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This paper introduces the logics of super-strict implications, where a super-strict

implication is a strengthening of C.I. Lewis’ strict implication that avoids not only
the paradoxes of material implication but also those of strict implication. The

semantics of super-strict implications is obtained by strengthening the (normal)

relational semantics for strict implication. We consider all logics of super-strict

implications that are based on relational frames for modal logics in the modal

cube. it is shown that all logics of super-strict implications are connexive logics

in that they validate Aristotle’s Theses and (weak) Boethius’s Theses. A proof-

theoretic characterisation of logics of super-strict implications is given by means

of G3-style labelled calculi, and it is proved that the structural rules of inference

are admissible in these calculi. It is also shown that validity in the S5-based

logic of super-strict implications is equivalent to validity in G. Priest’s negation-

as-cancellation-based logic. Hence, we also give a cut-free calculus for Priest’s
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1. Introduction

Given its centrality in deductive reasoning, “implication seems to be the
most important connective” [18, p. 167]. Nevertheless there are different
competing formal explications of implication. Just to mention some cases,
we have material implication (⊃); its modalised versions such as strict im-
plication (J) and variably strict implication (�→); relevant implications;
and connexive implications. This paper proposes a new pair of modalised
versions of material implication which avoid the paradoxes of strict impli-
cation and generate a family of connexive logics with a simple relational
semantics.

Strict implication has been introduced by C.I. Lewis [6] to overcome
the paradoxes of material implication:

¬A ⊃ (A ⊃ B) (MI1)

B ⊃ (A ⊃ B) (MI2)

But, as connexivists [13] and relevantists [1] argued, strict implication is
plagued by its own paradoxes:

⊥ J B [and �¬A ⊃ (A J B)] (SI1)

A J > [and �B ⊃ (A J B)] (SI2)

We agree with connexivists and relevantists in taking the paradoxes of strict
implication to be as questionable as the paradoxes of material implication.
If, following C.I. Lewis, it is not maintained that ‘A implies B’ follows from
the hypothesis that A is false simpliciter (MI1) or from the hypothesis that
B is true simpliciter (MI2), then it is unnatural to maintain that it follows
from the hypothesis that A is inconsistent/impossible (SI1) or from the
hypothesis that B is a logical/necessary truth (SI2).

This is not to say that we have quarrels with material implication, as
is witnessed by the fact that we will consider logics containing material
implication: we maintain that there are uses of ‘A implies B’ for which
material implication is not appropriate, and that for these uses Lewis’
strict implication fares no better than material implication. If ‘A implies
B’ means that the truth of B depends, in one way or another, on that of
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A, in all the aforementioned cases we should accept that ‘A does not imply
B’ – i.e., among the validities governing implication we do not find (SI1)
and (SI2) but, instead, their negations. We find no reasonable sense of
‘depending’ under which the truth of some B might depend on the truth
of a sentence A that cannot be true (apart, possibly, the degenerate case
in which B itself cannot be true that will be disregarded in this paper).
Analogously, the truth of some B that cannot be false does not seem to
depend on the truth of any other sentence.2

Another way of making the same point goes as follows. If ‘A implies B’
means that establishing the truth of A is a good way of establishing the
truth of B – i.e., if the key role of an implication is its use in Modus Ponens
– then we immediately see that ‘⊥ implies B’ is useless for inquiring into
the truth of B. Analogously, ‘A implies >’ is a roundabout way for reaching
the truth of > (from this perspective (SI1) is way more problematic than
(SI2) ).

This paper studies two strengthenings of J – called super-strict impli-
cations (SSI) – that are designed to validate ‘A does not imply B’ when A
is logically impossible or B is logically necessary. Weak SSI (B) does not
validate (SI1) nor (SI2), but it validates the negation of (SI1). Strong SSI
(I) does not validate (SI1) nor (SI2), but it validates their negations.

Semantically, SSI are obtained by modifying the truth condition for J
in such a way that (SI1) and (SI2) no longer hold. As is well known, C.I.
Lewis’ strict implication can be defined in terms of the modal operator �
as:

A J B ≡ �(A ⊃ B)

If we express this in terms of the relational semantics for normal modalities
(for C.I. Lewis’ stronger calculi S4 and S5), we obtain the following semantic
clause:

A J B holds at a world w if and only if B holds at every
w-accessible world satisfying A.

Needless to say, if A is semantically equivalent to ⊥ then this semantic
clause has an unsatisfiable antecedent and, hence, (SI1) is valid. Analo-

2Observe that intuitionistic implication (→) with its BHK-interpretation – “a proof
of A → B is a construction which permits us to transform any proof of A into a proof
of B” [21, p. 9] – might seem to express an appropriate notion of dependency, but it
doesn’t fare better than material and strict implcations since it allows for the dummy
transformation when A ≡ ⊥ or B ≡ >.
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gously, if B is equivalent to > then the consequent of this semantic clause
is always satisfied and (SI2) is valid.

Weak SSI avoids the first paradox since

A B B holds at a world w whenever not only B holds at every
w-accessible world satisfying A but also A holds at some w-
accessible world.

Hence, B does not validate the paradoxes of strict implication: it validates
the negation of (SI1). Strong SSI does better in this respect in that it
validates also the negation of the second paradox (SI2):

A I B holds at a world w iff the two clauses for B are satisfied
and, moreover, B does not hold at some w-accessible world.

Having sketched the semantical interpretation of the notions of truth-
value dependency and SSI that we subscribe, the next step will be that
of introducing the class of logics that we are going to consider. Logics of
SSI will be defined semantically as sets of formulas that are valid in some
class of relational frames. In particular, we consider the logics determined
by the classes of frames defined via the following well-known properties of
the accessibility relation: seriality, reflexivity, transitivity, symmetry, and
Euclideaness (see Tables 1 and 2). Proof-theoretically, we will characterise
each logic by means of a G3-style labelled calculus [12, Chapter 11] where
all structural rules will be shown to be admissible (both syntactically and
semantically).

By means of these calculi it will be shown that all logics of SSI are
connexive logics – see [14] for a recent introduction to connexive logics –
in that they include both Aristotle’s Theses (( stands for either B or I):

¬(A( ¬A) ¬(¬A( A) (AT1 & AT2)

and (weak) Boethius’ Theses:

(A( B) ⊃ ¬(A( ¬B) (A( ¬B) ⊃ ¬(A( B) (BT1 & BT2)

Observe that the validity of Aristotle’s and Boethius’ Theses is a natural
outcome for an implication that expresses a notion of ‘truth-value depen-
dency’. Even if we have not tried to give a precise meaning to this notion
of truth-value dependency, one minimal property that we can ascribe is the
impossibility for both a proposition and its negation to depend on the same
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proposition. Accordingly, SSI validate Boethius’ Theses. Another property
that we can ascribe to this notion of truth-value dependency is that no
proposition depends on its own negation. Whence, SSI validate Aristotle’s
Theses. SSI are connexive implications (though they do not validate the
strong Boethius’ Theses that are obtained from the weak ones by replacing
⊃ with (). To sum up, SSI are simple modality-based non-paradoxical
and connexive implications where the connexion between antecedent and
consequent of a true implication is some kind of ‘truth-value dependency’.

Outline Section 2 discusses some related works and gives some motiva-
tions for SSI. Section 3 introduces the syntax and semantics of logics of
SSI. Section 4 introduces labelled calculi for them and Section 5 proves the
admissibility of the structural rules of inference. In Section 6 it is proved
that these calculi are sound and complete with respect to their intended
semantics. In Section 7 the semantics of the S5-based logic of SSI is shown
to be equivalent to the semantics for a connexive logic considered by G.
Priest [16]. Section 8 sketches some future works.

2. Super-strict implications and related works

SSI are interesting for at least two different but related reasons. First,
they explicate the idea of implication as expressing some kind of truth-
value dependency: ‘A implies B’ is taken to mean that establishing A is
a way to establish B. Under this reading of implication the paradoxes
of both material and strict implication do not hold. SSI validate instead
the negation of the first paradox of strict implication (SI1); strong SSI
validates also the negation of the second paradox (SI2). The second reason
for studying SSI is that they generate a family of connexive logics having a
very simple relational semantics. SSI show that we can achieve connexivity
by adding to the truth conditions for strict implication the condition that
the antecedent of a true implication has to be possible. Moreover, this
additional condition is not just a formal machinery to achieve connexivity:
it can be philosophically justified by taking implication to express some
kind of truth-value dependency. In this section we compare SSI with some
related approaches in order to highlight the main novelties of SSI.

The idea of strengthening C.I. Lewis’ J to obtain a more apt formal
explication of implication is not new. The most famous example of this
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phenomenon is D. Lewis’ and Stalnaker’s logic of variably strict implica-
tion �→ (a.k.a. the logic of counterfactual). We will briefly return to
variably strict implication in Section 8; here we just highlight that the goal
of proponents of variably strict implication is orthogonal to our own, since

�→ is designed to avoid the transitivity of J and not its paradoxes (SI1)
and (SI2).

A proposal that looks similar to SSI is made by E. J. Lowe in a series of
papers [8, 9] where he proposes to capture indicative conditionals by expli-
cating ‘A implies B’ in the modal language as �(A ⊃ B)∧(♦A∨�B). Lowe
explicitly rejects a modal analogous of weak SSI because of the following
counterexample: “If n were the greatest natural number, then there would
be a natural number greater than n” [9, p. 48]. We are not particularly
moved by this counterexample since our intuitions about its truth value
differ from Lowe’s ones. While Lowe maintains that a conditional with a
necessary consequent must be true even if its antecedent is impossible, we
believe, to the opposite, that no formula is implied by an impossible for-
mula. This is motivated by our understanding of implication as expressing
some kind of truth-value dependency. ‘A implies B’ means that establish-
ing A allows us to establish B. If A is impossible then it cannot be used
to establish the truth of some B, not even when B is necessarily true as in
Lowe’s example: we might have many different ways to establish B, but A
is not among them.3 Hence, when A is impossible we take ‘A implies B’
to be (logically) false. Notice also that under Lowe’s explication of impli-
cation the second paradox of strict implication (SI2) turns out to be valid.
Even if Lowe’s proposal were able to explicate indicative conditionals, it
would not provide a non-paradoxical implication. SSI are instead meant
to provide simple non-paradoxical modalised implication that need not be
formal explications of indicative conditionals in natural language. For this
reason we are not moved by the counterexamples given in [4] either.

Another proposal that is quite similar in spirit to the present one is
Hitchcock’s [5] enthymematic consequence: A  B iff it is impossible that
A is true and B is false, but both A and ¬B are possibly true. Obviously,
strong SSI can be seen as an object language representation of Hitchcock’s
consequence relation; and, analogously, weak SSI can be seen as an ob-

3If we consider strong SSI then Lowe’s example turn out to be false for the very
same reason used by Lowe to argue that it is true.
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ject language representation of B. Bolzano’s consequence relation since he
required the premisses be consistent, see [2].

A connexive implication that is somehow similar to SSI is C. Pizzi’s
consequential implication [15]: A consequentially implies B if and only if
A J B and, moreover, A and B cannot have incompatible modal status.
If the underlying modal logic is at least the serial logic KD, consequen-
tial implication validates Aristotle’s Theses and weak Boethius’ Theses.
Moreover, connexive consequential implication does not validate strong
Boethius’ Theses and, as shown in [15], a consequential implication val-
idating Strong Boethius’ would be a commutative operator. One of the
main differences between Pizzi’s consequential implication and SSI is that
the former is semantically analysed only via a translation in the modal lan-
guage and its formal definition makes essential use of modal notions. The
definition of SSI, instead, does not depend on modalities and, as will be
shown in Section 3, the (normal) modal operators � and ♦ can be defined
in terms of weak SSI in a non-circular way. Another striking difference
– which can be taken to show that SSI generate a better behaved family
of connexive logics than consequential implication – is that SSI validate
Aristotle’s and Boethius’ Theses even on structures falsifying the seriality
axiom D := �A ⊃ ♦A (see Example 4.1), whereas consequential impli-
cation is connexive only in the presence of the seriality axiom. All in all,
SSI seem better behaved than consequential implication for introducing
connexive implications with a simple relational semantics: modal notions
should not be involved in the definition of a connexive implication (but
they might be defined in terms of connexive implication) and, moreover,
it might be interesting to consider modality-based connexive logics where
the seriality axiom fails (even if seriality expresses the connexive idea that
A and ¬A express incompatible propositions).

Finally, another formal semantics for a connexive logic that is very sim-
ilar to the one for SSI is the one adopted by G. Priest [16] to model the
cancellation account of negation [19]. Section 7 will compare our proposal
with Priest’s one. Here we just anticipate that Priest’s motivation is com-
pletely independent from ours. Priest’s aim is that of making precise the
cancellation account of negation and showing how this “gives rise to a se-
mantics for a simple connexivist logic” [16, p. 141]. As we will see in
Proposition 7.1, validity (but not consequence) in Priest’s connexive logic
can be seen as a particular case of our more general approach obtained
by considering the S5-based logic of SSI. Hence, in providing proof sys-
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tems for logics of SSI, we will provide also a proof system for validities in
Priest’s cancellation account of negation. As we will argue in Section 7,
the cancellation account of negation cannot be formalised suitably by the
given formal semantics, which is instead appropriate to capture the idea of
implication as expressing some kind of truth-value dependency.

3. Syntax and semantics

The language (L) of SSI is determined by the following grammar, where p
ranges over a denumerable set of propositional variables P:

A ::= p | ⊥ | A ∧A | A ∨A | A ⊃ A | A B A | A I A (L)

Parentheses follow the usual conventions (where SSI bind lighter than all
other operators). We will use p, q, r as metavariables for propositional
variables and A,B,C for arbitrary formulas. > is short for ⊥ ⊃ ⊥ and ¬A
is short for A ⊃ ⊥. Moreover, A ( B will be short for both A B B and
A I B. Given a formula A, its weight w(A) is thus defined: w(p) = w(⊥) = 0
and w(A ◦B) = w(A) + w(B) + 1 for ◦ ∈ {∧,∨,⊃,B,I}.

As in relational semantics for modal logics, a frame F is a pair 〈W,R〉
composed of a non-empty set of worlds and an accessibility relation; a
model M is a triple 〈W,R, V 〉 where V is a valuation function mapping
each propositional variable in P to a subset of W . If M = 〈W,R, V 〉 and
F = 〈W,R〉, we say that the model M is based on the frame F (F-model,
for short).

The truth of a formula A at a world w of a model M (in symbols
|=Mw A) is defined as usual for the classical operators and for the SSI is
defined as follows:

|=Mw A B B iff for all v ∈W , if wRv and |=Mv A, then |=Mv B &

some v ∈W is such that wRv and |=Mv A

|=Mw A I B iff for all v ∈W , if wRv and |=Mv A, then |=Mv B &

some v ∈W is such that wRv and |=Mv A &

some v ∈W is such that wRv and 6|=Mv B

Truth in a model (|=M A) and validity in a frame (F |= A) or in a class
C of frames (C |= A) are defined in the usual way. A formula is valid if it
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Table 1. Modal correspondence
results.

Name Property Modal axiom

(D) seriality �A ⊃ ♦A
∀w∃v(wRv)

(T ) reflexivity �A ⊃ A
∀w(wRw)

(4) transitivity �A ⊃ ��A
∀w, v, u(wRv ∧ vRu ⊃ wRu)

(B) symmetry A ⊃ �♦A
∀w, v(wRv ⊃ vRw)

(5) Euclideaness ♦A ⊃ �♦A
∀w, v, u(wRv ∧ wRu ⊃ vRu)

Table 2. Cube of normal
modalities.

K

D

T

K4

D4

S4 = T4

KB

DB

B = TB

KB5 = KB45

S5 = KT4B

D45

K5

D5

K45

is valid in the class of all frames. Given a class C of frames (a C-model is
a model based on a frame in C and) its (local) consequence relation is thus
defined:

Γ |=C A iff for each world w of a C-model, if all formulas in
Γ are true at w then A is true at w

A logic of SSI is defined as the set of L-formulas that are valid in a class
of frames. In particular, we consider the logics determined by the classes
of frames defined via the well-known properties of the accessibility relation
given in Table 1. We follow the standard naming conventions for L�-logics,
see Table 2.

Now we present some important properties of logics of SSI.

Proposition 3.1.

1. None of the paradoxes of material implication – i.e., (MI1) and (MI2)
– is valid for (.

2. None of the paradoxes of strict implication is valid for (.

3. The negation of (SI1) is valid for(; the negation of (SI2) is valid for
I.

4. The connexive principles (AT1 & AT2) and (BT1 & BT2) are valid
for SSI.
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5. Strong Boethius’ thesis: (A( B)( ¬(A( ¬B) is not valid.

6. SSI are not reflexive: in general A( A is not valid.

7. Contraposition is valid for I (A I B |= ¬B I ¬A) but not for B
(A B B 6|= ¬B B ¬A).

Proof: The proof of items 1, 2, 5, 6, and 7 is left to the reader. Example
4.1 gives a syntactic proof of some of the claims made in items 3 and 4.

We finish this section by presenting the relationship between SSI and
modal operators. It is immediate to notice that � and ♦ can be defined in
terms of weak SSI as follows:

♦A ≡ A B > �A ≡ ¬(¬A B >) (Def. �/♦)

Moreover, since A J B ≡ �(A ⊃ B), we can express strict implication in
terms of weak SSI as follows:

A J B ≡ ¬((A ∧ ¬B) B >) (Def. J)

Finally, we can define strong SSI in terms of the weak one as follows:

A I B ≡ ((A B B) ∧ (¬B B >)) (Def. I)

Neither the unary modalities, nor strict/weak SSI can be expressed in terms
of strong SSI. This can be seen as a reason to prefer B over I despite the
fact that B does not validate the negation of the paradox (SI2). Observe
also that over serial frames the translation of �A can be simplified into
> B A.

It is also possible to express SSI in terms of the standard modal language
L�: A B B is expressed by ♦A ∧ �(A ⊃ B) and A I B by ♦A ∧ �(A ⊃
B) ∧ ♦¬B. Thus, the logics of SSI are embeddable in the corresponding
modal logics. Formally, we have the following translation t mapping L-
formulas into L�-formulas.

Definition 3.2. Let A be an L-formula, the L�-formula t(A) is thus
defined:
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t(A) ≡ A iff A is a propositional variable or ⊥

t(B ◦ C) ≡ t(B) ◦ t(C) iff ◦ ∈ {∧,∨,⊃}

t(B B C) ≡ ♦t(B) ∧�(t(B) ⊃ t(C))

t(B I C) ≡ ♦t(B) ∧�(t(B) ⊃ t(C)) ∧ ♦(¬t(C))

It is immediate to see that the following theorem holds.

Theorem 3.3. Let C be a class of frames. The L-formula A is valid in C
if and only if the L�-formula t(A) is valid in C (w.r.t. C-models for the
modal language).

This entails that all the logics of SSI we consider are decidable. In par-
ticular, [3] shows that the satisfiability problem is NP-complete for the
modal logics S5 and KD45 and Pspace-complete for the logics K, D, T,
and S4. In translating an L-formula A into the corresponding L�-formula
t(A) we have an exponential blowup in the weight of the formula since, e.g.,
t(B) occurs twice in t(B B C). Nevertheless, if |A| stands for the num-
ber of subformulas of A, the translation t has linear complexity. Given
that the complexity algorithms in [3] depend on |A| rather than on w(A),
we conclude that the satisfiability problem is Pspace-complete for the K-,
D-, T-, and S4-based logics of SSI and it is NP-complete for the S5- and
KD45-based ones.4

4. Labelled calculi

We introduce G3-style labelled calculi for logics of SSI. We assume the
reader is familiar with labelled calculi for modal logics, see [12, Chapter
11]. First of all, we introduce a set LAB of fresh variables, called labels.
Labels will be denoted by w, v, u, . . . and will be used to represent worlds.
Then, we extend the set of formulas by adding relational atoms of shape
wRv – expressing that v is accessible from w. Moreover, we replace each
L-formula A with the labelled formulas w : A – expressing that A holds
at w. Finally, in analogy with [10, 11], we add (existential and universal)
forcing formulas of shape ∃ A and ∀ A (A ∈ L) – expressing that A
holds at some/all worlds accessible from w.5 The weight of a formula E

4Thanks are due to an anonymous reviewer for spotting a mistake in our original
argument.

5As is explained in Fn.6, forcing formulas are needed to obtain complete rules for I.
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of the extended language, w(E), is a pair 〈n, `〉 (ordered lexicographically)
where n is the weight of the L-formula used to construct E or 0 if E is
a relational atom and ` is 1 if E is a forcing formula, else it is 0. This
definition is designed to have w(w : A1 I A2) > w(w ∃/∀ Ai) > w(w : Ai),
see the proof of Lemma 5.1. Given a formula E of this extended language,
E[w/v] is the formula obtained by substituting each occurrence of v in E
with an occurrence of w. A labelled sequent is an expression:

Γ⇒ ∆

where Γ is a finite multiset composed of labelled formulas, forcing formulas,
and relational atoms, and ∆ is a finite multiset of labelled and forcing
formulas only. Substitution of labels is extended to sequents by applying
it componentwise.

The rules of the calculus G3SS.L for the logic of SSI over frames for the
normal modal logic L are given in Table 3. The calculus G3SS.K contains
all the rules in Table 3 but the non-logical ones. If L is an extension of
K from Table 2, the calculus G3SS.L extends G3SS.K with the non-logical
rules expressing the semantic properties of frames for L (a calculus contains
the contracted rule instance Euclidc iff it contains Euclid). To illustrate,
the calculus G3SS.S4 contains all rules of Table 3 but the non-logical rules
Ser, Sym, Euclid, and Euclidc. Observe that in a derivation there can be at
most one instance of one of the rules L B′ and L I′ (some relational atom
will occur in all nodes of the tree above this rule instance); moreover, as
will be shown in Corollary 5.4, these rules are eliminable from calculi where
rule Ser is admissible. We allow ourselves to use the following admissible
rules:

Γ⇒ ∆, w : A

w : ¬A,Γ⇒ ∆
L¬ and

w : A,Γ⇒ ∆

Γ⇒ ∆, w : ¬A R¬ and Γ⇒ ∆, w : > R>

A G3SS.L-derivation of a sequent Γ ⇒ ∆ is a tree of sequents, whose
leaves are initial sequents, whose root is Γ⇒ ∆, and which grows according
to the rules of G3SS.L. The height of a G3SS.L-derivation is the number of
nodes of its longest branch. We say that Γ⇒ ∆ is G3SS.L-derivable (with
height n), and we write G3SS.L `(n) Γ⇒ ∆, if there is a G3SS.L-derivation
(of height at most n) of Γ ⇒ ∆. A rule is said to be (height-preserving)
admissible in G3SS.L, if, whenever its premisses are G3SS.L-derivable (with
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Table 3. Rules of the calculi for logics of SSI.

initial sequents: w : p,Γ⇒ ∆, w : p, with p atomic

logical rules:

w : ⊥,Γ⇒ ∆
L⊥

w : A,w : B,Γ⇒ ∆

w : A ∧B,Γ⇒ ∆
L∧

Γ⇒ ∆, w : A Γ⇒ ∆, w : B

Γ⇒ ∆, w : A ∧B R∧

w : A,Γ⇒ ∆ w : B,Γ⇒ ∆

w : A ∨B,Γ⇒ ∆
L∨

Γ⇒ ∆, w : A,w : B

Γ⇒ ∆, w : A ∨B R∨

Γ⇒ ∆, w : A w : B,Γ⇒ ∆

w : A ⊃ B,Γ⇒ ∆
L⊃

w : A,Γ⇒ ∆, w : B

Γ⇒ ∆, w : A ⊃ B R⊃

wRu,wRv, u : A,w : A B B,Γ⇒ ∆, v : A wRu,wRv, v : B, u : A,w : A B B,Γ⇒ ∆

wRv, w : A B B,Γ⇒ ∆
LB, u fresh

wRu, u : A,w : A B B,Γ⇒ ∆

w : A B B,Γ⇒ ∆
LB′, u fresh, no relational atom in Γ

wRu,wRv, u : A,Γ⇒ ∆, u : B wRv,Γ⇒ ∆, w : A B B, v : A

wRv,Γ⇒ ∆, w : A B B
RB, u fresh

w ∃ A,wRv, w : A I B,Γ⇒ ∆, v : A,w ∀ B wRv, v : B,w ∃ A,w : A I B,Γ⇒ ∆, w ∀ B
wRv, w : A I B,Γ⇒ ∆

LI

w ∃ A,w : A I B,Γ⇒ ∆, w ∀ B
w : A I B,Γ⇒ ∆

LI′, no relational atom in Γ

wRu, u : A,Γ⇒ ∆, u : B Γ⇒ ∆, w ∃ A w ∀ B,Γ⇒ ∆

Γ⇒ ∆, w : A I B
RI, u fresh

forcing rules:

wRu, u : A,Γ⇒ ∆

w ∃ A,Γ⇒ ∆
L∃, u fresh

wRv,Γ⇒ ∆, w ∃ A, v : A

wRv,Γ⇒ ∆, w ∃ A
R∃

v : A,wRv, w ∀ A,Γ⇒ ∆

wRv, w ∀ A,Γ⇒ ∆
L∀

wRu,Γ⇒ ∆, u : A

Γ⇒ ∆, w ∀ A
L∀, u fresh

non-logical rules:

wRu,Γ⇒ ∆

Γ⇒ ∆
Ser , u fresh

wRw,Γ⇒ ∆

Γ⇒ ∆
Ref

wRu,wRv, vRu,Γ⇒ ∆

wRv, vRuΓ⇒ ∆
Trans

vRw,wRv,Γ⇒ ∆

wRv,Γ⇒ ∆
Sym

vRu,wRv, wRu,Γ⇒ ∆

wRv, wRu,Γ⇒ ∆
Euclid

vRv, wRv,Γ⇒ ∆

wRv,Γ⇒ ∆
Euclidc
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height at most n), also its conclusion is G3SS.L-derivable (with height at
most n). In each rule depicted in Table 3, Γ and ∆ are called contexts,
the formulas occurring in the conclusion are called principal, and those
occurring in the premisses only are called active.

Example 4.1. The following sequents are G3SS.L-derivable:

1. The negation of (SI1): ⇒ w : ¬(⊥( A)

2. The negation of (SI2): ⇒ w : ¬(A I >)

3. First Aristotle’s Thesis (AT1): ⇒ w : ¬(A( ¬A)

4. Second Aristotle’s Thesis (AT2): ⇒ w : ¬(¬A( A)

5. First Boethius’ Thesis (BT1): ⇒ w : (A( B) ⊃ ¬(A( ¬B)

6. Second Boethius’ Thesis (BT2): ⇒ w : (A( ¬B) ⊃ ¬(A( B)

Proof: For simplicity, we assume ( is B.

1.
wRu, u : ⊥, w : ⊥ B A⇒ L⊥

w : ⊥ B A⇒ LB′

⇒ w : ¬(⊥ B A)
R¬

2.

wRu,w ∃ A,w : A I > ⇒ u : >
R>

w ∃ A,w : A I > ⇒ w ∀ >
R∀

w : A I > ⇒ LI′

⇒ w : ¬(A I >)
R¬

3.

wRv, v : A,wRu, u : A,w : A B ¬A⇒ u : A
L.5 .1

wRv, v : A,wRu, u : A,w : A B ¬A⇒ u : A
L.5 .1

wRv, v : A, u : ¬A,wRu, u : A,w : A B ¬A⇒ L¬

wRu, u : A,w : A B ¬A⇒ L B

w : A B ¬A⇒ LB′

⇒ w : ¬(A B ¬A)
R¬

4. Analogous to the derivation of AT1.
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5.

wRu, u : A,w : A B ¬B, v : A,w : A B B ⇒ v : A
L.5 .1

u : A⇒ u : A
L.5 .1

u : A⇒ u : A
L.5 .1

u : B ⇒ u : B
L.5 .1

u : B, u : ¬B ⇒ L¬

u : B,wRu, u : A,w : A B ¬B ⇒ LB

wRu, u : A, v : B,w : A B ¬B, v : A,w : A B B ⇒ LB

wRv, v : A,w : A B ¬B,w : A B B ⇒ LB

w : A B ¬B,w : A B B ⇒ LB′

w : A B B ⇒ w : ¬(A B ¬B)
R¬

⇒ w : (A B B) ⊃ ¬(A B ¬B)
R⊃

6. Analogous to the derivation of BT1.

5. Structural rules of inference

In this section we prove the admissibility of the structural rules of inference:
weakening and contraction will be shown to be height-preserving admissible
and cut will be shown to be admissible. Moreover, we’ll show that all rules
are height-preserving invertible. All proofs of this section will be based
on (the non-modal fragment of) those in [10, 12] for the labelled calculi
for normal and non-normal modal logics. In particular, in the proof of all
lemmas/theorems we will not consider the propositional and non-logical
cases since their proof can be found in [12] nor the forcing ones whose
proof is in [10].

Lemma 5.1. w : A,Γ ⇒ ∆, w : A and w ∃/∀ A,Γ⇒ ∆, w ∃/∀ A – with
A arbitrary L-formula – are derivable in G3SS.L.

Proof: By simultaneous induction on the weight of w : A and w ∃/∀ A.
We consider only the case when A ≡ B B C and, without loss of generality,
we assume Γ ≡ wRv (if no relational atom is in Γ, we use L B′ instead of
L B) and ∆ ≡ ∅. We have the following derivation (omitting all formulas
that, bottom-up, become useless):

u′ : B ⇒ u′ : B
IH

u′ : C ⇒ u′ : C
IH

wRu′, u′ : B,wRu, u : B,w : B B C ⇒ u′ : C
LB

u : B ⇒ u : B
IH

wRu, u : B,w : B B C ⇒ w : B B C, v : B
RB

u′ : B ⇒ u′ : B
IH

u′ : C ⇒ u′ : C
IH

wRu′, u′ : B,w : B B C ⇒ u′ : C
LB

u : B ⇒ u : B
IH

wRu, v : C, u : B,w : B B C ⇒ w : B B C
RB

wRv, w : B B C ⇒ w : B B C
LB

To prove the lemma for w : A1 I A2,Γ⇒ ∆, w : A1 I A2 it is essential that
w(w : A1 I A2) > w(∀/∃ Ai); to prove it for w ∀/∃ A,Γ ⇒ ∆, w `∀/∃ A
it is essential that w(∀/∃ A) > w(w : A).



Guido Gherardi, Eugenio Orlandelli

Lemma 5.2. If G3SS.L`h Γ⇒ ∆ then G3SS.L`h Γ[u2/u1]⇒ ∆[u2/u1].

Proof: The proof is by induction on height h of the derivation D of Γ⇒
∆. Suppose the last step of D is by the following instance of R B:

wRv2, wRv1, v2 : A,Γ⇒ ∆, v2 : B wRv1,Γ⇒ ∆, w A B B, v1 : A

wRv1,Γ⇒ ∆, w : A B B
RB, v2 fresh

Let us consider a label v3 that is new to D and not in {u1, u2}. We
transform D into the following derivation D[u2/u1] having same height
as D:

wRv2, wRv1, v2 : A,Γ⇒ ∆, v2 : B

wRv3, wRv1, v3 : A,Γ⇒ ∆, v3 : B
IH [v3/v2 ]

w[u2/u1]Rv3, v3 : A, (wRv1,Γ⇒ ∆)[u2/u1], v3 : B
IH [u2/u1 ]

wRv1,Γ⇒ ∆, w A B B, v1 : A

(wRv1,Γ⇒ ∆, wA B B, v1 : A)[u2/u1]
IH [u2/u1 ]

(wRv1,Γ⇒ ∆, w : A B B)[u2/u1]
RB

The transformations for rules L B(′), L I(′), and R I are similar and can
thus be omitted.

Next is height-preserving admissibility of weakening.

Theorem 5.3 (Weakening). If G3SS.L`h Γ ⇒ ∆ then G3SS.L`h
Π,Γ⇒ ∆,Σ.

Proof: By induction on the height h of D. If the last step of D is by a rule
Rule for weak or strong SSI, then we start by applying Lemma 5.2 to the
derivation of its premisses in order to replace its eigenvariable, if any, with
variables new to Π,Σ and to D. Next, we apply the inductive hypothesis,
and an instance of Rule.

The following corollary of Theorem 5.3 shows that rules L B′ and L I′

are needed only for logics of SSI defined by non-serial classes of frames.

Corollary 5.4. Rules L B′ and L I′ are eliminable from G3SS.L when
L ⊇ D.

Proof: Suppose the last step of D is by the following instance of L B′:

wRu, u : A,w : A B B,Γ⇒ ∆

w : A B B,Γ⇒ ∆
LB′

We transform D into the following L B′-free derivation (v new to D):
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wRu, u : A,w : A B B,Γ⇒ ∆

wRv, wRu, u : A,w : A B B,Γ⇒ ∆, v : A
Thm.5 .3

wRu, u : A,w : A B B,Γ⇒ ∆

wRv, v : B,wRu, u : A,w : A B B,Γ⇒ ∆
Thm.5 .3

wRv, w : A B B,Γ⇒ ∆
LB

w : A B B,Γ⇒ ∆
Ser

The transformation for rule L I′ is analogous.

To prove that contraction is height-preserving admissible, we need
height-preserving invertibility of each rule – i.e., the derivability (with
height n) of a sequent that can be the conclusion of a rule instance en-
tails the derivability (with height n) of the premisses of that rule instance.

Lemma 5.5 (Inversion). Each rule of G3SS.L is height-preserving invertible.

Proof: The height-preserving invertibility of the rules for SSI with respect
to premisses with repetition of all principal formulas follows from Theorem
5.3 (we have cases of ‘Kleene-invertibility’). Hence, we have to consider only
the invertibility of rule R B with respect to its leftmost premiss, and that
of R I with respect to each one of its premisses. Let’s consider inversion
or R B w.r.t. its leftmost premiss (the proof is similar for the leftmost
premiss of R I). Suppose the conclusion of D is:

wRv,Γ⇒ ∆, w : A B B

If the last step of D is by an instance of R B there is nothing to prove.
Else, the last step of D is by a rule Rule with either one or two premisses
wRv,Γ′ ⇒ ∆′, w : A B B and wRv,Γ′′ ⇒ ∆′′, w : A B B. Let u be
some fresh variable, we apply the inductive hypothesis to the derivations
of the premisses in order to obtain derivations (having same height) of the
sequents wRu,wRv, u : A,Γ′ ⇒ ∆′, u : B and wRu,wRv, u : A,Γ′′ ⇒
∆′′, u : B. By applying an instance of Rule we obtain a derivation (having
same height of D) of:

wRu,wRv, u : A,Γ⇒ ∆, u : B

Next, we prove hp-inversion of R I w.r.t. its second premiss (the proof
is similar for the third one). Let’s suppose w : A I B is not principal in the
last step of D, which is by Rule and has premiss(es) Γ′ ⇒ ∆′, w : A I B
(and Γ′′ ⇒ ∆′′, w : A I B). We apply the inductive hypothesis to the
premiss(es) and then an instance of Rule to conclude Γ⇒ ∆, w ∃ A.

Now we can prove height-preserving admissibility of contraction.
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Theorem 5.6 (Contraction). If G3SS.L`h Γ,Γ ⇒ ∆,∆ then G3SS.L`h
Γ⇒ ∆.

Proof: The proof is by induction on the height h of the derivation D
of the premiss. We assume, w.l.o.g., we are contracting a single formula
(occurring in the antecedent or in the consequent). We consider only the
cases where the last step of D is by a rule Rule for (. If the contraction
formula is not principal in Rule, we apply the inductive hypothesis to the
premiss(es) of Rule and then an instance of the same rule. If, instead, the
contraction formula is principal in Rule then we apply Lemmas 5.5 and
5.2 to its premiss(es) without repetition of the principal formulas; next, we
apply the inductive hypothesis to each (modified) premiss and we conclude
by an instance of Rule. To illustrate, if the last step of D is:

wRu,wRv, u : A,Γ⇒ ∆, w : A B B, u : B wRv,Γ⇒ ∆, w : A B B,w : A B B, v : A

wRv,Γ⇒ ∆, w : A B B,w : A B B
RB

we transform D as follows:

wRu,wRv, u : A,Γ⇒ ∆, w : A B B, u : B

wRu1, wRu,wRv, u1 : A, u : A,Γ⇒ ∆, u1 : B, u : B
Lem.5 .5

wRu,wRu,wRv, u : A, u : A,Γ⇒ ∆, u : B, u : B
Lem.5 .2 [u/u1 ]

wRu,wRv, u : A,Γ⇒ ∆, u : B
IH

wRv,Γ⇒ ∆, w : A B B,w : A B B, v : A

wRv,Γ⇒ ∆, w : A B B, v : A
IH

wRv,Γ⇒ ∆, w : A B B
RB

We are now ready to prove cut elimination.

Theorem 5.7 (Cut). Let C be either a labelled or forcing formula.
If G3SS.L` Γ⇒ ∆, C and G3SS.L` C,Π⇒ Σ then G3SS.L` Γ,Π⇒ ∆,Σ.

Proof: As usual for G3-style calculi, see [12], the proof considers an up-
permost instance of Cut and proceeds by lexicographical induction on the
pair 〈weight of the cut formula, cut-height〉, where the cut-height is the
sum of the height of the derivations of the two premisses of cut.

It is useful to organise the proof in three cases: (i) at least one premiss
has a derivation of height 0; (ii) the cut formula is not principal in at least
one of the premisses; (iii) the cut formula is principal in both premisses.
We consider only cases (ii) and (iii) where the last step of the derivation of
some premiss is by a rule for (.

In case (ii) we can permute the cut upwards in the derivation of a
premiss where the cut formula is not principal in the last step (if needed,
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we use Lemma 5.2 to replace eigenvariables with the appropriate labels).
Suppose, e.g., the cut formula C is not principal in the last step of the left
premiss, which is by an instance of L B. We transform:

...D11

wRu,wRv, u : A,w : A B B,Γ⇒ ∆, C, v : A

...D12

wRu,wRv, v : B, u : A,w : A B B,Γ⇒ ∆, C

wRv, w : A B B,Γ⇒ ∆, C
LB

...D2

C,Π⇒ Σ

wRv, w : A B B,Γ,Π⇒ ∆,Σ
Cut

into the following derivation (where u1 is a fresh label):

...D11

wRu,wRv, u : A,w : A B B,Γ⇒ ∆, v : A,C

wRu1, wRv, u1 : A,w : A B B,Γ⇒ ∆, v : A,C
L.5 .2

...D2

C,Π⇒ Σ

wRu1, wRv, u1 : A,w : A B B,Γ,Π⇒ ∆,Σ, v : A
Cut

...D12

wRu,wRv, v : B, u : A,w : A B B,Γ⇒ ∆, C

wRu1, wRv, v : B, u1 : A,w : A B B,Γ⇒ ∆, C
L.5 .2

...D2

C,Π⇒ Σ

wRu1, wRv, v : B, u1 : A,w : A B B,Γ,Π⇒ ∆,Σ
Cut

wRv, w : A B B,Γ,Π⇒ ∆,Σ
LB

where we have two instances of Cut that are admissible having lesser cut-
height.

If we are in Case (iii) and the cut formula is not of shape w : A( B,
see [10, Theorem 4.9]. If, instead, the cut formula has shape w : A B B
and the right premiss is by rule L B we have the following derivation:

...D11

...D12

wRv,Γ⇒ ∆, w : A B B
RB

...D21

...D22

w : A B B,wRu,Π⇒ Σ
LB

wRv,Γ, wRu,Π⇒ ∆,Σ
Cut

Where:

• D11 is:

...
wRv1, v1 : A,wRv,Γ⇒ ∆, v1 : B

• D12 is:

...
wRv,Γ⇒ ∆, w : A B B, v : A

• D21 is:

...
wRu1, u1 : A,wRu,w : A B B,Π⇒ Σ, u : A

• D22 is:

...
wRu1, u : B, u1 : A,wRu,w : A B B,Π⇒ Σ

We transform it into the following derivation containing some instances of
Cut that are admissible by inductive hypothesis (here and in the following
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derivations, instances of cut marked with (†) have lesser cut-height, and
those marked with (‡) have a cut formula of lower weight; moreover Γk

stands for k copies of Γ):

...Dα
(wRv)3, (wRu)2,Γ2,Π2 ⇒ ∆2,Σ2, u : A

...Dβ
u : A,wRv, wRu,Γ,Π⇒ ∆,Σ

(wRv)4, (wRu)3,Γ3,Π3 ⇒ ∆3,Σ3
Cut (‡)

wRv, wRu,Γ,Π⇒ ∆,Σ
Thm.5 .6

Where:

• Dα is the following derivation:

...D12

wRv,Γ⇒ ∆, v : A,w : A B B

...D2

w : A B B,wRu,Π⇒ Σ

wRu,wRv,Γ,Π⇒ ∆,Σ, v : A
(†)

...D1

wRv,Γ⇒ ∆, w : A B B

...D21

w : A B B, u1 : A,wRu1, wRu,Π⇒ Σ, u : A

w : A B B, v : A,wRv, wRu,Π⇒ Σ, u : A
L.5 .2

v : A,wRu, (wRv)2,Γ,Π⇒ ∆,Σ, u : A
(†)

(wRu)2, (wRv)3,Γ2,Π2 ⇒ ∆2,Σ2, u : A
(‡)

• Dβ is the following derivation:

...D11

wRv1, wRv, v1 : A,Γ⇒ ∆, v1 : B

wRu,wRv, u : A,Γ⇒ ∆, u : B
L.5 .2

...D1

wRv,Γ⇒ ∆, w : A B B

...D22

w : A B B, u : B,wRu1, wRu, u1 : A,Π⇒ Σ

w : A B B, u : B, (wRu)2, u : A,Π⇒ Σ
L.5 .2

u : B,wRv, (wRu)2, u : A,Γ,Π⇒ ∆,Σ
(†)

(u : A)2, (wRv)2, (wRu)3,Γ2,Π⇒ ∆2,Σ
Cut (‡)

u : A,wRv, wRu,Γ,Π⇒ ∆,Σ
Thm.5 .6

If the cut formula has shape w : A B B and the right premiss is by
rule L B′, we transform the following derivation (the conclusion of D11 is
wRv1, v1 : A,Γ⇒ ∆, v1 : B):

...D11

S

...D12

wRv,Γ⇒ ∆, w : A B B, v : A

wRv,Γ⇒ ∆, w : A B B
RB

...D21

w : A B B, u : A,wRu,Π⇒ Σ

w : A B B,Π⇒ Σ
LB′

wRv,Γ,Π⇒ ∆,Σ
Cut

into the following one where we have some admissible cuts:

...D12

wRv,Γ⇒ ∆, w : A B B, v : A

...D2

w : A B B,Π⇒ Σ

wRv,Γ,Π⇒ ∆,Σ, v : A
(†)

... D1

wRv,Γ⇒ ∆, w : A B B

...D21

w : A B B, u : A,wRu,Π⇒ Σ

w : A B B, v : A,wRv,Π⇒ Σ
L.5 .2

v : A, (wRv)2,Γ,Π⇒ ∆,Σ
(†)

(wRv)3,Γ2,Π2 ⇒ ∆2,Σ2
(‡)

wRv,Γ,Π⇒ ∆,Σ
Thm.5 .6
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If the cut formula has shape w : A I B and the right premiss is by rule
L I, we have the following derivation:

...D11

u : A,wRu,Γ⇒ ∆, u : B

...D12

Γ⇒ ∆, w ∃ A

...D13

w ∀ B,Γ⇒ ∆

Γ⇒ ∆, w : A I B
RI ... D2

wRv,Γ,Π⇒ ∆,Σ
Cut

Where D2 is the following derivation:

...D21

w ∃ A,w : A I B,wRv,Π⇒ Σ, w ∀ B, v : A

...D22

v : B,w ∃ A,w : A I B,wRv,Π⇒ Σ, w ∀ B
w : A I B,wRv,Π⇒ Σ

LI

We transform it into the following derivation containing some admissible
instances of cut:

... Dα
(wRv)2,Γ4,Π⇒ ∆4,Σ, v : B

... Dβ
v : B,wRv,Γ3,Π⇒ ∆3,Σ

(wRv)3,Γ7,Π2 ⇒ ∆7,Σ2
(‡)

wRv,Γ,Π⇒ ∆,Σ
Thm.5 .6

Where:

• Dα is the following derivation:

...D12

Γ⇒ ∆, w ∃ A

...D1

Γ⇒ ∆, w : A I B

...D21

w : A I B,w ∃ A,wRv,Π⇒ Σ, v : A,w ∀ B

w ∃ A,wRv,Γ,Π⇒ ∆,Σ, v : A,w ∀ B
(†)

wRv,Γ2,Π⇒ ∆2,Σ, v : A,w ∀ B
(‡)

...D13

w ∀ B,Γ⇒ ∆

wRv,Γ3,Π⇒ ∆3,Σ, v : A
(‡)

...D11

u : A,wRu,Γ⇒ ∆, u : B

v : A,wRv,Γ⇒ ∆, v : B
L.5 .2

(wRv)2,Γ4,Π⇒ ∆4,Σ, v : B
(‡)

• Dβ is the following derivation:

...D12

Γ⇒ ∆, w ∃ A

...D1

Γ⇒ ∆, w : A I B

...D22

w : A I B,w ∃ A, v : B,wRv,Π⇒ Σ, w ∀ B

w ∃ A, v : B,wRv,Γ,Π⇒ ∆,Σ, w ∀ B
(†)

wRv, v : B,Γ2,Π⇒ ∆2,Σ, w ∀ B
(‡)

...D13

w ∀ B,Γ⇒ ∆

v : B,wRv,Γ3,Π⇒ ∆3,Σ
(‡)

Finally, if the cut formula has shape w : A I B and the right premiss is



Guido Gherardi, Eugenio Orlandelli

by rule L I′, we transform the following derivation (the conclusion of D11

is wRu, u : A,Γ⇒ ∆, u : B):

...D11

S

...D12

Γ⇒ ∆, w ∃ A

...D13

w ∀ B,Γ⇒ ∆

Γ⇒ ∆, w : A I B
RI

...D21

w : A I B,w ∃ A,Π⇒ Σ, w ∀ B
w : A I B,Π⇒ Σ

LI′

Γ,Π⇒ ∆,Σ
Cut

into the following derivation containing some admissible instances of cut:

...D12

Γ⇒ ∆, w ∃ A

...D1

Γ⇒ ∆, w : A I B

...D21

w : A I B,w ∃ A,Π⇒ Σ, w ∀ B

w ∃ A,Γ,Π⇒ ∆,Σ, w ∀ B
(†)

Γ2,Π⇒ ∆2,Σ, w ∀ B
(‡)

...D13

w ∀ B,Γ⇒ ∆

Γ3,Π⇒ ∆3,Σ
(‡)

Γ,Π⇒ ∆,Σ
T .5 .6

6. Soundness and completeness

In this section it is proved that the calculus G3SS.L is sound and complete
with respect to L-frames. In particular, the proof of completeness will be
a modular Tait-Shütte-Takeuti style proof: we define an exhaustive proof-
search procedure that either outputs a G3SS.L-derivation or allows to build
a countermodel based on an L-frame.

6.1. Soundness

In order to show that G3SS.L is sound with respect to L-frames we ex-
tend the notion of validity to sequents. We begin with some preliminary
definitions.

Let M = 〈W,R, V 〉 be a model and let σ : LAB −→ W be a function
mapping labels to worlds of the model M. We say that:

• M, σ satisfies the relational atom wRv iff σ(w)Rσ(v);

• M, σ satisfies the forcing formula w ∀/∃ A iff each/some v such that
σ(w)Rσ(v) is such that |=Mσ(v) A;
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• M, σ satisfies the labelled formula w : A iff |=Mσ(w) A.

A sequent Γ ⇒ ∆ is (L-)valid iff each pair M, σ (with M based on an
L-frame) satisfying all formulas in Γ satisfies some formula in ∆.

Theorem 6.1 (Soundness). If a sequent S is derivable in G3SS.L, then it
is L-valid.

Proof: The proof is by induction on the height of the derivation D of S.
The base cases hold trivially. For the inductive steps, we have to check
that each rule of G3SS.L preserves validity over L-frames. First, we prove
that the logical rules preserve validity. We consider only rules for B and
for I (the other cases are as in [10, Theorem 5.3]).

For rule L B, assume the last step of D has shape (u not in the conclu-
sion):

wRu,wRv, u : A,w : A B B,Γ⇒ ∆, v : A wRu,wRv, v : B, u : A,w : A B B,Γ⇒ ∆

wRv, w : A B B,Γ⇒ ∆
LB

We need prove that each pair M, σ satisfying (all formulas in) wRv, w :
A B B,Γ (Π, for short) satisfies some formula in ∆. LetM, σ′ be a generic
pair satisfying all of wRu, u : A,Π. By induction on the left premiss, we
know thatM, σ′ satisfies also some formula in ∆ or v : A. In the first case
we are done (u is not in Π,∆ and, hence,M, σ′ is a generic pair satisfying
Π). In the second case M, σ′ satisfies v : A ⊃ B, and, hence, it satisfies
v : B. By induction on the second premiss, we obtain that M, σ′ satisfies
some formula in ∆ and we are done.

For rule L B′, assume the last step of D has shape (u not in the con-
clusion):

wRu, u : A,w : A B B,Γ⇒ ∆

w : A B B,Γ⇒ ∆
LB′

Let us consider a generic pair M, σ satisfying w : A B B and all formulas
in Γ. Since w : A B B is satisfied, we know there is a world of the
model M accessible from σ(w) where A is true. Let σ′ be like σ except
for the label u that is mapped on that world. The pair M, σ′ satisfies
wRu, u : A,w : A B B,Γ and, by inductive hypothesis, it satisfies also
some formula in ∆. We conclude that M, σ satisfies some formula in ∆
(since u is not in w : A B B,Γ⇒ ∆).
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For rule R B, assume the last step of D has shape (u not in the conclu-
sion):

wRu,wRv, u : A,Γ⇒ ∆, u : B wRv,Γ⇒ ∆, w : A B B, v : A

wRv,Γ⇒ ∆, w : A B B
RB, u fresh

We have to prove that each pair M, σ satisfying all formulas in wRv,Γ
(Π, for short) satisfies the formula w : A B B or some formula in ∆. By
induction hypothesis applied to the second premiss, we know that M, σ
satisfies some formula in ∆ or w : A B B or v : A. The non trivial case
happens when M, σ satisfies no formula in ∆ but it satisfies v : A. In this
case, we know that for the world σ(v) both σ(w)Rσ(v) and |=Mσ(v) A hold,

and hence there exists a pair M, σ′ such that σ′ differs from σ possibly
only on u and such that it satisfies wRu, u : A,Π. Let us consider then
any generic pair of this kind. Observe that also M, σ′ satisfies no formula
in ∆, since u does not occur in ∆. Hence, by induction on the left premiss,
M, σ′ satisfies u : B. Therefore, we have seen that A is true in some world
related to σ(w) and, by genericity of σ′, that any world related to σ(w)
satisfies A ⊃ B. We conclude that every pair M, σ satisfying all of Π but
none of ∆ must satisfy w : A B B.

For rule L I, assume the last step of D has shape:

w ∃ A,wRv, w : A I B,Γ⇒ ∆, v : A,w ∀ B wRv, v : B,w ∃ A,w : A I B,Γ⇒ ∆, w ∀ B
wRv, w : A I B,Γ⇒ ∆

LI

We have to prove that each pair M, σ satisfying all formulas in wRv, w :
A I B satisfies some formula in ∆. The satisfaction of w : A I B guaran-
tees the satisfaction of w ∃ A and the non satisfaction of w ∀ B. Finally,
it guarantees that 6|=Mσ(v) A or |=Mσ(v) B. In the second case, the induction
hypothesis applied to the second premiss will show thatM, σ satisfies some
formula in ∆. In the first case, the induction hypothesis applied to the first
premiss will show again that M, σ satisfies some formula in ∆.

The proof for rule L I′ is straightforward. Assume the last step of D
has shape (no relational atom in Γ):

w ∃ A,w : A I B,Γ⇒ ∆, w ∀ B
w : A I B,Γ⇒ ∆

LI′
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Suppose that M, σ satisfies all of w : A I B,Γ. The satisfiability of
w : A I B entails that there is a world accessible from w where A is true.
Thanks to the inductive hypothesis the pairM, σ satisfies some formula in
∆ or w ∀ B. The latter is impossible sinceM contains a world accessible
from w where B is false (otherwiseM, σ would not satisfy w : A I B). We
conclude that M, σ satisfies some formula in ∆.

For rule R I, assume the last step of D has shape (u not in the conclu-
sion):

wRu, u : A,Γ⇒ ∆, u : B Γ⇒ ∆, w ∃ A w ∀ B,Γ⇒ ∆

Γ⇒ ∆, w : A I B
RI

We have to prove that each pair M, σ satisfying all formulas in Γ satisfies
the formula w : A I B or some formula in ∆. By applying the induction
hypothesis to the second premiss, we know that M, σ satisfies some for-
mula in ∆ or w ∃ A. In the first case we are done. Otherwise, suppose
that M, σ satisfies no formula in ∆ but it satisfies w ∃ A. There exists
then a world related to σ(w) in which A is true. Moreover, the induction
hypothesis applied to the third premiss will show thatM, σ cannot satisfy
w ∀ B, for otherwise we would infer the satisfaction of some formula in
∆. Therefore there must exist some world related to σ(w) that falsifies B.
Finally, an argument analogous to that used for R B will show that every
world related to σ(w) satisfies A ⊃ B. Overall, we conclude that M, σ
satifies w : A I B.

Each non-logical rule preserves validity over frames satisfying the cor-
responding semantic properties; cf. [12, Thm. 12.13].

6.2. Completeness

Definition 6.2 (Saturation). A branch B of a G3SS.L-proof-search tree
for a sequent S (see procedure 6.5) is L-saturated if it satisfies the follow-
ing conditions, where Γ (∆) is the union of the antecedents (succedents)
occurring in that branch,

1. no w : p occurs in Γ ∩∆;

2. no w : ⊥ occurs in Γ;

3. if w : A∧B is in Γ (w : A∨B ∈∆/w : A ⊃ B ∈∆), then both w : A
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and w : B are in Γ ( w : A,w : B ∈ Γ/w : A ∈ Γ and w : B ∈ ∆,
resp.);

4. if w : A∧B is in ∆ (w : A∨B is in Γ/w : A ⊃ B is in Γ), then at least
one of w : A and w : B is in ∆ (w : A ∈ Γ or w : B ∈ Γ/w : A ∈ ∆
or w : B ∈ Γ, resp.);

5. if w : A B B is in Γ, then

(a) for some u, both wRu and u : A are in Γ; and

(b) v : A is in ∆ or v : B is in Γ, for any v such that wRv is in Γ;

6. if w : A B B is in ∆, then,

(a) for some u, both wRu and u : A are in Γ and u : B is in ∆; or

(b) v : A is in ∆ for any v such that wRv is in Γ;

7. if w : A I B is in Γ, then

(a) for some u1, u2, all of wRu1 and wRu2 and u1 : A are in Γ,
moreover u2 : B is in ∆; and

(b) v : A is in ∆ or v : B is in Γ, for any v such that wRv is in Γ;

8. if w : A I B is in ∆, then

(a) for some u, u : A in Γ and u : B is in ∆; or

(b) v : A is in ∆ for any v such that wRv is in Γ; or

(c) v : B is in Γ, for any v such that wRv is in Γ;

9R. if Rule is a non-logical rule of G3SS.L, then for any set of principal
formulas of Rule that are in Γ also the corresponding active formulas
are in Γ.

Definition 6.3. Let B be L-saturated. The model MB = 〈W,R, V 〉 is
thus defined:

1. W is the set of labels occurring in Γ ∪∆;

2. for each w, v ∈W , wRv iff the formula wRv is in Γ;

3. V (p) is the set of all w such that w : p is in Γ.

Moreover, σ= denotes the identity function on LAB.

Observe that MB is well-defined thanks to clauses 1 and 2 of Def. 6.2.
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Lemma 6.4. Let B be an L-saturated branch. Then

1. for any L-formula A occurring in B we have that |=MB

σ=(w) A iff w : A
is in Γ; and

2. MB is based on a frame for L.

Proof: Claim (2) follows by Definition 6.2.9R and by construction ofMB
(Definition 6.3) and of σ=.

The proof of claim (1) is by induction on the construction of A. The
base case holds by construction of MB and of σ=, and the inductive cases
depend on Definition 6.2.3–8.

To illustrate, we consider the case when A has shape w : B B C and it
occurs in B.

If w : B B C is in Γ, then we have to show that |=MB

σ=(w) B B C.

By Definition 6.2.5(a), we know that, for some u, wRu and u : B are

in Γ. Hence, σ=(w)Rσ=(u) and, by induction, |=MB

σ=(u) B. Moreover, by

Definition 6.2.5(b), we have that all v such that wRv is in Γ are such that
either v : B ∈∆ or v : C ∈ Γ. In both cases we have that if σ=(w)Rσ=(v)

then |=MB

σ=(v) B ⊃ C. We conclude that |=MB

σ=(w) B B C.
If, instead, w : B B C is in ∆, then we have to show that

6|=MB

σ=(w) B ⊃ C. By Definition 6.2.6, we know that, either for some u,
wRu and u : A are in Γ and u : C ∈ ∆, or v : B ∈ ∆ for all v such that
wRv ∈ Γ. In the first case we have that σ=(w)Rσ=(u) and, by induction,

6|=MB

σ=(u) B ⊃ C. In the latter case we have that 6|=MB

σ=(v) B for all v such

that σ=(w)Rσ=(v). In both cases we conclude that 6|=MB

σ=(w) B B C.
The case w : B I C ∈ Γ is analogous to the corresponding one for B

with the only further requirement of proving the existence of some world
related to σ=(w) that falsifies B. But this is guaranteed by Definition
6.2.7(a), according to which there is some u2 such that wRu2 is in Γ and
u2 : B is in ∆. This means that σ(w)Rσ(u2) and, by induction, that

6|=MB

σ=(u2)
B.

For w : B I C ∈ ∆, to prove that 6|=MB

σ=(w) B I C one has to prove

that at least one of the following conditions holds: (i) the existence of a
world related to w that falsifies B ⊃ C, (ii) the falsity of B in every world
related to σ(w), (iii) the truth of C in every world related to σ(w). For
(i), we argue analogously to the case w : B B C ∈ ∆. For (ii), one has
to consider Definition 6.2.8(b), according to which for every v such that
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wRv ∈ Γ, it holds v : B ∈∆. By induction, this means 6|=MB

σ=(v) B. Since by

construction of MB, all worlds related to w are of type σ(v) for wRv ∈ Γ,
we are done. The proof for (iii) runs analogously to (ii) through Definition
6.2.8(c).

Procedure 6.5. A G3SS.L-proof-search tree for a sequent S is a tree of
sequents that has S as root and whose branches grow according to the
following procedure: if the leaf is an initial sequent or an instance of rule
L⊥ the branch stops growing, else either no instance of rules of G3SS.L
is applicable root first to it, or k instances are (where rules Ser and Ref
are applied once w.r.t. each label occurring in the branch). In the first
case, the branch stops growing; in this case it is immediate to see that we
have a finite L-saturated branch. In the second case, we apply the k rule
instances that are applicable in some order (each one will be applied to all
end-sequents that are generated at the previous step). If the tree never
stops growing then, by König’s Lemma, it has an infinite branch which, as
the reader can easily check, is L-saturated.6

Theorem 6.6 (Completeness). If a sequent S is L-valid then it is derivable
in G3SS.L.

Proof: The proof is in three steps. First, in Def. 6.2, we define a notion
of L-saturated branch of a proof-search for a sequent S, where, intuitively,
a branch is L-saturated when all applicable instances of G3SS.L-rules have
been applied. Then, with Def. 6.3 and Lemma 6.4, we show that an L-
saturated branch allows us to define a countermodel for S that is based on
a frame for L. Finally, we give a root first G3SS.L-proof-search procedure,
Prop. 6.5, that either outputs a G3SS.L-derivation of S – and, by Thm.
6.1, S is L-valid – or it outputs an L-saturated branch – and, therefore, S
has a countermodel based on an appropriate frame.

Corollary 6.7. The structural rules of inference – i.e., (left) weakening,
(left) contraction, and cut – are semantically admissible in G3SS.L.

6 Forcing formulas are needed to ensure that, when applying root-first all possible
instances of rule R I (see Table 3), we obtain a saturated branch (see Def. 6.2.8). If in
the second and third premisses of R I we had v : A and v : B (as it happens for rule
R B) in place of the forcing formulas, we would obtain a completed proof search with
an open branch that is not saturated because for each v such that wRv ∈ Γ we would
have that either v : A ∈∆ or v : B ∈ Γ.
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7. Priest’s cancellation account of negation and SSI

In [16] G. Priest has considered the cancellation account of negation – i.e.
the idea that “¬A deletes, neutralizes, erases, cancels A[. . . ] so that ¬A
together with A leaves nothing” [19, p. 205] – and he modeled it by means
of a relational semantics that is almost identical to the one we gave for the
S5-based logic of SSI. If we represent Priest’s non-symmetric and symmetric
implication by B and I, respectively, we have that a L-formula is valid in
Priest’s semantics if and only if it is valid in the class of S5-frames for logics
of SSI.

Priest considers a language containing one of B and I. Priest’s models
are relational models without an accessibility relation – i.e., M = 〈W,V 〉 –
and truth of a formula in a world of a model is defined as in Section 3 save
that in the truth-clauses for B and I the quantifiers are not restricted to
accessible worlds. To illustrate, B is thus defined:

|=M
w A B B iff ∃u ∈W (|=M

u A) and ∀v ∈W (|=M
v A implies |=M

v B)

The notions of truth in a model and validity are defined as in Section 3,
but the definition of logical consequence differs since in Priest’s approach
it is a metatheoretical version of B or I: for A to be a consequence of Γ,
Γ must have a model and, possibly, ¬A must have a model. This gives
an highly non-Tarskian consequence relation in that, in both cases, it is
neither reflexive, nor monotone, nor transitive.

This is not the place to discuss in full details the account of negation
as cancellation (see [23] for some criticisms) nor the way Priest models
it. We just note that Priest’s semantics is not apt to model the cancella-
tion account of negation since it adhere to a perfectly classical definition
of negation. The non-classical elements are only the definition of impli-
cation and that of logical consequence. It follows that Priest’s semantics
has only a partial overlap with the cancellation account of negation: they
share the claim that nothing follows from a contradiction (alone). But the
cancellation account of negation cannot be reduced to this claim. If ¬A
deletes A so that Γ is extensionally identical to Γ ∪ {A,¬A}, then, if B
is a consequence of some set of sentences Γ, it must be the case that B is
a consequence of the set Γ ∪ {A,¬A}. Nevertheless in Priest’s semantics
nothing follows from a set containing contradictory formulas.

Priest’s notion of validity is easily seen to be equivalent to that for the
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S5-based logic of super strict implication (analogously to what happens
in standard modal logics, an accessibility relation that is an equivalence
relation is equivalent to a universal accessibility relation). Formally we
have the following result:

Proposition 7.1. Let A be any L-formula containing only one of B and
I, CM the class of all Priest’s models and CS5 the class of all frames from
Section 3 where R is an equivalence relation, then CM |= A iff CS5 |= A.

We find this result interesting since it entails that the logics of SSI are
connexive logics having the same set of S5-validities of Priest’s one, that are
obtained without having to tamper with the Tarskian notion of consequence
relation nor with the classical explosion model of negation [19]. Moreover,
this entails that in Section 4 we have introduced a cut-free sequent calculus
that characterizes validity in Priest’s formal semantics.

All in all, the logics of SSI can be seen as modal extensions of classical
logic that satisfies

the central concern of connexive logic [which] consists of devel-
oping connexive systems that are naturally motivated concep-
tually or in terms of applications, that admit of a simple and
plausible semantics, and that can be equipped with proof sys-
tems possessing nice proof-theoretical properties, such as the
eliminability of the cut-rule. [14, p. 381]

8. Future works

For brevity, we have considered only the logics of SSI based on frames for
normal modal logics. It should be possible to consider also the logics of
SSI based on frames for C.I. Lewis’s non-normal systems S1, S2 and S3. In
particular, it would be interesting to present the S2-based logic of SSI since
C.I. Lewis believed it the more likely correct logic of strict implication. It
would also be interesting to see if for these weaker systems we can still use
labelled calculi like the one we gave in Section 4, or if we have to introduce
calculi more akin to those for non-normal modal logics presented in [10].
It might also be interesting to study some modifications of SSI, e.g., their
reflexivizations (which should be very similar to Pizzi’s consequential im-
plication) and their constructive analogous. It would also be interesting to
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see if it is possible to have a SSI validating strong Boethius’ Thesis with-
out making the implication commutative as for consequential implications.
Another problem that remains open is to give a complete axiomatisation
of logics of SSI; we conjecture that this can be done by using the trans-
fer methodology used in [17]. Finally, it would be extremely interesting
to check if it is possible to give a proof-theoretical characterisation of the
logics of SSI by means of some internal calculus such as hypersequents or
nested sequents.

In this paper we have argued that the logics of SSI are connexive logics.
In the future we plan to investigate whether SSI have some feature of
the other main family of implications that avoid the paradoxes of strict
implications, namely relevant implications. The philosophical motivation
behind the introduction of SSI is quite similar to that behind relevant
implications. Very roughly, we wanted ‘A implies B’ to be true just in case
the truth of B depends on the truth of A and relevant logicians just in case
the truth of A is relevant to the truth of B. It might well be that our
notion of dependance is nothing but some notion of relevance. It is difficult
to find a precise formal explication of what relevance is. Apart from the
falsification of the paradoxes of material and strict implication, one typical
condition for an implication being relevant is its having a variable-sharing
property : if ‘A implies B’ is true then there must be some (all) propositional
variables that are common to A and B [1, p. 33]. Hence, to see whether
SSI are relevant implications we have to check whether they satisfy some
variable-sharing property.

In the introduction we have claimed that the motivation for introducing
SSI is orthogonal to D. Lewis’ [7] and Stalnaker’s [20] one for introducing
variably strict implications. SSI are designed to avoid the paradoxes of
strict implication (SI1) and (SI2). Variably strict implications, instead,
are designed to avoid other properties of strict implications: monotonic-
ity, contraposition and, last but not least, transitivity. Even if there is a
partial overlap between them in that monotonicity fails also for SSI and
contraposition fails for weak SSI, no one of the two approaches can be seen
as a subsystem of the other in that SSI validate transitivity and variably
strict implications validate the paradoxes of strict implication. Just as we
tweaked strict implication to overcome its paradoxes, it should be possi-
ble to tweak variably strict implications in order to obtain variably SSI.
Weak variably SSI has been considered and discharged by D. Lewis under
the name of ‘would counterfactual’, cf [7, p. 25]; a connexive and variably
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strict implication has been considered in [22]. If variably strict implications
approximate the logic of counterfactual conditionals, it might well be that
variably SSI approximate the logic of indicative conditionals.
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