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A B S T R A C T   

The journey towards sustainability has become paramount to industry, government and research. To date, the 
main contributions have proposed valuable theoretical models to study the transitions to sustainability. How-
ever, a quantitative examination of the phenomenon is still limited. In this paper, we exploit a multilevel-growth 
model to empirically explore the relevance of different geographical scales in studying sustainability transitions. 
By analysing a novel, 9-year longitudinal dataset that covers European carbon emission intensity data on four 
different scales (from specific districts to whole states), we show whether and how multiple geographical scales 
support the study of sustainability transition pathways. Drawing on our analysis, we contribute to the debate on 
economic geography, sustainability transition and carbon emission intensity, as well as discuss implications for 
sustainability policy, strategy and research.   

1. Introduction 

Transitions are gradual processes, where long periods of relative 
stability are followed by shorter phases of structural change (Fuenf-
schilling and Binz, 2018; Tushman and Anderson, 1986). Amidst these 
complex processes of “creative destruction” (Schumpeter, 1934), 
changes occur based on the presence of and the interconnections among 
multiple actors, who generally operate at different scales (Geels, 2002). 
In particular, Sustainability Transitions (ST) represent fundamental 
shifts of entire sectors towards new and sustainable levels of develop-
ment (Skellern et al., 2017). These shifts encompass technological, 
material, organisational, institutional, political, economic and socio- 
cultural dimensions (Davies, 2013; Davies and Mullin, 2010; Foxon, 
2011; Geels and Schot, 2007; Lindberg et al., 2019; Markard et al., 2012; 
Pisano et al., 2014; Vona et al., 2018).1 

Previous studies have made considerable progress towards 

understanding the nature of ST, particularly on the basis of systemic- 
based conceptualizations, which emphasise the long-time horizon, 
multi-actor and multi-scalarity nature of the process (Geels, 2002; Geels 
and Schot, 2007; Loorbach, 2007; Schot and Geels, 2008). However, any 
theoretical model aiming to analyze complex systems tends to be sub-
jective and abstract, especially because these systems are simplified 
representations that hardly find a precise correspondence in reality 
(Loorbach, 2007). Thinking in terms of systems should imply a clear 
definition of their boundaries, but these boundaries are often treated by 
previous works as arbitrary. From a methodological standpoint, the lack 
of a shared vision on the concept of boundaries generates high diffi-
culties in their operationalisation. As a consequence, previous works 
have mainly investigated this phenomenon in qualitative terms (Heiberg 
et al., 2020), avoiding to translate theoretical concepts in measurable 
constructs. Almost all studies are, indeed, based on theoretical argu-
mentations or use qualitative empirical methods (Berggren et al., 2015; 
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Bolton and Hannon, 2016; Geels, 2002; Geels et al., 2016; Köhler et al., 
2009; Murphy, 2006), but generally lack quantitative data for explain-
ing the evolution of transition pathways at different scales (see Hipp and 
Binz, 2020 as an exception). 

In order to offer a more explanatory basis for societal and policy 
debate, researchers have sought to integrate geography into previous 
theoretical models. By definition, ST are spatial processes (Coenen and 
Truffer, 2012) where changes originate partly as a result of interventions 
at various geographical scales: urban, regional, national, and global. 
This idea has been conceptualised as multi-scalarity (Coenen et al., 
2012). Furthermore, by linking the geographical dimension to the 
concept of multi-scalarity, the economic geography perspective (Martin, 
2001; Martin and Sunley, 2006) proposes a definition of scale that can 
be used to identify boundaries for the study of ST. The concept of 
geographical scales, indeed, “[…] can be regarded as a territorial level at 
which significant relationships exist between actors: these relationships 
acquire a dynamic of their own through repeated interaction and that 
dynamic is distinctive from interactions at different scales” (Coenen 
et al., 2012: 972). 

Our paper aims to join this conversation on geographical multi- 
scalarity by testing, with empirical data, whether and how multiple 
geographical scales contribute to the interpretation of ST pathways. In 
addressing this issue, we quantitatively assess the geographical un-
evenness of transition processes among scales in order to better under-
stand “place-specific impacts on sustainability transitions” (Cohen et al., 
2012, p.973). Until now, most research has focused on transformation 
processes in specific countries or on the comparison among a limited 
number of countries (Geels et al., 2016; Hodson and Marvin, 2012; 
Maassen, 2012; Späth and Rohracher, 2012); the implicit assumption is 
that ST primarily occur at the national level (Heiberg et al., 2020; Smith 
et al., 2010). Only a few studies, to our knowledge, have tried to go 
beyond an excessive emphasis on context-sensitivity by proposing a 
global lens (see Binz and Truffer, 2017; Fuenfschilling and Binz, 2018)— 
where forces operating at and between not only national, but also in-
ternational and transnational levels play relevant roles (Bauer and 
Fuenfschilling, 2019; Frangenheim et al., 2020; Fuenfschilling and Binz, 
2018; Sengers and Raven, 2015). With our approach, we intend to 
contribute to this line of research. More precisely, we study ST at 
different geographical scales and empirically validate Loorbach’s cue 
that “local or regional sustainability does not necessarily mean national 
or global sustainability and vice versa” (Loorbach, 2007, p.23). 

The scope of our paper is the industrial sector (IPCC, 2018), which 
we investigate through the development of a novel longitudinal dataset 
that covers the carbon emission intensity (CEI) data of European regions 
at four different geographical scales over a 9-year timespan 
(2008–2016). With these data, we contribute to three main streams of 
research: First, we add to the ST literature by quantitatively modelling 
ST trajectories across EU. Second, we contribute to the economic ge-
ography literature by empirically describing ST pathways that occur at 
different geographical scales. Finally, we supplement the carbon emis-
sion intensity debate by integrating the existing analyses at the national 
scale with more fine-grained investigations at sub-national scales. 
Additionally, this research may represent a bridgehead for the study of 
the impact of Phase III of the European Emissions Trading System (EU 
ETS) policy on carbon intensity dynamics in Europe (Teixidó et al., 
2019). 

The remainder of the paper is organised as follows: Section 2 dis-
cusses the theoretical background of the study. Section 3 presents the 
context of our paper, while Section 4 outlines the research design and 
the methods applied. We then present the results in Section 5 and 
conclude in Section 6 with policy implications and streams for future 
research. 

2. Theoretical background 

2.1. The complex nature of sustainability transitions 

Markard et al. (2012, p.956) referred to ST as “long-term, multi- 
dimensional, and fundamental transformation processes through 
which established socio-technical systems shift to more sustainable 
modes of production and consumption”. The governance of ST requires 
an interplay among different actors—from businesses to governments to 
society at large. 

In order to capture such complexity, extant research in ST has 
evolved into four main streams (Markard et al., 2012). First, the Multi- 
Level Perspective (MLP) proposes a transition process deriving from the 
interactions among three levels. The first level is populated by niches; 
the second level hosts the incumbent regime, and the third level repre-
sents the landscape (Geels, 2002; Geels and Schot, 2007; Rip and Kemp, 
1998; Smith et al., 2010).2 According with this framework, radical in-
novations and learning processes are generated in the niches. If accepted 
by powerful actors and networks, these developments can result in new 
and stable socio-technical configurations at the regime level. The regime 
concept is, finally, understood at the landscape level as an interpretative 
concept encompassing norms and values. Second, the Transition Man-
agement (TM) framework suggests that the transition represents a pro-
cess of structural societal change between two relatively stable states 
(punctuated equilibrium) through the co-evolution of different macro- 
factors (markets, networks and policies) and micro-factors (technolo-
gies, institutions and individuals) (Rauschmayer et al., 2015; Rotmans 
et al., 2001). Third, the Strategic Niche Management (SNM) approach 
argues that the study of niche development needs to be coupled with an 
analysis of the role of social networks, learning processes (Schot and 
Geels, 2008) and especially the guiding vision (Kemp et al., 1998). 
Finally, the Technological Innovation Systems (TIS) framework studies 
transitions by focusing on emerging technologies and their impact on 
the technical system through an entrepreneurial lens (Markard and 
Truffer, 2008). 

The development of this composite fabric of frameworks shows the 
difficulties in defining an overall theory that can grasp the complexity of 
the ST phenomenon. Each of the above frameworks contributes to 
depicting ST, emphasising particular aspects or components while 
leaving others in the background. In particular, while the temporal 
dimension characterises all the four frameworks and captures the con-
ceptualisation of transitions as processes of change over time, the spatial 
dimension is left more abstract and vague. The MLP, for instance, only 
considered global and local processes without paying attention to 
geographical aspects (Geels and Deuten, 2006), while the TIS generally 
referred to a global opportunity set without further specifying the spatial 
demarcations. 

Economic geography supports the theory of ST by filling this gap. 

2.2. The spatial dimension of sustainability transitions: economic 
Geography and the role of multi-scalarity 

As Dainton asserted (2001, p.10), “think[ing] clearly about space is 
not easy”. For instance, within economic geography, there are different 
conceptualisations of space: namely, institutional, evolutionary, and 
relational.3 According to institutional economic geography, space in-
volves the presence of formal (i.e., rules, laws and regulations) and 
informal (i.e., culture, norms and values) institutions and the 

2 It is important to note that niche, regime and landscape levels do not 
correspond to micro-, meso- and macro-levels of socio-technical trans-
formations, which are often misrepresented. 

3 Among these three conceptualizations, the institutional economic geogra-
phy is the one which more closely overlaps with the ST frameworks previously 
described. 
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interactions among them (Martin, 2000). In this sense, the institutional 
setting (which derives from the interplay among these factors) de-
termines the definition and evolution of a specific context. Evolutionary 
economic geography (Boschma and Frenken, 2006; Boschma and Mar-
tin, 2007) instead links space to the distribution of organisational rou-
tines in an area (Nelson and Winter, 1982). The emergence of an 
industrial, economic and technological pathway is determined by the 
presence of historical contingencies and their self-reinforcing effects. 
Thus, this perspective emphasises the concept of path dependency, 
which captures the interconnected role of both time and space (Martin 
and Sunley, 2006). Finally, relational economic geography considers 
space as a social construction characterised by networks of relations 
among actors (Amin, 2002; Sunley, 2008). Accordingly, space is not 
defined by precise geographical boundaries, but rather by the flow of 
capital, knowledge and people. 

Recent scholars have demonstrated that ST are, in fact, spatial pro-
cesses related to specific places (Coenen and Truffer, 2012), which has 
enhanced the value of geography in capturing the broad variety of 
transition pathways and the relevance of the context in describing ST 
processes (Coenen et al., 2012; Hansen and Coenen, 2015). This is a 
huge contribution with respect to the previous research (Hassink et al., 
2019). Moreover, as space can be analysed at different degrees of ag-
gregation (local, national, global), ST trends should not be interpreted as 
homogeneous.4 Moved by the goal of considering these different degrees 
of aggregation, researchers applying economic geography to ST have 
introduced the concept of scales and, in particular, multi-scalarity 
(Brenner, 2001; Coenen et al., 2012; Truffer, 2016) as a key feature to 
characterise the uneven development of ST phenomena (Binz et al., 
2020). 

Two main approaches have been suggested. The first approach is 
conceptual and draws from the MLP, TM, SNM and TIS theoretical 
frameworks, as well as from relational economic geography. It focuses 
on the relationships among the abstract levels of niches-regimes- 
landscapes and actors (Berggren et al., 2015), all of which are linked 
by a variety of cultural, economic and power relationships (Bauer and 
Fuenfschilling, 2019). The second approach is more methodologically 
nuanced and moves forward by postulating that multi-scalarity defines 
relationships among physical territorial boundaries (e.g., urban- 
regional-national-global), which host societal systems and become the 
spaces for ST (Binz et al., 2020; Loorbach, 2007). However, the absence 
of a clear methodology for measuring scales limits the opportunities for 
comparative analyses among ST processes. Pushed by this evidence, our 
paper intends to operationalise the concept of multi-scalarity in order to 
create a methodological basis for the empirical investigation of the role 
played by multiple geographical scales in studying ST pathways. How-
ever, as there exist different and heterogeneous types of ST (e.g., energy, 
agriculture, mobility, urban and industry), a comprehensive measure of 
multi-scalarity could be ineffective and have weak explanatory power if 
different types of ST are analysed together. For this reason, our work 
focuses on the specific context of industrial ST, which represents one of 
the most relevant forms of transition nowadays (Fischedick et al., 2014). 
Consequently, in the following sections, we will characterise such a 
context (Section 3.1) and introduce Carbon Emission Intensity (CEI) as 
the measure to study industrial ST (Section 3.2). 

3. The context of our paper 

3.1. Industrial sustainability transition 

Extant literature in the field has proposed five different transition 
pathways towards sustainability (IPCC, 2018). Transitioning energy 
systems involves reconfiguring energy supply and distribution systems, 
maximizing the role of renewable sources and innovating the distribu-
tion network (Kern and Smith, 2008; Geels et al., 2016; Lindberg et al., 
2019; Späth and Rohracher, 2012). Transitioning agriculture and land 
use requires shortening the supply chains, introducing new raw mate-
rials (e.g., insects, algae), and improving the end-consumer distribution 
to ensure biodiversity conservation and food security (Darnhofer, 2014; 
UN, 2015). Debates over mobility transition (Köhler et al., 2009) revolve 
around not only innovative automotive technologies (Dijk et al., 2016), 
but also shared mobility platforms and individual behaviours (Bork 
et al., 2015; Mullen and Marsden, 2016). Because of the close interde-
pendence between mobility and urbanity, their transitions have often 
been approached together (Canitez, 2019; Hoogma et al., 2002; Lin 
et al., 2018). Urban transition implies an effort to create “smart cities” 
where citizens at the centre of the urban ecosystem and technological 
innovations are integrated into the household, mobility and energy 
fields (Audretsch et al., 2020; Bulkeley and Castán Broto, 2011; Ponta 
et al., 2018; Zheng et al., 2010). 

Meanwhile, the industrial sector plays a significant role in ST, as it is 
responsible for a third of total global greenhouse gas emissions 
(Fischedick et al., 2014). The deep decarbonisation required by the EU 
policy, with emission reduction targets of 80–95% by 2050 compared to 
1990, can only be accomplished by a radical system innovation (Wes-
seling et al., 2017). Thus, cleaner productions and resource savings are 
crucial elements for industrial ST (Skellern et al., 2017). Prior literature 
has often investigated industrial ST by analysing the different aspects 
involved, such as innovation (Krammer, 2009), environmental regula-
tions (Wang and Sun, 2019), socio-technical systems (Skellern et al., 
2017) and barriers towards ST (Geels, 2011). However, extant research 
has focused only on specific industrial sectors (Bauer and Fuenfschilling, 
2019) and still lacks a wider empirical modelling of the phenomenon 
(Wesseling et al., 2017; Tsai, 2018). 

3.2. Carbon emission intensity 

CO2 equivalent (CO2e) emissions are widely regarded as a reliable 
proxy for measuring the effectiveness of ST-promoting actions and 
policies. This indicator accounts for not only direct CO2 emissions, but 
also for other greenhouse gases (GHGs) (Dogan and Seker, 2016) that 
are directly responsible for global warming and, consequently, climate 
change. GHGs are typically modelled in terms of CO2e to mimic their 
effect on the global temperature equilibrium and facilitate assessments 
(e.g., Carbon footprint, LCA, etc.) for products, processes or programs 
(IPCC, 2014). 

Nevertheless, CO2e may not be sufficient to describe industrial ST, 
which encompass complex scenarios related to not only reducing envi-
ronmental impacts, but also fostering economic growth (UNEP, 2011, 
2017). Emissions reduction may be triggered by sustainability-oriented 
policies, but also by contingent elements such as economic crises, de- 
population, or global health diseases.5 For this reason, studies need a 
composite indicator that considers both environmental and economic 
perspectives. Based on the aforementioned literature and the necessity 
of normalizing the CO2e data among different geographical areas, we 
choose industrial Carbon Emission Intensity (CEI) as a proxy for indus-
trial ST. Calculated as the ratio between CO2e and GDP, CEI is widely 

4 In the photovoltaic industry, for instance, Germany has seemingly been the 
market leader since the early 2000s when compared to other countries. How-
ever, an analysis at the federal level reveals an interesting heterogeneity in 
terms of market development, with the Bavaria and Baden Württemberg areas 
growing two times above the national average (Dewald and Truffer, 2012). 

5 This study from the Centre for Clean Air reports the effects of the Corona-
virus on CO2 emissions reduction in China https://www.carbonbrief.org/an 
alysis-coronavirus-has-temporarily-reduced-chinas-co2-emissions-by-a-quarter 
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recognised as a robust indicator for evaluating the sustainable perfor-
mance of countries, regions, and value chains in different sectors 
(Acquaye et al., 2018; Cai et al., 2016; Dong et al., 2018; Wang et al., 
2017, 2018). 

4. Method and data 

4.1. Towards an operationalisation of geographical scales 

As a first step in achieving our study purpose, we operationalised 
geographical scales. 

At the EU level, historical data related to demography, economy, 
labour market and education are reported by EUROSTAT (2018, p.7) 
“for the collection, development and harmonization of the European 
Union’s regional statistics” and for “targeting political interventions at a 
regional level” (2018, p.4). In particular, the Nomenclature of Territo-
rial Units for Statistics (NUTS) is the reference point for coding 
geographical space through data (Herz and Varela-Irimia, 2020). NUTS 
are drawn based on population thresholds and organised in different 
levels, where each EU Member State (NUTS 0) is divided into NUTS 1 (i. 
e., major socio-economic regions), which are consequently subdivided 
into NUTS 2 (i.e., basic regions for the application of regional policies) 
and then further into NUTS 3 (i.e., small regions for specific diagnoses). 
NUTS correspond to different administrative structures across European 
countries, following, where possible, existing administrative configu-
rations or, alternatively, aggregating smaller administrative units. For 
instance, for the former case, NUTS 2 overlaps with Communidades 
autónomas in Spain, Regiony soudržnosti (cohesion regions) in Czech Re-
public and Regioni in Italy; for the latter case, Regierungsbezirke/non-
administrative aggregations constitutes NUTS 2 in Germany (EUROSTAT, 
2018). 

This structure fits the concept of geographical multi-scalarity, as it 
allows us to relate different territorial boundaries and provides a more 
concrete base for assessing geographical scales, as presented in the 
theoretical section of the paper. 

4.2. Operationalizing industrial sustainability transition through carbon 
emission intensity 

Data on CO2e were retrieved from the EU ETS register.6 Established 
in 2005, EU ETS is the world’s first international emissions trading 
system (European Parliament and the Council of the European Union, 
2003). It remains the biggest one to date (Bocklet et al., 2019; Naegele 
and Zaklan, 2019), accounting for over three-quarters of international 
carbon trading and about 45% of the EU GHGs emissions. The trading 
system has been set up for industrial emissions, treating GHGs emissions 
as a commodity (Verbruggen et al., 2019) and delineating specific 
emissions quotas and reduction targets for GHGs (Marcu et al., 2017). 
Emissions data are consequently registered and made publicly available 
at the level of the single industrial plant. In this study, data on CO2e at 
the plant level have been aggregated at NUTS 3. We then considered the 
nested structure of NUTS (i.e., NUTS 0–1–2-3) in order to assess CO2e in 
different European geographical contexts. The EU ETS regulation pro-
vides four stages of application (Phase I, 2005–2007; Phase II, 
2008–2012; Phase III, 2013–2020, Phase IV 2021–2030), with 
increasing limitations in GHGs emissions. It is currently concluding its 
Phase III of application, spanning from 2013 to 2020. Therefore, our 
dataset includes emissions data from the whole Phase II and the first 4 
years of Phase III. 

Secondly, we gathered GDP data from the Eurostat database7 at the 
NUTS 3 level. GDP data for NUTS 0-1-2 derived from the aggregation of 
the original data at NUTS 3. The CEI data were then calculated by 

dividing CO2e data by GDP data at NUTS 3. Therefore, our final dataset 
consists of longitudinal data on CEI from 2008 to 2016, covering four 
different scales (i.e., NUTS 0-1-2-3). 

Overall, the dataset contains data on 28 NUTS 0, 103 NUTS 1, 279 
NUTS 2 and 1248 NUTS 3, ultimately accounting for 14,433 observa-
tions. Table 1 provides details on the number of observations in the 
dataset at different NUTS levels. 

Our structured panel dataset considers all NUTS levels across the 
same years (2008–2016). However, the dataset is unbalanced because 
not all the units have measurements of CEI in each of the nine observed 
years. This is due to two main reasons. First, different countries gained 
membership into the EU ETS at different times; therefore, some coun-
tries (i.e., Czech Republic) started reporting on EU ETS later than others 
(i.e., Germany, Italy). Second, the NUTS nomenclature was revised in 
2015,8 which has resulted in changes in territorial definition in some 
countries (i.e., France and Poland). 

4.3. Multilevel-growth model 

The nested structure of our dataset implies that, at each NUTS level, 
every unit is characterised by a specific temporal pattern in its CEI 
levels, and it can differ among units belonging to the same geographical 
scale. In other words, the analysis of the overall average pattern is not 
sufficient to draw conclusions on the ST in these European countries if 
NUTS level-specific (individual) ST trends at different scales are het-
erogeneous and systematically differ from the overall average pattern. In 
order to account for both these temporal and spatial sources of depen-
dence in our data, we chose a multilevel-growth model (Tasca et al., 
2009). This model is known for its ability to estimate overall develop-
mental trajectories of constructs across time (Curran and Hussong, 
2003), while simultaneously accounting for between-individual differ-
ences that can stem from systematic factors affecting the variable under 
investigation (Byrne and Crombie, 2003). Thus, compared to conven-
tional repeated measures analyses, multi-level growth models can pro-
vide more adequate information about temporal changes in a specific 
variable in the presence of nested structures. 

Furthermore, multilevel-growth modelling is one of the most 
powerful and informative approaches for analysing unbalanced 
repeated measures (Byrne, 2012; Curran et al., 2012). Thus, it perfectly 
fits with our database where several units have missing observations in 1 
or more years. 

In our specific case, the multilevel growth model technically involves 
specifying an overall average ST trajectory common to the whole EU and 
then analysing at which geographical scale the ST pathways deviate 
from that overall mean trajectory. Once it is evaluated that the unit 
trajectories at one specific level differ from the overall mean pattern, the 
model can be extended to identify systematic factors that drive the ST 
patterns at each level. 

Based on our data, we should estimate a five-level (i.e., NUTS 0–1–2- 
3 and Time) growth model for CEI over time (Curran et al., 2012). 
However, given the large number of observations in the dataset (see 
Section 4.2), the estimation of a five-level model is computationally 
unfeasible. Hence, we tested three four-level models: NUTS 1–2-3 and 
Time (Model 1); NUTS 0–1-2 and Time (Model 2); and NUTS 0–2-3 and 
Time (Model 3). By jointly analysing the variability of the ST dynamic at 
each geographical scale in every model, it is possible to evaluate the 
level at which the individual ST trajectories become heterogeneous. This 
step is important for identifying potential systematic factors that may 
drive the behaviour of these ST patterns.   

6 https://ec.europa.eu/clima/policies/ets_en  
7 https://ec.europa.eu/eurostat/web/regions/data/database 

8 Commission Regulation (EU) No 1319/2013 entered into force on 31 
December 2013 and applied, with regard to the transmission of data to the 
Commission (Eurostat), from 1 January 2015. 
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Formally, the four-level growth model can be specified in reduced form 
as follows:  

with t representing the time, and j, k, and i representing the different 
NUTS levels taken into consideration. ytjki is the CEI measured at time t 
for:  

- NUTS 3j nested in NUTS 2k nested in NUTS 1i for Model 1;  
- NUTS 2j nested in NUTS 1k nested in NUTS 0i for Model 2;  
- NUTS 3j nested in NUTS 2k nested in NUTS 0i for Model 3. 

In terms of main results, a multilevel-growth model provides the 
“fixed effects” and the “random effects” as indicated in Eq. (1). The 
“fixed effects” of the model estimate the expected common trajectory for 
the overall sample, which we assume to be linear on the entire time 
span. Hence, this common trajectory is identified by estimating the ex-
pected intercept of the CEI in 2008, denoted by γ0, and the expected 
slope, γ1, for the whole EU. On the other hand, the “random effects” 
estimates, for each geographical scale included in the model, if the in-
dividual trajectories at that specific level significantly differ from the 
overall one. Thus, looking at the p-values of the corresponding random 
effects, we can see if there is significant variability at each geographical 
scale included in the model—either in the initial value of the trajectory 
(intercept), through r0jki, s0ki, and u0i,or in the transition (slope) through 
r1jki, s1ki, and u1i. 

In order to choose the best model for our data, we used common 
model selection criteria such as the Akaike Information Criterion (AIC) 
and the Bayesian Information Criterion (BIC). Lower values of AIC and 
BIC signal a better fit between the data and model. 

In cases where the individual trajectories at one or more geograph-
ical scale significantly differ from the overall mean pattern, the model 
can be extended to account for potential systematic factors that may 
affect the individual ST trajectories. In this regard, we have developed a 
further set of analyses to deeply investigate the association between 
decreasing CEI levels and actual structural change in the EU industrial 
sector. To distinguish different underlying mechanisms in CEI dynamics 
and to discriminate actual transitions from just incremental process in-
novations, we were interested in identifying sharp drops in CEI figures 
over a short period of time. This would indicate a potential change in the 
manufacturing approach that more likely represents an actual transition 
pathway. Moreover, sharp drops in CEI may also be due to the decom-
missioning of plants; hence, the data have to be controlled for this effect 
in order to make the argument about transitions more robust. We thus 
deconstructed the processes that lie below the CEI dynamics by intro-
ducing two covariates into the multilevel-growth model. 

The first covariate is related to the idea that the mean CEI trajectory 
over time may not be linear and smooth, but rather characterised by a   

discontinuity, representing a sharp drop in CEI over a shorter time span. 
We thus applied a piecewise model, where the final trajectory is 
assumed to present a discontinuity. Such a discontinuity corresponds to 
a change in the regulation due to the introduction of the Phase III of the 
EU ETS in 2013. This approach responds to a call for research aimed at 
evaluating the impact of the new policies that accompanied Phase III, 
such as the auctioning mechanism for allocation, the cancellation of free 
allowances, and the tightening of actions to fight the carbon leakage 
(Teixidó et al., 2019). Therefore, the final model is composed of two 
linear trajectories that specifically align with each sub-period of obser-
vation (i.e., 2008–2012 and 2013–2016). 

The second covariate considers the decommissioning of plants dur-
ing the whole period. Thus, within the aforementioned piecewise model, 
we included an additional covariate constructed as a three-level cate-
gorical variable representing the groups of regions experiencing a 
decrease, an increase, and an invariance in the number of plants 
reporting into the EU ETS. The reference group (Decomm-1) represents 
the decommissioning scenario, where the number of plants decreased 
over the entire period of analysis. The second group (Decomm+1) cor-
responds to regions that increased the number of plants. The last group 
(Decomm0) represents regions for which the number of plants remained 
unchanged. Section 5.4 reports the results of these analyses. 

5. Findings 

In this section, we detail the five main results of our analyses: 1. CEI 
shows an overall decline in the proposed timespan; 2. Different 
geographical scales show different transition patterns; 3. The initial 
level of CEI influences the trajectory of CEI over time; 4. The influence of 
geographical scales on CEI shows statistically significant differences 
across the different states analysed; 5. Regulations produce a steep drop 
on CEI dynamics and their effect overcomes the impact produced by the 
decommissioning of plants. 

5.1. Descriptive statistics: the decline of carbon emission intensity over 
time 

Table 2 shows the trends of CEI over time for the sample as a whole. 
We observe a decreasing pattern, for both the mean and the median, 
with roughly equal standard deviations. 

Table 3 and Fig. 1 show our data at NUTS 0. In particular, Table 3 
summarises that, for each country, the percentage of CO2e in 2016 was 
comparable to the EU total, the variation of CO2e in the period 
2008–2016, the variation of CEI in the period 2008–2016, and CEI in 
2016 with respect to the EU average. Considering CO2e (column A), our 

Table 1 
Number of observations at different NUTS levels.  

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 

NUTS 0 27 27 27 27 27 28 28 28 28 
NUTS 1 102 102 102 102 102 103 103 103 103 
NUTS 2 276 276 276 276 276 279 279 279 279 
NUTS 3 1195 1195 1192 1196 1194 1207 1197 1197 1195  
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data showed a high concentration in a limited number of countries (the 
first five countries generated more than 60% of the total emissions). In 
terms of variation in the period of analysis (column B), all countries were 
characterised by a decline, except for the Netherlands and Lithuania. 
Similarly, the CEI trends (column C) showed a decline in all countries in 
the period 2008–2016, with a reduction in the whole EU of almost 30%. 
However, each country tended to show a different CEI pattern, both in 
terms of variation and in relation to the EU average (column D). Poland 
showed a CEI three times higher than the EU average, while France and 
the UK showed 2016 CEI values that were 60% and 51% lower than the 
EU average, respectively. 

Furthermore, Fig. 1 reports the empirical growth curves of CEI at 
NUTS 0 for the different EU countries, acknowledging the linear9 

decreasing patterns for all countries, except for Greece and Bulgaria. 

5.2. The multilevel-growth model: the relevance of multi-scalarity and 
path dependency 

Table 4 shows the fixed effects for the three proposed models (Model 
1 including NUTS 1–2-3; Model 2 including NUTS 0–1-2, and Model 3 
including NUTS 0–2-3), as well as the fit indexes. It highlights two 
important elements: the average starting point of CEI at EU level (i.e., 
intercept γ0), and the growth rate of CEI over time (i.e., slope γ1). These 
values suggest the significance of both intercept and slope in all three 
models (p-value <.001) and confirm that the mean trajectory of CEI 
declines over time (b= − 8.672 for Model 1, − 9.822 for Model 2 and 
− 9.810 for Model 3). As for the fit measures, it is evident that Model 3 
better fits with the data, showing the lowest values of the Akaike In-
formation Criterion (AIC) and Bayesian Information Criterion (BIC). 

Table 5 reports the significance levels of the random effects for the 
three models for each of the geographical scales considered. With our 
findings, we confirm the important role played by countries (NUTS 0) in 
studying ST, as both models including this scale (i.e. Model 2 and Model 
3) signal its statistical significance, in terms of the starting point of CEI 
and the variation over time. However, we also integrate previous 
research by showing that local scales (NUTS 1, 2 and 3) have additional 
informative power in studying ST, in the sense that the corresponding 
individual trajectories significantly vary with respect to the corre-
sponding overall mean trajectory estimated in Table 4. 

In order to better capture these results, Figs. 2 and 3 visualise Eu-
ropean maps of CEI reported at the different scales (NUTS 0–1–2-3) for 
2016 (Fig. 2) and for the period of analysis 2008–2016 (Fig. 3). It is 
interesting to note that, when considering well-performing countries, 
analyses at local scales show differences that are extremely relevant 
(Fig. 2). This issue becomes apparent when examining some examples in 
more detail. Consider, for instance, the regions within Germany, which 
is performing well at NUTS 0: The analysis at NUTS 2 scale shows 
relevant differences in areas such as Düsseldorf and Sachsen-Anhalt, 
which display CEI values ten times higher than Mecklenburg- 
Vorpommern and Tübingen, respectively. Similarly, when analysing 
CEI over time and considering the UK at NUTS 0, we show one of the 
most relevant declines in the EU. However, important differences 
emerge when investigating NUTS 2, with some areas (e.g., West Wales 
and The Valleys) performing worse than others (e.g., Dorset and Som-
erset) by two orders of magnitude. 

Table 5 reports an additional result of our study: All three models 
produced highly negative correlations between the intercept and slope 
at all scales, suggesting that high-emitting geographical areas show 
greater declines in CEI over time compared to lower-emitting areas. 
Stated differently, the initial value of CEI affects the evolution of CEI 
over time, according to a path dependence logic, leading to greater 
declines in CEI for scales displaying higher starting points and, 
conversely, lower declines of CEI for scales showing lower starting 
points. 

In order to further support these results, Fig. 4 shows the correlation 
between the estimated intercept and slope of CEI at NUTS 0. What 
clearly emerges from the graph is a negative relationship between the 
two, so that higher levels of intercept correspond to steeper negative 
slopes. 

Table 2 
Summary measures of CEI from 2008 to 2016 for the entire sample.   

2008 2009 2010 2011 2012 2013 2014 2015 2016 

Mean CEI 162.97 151.74 150.59 143.47 137.85 137.21 125.83 119.26 114.67 
Median 

CEI 
50.32 46.92 46.79 41.270 36.874 37.44 37.921 34.544 35.131 

St dev CEI 802.05 746.62 767.71 818.90 778.53 739.47 729.03 689.79 651.29  

Table 3 
CO2e in 2016, CEI variation in the period 2008–2016, CEI variation in respect to 
the EU average and the CEI trends for each country in the period of analysis.  

Rank Country 
(NUTS 0) 

A B C D 

CO2e 
2016 
(%) 

Variation of 
CO2e 
2008–2016 
(%) 

Variation of 
CEI 
2008–2016 
(%) 

CEI 2016 
vs. EU 
average 
(%) 

1 Germany 26.6% − 4.3% − 22% 24.9% 
2 Poland 11.6% − 2.9% − 23% 304.7% 
3 Italy 9.1% − 29.9% − 32% − 20.2% 
4 United 

Kingdom 
7.8% − 46.2% − 56% − 51.4% 

5 Spain 7.2% − 24.4% − 25% − 3.7% 
6 France 6.0% − 18.1% − 33% − 60.3% 
7 Netherlands 5.4% 11.4% − 3% 14.5% 
8 Czech 

Republic 
3.9% − 16.0% − 23% 232.8% 

9 Greece 2.7% − 33.6% − 9% 128.5% 
10 Belgium 2.6% − 21.3% − 34% − 10.3% 
11 Romania 2.3% − 37.5% − 46% 103.7% 
12 Bulgaria 2.0% − 12.8% − 33% 505.1% 
13 Austria 1.7% − 9.9% − 26% − 29.3% 
14 Finland 1.6% − 24.4% − 32% 9.7% 
15 Portugal 1.5% − 13.2% − 17% 18.8% 
16 Slovakia 1.2% − 15.9% − 32% 128.3% 
17 Sweden 1.2% − 1.7% − 25% − 62.9% 
18 Hungary 1.1% − 28.6% − 32% 48.5% 
19 Ireland 1.0% − 12.9% − 8% − 13.6% 
20 Denmark 0.9% − 36.3% − 47% − 51.1% 
21 Estonia 0.8% − 0.7% − 24% 440.9% 
22 Croatiaa 0.5% − 5.9% − 12% 54.6% 
23 Slovenia 0.4% − 26.9% − 31% 40.0% 
24 Lithuania 0.4% 4.9% − 12% 35.5% 
25 Cyprus 0.3% − 16.6% − 14% 119.3% 
26 Latvia 0.1% − 17.8% − 20% − 25.2% 
27 Luxembourg 0.1% − 28.4% − 49% − 75.4% 
28 Malta 0.0% − 71.3% − 83% − 51.1%  

European 
Union 

100.0% − 18.34% − 29.6%   

a Data since 2013 

9 This pattern confirms the possibility of describing the phenomenon through 
a linear model over the entire time span (2008–2016), and thus the appropri-
ateness of a linear multilevel-growth model in the subsequent statistical 
analyses. 
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5.3. The significance of different scales for different states 

So far, we have highlighted the importance of multi-scalarity in 
studying ST. However, this opens up the question: Is this evidence 
consistent across different states or, conversely, does it show an uneven 
pattern that can be explained by geographical specificities? In this sec-
tion, we employ the results of Model 1 from our previous analyses to 
explore this issue. In particular, Table 6 presents the significance of the 

random effects model at different NUTS, for the EU’s top ten emitting 
states. 

We show that the NUTS 3 scale is statistically significant in most 
states (p-value <.001) for both intercept and slope. For NUTS 2, the 
results are significant for France (p-value <.001), The Netherlands (p- 
value <.001) and Czech Republic (p-value <.01) in terms of intercept, 
and for Greece (p-value <.001) in both intercept and slope. The NUTS 1 
results are significant for Germany (intercept, p-value <.05) and Spain 

Fig. 1. Empirical curves of CEI at NUTS 0.  

Table 4 
Fixed effects into the three models proposed and fit indexes; *** p-value < .001; ** p-value < .01; * p-value < .05.   

Model 1 (NUTS 1–2-3) Model 2 (NUTS 0–1-2) Model 3 (NUTS 0–2-3) 

Estimate (SE) t-value Estimate (SE) t-value Estimate (SE) t-value 

Intercept 359.336 (46.112) 7.793*** 413.81 (76.17) 5.432*** 427.453 (71.155) 6.007*** 
Slope (variation over time) − 8.672 (1.647) − 5.266*** − 9.810 (2.87) − 3.418** − 9.822 (2.184) − 4.498***  

Fit indexes 
Df 12 12 12 
AIC 125,235 152,573 125,217 
BIC 125,321 152,659 125.303 
LogLik − 62,605 − 76,274 − 62,597 
Deviance 125,211 152,549 125,193 
Chi sq.  0 27.355 
Pr>(Chi sq.)  1 <2e-16 ***  

Table 5 
Random effects for the three models proposed, in terms of intercept and slope; *** p-value < .001; ** p-value < .01; * p-value < .05; n.s. Not Significant.   

Model 1 (NUTS 1–2-3) Model 2 (NUTS 0–1-2) Model 3 (NUTS 0–2-3) 

Intercept Slope Cor. Intercept Slope Cor. Intercept Slope Cor. 

NUTS 0    * * − 1.00 * * − 0.68 
NUTS 1 * * − 0.88 n.s. n.s. − 1.00    
NUTS 2 *** *** − 1.00 *** *** − 1.00 *** *** − 1.00 
NUTS 3 *** *** − 0.69    *** *** − 0.70  
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Fig. 2. Carbon Emission Intensity (tons of CO2e/million €) for the year 2016 for NUTS 0-1-2-3  
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Fig. 3. Variation of Carbon Emission Intensity (tons of CO2e/million €) between 2008 and 2016 for NUTS 0-1-2-3.  
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(intercept and slope, p-value <.1). Overall, these results suggest that, 
while NUTS 3 appears to always be relevant, the significance of NUTS 1 
and NUTS 2 differs across states, highlighting the importance of place 
specificity in the study of ST. In fact, each national context shows spe-
cific geographical scales where CEI trajectories significantly differ from 
the average. This result suggests that ST should be addressed with reg-
ulations focusing on specific geographical scales in different states 
(Hansen and Coenen, 2015). 

5.4. Potential drivers of industrial transition 

The final set of analyses elaborates on the extent to which decreasing 
CEI is associated with actual structural changes in the EU industrial 
sector, as well as deconstruct the processes that underlie the CEI dy-
namics. We thus explore the potential drivers of industrial transition by 
considering the effects on CEI introduced by changes in EU ETS regu-
lation and by the decommissioning of plants (see Section 4.3 for details). 

The piecewise model allows us to consider the possibility that the 
trajectory of CEI is not necessarily smooth and linear over the entire time 

span 2008–2016; instead, it could be characterised by a discontinuity in 
its overall mean path introduced by the regulation. The model encom-
passes two trajectories for the sub-periods of analysis (i.e., 2008–2012, 
Phase II EU ETS; and 2013–2016, Phase III EU ETS): Both sub-periods 
show statistically significant values of the linear slope corresponding 
to each of the two time periods considered (Table 7). Compared to the 
overall trajectory of the general model (NUTS 0–2-3), which had an 
average rate of change in CEI equal to − 9.82, the piecewise model shows 

Fig. 4. Plot of the correlation between intercept and slope of Carbon Emission Intensity for each country, derived from the multilevel-growth model.  

Table 6 
Analysis of the top 10 CO2e emitting countries; *** p-value < .001; ** p-value < .01; * p-value<.05; § p-value<.1; N.S.= Not Significant; n.a.= not available.  

State NUTS 1 NUTS 2 NUTS 3 

Obs. Intercept Slope Obs. Intercept Slope Obs. Intercept Slope 

Germany 16 * N.S. 38 N.S. N.S. 361 *** *** 
Poland 7 N.S. N.S. 17 N.S. N.S. 73 *** *** 
Italy 5 N.S. N.S. 21 N.S. N.S. 105 *** *** 
Spain 7 § § 19 N.S. N.S. 59 *** *** 
UK 12 N.S. N.S. 41 N.S. N.S. 158 *** *** 
France 14 N.S. N.S. 27 *** N.S. 192 n.a. n.a. 
The Netherlands 4 N.S. N.S. 12 *** N.S. 78 n.a. n.a. 
Czech Republic 0 n.a. n.a. 8 ** N.S. 14 *** *** 
Greece 0 n.a. n.a. 12 *** *** 40 ** ** 
Belgium 3 N.S. N.S. 11 N.S. N.S. 44 *** ***  

Table 7 
Fixed effects into the model proposed indexes; *** p-value < .001; ** p-value <
.01; * p-value < .05.   

Model 3 (NUTS 0–2-3) 

Estimate (SE) t-value 

Intercept 307.054 (52.276) 5.874*** 
Slope t1: period 2008–2012 − 8.504 (2.122) − 4.008*** 
Slope t2: period 2013–2016 − 13.996 (3.024) − 4.629***  
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the rate of change of the CEI is equal to − 8.504 in the first sub-period 
(2008–2012) and − 13.996 in the second (2013–2016), while both 
values of the slope are statistically significant (p-value < .001). This 
result shows that the change in EU ETS regulation helped to accelerate 
the decreasing average CEI pattern and thus might represent an actual 
transition pathway. 

In light of the decommissioning variable, the coefficients of the 
reference case (i.e., Decomm-1, representing the decommissioning sce-
nario) were all significant, while the slope in the second sub-period 
showed a steeper decrease compared to the first sub-period (Table 8). 
These analyses confirm the significance of the piecewise model in those 
NUTS that experienced the decommissioning of plants. Decomm+1, 
which characterises those NUTS where the number of plants increased, 
showed that the intercept is higher than in the reference case: It is equal 
to the sum of the reference model with the specific intercept generated 
by Decomm+1 (241.850 + 187.223 = 429.073). The slope in the sub- 
period t1 was significant and equal to − 10.321 + 3.998 = − 6.323, 
but it was not significant in the sub-period t2 (i.e., not significantly 
different from the reference case) and therefore remained equal to the 
reference case itself (− 12.783). Finally, considering Decomm0, which 
characterises NUTS that did not vary the number of plants during the 
period, both the intercept and the slope in the sub-periods t1 and t2 were 
not statistically significant. Therefore, Decomm0 is not significantly 
different from Decomm-1. 

Taken together, these results suggest that regulation triggers indus-
trial transition dynamics, while decommissioning does not lead to any 
significant effect. In fact, NUTS in which the decommissioning took 
place behaved similarly to those in which decommissioning did not 
occur, especially in the sub-period t2. Fig. 5 shows the piecewise average 
trajectories for the three decommissioning scenarios. 

6. Discussion and conclusion 

The field of ST is gaining strong interest among academics and 
practitioners due to its high relevance for business and society. This 
trend is expected to increase, given the magnitude of sustainability 
challenges facing the world today. At the same time, ST is a research 
field characterised by high complexity: Transformational processes 
require the interactions of multiple actors in order to proceed, as high-
lighted by previous theoretical frameworks in the field (i.e., MLP, TM, 
SNM and TIS). However, the abstract conceptualisation of niches, re-
gimes, and landscapes opened up the opportunity for the economic ge-
ography literature to contribute to the ST field with the introduction of 
space. This literature has made constructive comments and criticism on 
transition studies (Cooke, 2009; Hodson and Marvin, 2009; Shove and 
Walker, 2007; Truffer, 2008), particularly by introducing the concept of 
multi-scalarity (Coenen et al., 2012). However, further efforts to 
empirically measure the concept of space would benefit the field’s 
progression. In our paper, we operationalise multi-scalarity in order to 
create a methodological basis for empirically investigating multiple 
geographical scales and performing comparative analyses of ST pro-
cesses. This is a necessary – even urgent – step to explain the 
geographical unevenness of transition pathways, as well as concretely 
elaborate on how a spatial perspective on ST may be used to complement 
the existing literature and define more effective policies. 

Beyond contributing to the ST literature in general, our study also 
adds insights to the specific literature on CEI by focusing on industrial 
sustainability transition. Current studies on carbon emissions (Pan et al., 
2019; Turner et al., 2012) have mainly concentrated on the definition of 
mitigation policies through data collected at the national level (Hossain, 
2011; Dogan and Seker, 2016; Wang et al., 2017; Zhang et al., 2014). 
However, as we have emphasised, a single measurement approach 
cannot address the complexities of and differences among countries; 
thus, we exploited a novel and comprehensive longitudinal dataset, 
where data on EU CEI were gathered at finer geographical aggregations. 
To our knowledge, this is the first study to exploit these data, which is 
surprising considering that they may support the adoption of a novel and 
more efficient approach to defining ST policies, based on different 
scales. 

Moreover, our research contributes to the quantitative study of the 
drivers of ST. Our results delineate how changes introduced by the Phase 
III of EU ETS succeeded in decreasing CEI without causing unintended 
carbon leakages. In this way, we answer calls from the extant literature 
to study the effects of the Phase III, including issues related to the carbon 
leakages linked to the decommissioning of plants (Naegele and Zaklan, 
2019; Teixidó et al., 2019). 

Table 8 
Fixed effects into the model proposed indexes; *** p-value < .001; ** p-value <
.01; * p-value < .05.    

Model 3 (NUTS 0–2-3) 

Estimate (SE) t-value 

Decomm-1 Intercept 241.850 (60.309) 4.010*** 
Slope t1: period 2008–2012 − 10.321 (2.197) − 4.697*** 
Slope t2: period 2013–2016 − 12.783 (3.859) − 3.317** 

Decomm0 Intercept 49.565 (51.013) 0.972 
Slope t1: period 2008–2012 3.304 (1.685) 1.960 
Slope t2: period 2013–2016 − 3.003 (4.944) − 0.607 

Decomm+1 Intercept 187.223 (48.362) 3.871*** 
Slope t1: period 2008–2012 3.998 (1.605) − 2.491* 
Slope t2: period 2013–2016 − 2.305 (4.639) − 3.317  

Fig. 5. Plot of CEI model for the three decommissioning scenarios, i.e., Decomm+1 representing the NUTS where the number of plants increased during the period of 
analysis; Decomm0 representing the NUTS that did not vary the number of plants; Decomm-1 representing the NUTS where the number of plants decreased. 
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6.1. Policy implications 

Based on the aforementioned contributions, our results provide 
several policy implications. Firstly, we suggest that the mean trajectory 
of CEI in the EU decreased between 2008 and 2016. European and na-
tional policies have been crucial for triggering the process of ST (Lind-
berg et al., 2019), pushing European countries to be engaged in re- 
industrialization processes. To date, we are aware of differences 
among countries in their journey towards a less CO2-intensive, but 
wealthier, context. Our data show a general reduction of CEI in the 
timespan considered, indicating that the EU Commission’s ETS policy 
(Directive 2003/87/EC) has had positive effects. However, we also 
suggest that the overall EU results (− 18% CO2e) are far from reaching 
the targets set by the EU Green Deal10 (− 55% CO2e by 2030). This is 
probably because nowadays, policies to support ST are mainly defined at 
the national or European level. However, we suggest that a “one-size-fit- 
all” approach does not work in this complex context. An exploration of 
the finer aggregations of geographical boundaries is imperative to make 
processes of re-industrialization more effective in the future (Coe et al., 
2004). While governments should have a comprehensive plan that de-
fines general initiatives for their entire national contexts, they should 
also adopt specific policies built around the characteristics of each 
spatial dimension in which the transition is going to take place. 

This leads to the paper’s second finding: Different geographical 
scales (NUTS 0, 1, 2 and 3) all play a significant role in studying ST 
trajectories. The concept of geographical multi-scalarity has the poten-
tial to overcome the emphasis on the national scale that pervades extant 
research. This resonates with the debate, introduced by Brenner (2001) 
and further elaborated by Coenen et al. (2012), about the importance of 
considering different scales in order to fight the “tendency to create an 
ontological hierarchy in which the global is somehow more powerful 
than the local scale” (Coenen et al., 2012, p.75). In particular, focusing 
on micro-scales allows scholars to appropriately consider the speciali-
zation of competences and institutional structures as critical factors 
supporting ST processes. Local actors should be better equipped than 
national actors to design successful policies, thanks to their knowledge 
of local specific conditions and their ability to match policies to area 
peculiarities (Asheim et al., 2011). 

Thirdly, our findings show that different starting points in CEI 
correspond to different decreasing trajectories, thereby depicting 
different ST patterns. In particular, geographical areas starting from a 
higher level of CEI show a more pronounced decline in CEI over time, 
while the opposite occurs for areas starting from lower values of CEI. 
The literature on evolutionary economic geography supports this 
orientation through the concept of path dependency, as the history and 
status quo of a place necessarily affect its transition pathway. At the 
firm-level, companies tend to be “locked-in” (Greco and di Fabbio, 
2014) within specific geographical areas due to patterns of activities and 
resources, which impede the delineation of new pathways deviating 
from the initial conditions. The same can be said for regions. As ST is 
affected both by the processes related to the historical pathway and the 
features of the place itself, the proximity among actors creates a self- 
reinforcing mechanism that limits variations in context conditions 
(Coenen et al., 2010), while stimulating knowledge spill-overs and 
diversification in related (but not spatially distant) geographical areas. 
However, it is interesting to note that the negative relationships between 
intercept and slope derived from our data are not homogeneous along 
the ST pathway; instead, they tend to have a steeper decline in the initial 
phases and a flatter one as the pathway evolves. Countries that have 
played a leading role in ST (e.g., Germany, France, The Netherlands, 
Denmark) will face greater challenges in further sustaining their emis-
sion reductions, while countries just starting their pathway (e.g., 

Hungary, Czech Republic, Romania, Bulgaria) will obtain greater re-
sults. This is mainly due to the fact that the two groups occupy two 
distinct positions in the journey towards ST. Accordingly, policies will 
have to consider these differences when delineating country-specific 
actions in order to be fully effective. 

Additionally, our results show that the significance of the 
geographical scales at NUTS 1, 2 and 3 changes based on the NUTS 
0 considered. The natural variety of European contexts underscores the 
importance of studying ST from an institutional economic geography 
perspective (Martin, 2001; Martin and Sunley, 2006). We thus highlight 
the need to identify groups of geographical areas that share similar 
structural characteristics, institutional conditions and transition strate-
gies. It is important to note that the grouping of these geographical areas 
does not have to exclusively follow the rule of geographical proximity, 
but can also aggregate areas that are distantly located from one another. 
This grouping may provide the basis for identifying more precise and 
fitting policies towards ST.11 

Finally, our analysis confirms that in the early stages of the EU ETS, 
primarily incremental process innovations might have been introduced 
and resulted in a limited reduction of CEI. This would then not so much 
correspond to an actual “transition”, but rather to incremental im-
provements due to (regulatory-) induced energy saving attempts. 
However, by conducting a piecewise analysis, we show that the intro-
duction of Phase III in EU ETS resulted in a steeper decrease in CEI 
(compared to Phase II), which might signal a structural change in the 
overall energy-intensive industrial sector. This result confirms early 
studies in the field (Petrick and Wagner, 2014; Wagner et al., 2014). 
With our analytical framework, we also quantify the impact of regula-
tions on the reduction of CEI, showing a significant change of trajectory 
before and after the introduction of the Phase III of EU ETS. Our findings 
as a whole suggest that the changes in EU ETS (e.g., a single GHGs 
emissions cap for the whole EU area, the expansion of the sectors 
covered and the emission allowances allocated by auctioning, instead of 
being granting for free) acted as a trigger for transition processes, but the 
different geographical areas have been able to leverage this impulse by 
carrying forward their own independent transition process. In addition, 
our analyses show that regions experiencing plant decommissioning 
display the very same CEI decrease as regions where the industrial 
ecosystem is stable or even growing. This result supports previous evi-
dence about the effectiveness of EU ETS regulation in reducing carbon 
emissions, namely by promoting industrial transition without causing 
undesirable carbon leakages (Naegele and Zaklan, 2019). 

6.2. Limitations and future research 

This paper contains some limitations that reveal opportunities for 
further research. Firstly, our study focused on the industrial sector, 
although there are other forms of ST to explore, such as transitions in 
energy systems (Lindberg et al., 2019), mobility (Köhler et al., 2020), 
agriculture and food-chain (Adegbeye et al., 2020), and cities (Geng 
et al., 2019). Broadening the investigation to non-industrial transitions 
could provide a more comprehensive picture of the challenges and op-
portunities facing our societies. Secondly, we used CEI as a proxy of 
industrial ST. This study represents, to our knowledge, the first attempt 
to account for the hierarchical structure of CEI for a large pool of 
countries. Furthermore, the use of CEI data allowed us to analyze policy- 
induced transition pathways with incremental effects along time. 
Further research could adopt additional variables (e.g., total CO2 
emissions, air pollution) in order to better represent structural changes 
with consequent more radical effects on ST. 

Third, the EU ETS database that we used to collect data on industrial 

10 COM (2020) 562 final. Available at: https://eur-lex.europa.eu/legal-co 
ntent/EN/TXT/PDF/?uri=CELEX:52020DC0562&from=EN 

11 We highlight that we do not test for spatial autocorrelations in our analyses, 
however, geographical proximity may represent a lens for interpreting our 
results. 
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CO2e emissions features missing values due to data collection issues or 
different countries’ legislative shortcomings. Future studies could adopt 
different data sources for CO2e emissions by shifting from self- 
declarations data (as in the EU ETS register) to more objective data 
collected through satellites (e.g., EU Copernicus project), or by focusing 
on a broader panel of air quality data that integrates information from 
the European Pollutant Release and Transfer Register (E-PRTR). 

Finally, our paper described the evolution of ST trajectories in terms 
of the interplay between time and space. Future research could more 
deeply investigate this topic by analysing the reasons why these path-
ways occur; that is, they could identify drivers of ST. The digital 
development of a region, its level of education, and its foreign direct 
investments could represent interesting examples of antecedents that 
explain the different ST pathways. 
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