© 2021 Wiley-VCH GmbH

Supporting Information

for Macromol. Chem. Phys., DOI: 10.1002/macp. 202000404
Boron Compounds as Additives for the Cationic Polymerization Using Coumarin Derivatives in Epoxy Silicones

Mira Abdallah, Akram Hijazi, Pier Giorgio Cozzi, Andrea Gualandi, Frederic Dumur, and Jacques Lalevée*

Boron Compounds as Additives for the Cationic Polymerization using

Coumarin Derivatives in Epoxy-silicones

Mira Abdallah ${ }^{1,2,3}$, Akram Hijazi ${ }^{3}$, Pier Giorgio Cozzi ${ }^{* 4}$, Andrea Gualandi ${ }^{4}$, Frederic Dumur*5 ${ }^{5}$, Jacques Lalevée* ${ }^{1,2}$
${ }^{1}$ Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France ${ }^{2}$ Université de Strasbourg, France
${ }^{3}$ EDST, Université Libanaise, Campus Hariri, Hadath, Beyrouth, Liban
${ }^{4}$ ALMA MATER STUDIORUM Università di Bologna, Dipartimento di Chimica "G. Ciamician", Via Selmi2, 40126 Bologna, Italy
${ }^{5}$ Aix Marseille Univ, CNRS, ICR UMR 7273, F-13397 Marseille, France

Corresponding author: jacques.lalevee@uha.fr

Study of Coum-a complexation:

Addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ to Coum-a leads to a significant variation in ${ }^{1} \mathrm{HNMR}$ spectrum (Figures 1-6).

Very broad signals were observed for protons $\left(\mathrm{H}^{5}, \mathrm{H}^{6}, \mathrm{H}^{8}\right)$ of the nitrogen substituted aromatic ring when $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was added, whereas H^{4} (β-position respect to $\mathrm{C}=\mathrm{O}$) moves at higher frequencies (Figure 2). Protons relative $\mathrm{CH}_{2}\left(\mathrm{H}^{11}\right)$ of $\mathrm{Et}_{2} \mathrm{~N}$ group became broad and move to higher frequencies (Figure 3). It is noteworthy that, when 1 equivalent of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was added, the two CH_{2} of the $\mathrm{Et}_{2} \mathrm{~N}$ group give two distinct broad signals (Figure 3E).

Addition of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ results in a less markable changes in the signal relative to $\mathrm{CH}_{2}\left(\mathrm{H}^{11}\right)$ of $\mathrm{Et}_{2} \mathrm{~N}$ group, that slightly move to higher frequencies (Figure 6). In the aromatic region the addition of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ gives quite similar results observed for $\mathrm{BF}_{3} \mathrm{OEt}_{2}$ (Figure 5).

Due the broadness of the signal was not possible to collect ${ }^{13} \mathrm{CNMR}$ spectrum after the addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$.

From the results obtained, a coordination of boranes to the nitrogen atom seems very probable for Coum-a.

Figure 1. ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$) spectra of: (A) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$; (B) Coum-a; (C): Coum-a +0.25 equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$; (D): Coum-a +0.5 equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$; (E): Coum-a +1 equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$.

Figure 2. Aromatic region ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$) spectra of: (A) Coum-a; (B): Coum$\mathbf{a}+0.25$ equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$; (C): Coum-a +0.5 equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$; (D): Coum-a +1 equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$.

Figure 3. Aliphatic region ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right.$) spectra of: (A) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$; (B) Coum-a; (C): Coum-a +0.25 equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$; (D): Coum-a +0.5 equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$; (E): Coum-a +1 equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$.

Figure 4. ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$) spectra of: (A) Coum-a; (B): Coum-a +0.5 equiv of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$; (C): Coum-a + 1.0 equiv of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$.

Figure 5. Aromatic region of ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$) spectra of: (A) Coum-a; (B): Coum-a +0.5 equiv of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} ;(\mathrm{C})$: Coum-a +1.0 equiv of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$.

Figure 6. Aliphatic region of ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$) spectra of: (A) Coum-a; (B): Coum-a +0.5 equiv of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} ;(\mathrm{C})$: Coum-a +1.0 equiv of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$.

Study of Coum-b complexation:

Coum-b presented a less pronounced change in the ${ }^{1} \mathrm{HNMR}$ signal compared to Coumarin-a. Both with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (Figures 7-9) and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (Figures 10-12), there are slight changes in the aromatic signals related to the coumarin system, but only the signal relative to H^{4} (β-position respect to $\mathrm{C}=\mathrm{O}$) shows a shift at higher frequencies (Figures 8) with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$. When $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ was added, 5 equivalents are needed to observe appreciable shift in the H^{4} signal (Figure 11). The signal relative to the aliphatic chain of phenol ether remains untouched (Figures 6 and 12).

Remarkable ${ }^{13}$ CNMR shift of the signals relative to the α, β-unsaturated ester region was recorded by the addition of 5 equivalents of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (Figures $13-17$). C^{4} (β-position respect to $\mathrm{C}=\mathrm{O}$) and C^{12} (ipso carbon of nitrophenyl substituent) move to higher frequencies and low field respectively. Less pronounced changes were observed for carbonyl group (C^{2}), C^{3} (α-position respect to $\mathrm{C}=\mathrm{O}$) and for the phenolic ring $\left(\mathrm{C}^{7}\right.$ and $\left.\mathrm{C}^{6}\right)$.

These results were in according with minor ability to coordinate boranes from the Coum-b respect to Coum-a. From the signals involved in the changes in NMR spectra, it is possible to suppose a coordination of the carbonyl group with boranes for Coum-b.

Figure 7. ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right.$) spectra of: (A) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$; (B) Coum-b; (C): Coum-b +0.25 equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$; (D): Coum-b +0.5 equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$; (E): Coum-b +1 equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$.

Figure 8. Aromatic region ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ spectra of: (A) Coum-b; (B): Coum$\mathbf{b}+0.25$ equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$; (C): Coum-b +0.5 equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$; (D): Coum-b +1 equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$.

Figure 9. 2.5-4.5 ppm region ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right.$) spectra of: (A) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$; (B) Coum-b; (C): Coum-b +0.25 equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$; (D): Coum-b +0.5 equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$; (E): Coum-b +1 equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$.

Figure 10. ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right.$) spectra of: (A) Coum-b; (B): Coum-b +0.5 equiv of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$; (C): Coum-b +1.0 equiv of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$; (D): Coum-b +2.0 equiv of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$; (E): Coum-b +5.0 equiv of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$.

Figure 11. Aromatic region of ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$) spectra of: (A) Coum-b; (B): Coum-b +0.5 equiv of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$; (C): Coum-b +1.0 equiv of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$; (D): Coum-b +2.0 equiv of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$; (E) : Coum-b +5.0 equiv of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$.

Figure 12. Alipahtic region of ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$) spectra of: (A) Coum-b; (B): Coum-b +0.5 equiv of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$; (C): Coum-b +1.0 equiv of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$; (D): Coum-b +2.0 equiv of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$; (E) : Coum-b +5.0 equiv of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$.

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
00	190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{ppm} \end{aligned}$	90	80	70	60	50	40	30	20	10	0

Figure 13. ${ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ spectrum of Coum-b.

Figure 14. ${ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right)$ spectrum of Coum-b + 5 equiv of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$.

Figure 15. ${ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right.$) spectra of: (A) Coum-b; (B) Coum-b + 5 equiv of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$.

B

A

| 166 | 165 | 164 | 163 | 162 | 161 | 160 | 159 | 158 | 157 | 156 | 155 | 154 | 153 | 152 | 151 | 150 | 149 | 148 | 147 | 146 | 145 | 144 | 143 | 142 | 141 | 140 |
| :--- |

Figure 16. Aromatic region ${ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right.$) spectra of: (A) Coum-b; (B) Coum-b +5 equiv of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$.

Figure 17. Aromatic region ${ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$) spectra of: (A) Coum-b; (B) Coum-b +5 equiv of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$.

