (se){c} behaves like c whenever se is true; the type
c + c′ models nondeterminism. We will always shorten the type f_X into fX.

In order to have a more precise type of continuations, the leaves of behavioural types are labelled with environ-
ments, ranged over by Γ, Γ′, · · · . Environments are maps from method names m to terms α(r) : o, R, from names to
extended values x, from future names to future values, and from vm names to extended values Ft, which are called
vm states in the following. We assume that Γ(err) = ∅⊥. These environments occurring in the leaves are only used
in the typing proofs and are dropped in the final types (method types and the main statement type).

Vm states Ft are a collection F of future names plus the value t of the virtual machines. This F specifies the set of
parallel methods that are going to release the virtual machine; t defines whether the virtual machine is alive (>), or it
has been already released (⊥) or, according to scheduler’s choices, it may be either alive or released (∂). Vm values
also include terms α and α↓. The value α is given to the argument machines of methods (they will be instantiated
by the invocations – see the cost analysis in Section 5), the value α↓ is given to argument values that are returned
by methods and can be released by parallel methods (α↓ will be also evaluated in the cost analysis). Vm values are
partially ordered by the relation ≤ defined by

∂ ≤ > ∂ ≤ ⊥ α↓ ≤ ⊥ α↓ ≤ α .

In the following we will use the partial operation tut′ returning, whenever it exists, the greatest lower bound between
t and t′. For example > u ⊥ = ∂, but ∂ u α↓ is not defined.

The type system uses judgments of the following form:

– Γ ` e : x for pure expressions e, Γ ` f : z for future names f , and Γ ` mα(r) : o, R for methods.

– Γ `S z : x, c . Γ′ for expressions z, where x is the value, c is the behavioural type for z and Γ′ is the environment
Γ with updates of names and future names.

8

– Γ `S s : c, in this case the updated environments are inside the behavioural type Γ′, in correspondence of every
branch of its.

The index S in the judgments for expressions and statements defines the set of method’s arguments – see rule (T-
Method) – and is used in the rule (T-Return) in order to constrain that the returned machine, if any, does not belong
to method’s arguments (cf. Restriction 4 in Section 3).

Since Γ is a function, we use the standard predicates x ∈ dom(Γ) or x < dom(Γ) and the environment update

Γ[x 7→ x](y)
def
=

{
x if y = x
Γ(y) otherwise

With an abuse of notation (see rule (T-Return)), we let Γ[_ 7→ x]
def
= Γ (because _ does not belong to any environment).

We will also use the operation and notation below:

– Ft⇓ is defined as follows:

Ft⇓
def
=


t if F = ∅
∂ if F , ∅ and t = >

α ↓ if F , ∅ and t = α

and, in Section 5, we write (F1t1, · · · , Fntn) ⇓ for (F1t1 ⇓, · · · , Fntn ⇓).

– the multihole contexts C[] defined by the following syntax:

C[] ::= [] | a # C[] | C[] + C[] | (se){C[]}

and, whenever c = C[a1 . Γ1] · · · [an . Γn], then c[x 7→ x] is defined as C[a1 . Γ1[x 7→ x]] · · · [an . Γn[x 7→ x]].

The type system for expressions is reported in Figure 3. It is worth to notice that this type system is not standard
because (size) expressions containing method’s arguments are typed with the expressions themselves. This is crucial in
the cost analysis of Section 5. It is also worth to observe that, by rule (T-Primitive), Γ ` err : err (while Γ(err) = ∅⊥).
This expedient allows us to save one rule when typing method invocations with either erroneous or released carriers
(cf. rule (T-Invoke-Bot)).

The type system for expressions with side effects and statements is reported in Figure 4. We discuss rules (T-
Invoke), (T-Get), (T-Release), and (T-Return). Rule (T-Invoke) types method invocations e!m(e) by using a fresh
future name. In particular, in the behavioural type ν f : m α(s)→ β, the (fresh) future name f is associated to the the
method, the vm name of the callee, the arguments and to the returned value. This last value is fundamental when the
invocation returns a new machine because, in this case, the type acts as a binder of β. Another important remark is
about the value of f in the updated environment. This value contains the returned value, the vm name of the callee and
its state, and the set of the arguments that the method is going to remove. The vm state of the callee will be used when
the method is synchronized to update the state of the returned object, if any (see rule (T-Get)). It is also important
to observe that the environment returned by (T-Invoke) is updated with information about vm names released by the
method: every such name will contain f in its state. Let us now discuss the constraints in the second and third lines
of the premise of (T-Invoke). As regards the second line, assuming that the callee has not been already released
(Γ(α) , F⊥), there are two cases:

(i) either Γ(α) = ∅> or α is the caller object α′: namely the callee is alive because it has been created by the caller
or it is the caller itself,

(ii) or Γ(α) , ∅>: this case has two subcases, namely either (ii.a) the callee is being released by a parallel method
or (ii.b) it is an argument of the caller method – see rule (T-Method).

While in (i) we admit that the invoked method releases vm names, in case (ii) we forbid any release, as we discussed
in Restriction 3 in Section 3. We observe that, in case (ii.b), being α an argument of the method, it may retain any state
when the method is invoked and, for reasons similar to (ii.a), it is not possible to determine at static time the exact
subset of R that will be released. The constraint in the third line of the premise of (T-Invoke) enforces Restriction 3 to
the other invocations in parallel and to the object executing e!m(e).

9

(T-Assign-Var)
Γ(x) = x Γ `S z : x′,c

Γ `S x = z : c[x 7→ x
′]

(T-Invoke)
Γ ` e : α Γ ` e : s Γ ` mα(s) : o, R Γ ` this : α′ Γ(α) , F⊥

(Γ(α) , ∅> and α , α′) =⇒ R = ∅
R ∩

(
{α′} ∪ {β | f ′ ∈ dom(Γ) and Γ(f ′) = (o′, β,x, R′) and R′ , ∅}

)
= ∅

f fresh Γ′ = Γ[β 7→ ({ f } ∪ F′)t]β∈R,Γ(β)=F′t

Γ `S e!m(e) : f , ν f : m α(s) . Γ′[f 7→ (o, α,Γ(α), R)]

(T-Invoke-Bot)
Γ ` e : α Γ ` e : s Γ(α) = F⊥ f fresh

Γ `S e!m(e) : f , ν f : m α(s) . Γ[f 7→ (err, α, F⊥,∅)]

(T-Get)
Γ ` x : f Γ ` f : (o, α, Ft, R)
R′ = fv(o) \ R t

′ = t u (Γ(α)⇓)
Γ′ = Γ[β 7→ ∅⊥]β∈R[β′ 7→ ∅t′]β

′∈R′

Γ `S x.get : o, foX . Γ′[f 7→ o]

(T-Get-Done)
Γ ` x : f Γ ` f : o

Γ `S x.get : o, 0 . Γ

(T-New)
β fresh

Γ `S new VM() : β, νβ . Γ[β 7→ ∅>]

(T-Release)
Γ ` x : α Γ(α) , F⊥

α < {β | f ′ ∈ dom(Γ) and Γ(f ′) = (o′, β,x, R′) and R′ , ∅}

Γ `S release x : αX . Γ[α 7→ ∅⊥]

(T-Release-Bot)
Γ ` x : α Γ(α) = F⊥

Γ `S release x : 0 . Γ

(T-If)
Γ ` e : se Γ `S s1 : c1 Γ `S s2 : c2

Γ `S if e { s1 } else { s2 } : (se){c1 } + (¬se){c2 }

(T-If-ND)
Γ ` e : _ Γ `S s1 : c1 Γ `S s2 : c2

Γ `S if e { s1 } else { s2 } : c1 + c2

(T-Seq)
Γ `S s1 : C[a1 . Γ1] · · · [an . Γn] (Γi `S s2 : c′i)

i∈1..n

Γ `S s1; s2 : C[a1 # c′1] · · · [an # c′n]

(T-Return)
Γ ` e : o Γ ` destiny : o′

o < S

Γ `S return e : 0 . Γ[o′ 7→ Γ(o)]

Figure 4: Type rules for expressions and statements.

Rule (T-Get) defines the synchronisation with a method invocation that corresponds to a future f . Let (o, α, Ft, R)
be the value of f in the environment. There are two cases: either (i) R , ∅ or (ii) R = ∅. In case (i), by Restriction
3, Ft, which is the value of the caller α when the method has been invoked, is equal to the value Γ(α) (and F = ∅).
In this case, if the method returns a new machine (cf. Restriction 4), its state must be ∅t (notice that t u Γ(α) ⇓= t).
The case (ii) is more problematic because the caller may be released by a method running in parallel and, therefore,
the possible returned virtual machine must record this information in its state. Let Ft be the state of the caller (which
is recorded in Γ(f)). We use the operation t u Γ(α)⇓ to this purpose, which means that the returned machine gets the
same state of the carrier α if no method is releasing α, otherwise its state is either ∅∂ or ∅α ↓, according to the state
of α was F> or Fα.

Rule (T-release) models the removal of a vm name α. The premise in the second line verifies that the disposal do
not address machines that are executing methods, as discussed in Restriction 3 of Section 3.

Rule (T-Return) is a bit cryptic. First of all it applies provided o < S. In fact, by Restriction 4, the type of e in
return e can be either _ or a virtual machine that has been created by the method. In both cases, these values do not
belong to S, which is the set of virtual machines in method’s arguments – see rule (T-Method). In particular, when the
type of e is _, by (T-method), Γ(destiny) = _ and, by definition, Γ[o′ 7→ Γ(o)] = Γ.

The type system of vml is completed with the rules for method declarations and programs, given in Figure 5.
Without loss of generality, rule (T-Method) assumes that formal parameters of methods are ordered: those of Int
type occur before those of Vm type. We observe that the environment typing the method body binds integer parameters
to their same name, while the other ones are bound to fresh vm names (this lets us to have a more precise cost analysis
in Section 5). We also observe that the returned value o may be either _ or a fresh vm name (o < {α} ∪ β) as discussed
in Restriction 4 of Section 3. The constraints in the third line of the premises of (T-Method) implement Restriction 1
of Section 3. We also observe that (Γi(γ) = Γ j(γ))i, j∈1..n, γ∈S∪fv(o) guarantees that every branch of the behavioural type
creates a new vm name and, by rule (T-Return), the state of the chosen vm name must be always the same.

We display behavioural types examples by using codes from Sections 1 and 2. Actually, the following types do
not abstract a lot from codes because the programs of the previous sections have been designed for highlighting the

10

(T-Method)
Γ(m) = α(x, β) : o, R S = {α} ∪ β o < S

Γ[this 7→ α][destiny 7→ o][x 7→ x][z 7→ β][α 7→ ∅α][β 7→ ∅β] `S s : C[a1 . Γ1] · · · [an . Γn](
Γi(γ) = Γ j(γ)

)i, j∈1..n, γ∈S∪fv(o)
R = (S ∪ fv(o)) ∩ {γ | Γ1(γ) = F⊥}

Γ ` T m (Int x, Vm z){F y ; s} : m α(x, β) { C[a1 .∅] · · · [an .∅] } : o, R

(T-Program)
Γ ` M : C Γ[this 7→ start] `start s : C[a1 . Γ1] · · · [an . Γn]

Γ ` M {F x ; s} : C, C[a1 .∅] · · · [an .∅]

Figure 5: Behavioural typing rules of method and programs.

issues of our technique. The following listing shows the behavioural type of double_release and the step by step
rule application for its calculation.

Int double_release(Vm x, Vm y) {
release x;
release y;
return 0 ;

}

double_release α(β, γ) { // instance of T-Method
βX# // instance of T-Release
γX# // instance of T-Release and T-Seq
0 // instance of T-Return and T-Seq

} - , {β, γ}

The behavioural types of (fact and costly_fact examples from Section 2 are the following (we remove tailing
0 when irrelevant):

fact α(n) {
(n==0){ 0 }
+(n>0){ ν x :factα(n − 1) # xX}
} - , { }

costly_fact α(n) {
(n==0){ 0 }
+(n>0){ νβ #

ν x : costly_fact β(n − 1) #
xX # βX }

} - , { }

we notice that the type of costly_fact records the order between the recursive invocation and the release of the
machine. In the case of the behavioural type of double_release the key point is that the releases βX and γX in
double_release are conditioned by the values of β and γ when the method is invoked, we keep track of this with
the “effects set" {β,γ}.

5. The analysis of behavioural types

The types returned by the system in Section 4 are used to compute the resource cost of a vml program. This
computation is performed by a solver of cost equations. These cost equations are terms

m(x) = exp [se]

where m is a (cost) function symbol, exp is an expression that may contain (cost) function symbols applications, and
se is a size expression whose variables are contained in x (the syntax of exp and se is given in full detail in [13]).

Basically, our translation maps method types into cost equations, where

• method invocations are translated into function applications,

• virtual machine creations are translated into a +1 cost,

• virtual machine releases are translated into a -1 cost,

11

There are two function calls for every method invocation: one returns the maximal number of resources needed to
execute a method m, called peak cost of m and noted mpeak, and the other returns the number of resources the method m
creates without releasing, called net cost of m and noted mnet. These functions are used to define the cost of sequential
execution and parallel execution of methods. For example, omitting arguments of methods, the peak cost of the
sequential composition of two methods m and m′ is the maximal value between mpeak and mnet + m′peak; while the cost of
the parallel execution of m and m′ is mpeak + m′peak.

There are two difficulties that entangle our translation, both related to method invocations: the management of
arguments’ identities and the management of arguments’ values.

Arguments’ identities. Consider the following code and the corresponding behavioural types

Int simple_release(VM x) { release x ; return 0 ; }

Int m(VM x, VM y) {
Fut<Int> f; f = this!simple_release(x); release y; f.get;
return 0;

}

simple_release α(β){ βX } _ , { β }

m α(β, γ){ ν f : simple_releaseα(β) # γX # fX} _ , { β, γ }

We notice that, in the type of m, there is not enough information to determine whether γX will have a cost equal to -1 or
0. In fact, in the rule (T-Method), we assumed that the arguments were pairwise different. However, this is not the case
for invocations. For instance, if m is invoked with two arguments that are equal – β = γ – then γ is going to be released
by the invocation free(β) and therefore it counts 0. We solve this problem of arguments’ identity in the analysis of
behavioural types, in particular in the translation of method types. Namely, the above method m is translated in four
cost functions: m{ 1 },{ 2 }peak (x, y) and m{ 1 },{ 2 }net (x, y), which correspond to the invocations where x , y, and m{ 1,2 }peak (x) and

m
{ 1,2 }
net (x), which correspond to the invocations where x = y. (The equivalence relation in the superscript never mention

this, which is also an argument, because, in this case this cannot be identified with the other arguments, see below.)
Then the translation of an invocation to a method m redirects the invocation to mΞ, where Ξ is the equivalence relation
expressing the identity of the arguments.

The function computing the equivalence relation of the arguments of an invocation is EqRel. EqRel takes a tuple
of vm names and returns a partition of the indices of the tuple:

EqRel(α0, · · · , αn) =
⋃

i∈0..n

{ { j | α j = αi} }

That is, if two indices are in the same set then the corresponding elements in the tuple are equal. So, for instance,
EqRel(α, β, α) = {{0, 2}, {1}}. We notice that, the possible outputs of EqRel(α0, α1, α2), without knowing the identities
of α0, α1, and α2, are

{{0}{1}, {2}} the three arguments are pairwise different
{{0, 1}, {2}} the first and second argument are equal, the third is different
{{0, 2}, {1}} the first and third argument are equal, the second is different
{{0}, {1, 2}} the second and third argument are equal, the first is different
{{0, 1, 2}} all the arguments are equal

Henceforth, 10 cost functions will correspond to a method with three arguments, 5 for its peak cost and 5 for its net
cost.

Next, we also notice that the actual arguments of a m{{0,1},{2}} are not three but two: in this case the second argument
is useless. Therefore we need a notation for selecting the two relevant arguments in these cases. We use the notation
(perhaps awkward) EqRel(α, β, α, γ)(α, β, α, γ) that actually returns the triple (α, β, γ).

Without loosing in generality, we will always assume that the canonical representative of a set containing 0 is
always 0. This index represents the this object and we remind that, by Simplification 3 in Section 3, such an object
cannot be released. This is the reason why, in the foregoing discussion about the method m, we have not mentioned
this. Additionally, in order to simplify the translation of method invocations, we also assume that the argument this
is always different from other arguments (the general case just requires more details).

12

(Re)computing argument’s states. In the rules of Figure 4, in order to enforce the restrictions in Section 3, we have
already computed the state of every machine. In this section we recompute them for a different reason: obtaining a
(more) precise cost analysis. Of course one might record the computation of vm states in behavioural types. However,
this solution has the drawback that behavioural types become unintelligible because they carry information that is
needed at a later stage by the analyser.

Let a translation environment, ranged over Ψ,Ψ′, be a mapping from vm names to vm states and from future
names to triples (Ψ′, R, m β(se, β) → o). The translation environment Ψ′ in (Ψ′, R, m β(se, β) → o) is only defined on
vm names. For this reason, we call it vm-translation environment. We define the following auxiliary functions

– let Ψ be a vm-translation environment. Then

Ψ|X(α)
def
=

 Ψ(α) if α ∈ X

undefined otherwise

– the update of a vm-translation environment Ψ with respect to f and Ψ′, written Ψ↘f Ψ′, returns a vm-translation
environment defined as follows:

(Ψ↘f Ψ′)(α)
def
=

 (F′ \ { f })(t u t′) if Ψ(α) = Ft and Ψ′(α) = F′t′

undefined otherwise

This operation Ψ ↘f Ψ′ updates the vm-translation environment Ψ that is stored in the future f with the
translation environment at the synchronisation point. It is worth to observe that, by the definition of our type
system and the following translation function, the values of Ψ(α) and Ψ′(α) are related. In particular, if t = α
then t′ can be either α or α↓ (the machine is released by a method that has been invoked in parallel) or ⊥ (the
machine has been released before the get operation on the future f); if t = > then t′ can be either > or ∂ (the
machine is released by a method that has been invoked in parallel) or ⊥ (the machine has been released before
the get operation).

– the merge operation, noted Ψ(∆), where Ψ is a vm-translation environment and ∆ is an equivalence relation,
returns a substitution defined as follows. Let

t ⊗α t′
def
=


⊥ if t = ⊥ or t′ = ⊥

α if t and t′ are variables
α↓ otherwise

F1t1 ⊗
α F2t2

def
= (F1 ∪ F2)(t1 ⊗

α
t2)

Then
Ψ(∆) : α 7→

⊗
∆(α){Ψ(β) | β ∈ dom(Ψ) and ∆(β) = ∆(α)}

for every α ∈ dom(Ψ).

The operator ⊗α has not been defined on vm values as ∂ or > because we merge vm names whose image
by Ψ are either Fβ or Fβ↓ or F⊥. As a notational remark, we observe that Ψ(∆) is noted as a map [α1 7→

F1t1, · · · , αn 7→ Fntn] instead of the standard notation [F1t1, · · · , Fntn/α1, · · · , αn]. These two notations are clearly
equivalent: we prefer the former one because it will let us to write Ψ(∆)(α) or even Ψ(∆)(α1, · · · , αn) with the
obvious meanings.

To clarify the reason for a merge operator, consider the atom fX within a behavioural type that binds f to fooα(β, γ).
Assume to evaluate this type with ∆ = {{β, γ}}. That is, the two arguments are actually identical. Which are the values
of β and γ for evaluating foo∆

peak and foo∆
net? Well, we have

1. to select the representative between β and γ: it will be ∆(β) – which is equal to ∆(γ);
2. to take a value that is smaller than Ψ(β) and Ψ(γ) (but greater than any other value that is smaller);
3. to substitute β and γ with the result of 2.

For instance, let Ψ = [α 7→ ∅α, β 7→ ∅β↓, γ 7→ ∅γ] and ∆(β) = ∆(γ) = β. We expect that a value for the item 2 above
is ∅β↓ and the substitution of the item 3 is [∅β↓,∅β↓/β, γ]. Formally, the operation returning the value for 2 is ⊗β and
the substitution of item 3 is the output of the merge operation.

13

The translation function. The translation function, called translate, is structured in three parts that respectively
correspond to simple atoms, behavioural types, and method types and full programs. This function carries five argu-
ments:

1. ∆ is the equivalence relation on formal parameters identifying those that are equal. We assume that ∆(x)
returns the unique representative of the equivalence class of x. For simplicity we also let ∆(x) = x for every x
that belongs to the local variables. Therefore we can use ∆ also as a substitution operation.

2. Ψ is the translation environment which stores temporary information about futures that are active (unsynchro-
nised) and about the state of vm names;

3. α is the name of the virtual machine of the current behavioural type;
4. e is the sequence of (over-approximated) costs of the current execution branch;
5. the behavioural type being translated; it may be either a, c or C.

In the definition of translate we use the two functions

CNEW(α) =

0 α = ⊥

1 otherwise
CREL(α) =

-1 α = >

0 otherwise

The left-hand side function is used when a virtual machine is created. It returns 1 or 0 according to the virtual machine
that is executing the code can be alive (α , ⊥) or not, respectively. The right-hand side function is used when a virtual
machine is released (in correspondence of atoms βX). The release is effectively computed – value -1 – only when the
virtual machine that is executing the code is alive (α = >).

We will assume the presence of a lookup function lookup that takes method invocations m α(r, β) and returns
tuples c : o, R. This function is left unspecified. We also write R[o′/o] to denote a set that is equal to R if o < R, that
is equal to (R \ {o}) ∪ {o′}, otherwise.

The definition of translate follows. We begin with the translation of atoms.

translate[∆,Ψ, α](e; e)(a) =



(Ψ, e; e) when a = 0

(Ψ[β 7→ ∅>], e; e; e + CNEW(t)) when a = νβ and Ψ(α) = Ft

(Ψ[∆(β) 7→ ∅⊥], e; e; e + CREL(t)) when a = βX and Ψ(∆(β)) = Ft

(Ψ′[f 7→ (Ψ|
∆(β,β), R, m ∆(β)(r,∆(β)→ o))], e; e; e + f) when a = ν f : m β(r, β)

and Ψ′ = Ψ[β 7→ (F ∪ { f })t]β∈R,Ψ(β)=Ft

and lookup(m ∆(β)(se,∆(β))) = c : o, R

(Ψ′′ \ f , (e; e)σ; (e)σ′ +
∑
γ∈∆(R),Θ(γ)=Ft,F,∅ CREL(t)) when a = fo′X and Ψ(f) = (Ψ′, R, m β(r, β)→ o)

and Θ = Ψ′ ↘f Ψ and Θ(EqRel(β, β)) = (F1t1, · · · , Fntn)
and σ = [mΞ

peak(r, F1t1 ⇓, · · · , Fntn ⇓) ⇓)/ f]

and σ′ = [mΞ
net(r, F1t1 ⇓, · · · , Fntn ⇓)/ f]

and R′ = R[o′/o]
and Ψ′′ = Ψ[γ 7→ ∅⊥]γ∈R

′
[γ′ 7→ Θ(β)]γ

′∈fv(o′)\R′

In the definition of translate we always highlight the last expression in the sequence of costs of the current
execution branch (the fourth input). This is because the cost of the parsed atom applies to it, except for the case of fX.
In this last case, let e; e be the expression. Since the atom expresses the synchronisation of f , e; e will have occurrences
of f . In this case, the function translate has to compute two values: the maximum number of resources used by (the
method corresponding to) f during its execution – the peak cost used in the substitution σ – and the resources used
upon the termination of (the method corresponding to) f – the net cost used in the substitution σ′. In particular, this
last value has to be decreased by the number of resources released by the method. This is the purpose of the addend∑
γ∈∆(R),Θ(γ)=Ft,F,∅ CREL(t) that removes machines that are going to be removed by parallel methods (the constraint
F , ∅) because the other ones have been already counted both in the peak cost and in the net cost. We observe that
the instances of the method mpeak and mnet that are invoked are those corresponding to the equivalence relation of the
tuple (β, β).

The translation of behavioural types is given by composing the definitions of the atoms. In this case, the output of
translate is a set of cost equations.

14

translate(∆,Ψ, α, (se){ e },c) =



{(se′){ e′ }} when c = a .∅ and translate(∆,Ψ, α, (se){ e },a) = (Ψ′, (se′){ e′ })

C′′ when c = a # c′ and translate(∆,Ψ, α, (se){ e },a) = (Ψ′, {(se′){ e′ }})
and dom(Ψ′) \ dom(Ψ) = S and translate(∆ ∪ {S},Ψ′, α, (se′){ e′ },c′) = (Ψ′′,C′′)

C′ ∪C′′ when c = c1 + c2 and translate(∆,Ψ, α, (se){ e },c1) = (Ψ′,C′)
and translate(∆,Ψ, α, (se){ e },c2) = (Ψ′′,C′′)

C′ when c = (se′){c′} and translate(∆,Ψ, α, (se ∧ se′){ e },c′) = (Ψ′,C′)

C′ when c = (e′){c′} and e′ contains _ and translate(∆,Ψ, α, (se){ e },c′) = (Ψ′,C′)

The translation of method types and behavioural type programs is given below. Let P be the set of partitions of
1..n. Then

translate(m α1(x, α2, . . . , αn) { c } : o, R) =
⋃

Ξ∈P translate(Ξ, m α1(x, α2, . . . , αn) { c } : o, R)

where translate(Ξ, m α1(x, α2, . . . , αn) { c } : o, R) is defined as follows. Let

∆ = { {αi1 , . . . , αim } | { i1, . . . , im } ∈ Ξ } and [∆] = {α 7→ ∅α | α = ∆(α)}

and translate(∆,[∆], α1)(0)(c) =
⋃n

i=1(sei){ e1,i; . . . ; ehi,i } .

Then

translate(Ξ, m α1(x, α2, . . . , αk) {c } : o, R) =



mΞ
peak(x,Ξ[α1, α2, . . . , αk]) = 0 [α1 = ⊥]
mΞ

peak(x,Ξ[α1, α2, . . . , αk]) = e1,1 [se1 ∧ α1 , ⊥]
.
.
.

mΞ
peak(x,Ξ[α1, α2, . . . , αk]) = eh1 ,1 [se1 ∧ α1 , ⊥]
mΞ

peak(x,Ξ[α1, α2, . . . , αk]) = e1,2 [se2 ∧ α1 , ⊥]
.
.
.

mΞ
peak(x,Ξ[α1, α2, . . . , αk]) = ehn ,n [sen ∧ α1 , ⊥]
mΞ

net(x,Ξ[α1, α2, . . . , αk]) = 0 [α1 = ⊥]
mΞ

net(x,Ξ[α1, α2, . . . , αk]) = mΞ
peak(x,Ξ[α1, . . . , αn]) [α1 = ∂]

mΞ
net(x,Ξ[α1, α2, . . . , αk]) = eh1 ,1 [se1 ∧ α1 = >]

.

.

.

mΞ
net(x,Ξ[α1, α2, . . . , αk]) = ehn ,n [sen ∧ α1 = >]

Let (C1 . . . Cn, c) be a behavioural type program and let translate(∅,∅, α, (true){ 0 }, c) =⋃m
j=1(se j){ e1, j; · · · ; eh j, j }. Then

translate(C1 . . . Cn, c) =



translate(C1) · · · translate(Cn)
main() = 1 + e1,1 [se1]

.

.

.
main() = 1 + eh1 ,1 [se1]
main() = 1 + e1,2 [se2]

.

.

.
main() = 1 + ehm ,m [sem]

As an example, we show the output of translate when applied to the behavioural type of double_release com-
puted in Section 4. Since double_release has two arguments, we generate two sets of equations, as discussed above.
In order to ease the reading, we omit the equivalence classes of arguments that label function names: the reader can
grasp them from the number of arguments. For the same reason, we represent a partition {{1}, {2}, {3}} corresponding
to vm names α1, α2 and α3 by [α1, α2, α3] and {{1}, {2, 3}} by [α1, α2] (we write the canonical representatives). For
simplicity we do not add the partition to the name of the method.

15

translate([α1, α2, α3], double_release α1(α2, α3) {c } : _ , {α2, α3}) =

double_releasepeak(α1, α2, α3) = 0 [α1 = ⊥]
double_releasepeak(α1, α2, α3) = 0 [α1 , ⊥]
double_releasepeak(α1, α2, α3) = CREL(α2) [α1 , ⊥]
double_releasepeak(α1, α2, α3) = CREL(α2) + CREL(α3)[α1 , ⊥]

double_releasenet(α1, α2, α3) = 0 [α1 = ⊥]
double_releasenet(α1, α2, α3) = double_releasepeak(α1, α2, α3)

[α1 = ∂]
double_releasenet(α1, α2, α3) = CREL(α2) + CREL(α3) [α1 = >]

translate([α1, α2], double_release α1(α2) {c } : _, {α2}) =

double_releasepeak(α1, α2) = 0 [α1 = ⊥]
double_releasepeak(α1, α2) = 0 [α1 , ⊥]
double_releasepeak(α1, α2) = CREL(α2) [α1 , ⊥]
double_releasepeak(α1, α2) = CREL(α2) + CREL(⊥) [α1 , ⊥]

double_releasenet(α1, α2) = 0 [α1 = ⊥]
double_releasenet(α1, α2) = double_releasepeak(α1, α2) [α1 = ∂]
double_releasenet(α1, α2) = CREL(α2) + CREL(⊥) [α1 = >]

To highlight a cost computation concerning double_release, consider the following two potential users and the
corresponding behavioural types

Int user1() {
Vm x ; Vm y ; Fut<Int> f ;
x = new Vm ; y = new Vm;
f = this!double_release(x, y);
f.get ; return 0 ;

}

Int user2() {
Vm x ; Fut<Int> f ;
Vm x = new Vm ;
f = this!double_release(x, x);
f.get ; return 0 ;

}

user1 α(){
νβ # νγ # ν f : double_releaseα(β, γ) # fX

} - , { }

user2 α(){
νβ # ν f : double_releaseα(β, β) # fX

} - , { }

The translations of the foregoing types give the following set of equations

translate([α1], user1 α1() { cuser1 } : _ , {}) =

user1peak(α1) = 0 [α1 = ⊥]
user1peak(α1) = 0 [α1 , ⊥]
user1peak(α1) = CNEW(α1) [α1 , ⊥]
user1peak(α1) = CNEW(α1) + CNEW(α1) [α1 , ⊥]
user1peak(α1) = CNEW(α1) + CNEW(α1)

+ double_releasepeak(α1,>,>) [α1 , ⊥]
user1peak(α1) = CNEW(α1) + CNEW(α1)

+ double_releasenet(α1,>,>) [α1 , ⊥]

user1net(α1) = 0 [α1 = ⊥]
user1net(α1) = user1peak(α1) [α1 = ∂]
user1net(α1) = CNEW(α1) + CNEW(α1)

+ double_releasenet(α1,>,>) [α1 = >]

translate([α1], user2 α1() { cuser2 } : _ , {}) =

user2peak(α1) = 0 [α1 = ⊥]
user2peak(α1) = 0 [α1 , ⊥]
user2peak(α1) = CNEW(α1) [α1 , ⊥]
user2peak(α1) = CNEW(α1) + double_releasepeak(α1,>) [α1 , ⊥]
user2peak(α1) = CNEW(α1) + double_releasenet(α1,>) [α1 , ⊥]

user2net(α1) = 0 [α1 = ⊥]
user2net(α1) = user2peak(α1) [α1 = ∂]
user2net(α1) = CNEW(α1) + double_releasenet(α1,>) [α1 = >]

If we compute the cost of user1peak(α) and user1net(α) we obtain 2 and 0, respectively. That is, in this case,
double_release being invoked with two different arguments has cost -2. On the contrary, the cost of user2peak(α)
and user2net(α) is 1 and 0, respectively. That is, in this case, double_release being invoked with two equal argu-
ments has cost -1.

Theorem 5.1 (Correctness). Let M {F z ; s′} be a well-typed program and let C, c be its behavioural type and cn
be its initial configuration. Let also n be a solution of the function translate(C, c). Then, for every cn −→∗ cn′,
alive(cn′) ≤ n.

The proof of correctness of our technique is long, even if almost standard (see [17] for a similar proof). It consists
of two parts:

16

(Inf-Method)
Γ(m) = α(x, β) : o, R S = {α} ∪ β o < S

Γ[this 7→ α][destiny 7→ o][x 7→ x][z 7→ β][α 7→ ∅α][β 7→ ∅β] `S s : C[a1 . Γ1] · · · [an . Γn](
Γi(γ) = Γ j(γ)

)i, j∈1..n, γ∈S∪fv(o)
R′ = (S ∪ fv(o)) ∩ {γ | Γ1(γ) = F⊥}

Γ ` T m (Int x, Vm z){F y ; s} : m α(x, β) { C[a1 .∅] · · · [an .∅] } : o, R′; Γ[m 7→ α(x, β) : o, R′]

(Inf-Program)
Γ ` M : C,Γ Γ[this 7→ start] `start s : C[a1 . Γ1] · · · [an . Γn]

Γ ` M {F x ; s} : C, C[a1 .∅] · · · [an .∅]

Figure 6: Behavioural inference rules of method and programs.

1. the first part addresses the correctness of the type system in Section 4. As usual with type systems, the cor-
rectness is represented by a subject reduction theorem expressing that if a configuration cn of the operational
semantics is well typed and cn→ cn′ then cn′ is well-typed as well.

2. the second part uses a notion of direct cost of a behavioural type (of a configuration), which is the number of
virtual machines occurring in the type plus an over-approximation of those that will be created, and demonstrate
that the direct cost never increases during the evolution of a system.

The details are reported in Appendix A.

6. The SRA tool

The analysis technique presented in this article has been prototyped [14]. In this section we discuss a number of
technical details about the type system and about the translation of the cost equations in Section 5 into an input that
is adequate to an off-the-shelf solver – the CoFloCo solver [13]. We also deliver a preliminary assessment of our
prototype by discussing a number of examples.

6.1. Type inference
The system defined in Section 4 is a type-checking process, that is it compels the user to write the behavioural types

of methods. In order to relieve users from writing verbose annotations, it is possible to turn the type checking system
into a type inference. In fact, in the case of vml, this adaptation is not difficult because the only problematic issue is
the inference of method’s effects R. This issue is easily solved by changing the rules (T-Method) and (T-Program) in
Figure 5 into those of Figure 6. In particular, rule (Inf-Method) uses a new judgment Γ ` T m (T x, Vm z){F y ; s} :
m α(x, β) { c } : o, R′; Γ′, which also returns a new environment Γ′ and where R′ may be different from the method’s
effects stored in Γ(m). The main difference between (T-Method) and (Inf-Method) is that the latter one lets Γ′ record
method’s effects computed in the premise. The key constraint in Figure 6 is the left premise of (Inf-Program). This
premise imposes method definitions to be typed with the same input and output environment. That is, the environment
Γ is a fixpoint of the rule.

In order to compute the fixpoint Γ in the rule (Inf-Program), we notice that the differences between Γ and Γ′ in
Γ ` M : C,Γ′, if any, are in methods’ effects. In addition, these method’s effects are all finite because they are always
a subset of method’s arguments. Therefore, there is a standard technique for computing the least fixpoint environment:

1. verify that the transformation Γ ` M : C,Γ′ is monotone with respect to the subset ordering;
2. let Γ0 be such that Γ0(m) = α(x, β) : o,∅ and let Γi ` M : C,Γi+1. Then there exists a least n such that

Γn ` M : C,Γn.

It is easy to verify that 1 holds. Henceforth, the correctness of [14]. For example, let

m1 α(β, γ, δ){
ν f : m2α (β) # fX # γX

} - , { }

m2 α(β){
ν f : m3α (β) # fX

} - , { }

m3 α(β){
βX

} - , { }

17

Then, the reader can verify that the computation of the least fixpoint environment gives the following sequence of
environments:

- step 0: Γ0 = [m1 7→ α(β, γ, δ) : -,∅, m2 7→ α(β) : -,∅, m3 7→ α(β) : -,∅] ;

- step 1: Γ1 = [m1 7→ α(β, γ, δ) : -, {γ}, m2 7→ α(β) : -,∅, m3 7→ α(β) : -, {β}] ;

- step 2: Γ2 = [m1 7→ α(β, γ, δ) : -, {γ}, m2 7→ α(β) : -, {β}, m3 7→ α(β) : -, {β}] ;

- step 3: Γ3 = [m1 7→ α(β, γ, δ) : -, {β, γ}, m2 7→ α(β) : -, {β}, m3 7→ α(β) : -, {β}].

6.2. The translation of cost equations

To comply with CoFloCo input formats, we need to encode the vm values and the functions CNEW and CREL into
integer values and cost equations, respectively. Let

– > be encoded by 1, ∂ be encoded by 2, and ⊥ be encoded by 3. The vm value α ↓ is encoded by the conditional
value [α = 3]3 + [1 ≤ α ≤ 2]2;

– CNEW and CREL equations are encoded as follows and are fixed for all programs:

eq(CNEW(A), 0, [], [A = 3]).
eq(CNEW(A), 1, [], [A < 3]).

eq(CREL(A), -1, [], [A = 1]).
eq(CREL(A), 0, [], [A > 1]).

In order to illustrate the encoding in CoFloCo of the cost equations in Section 5, we discuss the equations of the two
factorial programs fact and cheap_fact in Section 2. The CoFloCo equations are reported in Figure 7.

1 eq(fact_peak(A,B), 0, [], [A = 3]).
2 eq(fact_peak(A,B), 0, [], [B = 0]).
3 eq(fact_peak(A,B), 0, [], [B > 0]).
4 eq(fact_peak(A,B), 0, [fact_peak(1,B)], [B > 0]).
5 eq(fact_peak(A,B), 0, [fact_net(1,B)], [B > 0]).
6

7 eq(fact_net(A,B), 0, [], [A = 3]).
8 eq(fact_net(A,B), 0, [fact_peak(A,B)], [A = 2]).
9 eq(fact_net(A,B), 0, [], [A = 1, B = 0]).

10 eq(fact_net(A,B), 0, [fact_net(1, B-1)], [A = 1, B > 0]).
11

12 eq(costly_fact_peak(A,B), 0, [], [A = 3]).
13 eq(costly_fact_peak(A,B), 0, [], [B = 0]).
14 eq(costly_fact_peak(A,B), 0, [], [B > 0]).
15 eq(costly_fact_peak(A,B), 0, [cnew(A)], [B > 0]).
16 eq(costly_fact_peak(A,B), 0, [cnew(A), costly_fact_peak(1, B-1)], [B > 0]).
17 eq(costly_fact_peak(A,B), 0, [cnew(A), costly_fact_net(1, B-1)], [B > 0]).
18 eq(costly_fact_peak(A,B), 0, [cnew(A), costly_fact_net(1, B-1), crel(1)], [B > 0]).
19

20 eq(costly_fact_net(A,B), 0, [], [A = 3]).
21 eq(costly_fact_net(A,B), 0, [costly_fact_peak(A,B)], [A = 2]).
22 eq(costly_fact_net(A,B), 0, [], [A = 1, B = 0]).
23 eq(costly_fact_net(A,B), 0, [cnew(A), costly_fact_net(1, B-1), crel(1)], [A = 1, B > 0]).

Figure 7: Cost equations of fact and costly_fact in CoFloCo format

These equations do not require any comments because they exactly correspond to the output of the translate
function in Section 5. We just observe that, in addition to these equations, one needs to specify a so-called entry point,
which corresponds to the main body. This entry point has the format

entry(METHOD_NAME(LIST_OF_ARGUMENTS):[CONDITIONS])

18

that is instantiated into entry(main(MAINVM):[]) for the main body. It is also possible to add ad-hoc entries for
particular methods, if the user wants to highlight their cost (in particular, our translator adds entries for peak and net
costs of every method). For example, the following table reports the outputs (of CoFloCo) corresponding to the entries
in the left column.

Entry Point Cost
entry(fact_net(1,B):[B>=0]). 0
entry(fact_peak(1,B):[B>=0]). 0
entry(costly_fact_net(1,B):[B>=0]). 0
entry(costly_fact_peak(1,B):[B>=0]). max([B,1])

The net cost of fact and costly_fact is equal to 0 because, in both cases, every created virtual machine is released
before the end of the program. For peak cost, the number of virtual machines in fact is 0. On the other hand,
costly_fact creates at each step a virtual machine and releases it after the recursive call. This management of
virtual machines gives a peak cost equal to maximum between 1 and B.

Unbounded recursive method with release operations. Consider the following wrong version of the fake_method
example from Section 2, where the programmer has erroneously written “n + 1” instead of “n − 1” in the recursive
invocation (henceforth the recursion is unbounded because the base case is never met). As a result one can expect
that the number of created virtual machines is infinite because, at every step, only one of the two created machines is
released.

Int fake_method(Int n) {
if (n=0) return 0 ;
else { VM x, y ; Fut<Int> f, g; Int u, v;

x = new VM() ; y = new VM() ;
f = this!double_release(x,x) ; u = f.get ;
g = this!fake_method(n+1) ; v = g.get ;
return 0 ; }

}

The equations generated by the analysis are shown in Figure 8. The results of the analysis of these equations
produce a cost of "infinity" for the main method, as suspected. However, lets suppose the situation in which both
vms are released (change double_release(x,x) to double_release(x,y)). In this case the set of equations of
fake_method remains almost identical with the only difference that the element (crel(1) in equations 10, 12, 14
and 18, now appears two times). If we re-run the cost analysis with the new equations we obtain, instead of infinity, a
maximum cost of two vms for the main method. Again this is the expected behavior because even though the program
runs indefinitely there are no more than two vms (in addition to the main one) co-existing at the same time.

There is an issue about Figure 7 that deserves to be commented. CoFloCo outputs an error when it is fed with that
set of equations. This is because instructions 8 and 21 are mutually recursive with instructions 5 and 17-18, respec-
tively, and mutual recursion is banned by the analyser. It is worth to notice that 8 and 21 correspond to invocations
of fact_net and costly_fact_net when the carrier is ∂. Intuitively, the idea behind these equations is that when
the vm state is unknown the analyzer should assume the worth and consider the highest possible cost (the peak cost)
as the net cost. The workaround to solve this problem is to remove the mutual recursion by replacing in-place the
internal function invocation by its body.

6.3. Assessments – a comparison with C4B and SACO
There are very few tools targeting resource analysis in programs that feature concurrency and negative costs due

to explicit release operations. To the best of our knowledge, the most relevant tool in the literature is SACO2, which is
based on the results of [4] and is able to address a setting similar to ours. We also compare SRA with C4B3 [11], a tool
based on amortized analysis and using the results in [19]. Notwithstanding C4B only targets sequential programs, it
may be considered as the state-of-the-art of certified tools for the automatic static analysis of resource usage bounds.

Some remarks on the tool comparison are in order:

2Web site at http://ei.abs-models.org:8082/clients/web/
3Web site at http://www.cs.yale.edu/homes/qcar/aaa/

19

1 eq(fakeMethod01peak(THISVM,N), 0, [], [THISVM = 3]).
2 eq(fakeMethod01peak(THISVM,N), 0, [], [THISVM < 3]).
3

4 eq(fakeMethod01net(THISVM,N), 0, [], [THISVM = 3]).
5 eq(fakeMethod01net(THISVM,N), 0, [], [N = 0, THISVM = 1]).
6

7 eq(fakeMethod01peak(THISVM,N), 0, [cnew(THISVM)], [N > 0, THISVM < 3]).
8 eq(fakeMethod01peak(THISVM,N), 0, [cnew(THISVM),cnew(THISVM)], [N > 0, THISVM < 3]).
9 eq(fakeMethod01peak(THISVM,N), 0, [cnew(THISVM),cnew(THISVM),doubleRelease011peak(THISVM, 2)], [N > 0, THISVM < 3]).

10 eq(fakeMethod01peak(THISVM,N), 0, [cnew(THISVM),cnew(THISVM),doubleRelease011net(THISVM, 2),
11 crel(1)], [N > 0, THISVM < 3]).
12 eq(fakeMethod01peak(THISVM,N), 0, [cnew(THISVM),cnew(THISVM),doubleRelease011net(THISVM, 2),
13 crel(1),fakeMethod01peak(THISVM, N + 1)], [N > 0, THISVM < 3]).
14 eq(fakeMethod01peak(THISVM,N), 0, [cnew(THISVM),cnew(THISVM),doubleRelease011net(THISVM, 2),
15 crel(1),fakeMethod01net(THISVM, N + 1)], [N > 0, THISVM < 3]).
16

17 eq(fakeMethod01net(THISVM,N), 0, [], [THISVM = 3]).
18 eq(fakeMethod01net(THISVM,N), 0, [cnew(THISVM),cnew(THISVM),doubleRelease011net(THISVM, 2),
19 crel(1),fakeMethod01net(THISVM, N + 1)], [N > 0, THISVM = 1]).
20

21 eq(doubleRelease011peak(THISVM,X), 0, [], [THISVM = 3]).
22 eq(doubleRelease011peak(THISVM,X), 0, [], [THISVM < 3]).
23 eq(doubleRelease011peak(THISVM,X), 0, [crel(X)], [THISVM < 3]).
24 eq(doubleRelease011peak(THISVM,X), 0, [crel(X),crel(3)], [THISVM < 3]).
25

26 eq(doubleRelease011net(THISVM,X), 0, [], [THISVM = 3]).
27 eq(doubleRelease011net(THISVM,X), 0, [crel(X),crel(3)], [THISVM = 1]).

Figure 8: Cost equations of fake_method and double_release in CoFloCo format

– The three tools targets three different programs: C4B targets C, SACO targets ABS, and SRA targets vml. Therefore,
in order to compare the three tools, every test program has been rewritten according to the corresponding
language of the tool. The sources of these tests are available in github 4.

– Every tool uses different metrics for quantitative analysis. SRA quantifies the resource usage by means of the
operations new VM() and release. C4B has two metrics: the (i) back-edge metrics that assigns a cost of 1 to
every back edge in the control-flow graph, thus not allowing negative costs, and (ii) the tick metric that uses a
special operation tick(n) that has a cost of n where n can be either a positive or negative number. SACO, on the
other hand, considers both of these kinds of metrics and, in addition, it also support other ones that are specific
to the domain of the targeted language.

– Both SACO and SRA separate peak costs and net costs. This distinction is not made in C4B because it does not
address concurrency. Therefore we restrict the results of Table 9 only to the net costs of the corresponding
programs.

Table 9 reports the results of our analysis. It is worth to observe that SRA returns better results than both
C4B and SACO for the program betterThanAmortized. This program, reported in Figure 10, defines a method
betterThanAmortised(n,m,x) that recursively invokes itself and, when (n > m) every invocation has cost 1, oth-
erwise it has cost 2. Therefore, the cost of betterThanAmortised(2 ∗ n,n,x) is 3 ∗ n and this is the result of SRA.
However, the other techniques do not recognize that the most costly branch is executed only half of the times and
return 2 ∗ (2 ∗ n) = 4 ∗ n. Such precision is achieved in SRA by means of the treatment given to numerical expressions,
and by the use of a solver (as [13]) capable to deal with conditional branches accurately. This precision is lost in tech-
niques based on type systems because of the unifications that are necessary to enforce on the branches of conditionals,
in order to type the continuations. We also observe that betterThanAmortized is not an exotic, ad-hoc program but
a rather common programming pattern (a sequence of nested conditional statements).

SRA also returns remarkable results (i) in presence of unbounded recursion – see the example producerConsumer
–, (ii) in cases where the identity of the arguments is relevant for the cost analysis – see the example doubleRelease
–, and (iii) for standard patterns of concurrency – see the examples doWorkAsync and producerConsumer.

4https://github.com/abelunibo/SRA-Tests-Files)

20

Program C4B SACO SRA
betterThanAmortised 2 ∗ n 2 ∗ n n + m
greatestCommonDivisor Max(n,m) failed n + m
costlyFactorial n n n
doWorkSync 2 2 2
quicksort 2 ∗ n not analysable not analysable
SPEED1 2 ∗ n not analysable infinite
doWorkASync not analysable n n
producerConsumer not analysable not analysable 3
doubleRelease failed -2 [x = y]-1; [x , y]-2

Figure 9: Comparison of C4B, SACO, and SRA for some simple programs

Int betterThanAmortized(Int n, Int m, VM x) {
Fut<Int> f; Int z;
if (n==0) return 0;
else if (n>m) {
VM v = new VM();
f = x!betterThanAmortized(n-1,m,v);
z= f.get; return 0; }

} else {
VM v = new VM(); VM w = new VM();
f = v!betterThanAmortized(n-1,m,w);
z = f.get; return 0;

}
}

{
VM x = new VM(); Int z;
Fut<Int> f = this!betterThanAmortized(2*n, n, x);
f.get;

}

Figure 10: The program betterThanAmortized

As a main downside of SRA, it is unsatisfactory for computing costs in presence of multi-variate arguments, as
in greatestCommonDivisor and SPEED1. However, it is worth to observe that this loss of precision is actually a
limitation of the cost equation solver that cannot handle multi-variate arguments in its current version. For a similar
reason, SRA fails in computing the cost of the quicksort program because of a restriction in the CoFloCo solver that
does not handle non-linear recursion (while SRA correctly derives the behavioural types of quicksort).

7. Related Work

After the pioneering work by Wegbreit in 1975 [28] that discussed a method for deriving upper-bounds costs of
functional programs, a number of cost analysis techniques have been developed. Those ones that are closely related
to this contribution are based either on cost equations (solvers) or on amortized analysis.

The techniques based on cost equations address cost analysis in three steps by: (i) extracting relevant information
out of the original programs by abstracting data structures to their size and assigning a cost to every program expres-
sion, (ii) converting the abstract program into cost equations, and (iii) solving the cost equations with an automatic
tool. Recent advances have been done for improving the accuracy of upper-bounds for cost equations [2, 3, 10, 13, 18]
and we refer to [13] for a comparison of these tools. The main advantage of these techniques is that cost equations
may carry Presburger arithmetic conditions thus supporting a precise cost analysis of conditional statements. As a
downside, techniques that extract control flow graphs and use control flow refinement techniques (such as [3, 4]) have
a less precise alias analysis and name identity management than our technique (Section 4). These two features are

21

essential for function or procedure abstraction; in fact, a weak approach would jeopardise compositional reasoning
when large programs are considered.

The techniques based on amortized analysis [27] associate so-called potentials to program expressions by means
of type systems (these potentials determine the resources needed for each expression to be evaluated). The connection
between the original program and the cost equations can be indeed demonstrated by a standard subject-reduction
theorem [12, 20, 22–24]. While the techniques based on types are intrinsically compositional and, more importantly,
type derivations can be seen as certificates of abstract descriptions of functions, type based methods do not model
the interaction of integer arithmetic with resource usage, thus being less accurate in some cases (such as the program
betterThanAmortised in Figure 10).

Our technique combines the advantages of the two approaches discussed above. It is modular, like the techniques
based on cost equations, our one also consists of three steps, and it extracts the relevant information of programs
by means of a behavioural type system, like the technique based on amortized analysis. Therefore, our technique
is compositional and can be proved sound by means of a standard subject-reduction theorem. At the same time it is
accurate in modelling the interaction of integer arithmetic with resource usage.

A common feature of cost analysis techniques in the literature is that they analyze cumulative resources. That is,
resources that do not decrease during the execution of the programs, such as execution time, number of operations,
memory (without an explicit free operation). As already discussed, this assumption eases the analysis because it
permits to compute over-approximated cost. On the contrary, the presence of an explicit or implicit release operation
entangles the analysis. In [6], a memory cost analysis is proposed for languages with garbage collection. It is worth
to say that the setting of [6] is not difficult because, by definition of garbage collection, released memory is always
inactive. The impact of the release operation in the cost analysis is thoroughly discussed in [7] by means of the notions
of peak cost and net cost that we have also used in Section 5. It is worth to notice that, for cumulative analysis, this
two notions coincide while, in non-cumulative analysis (in presence of a release operation), they are different and the
net cost is key for computing tight upper bounds.

Recently [5] has analysed the cost of a language with explicit releases. We observe that the release operation stud-
ied in [5] is used in a very restrictive way: only locally created resources can be released. This constraint guarantees
that costs of functions are always not negative, thus permitting the (re)use of non-negative cost models of cumulative
analysis.

We conclude by discussing cost analysis techniques for concurrent systems, which are indeed very few [1, 4, 21].
In order to reduce the imprecision of the analysis caused by the nondeterminism, [1, 4] use a clever technique for
isolating sequential code from parallel code, called may-happen-in-parallel [8]. We notice that no one of these
contributions consider a concurrent language with a powerful release operation that allows one remove the resources
taken in input. In fact, without this operation, one can model the cost by simply aggregating the sets of operations that
can occur in parallel, as in [4], and all the theoretical development is much easier.

8. Conclusion

This paper presents the first (to the best of our knowledge) static analysis technique that computes upper bound
of virtual machines usages in concurrent programs that may create and, more importantly, may release such ma-
chines. Our analysis consists of a type system that extracts relevant information about resource usages in programs,
called behavioural types; an automatic translation that transforms these types into cost expressions; the application of
solvers, like CoFloCo [13], on these expressions that compute upper bounds of the usage of virtual machines in the
original program. A relevant property of our technique is its modularity. For the sake of simplicity, we have applied
the technique to a small language. However, by either extending or changing the type system, the analysis can be
applied to many other languages with primitives for creating and releasing resources. In addition, by changing the
translation algorithm, it is possible to target other solvers that may compute better upper bounds, such as those based
on multivariate amortized analysis [19].

For the future, we consider at least two lines of work. First, we intend to alleviate the restrictions introduced
in Section 3 on the programs we can analyse. This may be pursued by retaining more expressive notations for the
effect of a method, i.e. by considering R as a set of sets instead of a simple set. Such a notation is more suited for
modelling nondeterministic behaviours and it might be made even more expressive by tagging all the different effects

22

in Rwith a condition specifying when such effect is yielded. Clearly, the management of these domains becomes more
complex and the trade-off between simplicity and expressiveness must be carefully evaluated. Second, we intend to
implement our analysis targeting a programming language with a formal model as ABS [25], of which vml is a very
basic sub-calculus. The current prototype translates a behavioural type program into cost equations.

Our behavioural types are abstract specifications of programs that highlight resource usages. In our mind, these
abstract specifications must bridge the gap between programs and performance constraints in Service Level Agreement
(SLA, in short) documents. As discussed in [16], vml (actually, full ABS) is intended to be a language using Amazon
Elastic Cloud Computing features as library functions. Therefore, vml might be used to model cloud services, where
a primary issue is the compatibility with the SLA document. The technique conveyed by the present article is to
(i) extract the abstract specifications by means of the type (inference) system, (ii) compute the cost by means of the
solver, and (iii) verify whether the computed cost complies with the SLA or not. This paper demonstrates that these
steps are all correct. In this respect, a relevant future issue is the integration of our technique with other solvers, such
as theorem provers, to be used in those cases where the cost equation solver is too imprecise.

Acknowledgements. We thank Elena Giachino for the valuable discussions and for the help in the assessment of our
technique with respect to those based on amortized analysis. We also thank Antonio Flores-Montoya and Samir
Genaim for the discussions about the cost analysers CoFloCo and PUBS.

References

[1] Albert, E., Arenas, P., Correas, J., Genaim, S., Gómez-Zamalloa, M., Puebla, G., Román-Díez, G., 2015. Object-sensitive cost analysis for
concurrent objects. Software Testing, Verification and Reliability 25 (3), 218–271, stvr.1569.
URL http://dx.doi.org/10.1002/stvr.1569

[2] Albert, E., Arenas, P., Genaim, S., Puebla, G., 2008. Automatic inference of upper bounds for recurrence relations in cost analysis. In:
Proceedings SAS 2008. Vol. 5079 of Lecture Notes in Computer Science. Springer, pp. 221–237.

[3] Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D., 2012. Cost analysis of object-oriented bytecode programs. Theoretical Computer
Science 413 (1), 142–159.

[4] Albert, E., Correas, J., Román-Díez, G., 2014. Peak cost analysis of distributed systems. In: Proceedings of SAS 2014. Vol. 8723 of Lecture
Notes in Computer Science. Springer, pp. 18–33.

[5] Albert, E., Correas, J., Román-Díez, G., 2015. Non-Cumulative Resource Analysis. In: Proceedings of TACAS 2015. Lecture Notes in
Computer Science. Springer, pp. 85–100.

[6] Albert, E., Genaim, S., Gómez-Zamalloa, M., 2010. Parametric inference of memory requirements for garbage collected languages. SIG-
PLAN Not. 45 (8), 121–130.

[7] Alonso-Blas, D. E., Genaim, S., 2012. On the limits of the classical approach to cost analysis. In: Proceedings of SAS 2012. Vol. 7460 of
Lecture Notes in Computer Science. Springer, pp. 405–421.

[8] Barik, R., 2006. Efficient computation of may-happen-in-parallel information for concurrent java programs. In: Proceedings of LCPC 2005.
Vol. 4339 of Lecture Notes in Computer Science. Springer, pp. 152–169.

[9] Berman, L., 1980. The complexity of logical theories. Theoretical Computer Science 11 (1), 71 – 77.
URL http://www.sciencedirect.com/science/article/pii/0304397580900377

[10] Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J., 2014. Alternating runtime and size complexity analysis of integer programs. In:
Proceedings of TACAS 2014. Vol. 8413 of Lecture Notes in Computer Science. Springer, pp. 140–155.

[11] Carbonneaux, Q., Hoffmann, J., Shao, Z., 2015. Compositional certified resource bounds. In: Proceedings of the 36th PLDI Conference.
ACM, pp. 467–478.

[12] Chin, W., Nguyen, H. H., Qin, S., Rinard, M., 2005. Memory usage verification for oo programs. In: Proceedings of SAS 2005. Vol. 3672 of
Lecture Notes in Computer Science. Springer, pp. 70–86.

[13] Flores Montoya, A., Hähnle, R., 2014. Resource analysis of complex programs with cost equations. In: Proceedings of 12th Asian Symposium
on Programming Languages and Systems. Vol. 8858 of Lecture Notes in Computer Science. Springer, pp. 275–295.

[14] Garcia, A., Laneve, C., 2015. Static analyzer of resource usage upper bounds.
URL sra.cs.unibo.it

[15] Garcia, A., Laneve, C., Lienhardt, M., 2015. Static analysis of cloud elasticity. In: Proceedings of the 17th PPDP. ACM, pp. 125–136.
[16] Giachino, E., de Gouw, S., Laneve, C., Nobakht, B., 2016. Statically and dynamically verifiable sla metrics. To appear on Lecture Notes in

Computer Science.
URL cs.unibo.it/˜laneve/papers/SLA-metrics.pdf

[17] Giachino, E., Laneve, C., Lienhardt, M., 2015. A framework for deadlock detection in ABS. Software and Systems ModelingTo appear.
URL http://dx.doi.org/10.1007/s10270-014-0444-y

[18] Gulwani, S., Mehra, K. K., Chilimbi, T., 2009. Speed: precise and efficient static estimation of program computational complexity. In: ACM
SIGPLAN Notices. Vol. 44. ACM, pp. 127–139.

[19] Hoffmann, J., Aehlig, K., Hofmann, M., 2011. Multivariate amortized resource analysis. In: Proceedings of POPL 2011. ACM, pp. 357–370.
[20] Hoffmann, J., Aehlig, K., Hofmann, M., 2012. Multivariate amortized resource analysis. ACM Trans. Program. Lang. Syst. 34 (3), 14.

URL http://doi.acm.org/10.1145/2362389.2362393

23

[21] Hoffmann, J., Shao, Z., 2015. Automatic static cost analysis for parallel programs. [Online; accessed 11-February-2015].
URL http://cs.yale.edu/homes/hoffmann/papers/parallelcost2014.pdf

[22] Hofmann, M., Jost, S., 2003. Static prediction of heap space usage for first-order functional programs. In: Proceedings of POPL 2003. ACM,
pp. 185–197.

[23] Hofmann, M., Jost, S., 2006. Type-based amortised heap-space analysis. In: Proceedings of ESOP 2006. Vol. 3924 of Lecture Notes in
Computer Science. Springer, pp. 22–37.

[24] Hofmann, M., Rodriguez, D., 2009. Efficient type-checking for amortised heap-space analysis. In: Proceedings of CSL 2009. Vol. 5771 of
Lecture Notes in Computer Science. Springer, pp. 317–331.

[25] Johnsen, E. B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M., 2011. ABS: A core language for abstract behavioral specification. In:
Proceedings of FMCO 2010. Vol. 6957 of Lecture Notes in Computer Science. Springer, pp. 142–164.

[26] Mathew, S., November 2014. Overview of amazon web services, at d0.awsstatic.com/whitepapers/aws-overview.pdf.
[27] Tarjan, R. E., 1985. Amortized computational complexity. SIAM Journal on Algebraic Discrete Methods 6 (2), 306–318.
[28] Wegbreit, B., 1975. Mechanical program analysis. Communications of the ACM 18 (9), 528–539.

Appendix A. The proof of correctness of the type system

Appendix A.1. Type system correctness
As discussed in Section 5, the correctness of our analysis technique consists of two parts. The first part addresses

the correctness of the type system in Section 4, which is usually expressed by a subject reduction theorem. This
theorem states that if a configuration cn of the operational semantics is well typed and cn→ cn′ then cn′ is well-typed
as well. It is worth to observe that we cannot hope to demonstrate a statement guaranteeing type-preservation because
our types are “behavioural” and change during the evolution of the systems. However, it is critical for the correctness
of the cost analysis that there exists a relation between the type of cn and the type of cn′.

Therefore, a subject reduction for the type system of Section 4 requires

1. the extension of the typing to configurations;
2. the definition of an evaluation relation between behavioural types.

The extension of the typing to configurations. When typing configurations there are two kinds of vm names: static-
time vm names and runtime vm names. The former names are ranged over by α, β, · · · ; the latter names, which also
include err, are ranged over by o, o′, · · · . With an abuse of notation, in the following, α and o will also range over
runtime vm names o and err. This abuse will let us to reuse the typing rules in Figure 4 (with one exception, see
below). The syntax of runtime types is:

k ::= 0 | f (⊥) | f (_) | f (o) | (f , m o(r)) | vm(o, a | f; f) | k ‖ k runtime types
f ::= (f ,c, S) process types
a ::= . . . | [o] extended atom

The syntactic category kmodels behavioural types only existing at runtime, in particular, virtual machines, futures,
and processes. The term 0 correspond to an element of the running program that does not have any effect on its cost
(e.g., ε); f (⊥), f (_), and f (o) type a future binder: f is the name of the future, ⊥ or _ or o identify the value of
the future, namely either ⊥, if it is still not computed, or _ or o, if it has been already computed (see the rest of the
paragraph for more details); (f , m o(r)) corresponds to an invocation message. The type vm(o, a | f; f) corresponds to
a virtual machine (alive if a = >, dead otherwise) executing the process f and with a set of processes f to execute.
Processes are triples (f , c, S) where:

– f is the identity of the process (i.e. the name of its future);

– c is the type of the statement the process will execute;

– S is a set of runtime vm names.

The term k ‖ k types the parallel composition of runtime configurations. Atoms are extended with the term [o] that
represents the returned value of a method – see the discussion below.

The runtime type system consists of rules in Figure 4 plus the rules in Figure A.11. The reader may notice that
the first rule (BT-Return) replaces the definition of the judgment Γ `S s : c . Γ′ for the return statement in Figure 4.
This modification, together with the extensions of atoms, is used to refine the (static-time) typing rules in order to deal

24

(BT-Return)
Γ ` e : o Γ ` destiny : o′ o < S

Γ `S return e : [o] . Γ[o′ 7→ Γ(o)]

BT-Fut-Running
Γ(f) = (o, o, Ft, R)

Γ ` fut(f ,⊥) : f (⊥)

BT-Fut-Computed
Γ ` v : o Γ ` f : o

Γ ` fut(f , v) : f (o)

BT-Fut-Unsync
Γ(f) = (o, o, Ft, R) v , ⊥ Γ ` v : o′

α ∈ R[o
′
/o]⇒ Γ(α) = ∅⊥

Γ ` fut(f , v) : f (o′)

BT-Empty
Γ ` ε : 0

BT-Invoke
Γ ` m o(v) : o, R Γ(f) = (o, o, Ft, R)

Γ ` v : r

Γ ` invoc(o, f , m, v) : (f , o m(r))

BT-Vm
Γ ` o : Fa (Γ `Si pi : fi fi = (fi,ci, Si))i∈1..n

Γ ` vm(o, a, p1; {p2 . . . pn}) : vm(o, a | f1; {f2, . . . , fn})

BT-Parallel
Γ ` cn : k Γ ` cn′ : k′

Γ ` cn cn′ : k ‖ k′

BT-Process
l = [(xi 7→ vi)i∈I , destiny 7→ f] (Γ ` vi : xi)i∈I Γ(f) = (o, o, Ft, R)

Γ[(xi 7→ xi)i∈I][destiny 7→ o] `S s : C[a1 . Γ1] · · · [an . Γn]
(
Γi(γ) = Γ j(γ)

)i, j∈1..n, γ∈S
R = (S ∪ fv(o)) ∩ {γ | Γ1(γ) = F⊥}

Γ `S {l | s} : (f ,C[a1 .∅] · · · [an .∅], S)

Figure A.11: Runtime Typing rules

with a naming issue in the subject reduction theorem. In particular, when a method returns a freshly created virtual
machine, we associate to it a fresh name in (T-Invoke) that we can use later in (T-Get) and in the rest of the typing of
the (static) program. The problem is that, when we type the method invocation (i.e. when we collect the information
about the method and its return value in order to type future usage of this value), the identity of the returned virtual
machine is still unknown because the virtual machine has not yet been created. In order to solve this problem, we
extend atoms with the term [o], which retains the returned value and we use the new rule (BT-Return) to type the
return statements.

The other rule of Figure A.11 that we comment is (BT-Vm). This rule allows one to type a vm term containing a
number of processes p. To this aim, one has to type every p by means of the judgment Γ[this 7→ o] `S p : (f , c, S);
namely the index S and the third argument of the process type must be the same. In fact, this argument records the
actual vm names of the corresponding method invocation – see rule (R-Bind-Mtd) in Figure A.12. In turn, this set is
used in (BT-Process) to type the statements of the processes.

Lemma Appendix A.1 (Substitution Lemma). Let Γ ` cn : k and let ι be an injective renaming of names, vm names,

and future names. Let ι(Γ)
def
= [ι(x) 7→ ι(Γ(x))]x∈dom(Γ).

Then ι(Γ) ` ι(cn) : ι(k). Similarly for Γ `S {l | s} : (f , c) and Γ `S s : c . Γ′ (in these two cases also S is mapped by
ι) and for Γ ` e : x.

Proof. The proof proceeds straightforward by induction on the structure of s.

Runtime Types Evolution. As usual with behavioural types, our types change while the programs execute. These
changes can be defined and, more importantly, can be related to the cost analysis. The modifications of types, noted
 , is defined as a reduction relation in Figure A.12. The rules are mostly an adaptation of the operational semantics
of vml at the type level. Therefore, to ease the understanding of the relation , we use similar names for similar rules.
Nevertheless, there are few differences from the operational semantics of vml: i) rule (Assign) has no corresponding
rule in the definition of (assignments are managed at the type system level); ii) rule (Activate) is replaced by the
rule (R-GC) (there are no scheduling policies in our runtime types, so the only effect of the rule (Activate) at the
type level is the deletion of a finished process); iii) similarily, rule (Activate-Get) has no corresponding rule in the
definition of ; and iv) because at runtime all objects identities are known, the rules (Read-Fut), (Async-Call),
(Bind-Mtd) and (New-VM) have been adjusted in order to replace the names generated a static time with the objects’
actual identities.

25

R-Skip
vm(o,> | (f , 0 # c, S); f)
 vm(o,> | (f ,c, S); f)

R-Read-Fut
vm(o,> | (f , f ′

o

X # c, S); f) ‖ f ′(o′)
 vm(o,> | (f ,c[o

′
/o], S); f) ‖ f ′(o′)

R-Async-Call
f ′′ fresh

vm(o,> | (f , ν f ′: m o′(v, β) # c, S); f)
 vm(o,> | (f ,c[f ′′/ f ′], S); f) ‖ (f ′′, m o′(v, β))

R-Bind-Mtd
m α(Int x, VM z) = c, o, R S = {o, o}

vm(o,> | f; f) ‖ (f , o m(v, o))
 vm(o,> | f; f ∪ {(f ,c[v, o/x, z][o/α], S)}) ‖ f (⊥)

R-LChoice
vm(o,> | (f ,c + c

′, S); f)
 vm(o,> | (f ,c, S); f)

R-RChoice
vm(o,> | (f ,c + c

′, S); f)
 vm(o,> | (f ,c′, S); f)

R-Ite-T
se = true

vm(o,> | (f , (se){c }, S); f)
 vm(o,> | (f ,c, S); f)

R-Ite-F
se = false

vm(o,> | (f , (se){c }, S); f)
 vm(o,> | (f , 0, S); f)

R-New-VM
o′ fresh

vm(o,> | (f , νβ # c, S); f)
 vm(o,> | (f ,c[o

′
/β], S); f) ‖ vm(o′,> | ∅)

R-Release-VM
vm(o,> | (f , o′X # c, S); f) ‖ vm(o′, a′ | f ′; f ′)
 vm(o,> | (f ,c, S); f) ‖ vm(o′,⊥ | f ′; f ′)

R-GC
vm(o, a | (f , 0 .∅, S); f ∪ {f})

 vm(o, a | f; f)

R-Return
vm(o,> | (f , [o], S); f) ‖ f (⊥)

 vm(o,> | (f , 0 .∅, S); f) ‖ f (o)

R-Release-Bot
vm(o,⊥ | (f ,c, S); f) ‖ f (⊥)

 vm(o,⊥ | (f , 0 .∅, S); f) ‖ f (err)

R-Bind-Mtd-Err
vm(o′,⊥ | f; f) ‖ (f , o′ m(v))
 vm(o′,⊥ | f; f) ‖ f (err)

R-Bind-Mtd-Serr
(f , err m(v)) f (err)

R-Release-GC
vm(o,> | (f , . . . o′X . . . , S), f) ‖ vm(o′,⊥ | . . .)
 vm(o,> | (f , . . . 0 . . . , S), f) ‖ vm(o′,⊥ | . . .)

R-Context
k k

′

k ‖ k′′ k
′ ‖ k′′

Figure A.12: Operational Semantics of Runtime Types

The subject reduction theorem. Based on the previous construction, we present the subject reduction theorem. Lemma Ap-
pendix A.2 relates the static time type system to the runtime type system: this corresponds to the first step of the subject
reduction property.

Lemma Appendix A.2. Let P = M {F x ; s} be a vml program, and let Γ ` P : C, c. Then

Γ[start 7→ >][fstart 7→ (_, start,∅>,∅)] ` vm(start,>, {[destiny 7→ fstart] | s},∅) : vm(start,> | (fstart, c,∅);∅) .

Proof. The proof follows by the application of rules (BT-Vm) and (BT-Process), and using the hypothesis.

The main subject reduction theorem states that any well-typed runtime program reduces into another well-typed
runtime program.

Theorem Appendix A.3 (Subject Reduction). Let Γ ` cn : k. If cn → cn′ then there exists Γ′ such that Γ′ ` cn′ : k′

and k ∗ k′.

Proof. As usual for Subject Reduction theorems we proceed by case on the reduction rule used in cn → cn′. Since
our types are behavioral we cannot assume that the types of a runtime programs state and its reduction are equivalent,
instead we prove that this types (k,k′) are related according to the operational semantics for runtime types, see Figure
A.12. We present the proof of some cases, the rest are either straightforward or similar to those below. Whenever the
construction of ι is omitted it is considered as the identity function. Finally, if not stated otherwise, we implicitly use
the notation used in the considered reduction rule:

• Case (Assign).
(Assign)

v = [[e]]l

vm(o,>, {l | x = e; s}, q)→ vm(o,>, {l[x 7→ v] | s}, q)

26

By hypothesis we have that Γ ` vm(o,>, {l | x = e; s}, q) : k. By application of the corresponding typing rules
we have that k = vm(o,> | (f , 0 # c, S), f). Let Γ′ = Γ, then by application of rules (BT-VM) and (BT-Process),
and by hypothesis we have that Γ′ ` vm(o,>, {l[x 7→ v] | s}, q) : k′, with k′ = vm(o,> | (f , c, S), f). We notice
that k and k′ are related by rule (R-Skip)

• Case (Read-Fut).

(Read-Fut)

f = [[e]]l v , ⊥

vm(o,>, {l | x = e.get; s}, q) fut(f , v)→ vm(o,>, {l | x = v; s}, q) fut(f , v)

By hypothesis we have that Γ ` vm(o,>, {l | x = e.get; s}, q) fut(f , v) : k. Let consider the case in which
Γ(f) = (o, α, Ft, R) (the other case, where Γ(f) = o, is trivial). By reconstruction of the proof tree of the
hypothesis, with l = {xi 7→ xi | i ∈ I}, we derive that k = vm(o,> | (f ′, fX

o
c, S), f) ‖ f (o′′) and that

Γ[(xi 7→ xi)i∈I][destiny 7→ o′][β 7→ ∅⊥]β∈R[β′ 7→ ∅t′]β′∈R′ [f 7→ o] ` s : c with R′ = fv(o) \ R and
t′ = t u (Γ(α)⇓).

Let ι = [o′′/o]: we have that ι(Γ) = Γ. Let Γ′ = Γ[f 7→ o′′], by lemma Appendix A.1 we have that Γ′[(xi 7→

xi)i∈I][destiny 7→ o′][β 7→ ∅⊥]β∈ι(R)[β′ 7→ ∅t′]β′∈R′′ ` s : ι(c) with R′′ = fv(o′′) \ ι(R). To prove the theorem
in this case, we need to show that s is typable with the environment Γ′[(xi 7→ xi)i∈I][destiny 7→ o′]. First,
because of the side condition in rule (BT-Fut-Unsync), we have that Γ′(β) = ∅⊥ for all β ∈ ι(R). We thus have

Γ′[(xi 7→ xi)i∈I][destiny 7→ o
′][β 7→ ∅⊥]β∈ι(R)[β′ 7→ ∅t′]β′∈R′′ = Γ′[(xi 7→ xi)i∈I][destiny 7→ o

′][β′ 7→ ∅t′]β′∈R′′

Now, to remove the last substitution [β′ 7→ ∅t′]β′∈R′′ , we have four cases:

– either R′′ is empty, in which case that substitution is the identity;

– either t′ is >, in which case, by construction of the set R, we have Γ′(β′) = Γ(β) = >: the substitution does
not change Γ′;

– either t′ is ∂ and Γ′(β′) is >, in which case Γ′[(xi 7→ xi)i∈I][destiny 7→ o′] ` s : ι(c) holds;

– either t′ is ∂ and Γ′(β′) is ⊥, in which case Γ′[(xi 7→ xi)i∈I][destiny 7→ o′] ` s : c′ holds, with ι(c) and
c′ being related with few (possibly none) application of the rule (R-Release-GC): statements release β
are now typed with (T-Release-Bot) instead of (T-Release).

We can then conclude that Γ′ ` vm(o,>, {l | x = v; s}, q) fut(f , v) : k′ with k′ = vm(o,> | (f ′, c′, S), f) ‖
f (o′′), and behavioral types k and k′ are related by (R-Read-Fut), and possibly few application of (R-Release-
GC).

• Case (Async-Call).

(Async-Call)

o′ = [[e]]l v = [[e]]l f = fresh()
vm(o,>, {l | x = e!m(e); s}, q)→ vm(o,>, {l | x = f ; s}, q) invoc(o′, f , m, v)

Lets consider the case when Γ(o′) = > (the opposite case Γ(o′) = ⊥ is almost identical). By hypothesis we have
that Γ ` vm(o,>, {l | x = e!m(e); s}, q) : k. By reconstruction we have that k = vm(o,> | (f ′, ν f ′′: m o′(s) #
c, S′), f) and that there is Γ′′ such that Γ[(xi 7→ xi)i∈I][destiny 7→ o′] ` !m(e) : ν f ′′: m o′(s).Γ′′ and Γ′′ ` s : c.

Let ι = [f/ f ′′] and lets choose Γ′ such that Γ′′ = Γ′[(xi 7→ xi)i∈I][destiny 7→ o′], by lemma Appendix
A.1 we have that ι(Γ′)[(xi 7→ xi)i∈I][destiny 7→ o′] ` vm(o,>, {l | x = e!m(e); s}, q) → vm(o,>, {l | x =

f ; s}, q) invoc(o′, f , m, v) : k′ with k′ = vm(o,> | (f ′, 0 # c′, S′), f) ‖ (f ′′, m o′(r)), where c′ = ι(c). Behavioral
types k and k′ are related by (R-Async-Call).

27

• Case (Release-VM).

(Release-VM)

o′ = [[e]]l o , o′

vm(o,>, {l | release e; s}, q) vm(o′, a′, p′, q′)→ vm(o,>, {l | s}, q) vm(o′,⊥, p′, q′)

By hypothesis we have that Γ ` vm(o,>, {l | release e; s}, q) vm(o′, a′, p′, q′) : k and we can derive that
k = vm(o, a | (f , o′X # c, S), f) ‖ vm(o′, a′ | f ′). Let Γ′ = Γ[o′ 7→ ∅⊥], we have that Γ′ ` vm(o,>, {l |
s}, q) vm(o′,⊥, p′, q′) : k′ with k′ = vm(o, a | (f , c, S), f) ‖ vm(o′,⊥ | f ′). Behavioral types k and k′ are
related by (R-Release-VM)

• Case (Return).

(Return)

v = [[e]]l f = l(destiny)
vm(o,>, {l | return e}, q) fut(f ,⊥)→ vm(o,>, {l | ε}, q) fut(f , v)

By reconstruction of the proof tree of the hypothesis after the application of rules (BT-Parallel), (BT-Vm),
(BT-Process) and (BT-Return), we can derive that k = vm(o,> | (f , [o], S), f) ‖ f (⊥). Let Γ′ = Γ, by
hypothesis and by rule (BT-Fut-Unsync) we have that Γ′ ` vm(o,>, {l | ε}, p2 . . . pn) fut(f , v) : k′ with
k′ = vm(o,> | (f , 0 . ∅, S), f) ‖ f (o). Note that the side condition α ∈ R[o′/o] ⇒ Γ(α) = ∅⊥ of the rule
(BT-Fut-Unsync) is a consequence of the constraints R = (S ∪ fv(o)) ∩ {γ | Γ1(γ) = F⊥} of the (BT-Process)
rule. Finally, the behavioral types k and k′ are related by (R-Return).

• Case (VM-Err-Return).
(VM-Err-Return)

f = l(destiny)
vm(o,⊥, {l | s}, q) fut(f ,⊥)
→ vm(o,⊥, {l; ε}, q) fut(f , err)

Let Γ ` vm(o,⊥, {l | s}, q) fut(f ,⊥) : k where k = vm(o,⊥ | (f , 0 # c, S), f) ‖ f (⊥). Let Γ′ = Γ, the typing of left
and right configurations produces an almost identical derivation tree, hence Γ′ ` vm(o,⊥, {l | ε}, q) fut(f , err) :
k′, and k′ = vm(o,⊥ | (f , 0 .∅, S), f) ‖ fut(f , err), which are related by rule (R-Release-Bot).

Appendix A.2. Cost Computation
The second part of the correctness intends to demonstrate that, given a computation, the costs of configurations

therein do not increase. This means that the cost of the first configuration is the greatest one and, therefore, the cost
of the program gives an upper bound of the actual cost of every computation of its.

In order to prove this property, we need to extend the notion of cost to runtime types, and show two properties
of these cost: i) they are an upper bound for the number of alive vm in the typed configuration; and ii) they decrease
when the configuration executes, thus showing that the cost computed for the initial program is an upper bound for
the number of alive vm at every step of its execution.

Cost of Runtime Types. In this paragraph, we extend the definition ofthe translate function to runtime type k.
we first introduce our extension with some useful getters on well-formed runtime types (i.e., types corresponding to
running configurations)

Definition Appendix A.4. A runtime type k is well-formed iff all the names (object, future, etc) it uses are declared
and if it contains the object: vm(start, a | (fstart, c, S); f). Given a well-formed runtime type k, we write: alive(k)
the number of alive vm in k (i.e., the vm whose state is > in k); mapping(k) the mapping giving the state of vm in k;
and ∆k the set { {o} | o is an object of k} (i.e., ∆k is the identity equivalence relation generated from k).

We extend the function translate as presented in Figure A.13 and define:

28

Extension of translate on extended atoms:

translate[∆,Ψ, α](e; e)(a) =



(Ψ, e; e) when a = [o]

(Ψ, (e; e)σ; (e)σ′) when a = foX and f < dom(Ψ), where σ = [fpeak/ f] and σ′ = [fnet/ f]

(Ψ′, (e; e)σ; (e)σ′) when Ψ(f) = (Ψ′, R, m β(r, β)→ o) and a = foX

and EqRel(β, β) = Ξ and Θ = Ψ′ ↘f Ψ

and σ = [m
Ξ
peak(r,Θ(Ξ(β, β)))/ f] and σ′ = [m

Ξ
net(r,Θ(Ξ(β, β)))/ f]

Extension of translate on process types:

translate(∆,Ψ, o, (f ,c, S)) =



fpeak = e1,1 [se1]
.
.
.

fpeak = ehn ,n [sen]
fnet = fpeak [α = ∂]
fnet = eh1 ,1 [se1 ∧ α = >]

.

.

.
fnet = ehn ,n [sen ∧ α = >]

with translate(∆,Ψ[o 7→ α], (true) 0,c) =
n⋃

i=1

(sei){e1,i; . . . ; ehi ,i}

Extension of translate on runtime types:

translate(∆,Ψ, f (o)) = { fpeak = 0, fnet = 0} translate(∆,Ψ, vm(o,> | f1; f2 . . . , fn)) =
⋃

i∈1..n

translate(∆,Ψ, o, fi)

translate(∆,Ψ, vm(o,⊥ | f; f)) = ∅
Ξ = EqRel(v) v′ = Ψ(Ξ(v))

translate(∆,Ψ, (f , o m(v))) =

 fpeak = mΞ
peak(v′))

fnet = mΞ
net(v′)

translate(∆,Ψ,k ‖ k′) = translate(∆,Ψ,k) ∪ translate(∆,Ψ,k′)

Figure A.13: Extension of translate to runtime types

Definition Appendix A.5. The cost equations corresponding to a well-formed runtime type k, written translate(k)
is defined as follows:

translate(k)
def
= translate(∆k, mapping(k),k)

Note in Figure A.13 that we also need to extend the definition of translate on atoms: we need to re-define the
cost of a get operation as we now have not only the actual futures in the runtime type but also the ones coming from
the static typing of the program (the ones that belong to Ψ). Moreover the initial definition of translate for the get
included an extra adjustment derived from the fact that the state of some virtual machine were unknown, which is not
the case at runtime.

Cost Solution. A cost solution Σ is a mapping from cost functions (like mΞ
net(v) or fpeak, where f is a future name) to

cost expressions. Basically, this cost solution gives cost expressions of the peak and net cost of all methods in the
program, as well as, the peak and net cost of all processes in the runtime type. Following [13, Definition 6], we relate
cost solutions and runtime types by assuming the existence of a cost validation predicate � between cost solutions
and cost equations as generated by the translate function in Section 5:

Definition Appendix A.6. Let C be a set of cost equations
⋃n

i=1 fi(xi) = ei[sei]; let Σ be a function that maps all fi(xi)
to cost expressions. Σ is a cost solution of C, noted Σ � C, if for all 1 ≤ i ≤ n and all substitutions [v/xi] such that
sei[v/xi] is true, we have that

Σ(fi)(v) ≥ Σ(ei[v/xi])

where Σ(e) replaces the function calls in e by their value in Σ.

29

Correctness of the Cost Analysis. The proof of the correction of our cost analysis is done in four steps. First, we
relate the cost equation computed at stating time with the runtime version of the types:

Lemma Appendix A.7. Let M {F z ; s′} be a well-typed program, let C, c be its behavioural type, cn be its initial
configuration and k the runtime type of cn. The for all cost solution Σ with Σ � translate(C, c), there exists a cost
solution Σ′ such that Σ′ � translate(k) and Σ(main()) = Σ′(fstartpeak) + alive(k).

Proof. Let define Σ′ = Σ[fstartpeak 7→ Σ(main()) − 1]. By construction (see the construction of the equation page 15
and Figure A.13), we have that

translate(C1 . . . Cn, c) =



translate(C1) · · · translate(Cn)
main() = 1 + e1,1 [se1]

.

.

.

main() = 1 + eh1 ,1 [se1]
main() = 1 + e1,2 [se2]

.

.

.

main() = 1 + ehm ,m [sem]

translate(k) =



fstartpeak = e1,1 [se1]
.
.
.

fstartpeak = eh1 ,1 [se1]
fstartpeak = e1,2 [se2]

.

.

.

fstartpeak = ehm ,m[sem]

with translate(∅,∅, α, (true){ 0 },c) =
⋃m

j=1(se j){ e1, j; · · · ; eh j , j }

Hence, by construction, we have that Σ′ � translate(k). Moreover, as alive(k) = 1, we also have that Σ(main()) =

Σ′(fstartpeak) + alive(k).

Second, we show that any solution of the cost equation generated from a runtime type is an upper bound for the
number of live vm in that runtime type:

Lemma Appendix A.8. Let Γ ` cn : k and assume there is a cost solution Σ such that Σ � translate(k). Then
alive(cn) ≤ alive(k) + Σ(fstartpeak) (recall that fstartpeak is the peak cost of the main process type of k).

Proof. Observe that alive(cn) = alive(k) by construction of k. We moreover notice that Σ(fstartpeak) is positive,
since peak costs are by construction always positive integers. We thus have the result.

Third, we show that an upper bound computed by our technique is stable w.r.t. runtime type evolution:

Lemma Appendix A.9. Suppose given two well-formed runtime types k and k′ such that k k′. Then, for all
cost solution Σ with Σ � translate(k), there exists Σ′ such that: i) Σ′ � translate(k′); and ii) alive(k′) +

Σ′(fstartpeak) ≤ alive(k) + Σ(fstartpeak).

Proof. By Case on the rule used in k k′. If not stated otherwise, we implicitly use the notation used in the
considered reduction rule):

• Cases (R-Skip), (R-Read-Fut-Known), (R-Read-Fut-Unknown), (R-Choice), (R-GC), (R-Return), (R-Async-
Call-Err). Because alive(k) = alive(k′), it is clear that taking Σ′ = Σ, we have and Σ(fstartpeak) =

Σ′(fstartpeak). Hence, we have the result.

• Case (R-Async-Call). It is easy to remark that translate(k′) differs from translate(k) in the following
points: i) the entries [f ′peak = mΞ

peak(v′); f ′net = mΞ
net(v′)] (with v′ = Ψ(Ξ(v)) and Ξ = EqRel(v′)) have been added

to translate(k′); and ii) some references to mΞ
peak(v′) and mΞ

net(v′) in translate(k) have been replaced in
translate(k′) by references to f ′peak and f ′net. So if we define Σ′ as follow, we have the result (as alive(k) =

alive(k′)):
Σ′ = Σ[f ′peak 7→ Σ(mΞ

peak(v′)); f ′net 7→ Σ(mΞ
net(v′))]

• Case (R-Bind-Mtd). Given that c is the behavior of m o(v) and that translate(k1 ‖ k2) = translate(k1) ∪
translate(k2), translate(k) and translate(k′) produce the same set of equations up to the substition of
formal parameters. By definition of Σ we have the result for Σ′ = Σ.

30

• Case (R-New-VM). Let fi be all possible branches of f . We define

Σ′ = Σ[fi,peak 7→ Σ(fi_peak) − 1][fi_net 7→ Σ(fi_net) − 1]

The definition of Σ′ corresponds to the tranfer of the cost +1 to the set of alive virtual machines. Hence we
alive(k) = alive(k′) − 1 and Σ′(fstartpeak) = Σ(fstartpeak) − 1, which gives us the result.

• Case (R-Release-VM). If a′ = > we have that alive(k) = alive(k′) + 1, if a′ = ⊥ we have that alive(k) =

alive(k′), thus taking Σ′ = Σ, we have the result.

Finally, we can combine all the previous lemma to demonstrate the correctness of our technique.

Theorem 5.1 (Correctness)
Let M {F z ; s′} be a well-typed program, let C, c be its behavioural type and cn be its initial configuration. Let also
Σ be a solution of the cost functions translate(C, c). Then, for every cn −→∗ cn′, alive(cn′) ≤ Σ(main()).

Proof. Let n = Σ(main()).
The argument proceeds by induction on the number of reduction steps:

• At step 0, we translate the program into its runtime equivalent cn. By Lemma Appendix A.7, there exists Σ′ such
that Σ′ � translate(k) and that we have that Σ′(fstartpeak) + alive(k) = n. Morever, by Lemma Appendix
A.8 we have that alive(cn) ≤ alive(k) + Σ′(fstartpeak) = n.

• for the inductive case, let Γ, a runtime configuration cn’, a runtime type k and a cost solution Σ′ such that
Γ ` cn : k, Σ′ � k and Σ′(fstartpeak) + alive(k) ≤ n hold. Then by Theorem Appendix A.3, if cn → cn′, there
exists Γ′ and a runtime type k′ such that k ∗ k′ and Γ′ ` cn′ : k′. By Lemma Appendix A.9, there exist a
cost solution Σ′′ such that Σ′′ � k′ and alive(k′) + Σ′′(fstartpeak) ≤ alive(k) + Σ′(fstartpeak). By hypothesis and
Lemma Appendix A.8, we that alive(cn′) ≤ alive(k′) + Σ′′(fstartpeak) ≤ n.

31

