© 2021 Wiley-VCH GmbH

Supporting Information

for Macromol. Chem. Phys., DOI: 10.1002/macp.202000404

Boron Compounds as Additives for the Cationic Polymerization Using Coumarin Derivatives in Epoxy Silicones

Mira Abdallah, Akram Hijazi, Pier Giorgio Cozzi, Andrea Gualandi, Frederic Dumur, and Jacques Lalevée*

Boron Compounds as Additives for the Cationic Polymerization using

Coumarin Derivatives in Epoxy-silicones

Mira Abdallah^{1,2,3}, Akram Hijazi³, Pier Giorgio Cozzi^{*4}, Andrea Gualandi⁴, Frederic Dumur^{*5}, Jacques Lalevée^{*1,2}

¹Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France ²Université de Strasbourg, France ³EDST, Université Libanaise, Campus Hariri, Hadath, Beyrouth, Liban ⁴ALMA MATER STUDIORUM Università di Bologna, Dipartimento di Chimica "G. Ciamician", Via Selmi2, 40126 Bologna, Italy ⁵ Aix Marseille Univ, CNRS, ICR UMR 7273, F-13397 Marseille, France

Corresponding author: jacques.lalevee@uha.fr

Study of Coum-a complexation:

Addition of $BF_3 \cdot OEt_2$ and $B(C_6F_5)_3$ to **Coum-a** leads to a significant variation in ¹HNMR spectrum (Figures 1- 6).

Very broad signals were observed for protons (H^5 , H^6 , H^8) of the nitrogen substituted aromatic ring when $BF_3 \cdot OEt_2$ was added, whereas H^4 (β -position respect to C=O) moves at higher frequencies (Figure 2). Protons relative CH_2 (H^{11}) of Et_2N group became broad and move to higher frequencies (Figure 3). It is noteworthy that, when 1 equivalent of $BF_3 \cdot OEt_2$ was added, the two CH_2 of the Et_2N group give two distinct broad signals (Figure 3E).

Addition of $B(C_6F_5)_3$ results in a less markable changes in the signal relative to CH_2 (H^{11}) of Et_2N group, that slightly move to higher frequencies (Figure 6). In the aromatic region the addition of $B(C_6F_5)_3$ gives quite similar results observed for BF_3OEt_2 (Figure 5).

Due the broadness of the signal was not possible to collect 13 CNMR spectrum after the addition of BF₃•OEt₂.

From the results obtained, a coordination of boranes to the nitrogen atom seems very probable for **Coum-a**.

Figure 1. ¹HNMR (400 MHz, CDCl₃, 25 °C) spectra of: (A) $BF_3 \cdot OEt_2$; (B) Coum-a; (C): Coum-a + 0.25 equiv of $BF_3 \cdot OEt_2$; (D): Coum-a + 0.5 equiv of $BF_3 \cdot OEt_2$; (E): Coum-a + 1 equiv of $BF_3 \cdot OEt_2$.

Figure 2. Aromatic region ¹HNMR (400 MHz, CDCl₃, 25 °C) spectra of: (A) Coum-a; (B): Coum-a + 0.25 equiv of $BF_3 \cdot OEt_2$; (C): Coum-a + 0.5 equiv of $BF_3 \cdot OEt_2$; (D): Coum-a + 1 equiv of $BF_3 \cdot OEt_2$.

4.5
4.4
4.3
4.2
4.1
4.0
3.9
3.8
3.7
3.6
3.5
3.4
3.3
3.2
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

ppm

Figure 3. Aliphatic region ¹HNMR (400 MHz, CDCl₃, 25 °C) spectra of: (A) $BF_3 \cdot OEt_2$; (B) Coum-a; (C): Coum-a + 0.25 equiv of $BF_3 \cdot OEt_2$; (D): Coum-a + 0.5 equiv of $BF_3 \cdot OEt_2$; (E): Coum-a + 1 equiv of $BF_3 \cdot OEt_2$.

Figure 4. ¹HNMR (400 MHz, CDCl₃, 25 °C) spectra of: (A) **Coum-a**; (B): **Coum-a** + 0.5 equiv of $B(C_6F_5)_3$; (C): **Coum-a** + 1.0 equiv of $B(C_6F_5)_3$.

Figure 5. Aromatic region of ¹HNMR (400 MHz, CDCl₃, 25 °C) spectra of: (A) **Coum-a**; (B): **Coum-a** + 0.5 equiv of $B(C_6F_5)_3$; (C): **Coum-a** + 1.0 equiv of $B(C_6F_5)_3$.

Figure 6. Aliphatic region of ¹HNMR (400 MHz, CDCl₃, 25 °C) spectra of: (A) **Coum-a**; (B): **Coum-a** + 0.5 equiv of $B(C_6F_5)_3$; (C): **Coum-a** + 1.0 equiv of $B(C_6F_5)_3$.

Study of Coum-b complexation:

Coum-b presented a less pronounced change in the ¹HNMR signal compared to Coumarin-a. Both with $BF_3 \cdot OEt_2$ (Figures 7-9) and $B(C_6F_5)_3$ (Figures 10-12), there are slight changes in the aromatic signals related to the coumarin system, but only the signal relative to H^4 (β -position respect to C=O) shows a shift at higher frequencies (Figures 8) with $BF_3 \cdot OEt_2$. When $B(C_6F_5)_3$ was added, 5 equivalents are needed to observe appreciable shift in the H^4 signal (Figure 11). The signal relative to the aliphatic chain of phenol ether remains untouched (Figures 6 and 12).

Remarkable ¹³CNMR shift of the signals relative to the α , β -unsaturated ester region was recorded by the addition of 5 equivalents of B(C₆F₅)₃ (Figures 13-17). C⁴ (β -position respect to C=O) and C¹² (*ipso* carbon of nitrophenyl substituent) move to higher frequencies and low field respectively. Less pronounced changes were observed for carbonyl group (C²), C³ (α -position respect to C=O) and for the phenolic ring (C⁷ and C⁶).

These results were in according with minor ability to coordinate boranes from the **Coum-b** respect to **Coum-a**. From the signals involved in the changes in NMR spectra, it is possible to suppose a coordination of the carbonyl group with boranes for **Coum-b**.

Figure 7. ¹HNMR (400 MHz, CDCl₃, 25 °C) spectra of: (A) $BF_3 \cdot OEt_2$; (B) **Coum-b**; (C): **Coum-b** + 0.25 equiv of $BF_3 \cdot OEt_2$; (D): **Coum-b** + 0.5 equiv of $BF_3 \cdot OEt_2$; (E): **Coum-b** + 1 equiv of $BF_3 \cdot OEt_2$.

Figure 8. Aromatic region ¹HNMR (400 MHz, CDCl₃, 25 °C) spectra of: (A) **Coum-b**; (B): **Coum-b** + 0.25 equiv of BF₃•OEt₂; (C): **Coum-b** + 0.5 equiv of BF₃•OEt₂; (D): **Coum-b** + 1 equiv of BF₃•OEt₂.

10

Figure 9. 2.5-4.5 ppm region ¹HNMR (400 MHz, CDCl₃, 25 °C) spectra of: (A) $BF_3 \bullet OEt_2$; (B) Coum-b; (C): Coum-b + 0.25 equiv of $BF_3 \bullet OEt_2$; (D): Coum-b + 0.5 equiv of $BF_3 \bullet OEt_2$; (E): Coum-b + 1 equiv of $BF_3 \bullet OEt_2$.

Figure 10. ¹HNMR (400 MHz, CDCl₃, 25 °C) spectra of: (A) **Coum-b**; (B): **Coum-b** + 0.5 equiv of $B(C_6F_5)_3$; (C): **Coum-b** + 1.0 equiv of $B(C_6F_5)_3$; (D): **Coum-b** + 2.0 equiv of $B(C_6F_5)_3$; (E): **Coum-b** + 5.0 equiv of $B(C_6F_5)_3$.

Figure 11. Aromatic region of ¹HNMR (400 MHz, CDCl₃, 25 °C) spectra of: (A) **Coum-b**; (B): **Coum-b** + 0.5 equiv of $B(C_6F_5)_3$; (C): **Coum-b** + 1.0 equiv of $B(C_6F_5)_3$; (D): **Coum-b** + 2.0 equiv of $B(C_6F_5)_3$; (E): **Coum-b** + 5.0 equiv of $B(C_6F_5)_3$.

Figure 12. Alipahtic region of ¹HNMR (400 MHz, CDCl₃, 25 °C) spectra of: (A) **Coum-b**; (B): **Coum-b** + 0.5 equiv of $B(C_6F_5)_3$; (C): **Coum-b** + 1.0 equiv of $B(C_6F_5)_3$; (D): **Coum-b** + 2.0 equiv of $B(C_6F_5)_3$; (E): **Coum-b** + 5.0 equiv of $B(C_6F_5)_3$.

Figure 14. ¹³CNMR (100 MHz, CDCl₃, 25 °C) spectrum of Coum-b + 5 equiv of $B(C_6F_5)_3$.

Figure 15. ¹³CNMR (100 MHz, CDCl₃, 25 °C) spectra of: (A) **Coum-b**; (B) **Coum-b** + 5 equiv of $B(C_6F_5)_3$.

Figure 16. Aromatic region ¹³CNMR (100 MHz, CDCl₃, 25 °C) spectra of: (A) Coum-b; (B) Coum-b + 5 equiv of $B(C_6F_5)_3$.

133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 ppm

Figure 17. Aromatic region ¹³CNMR (100 MHz, CDCl₃, 25 °C) spectra of: (A) **Coum-b**; (B) **Coum-b** + 5 equiv of $B(C_6F_5)_3$.