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The Fourier transform of the density-density correlation function in a Bose-Einstein condensate
(BEC) analog black hole is a useful tool to investigate correlations between the Hawking particles
and their partners. It can be expressed in terms of houtâextup

outâintupi, where outâextup is the annihilation operator
for the Hawking particle and outâintup is the corresponding one for the partner. This basic quantity is calculated
for three different models for the BEC flow. It is shown that in each model the inclusion of the
effective potential in the mode equations makes a significant difference. Furthermore, particle production
induced by this effective potential in the interior of the black hole is studied for each model and shown
to be nonthermal. An interesting peak that is related to the particle production and is present in some
models is discussed.
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I. INTRODUCTION

Hawking’s 1974 prediction [1] that black holes
evaporate has not been directly verified, largely because
a black hole of mass M would emit radiation at a temper-
ature TH ∼ M⊙

M × 10−7 K. Some hope remains for a detec-
tion from black holes nearing the end of the evaporation
process, but “primordial” black holes, which formed in the
early universe, have not been detected and there is no
evidence for radiation from them [2].
It was shown in [3] that a fluid flowing from a subsonic

into a supersonic region, and thus having an acoustic
horizon, should also emit a thermal spectrum of phonons
via the Hawking effect and therefore serve as an analog
black hole. Even in analog systems the temperature of the
emission is usually very low. Bose-Einstein condensates
(BECs) have been particularly useful as analog black holes
because they are suited for testing low energy phenomena
as they can be cooled to 10−7 K [4]. These systems can be
effectively trapped in a one-dimensional (1D) flow, creating
an analog spacetime with 1þ 1 dimensions. Direct detec-
tion of the produced phonons is still problematic; therefore,
other signatures of the Hawking process are the focus of

current quantum field theory in curved space predictions
and analog black hole experiments.
The most notable prediction associated with the

Hawking effect in analog systems to date has been a peak
in the correlation function for the density in a 1þ 1D BEC
analog black hole. This prediction was originally made
using quantum field theory in curved space for a simple
model with a constant flow velocity and a varying sound
speed [5]. It was subsequently verified by a quantum
mechanics calculation [6,7] and a more sophisticated
quantum field theory in curved space calculation [8].
Experiments using a 1þ 1D BEC analog black hole

in 2016 [9] and 2019 [10] found very good qualitative
agreement with the prediction of the peak in the density-
density correlation function. These experiments have
position-dependent sound speeds and flow velocities in
an effectively one-dimensional system. The density for
all points in each experimental run is imaged at one lab
time. The experiment is repeated several thousands
of times to build an ensemble average for the density-
density correlation function. The peak predicted by the
constant flow velocity model is clearly evident in the
experimental results.
An attempt was made to model the 2016 experiment in

[11]. The model uses a step function potential to obtain an
analytic solution to the Gross-Pitaevskii equation which
governs the background condensate. Several quantities
were calculated including the density-density correlation
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function. An approximation was used in the calculation for
the density-density correlation function that involved set-
ting an effective potential that appears in the phonon mode
equation to zero. When the cross section of the resulting
density-density correlation function was compared to the
experimental result, there was nearly a factor of 2 difference
in the full width half maximum of the peak and ∼50%
difference for the height of the peak.
In order to determine the temperature of the analog black

hole, the experimenters decomposed the peak found in the
density-density correlation function via a Fourier transform
to show the correlation spectrum for the Hawking particle
and its partner [10]. In [12], a theoretical quantity, which
we call the Hawking-partner (HP) correlator, was shown to
be related to this Fourier transform. In [10], the spectrum of
the HP correlator was calculated using an approximation in
which the effective potential in the phonon mode equation
was ignored. In this case, the HP correlator only depends on
the frequency of the modes and the surface gravity, and
hence the temperature of the analog black hole. A com-
parison was made with the experimental result. A disagree-
ment of 1% was found for the temperature of the analog
black hole. The authors estimated an experimental error in
this quantity of 5%. The effects of nonlinear dispersion on
this correlator were investigated in [13], but this calculation
did not include an effective potential in the phonon mode
equation.
In this paper, we will work with three different models

for a 1þ 1D BEC analog black hole. We calculate the
resulting HP correlator and two quantities related to the
population of phonons traveling upstream and downstream
in the frame of the fluid in the interior of the acoustic black
hole, and we find that there is a significant contribution
from the effective potential for each model to all of these
quantities.
The first model, previously discussed in [7,14], has an

effective potential consisting of a delta function in the
interior and a delta function in the exterior of the BEC
analog black hole. This model is simple enough so that
analytic results were obtained. We compare to the case with
no potential and thus no scattering or particle production
and find significant differences.
We then review the profile used in [6,8], which has a

varying speed of sound and a constant flow velocity. The
effective potential is included in the mode equation and we
find that the HP correlator, again, is significantly altered by
its inclusion.
The third model we look at is often called the waterfall

model [7,11,15,16]. It has been used to model the 2016
experiment in [11]. Here the term waterfall refers to an
analytic solution to the Gross-Pitaevskii equation for a BEC
analog black hole in which the condensate is flowing over a
step function potential. In this model, the sound speed,
flow velocity, and background density all vary along the
flow direction. In this case, we also find that the HP

correlator is significantly altered due to the scattering
and particle production caused by the inclusion of the
effective potential.
We then discuss a new peak found in [14] related to the

population of phonons propagating upstream and down-
stream in the frame of the fluid inside the horizon, for each
of these models. We will refer to these as the interior
upstream phonon number (UPN) and the interior down-
stream phonon number (DPN). This peak was found to
occur when the magnitude of the effective potential is larger
in the interior than in the exterior. The peak was noted
previously for the two-delta function potential in [14] when
the interior potential is chosen to be larger than the exterior.
The second profile, which has a constant flow velocity and
an effective potential whose magnitude is similar in the
interior and exterior regions, exhibits no such peak. The last
model we investigate is the waterfall model which displays
a relatively large peak in quantities related to the population
of phonons in the interior.
In Sec. II, we discuss the theoretical background for a

1þ 1D BEC analog black hole. We then derive the HP
correlator based on the creation and annihilation operators
for a Hawking phonon and its partner for the two-delta
function potential model. We also compute the HP corre-
lator when the effective potential is ignored. In Sec. III, first
the constant flow velocity model is reviewed and our results
for the HP correlator are given. Then the waterfall model is
reviewed and our results for the HP correlator for it are
shown. In Sec. IV, we discuss the overall effect of the
potential in each case on the appearance of the peak which
is related to particle production in the interior. In Sec. V, we
discuss our results.

II. BACKGROUND

The field equation for the phonon operator θ̂1, if the flow
velocity, v⃗, sound speed, c, and density, n, change on scales
larger than the healing length1 ξ ¼ ℏ

mc, with m the mass of
an atom, is (see e.g., [17])
!
−ð∂T þ ∇⃗ · v⃗Þ n

mc2
ð∂T þ ∇⃗ · v⃗Þþ ∇⃗ ·

n
m
∇⃗
"
θ̂1¼ 0: ð2:1Þ

The coordinates T and x⃗ relate to the lab frame.
Equation (2.1) is equivalent to the Klein-Gordon equation
for a massless scalar field in a curved spacetime with line
element of the form

ds2 ¼ n
mc

½−ðc2ÞdT2 þ ðdx⃗ − v⃗dTÞ · ðdx⃗ − v⃗dTÞ&: ð2:2Þ

We consider flows that are stationary and effectively one-
dimensional and we define a 1þ 1D field operator, θ̂ð2Þ,
such that

1The healing length sets the scale of dispersion.
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θ̂1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcðxÞ
nðxÞℏl2⊥

s

θ̂ð2Þ; ð2:3Þ

where l⊥ is a length, defined by the transverse confinement
of the BEC. For analog black holes, the condensate is
flowing from a subsonic region c > jv⃗j (x > 0, region r)
into a supersonic region with c < jv⃗j (x < 0, region l). For

the models considered in this paper, the flows are directed
from x ¼ ∞ to x ¼ −∞, so v⃗ ¼ −v0ðxÞx̂, with v0 > 0. The
condensates we consider also have the property that they
either have or approach a constant flow velocity, sound
speed, and density as x → '∞. In the analog spacetime,
this translates to a region that is asymptotically flat. Using
the variable transformations

t ¼ T −
Z

x
dy

v0ðyÞ
cðyÞ2 − v0ðyÞ2

þ a and x( ¼
Z

x
dy

cðyÞ
cðyÞ2 − v0ðyÞ2

þ b; ð2:4Þ

with a and b arbitrary constants,2 the equation for θ̂ð2Þ is

ð−∂2
t þ ∂2

x( þ VeffÞθ̂ð2Þ ¼ 0; ð2:5Þ

with the effective potential

Veff ¼
v40
2c3

d2c
dx2

−
v20
c
d2c
dx2

þ 1

2
c
d2c
dx2

þ v40
c3n

dc
dx

dn
dx

−
v20
cn

dc
dx

dn
dx

þ v30
c3

dc
dx

dv0
dx

−
v0
c
dc
dx

dv0
dx

−
5v40
4c4

$
dc
dx

%
2

þ 3v20
2c2

$
dc
dx

%
2

−
1

4

$
dc
dx

%
2

−
v40

2c2n
d2n
dx2

−
c2

2n
d2n
dx2

−
v30
c2n

dn
dx

dv0
dx

þ v40
4c2n2

$
dn
dx

%
2

þ c2

4n2

$
dn
dx

%
2

þ v20
n
d2n
dx2

þ v0
n
dn
dx

dv0
dx

−
v20
2n2

$
dn
dx

%
2

: ð2:6Þ

Note that v0 and n are related by the continuity equation
nv0 ¼ const. The asymptotically constant flows we are
considering ensure that the effective potential vanishes in
the limit x → '∞. It also vanishes on the horizon, x ¼ 0.
The wave equation (2.5) can be written in the form ð□ð2Þ þ
VÞθ̂ð2Þ ¼ 0 where □

ð2Þ is the d’Alambertian for the two-
dimensional metric

ds2 ¼ ½cðxÞ2 − v0ðxÞ2&
cðxÞ

ð−dt2 þ dx(2Þ; ð2:7Þ

and V ¼ cðc2 − v20Þ−1 Veff . It is useful to define the ingoing
and outgoing null coordinates v ¼ tþ x( and u ¼ t − x(,
and the Kruskal null coordinates

U ¼∓ e−κu

κ
and V ¼ eκv

κ
: ð2:8Þ

Here the − and þ refer to the exterior and interior regions,
respectively, of the analog spacetime and the surface
gravity, κ, is defined as

κ ¼
$
dc
dx

− dv0
dx

%&&&&
hor
: ð2:9Þ

In order to proceed, we need to define two quantum states
for the field. These can be described by complete sets
of modes that are positive frequency on certain surfaces.
We start with the Boulware state which is defined by
solutions to the mode equation (2.5) that are positive
frequency with respect to t on I− and the past horizon
H− in the region outside the future horizon. Inside the future
horizon they are positive frequency with respect to the time
coordinate x( on the past horizon. The Penrose diagram in
Fig. 1 helps illustrate the behaviors of these modes in the
analog spacetime. On the past horizon, they take the form

infextH ¼ e−iωuffiffiffiffiffiffiffiffiffi
4πω

p and infintH ¼ eiωuffiffiffiffiffiffiffiffiffi
4πω

p : ð2:10Þ

In what follows, we use the superscript “ext” to denote
modes that are positive frequency on a surface in the exterior
region and “int” to denote modes that are positive frequency
on a surface in the interior region. The subscript H or I
denotes whether that surface is a horizon or null infinity. The
superscript “in” denotes the in modes and the superscript
“out” denotes the outmodes. Themodes on I− have the form

infextI ¼ e−iωvffiffiffiffiffiffiffiffiffi
4πω

p : ð2:11Þ

Since these modes form a complete orthonormal set, the
field can be expanded in terms of them as

2It is useful to fix the constants a and b so that v ¼ tþ x( is
continuous across the horizon.
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ϕ̂ð2Þ ¼
Z

∞

0
dω½inâextH ðinfextH Þ þ inâintH ðinfintH Þ

þ inâextI ðinfextI Þ þ H:c:&: ð2:12Þ

Here inâextH , inâintH , and inâextI are annihilation operators and the
Boulware vacuum is the state annihilated by these operators.
The Boulware state does not correctly describe the state

of the quantum field when the black hole is created
dynamically. In this case, at late times, the state of the
quantum field is well approximated by the Unruh state [18].
The Unruh state consists of modes that are positive
frequency with respect to the Kruskal time coordinate on
the past horizon so that

fKH ¼ e−iωKU
ffiffiffiffiffiffiffiffiffiffiffi
4πωK

p ð2:13Þ

and modes that are positive frequency with respect to t on
I− shown in Eq. (2.11). These two sets of modes form a
complete orthonormal set and the field can then be
expanded in terms of them as

ϕ̂ð2Þ ¼
Z

∞

0
dωK½ðâωK

fKH þ â†ωKf
K(
H Þ

þ
Z

∞

0
dω½inâextI ðinfextI Þ þ inâext†I ðinfext(I Þ&: ð2:14Þ

The Unruh jUi state is state annihilated by all the
annihilation operators entering the decomposition given

in (2.14). Here âωK
is an annihilation operator for the fKH

modes. The mode equation in Kruskal coordinates is not
separable; thus, it is preferable to work with the modes that
specify the Boulware state. The relation between the two
sets of annihilation operators is given by the following
Bogoliubov transformations:

inâextH ¼
Z

∞

0
dωK½αextωKωâωK

þ βext(ωKωâ
†
ωK &;

inâintH ¼
Z

∞

0
dωK½αintωKωâωK

þ βint(ωKωâ
†
ωK &: ð2:15Þ

For a late time observer, what we would think of as the
natural out vacuum state consists of a complete set of
modes that are positive frequency with respect to t or x(, on
Iþ, where Iþ refers to the entire surface of future null
infinity. In the exterior region on Iextþ , the upstream modes
take the form

outfextup ¼ e−iωuffiffiffiffiffiffiffiffiffi
4πω

p : ð2:16Þ

In the interior region, the upstream modes on the surface
upIintþ are

outfintup ¼
eiωuffiffiffiffiffiffiffiffiffi
4πω

p ; ð2:17Þ

and the interior downstream modes on dsI
int
þ are

outfintup ¼
e−iωvffiffiffiffiffiffiffiffiffi
4πω

p : ð2:18Þ

The three surfaces that comprise Iþ and the out state are
illustrated in Fig. 1. The field can be expanded in terms of
these modes as well,

ϕ̂ð2Þ ¼
Z

∞

0
dω½outâextup ðoutfextup Þ þ outâintupðoutfintupÞ

þ outâintds ðoutfintds Þ þ H:c:&; ð2:19Þ

where the outâ’s are the associated annihilation operators.
In general, one can use scattering theory to relate the

modes in the in states to those in the out states. An exterior
in mode initially propagates downstream away from past
null infinity and is partially reflected upstream toward Iextþ
with a reflection coefficient of Rext

I . The transmitted portion
continues to travel downstream into the interior of the
analog black hole where it undergoes particle production.3

After the particle production occurs, the part of the mode
that travels upstream toward upIintþ has a total scattering
coefficient of Rint

I , while the portion of the mode that

FIG. 1. Penrose diagram for an analog spacetime corresponding
to a BEC flowing from right to left. The in mode basis is
schematically illustrated in blue in the l and r regions of an analog
black hole. The out mode basis is schematically illustrated in red.

3The scattering in the interior region is anomalous and this
leads to particle production; see [14].
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continues to travel toward dsI
int
þ has a total scattering

coefficient T int
I . The other modes have similar behaviors

and one can write the in modes on Iþ in terms of the out
modes as follows:

infextI ¼ Rext
I

outfextup þ T int
I

outfintds þ Rint
I

outfint(up ; ð2:20aÞ

infextH ¼ Text
H

outfextup þ T int
H

outfintds þ Rint
H

outfint(up ; ð2:20bÞ

infintH ¼ R̃int
H

outfint(ds þ T̃ int
H

outfintup: ð2:20cÞ

Note that the tilde denotes a coefficient which does not
involve any scattering in the exterior region. One can now
formulate the scattering matrix and using scattering theory
we can then calculate the expressions for the annihilation
operators for the out state in terms of those for the
Unruh state,

outâextup ¼ ðϕ̂ð2Þ; outfextup Þ

¼
Z

∞

0
dωK½âωK

ðαextωKωÞT
ext
H þ â†ωK ðβext(ωKωÞT

ext
H &

þin âextI Rext
I ; ð2:21aÞ

outâintup ¼ ðϕ̂ð2Þ; outfintupÞ

¼
Z

∞

0
dωK½âωK

ðαintωKωT̃
int
H þ βextωKωR

int(
H Þ

þ â†ωK ðβint(ωKωT̃
int
H þ αext(ωKωR

int(
H Þ& þ inâext†I Rint(

I ;

ð2:21bÞ

outâintds ¼ðϕ̂ð2Þ;outfintds Þ

¼
Z

∞

0
dωK½âωK

ðαextωKωT
int
H þβintωKωR̃

int(
H Þ

þ â†ωK ðβext(ωKωT
int
H þαint(ωKωR̃

int(
H Þ&þ inâextI T int

I : ð2:21cÞ

The Bogoliubov coefficients relating these annihilation
operators are given by4

αextωKω ¼ 1

2πκ

ffiffiffiffiffiffi
ω
ωK

r $
−iωK

κ

%iω
κ

Γ
$
−iω
κ

%
; ð2:22aÞ

βextωKω ¼ 1

2πκ

ffiffiffiffiffiffi
ω
ωK

r $
−iωK

κ

%−iω
κ

Γ
$
iω
κ

%
; ð2:22bÞ

αintωKω ¼ 1

2πκ

ffiffiffiffiffiffi
ω
ωK

r $
iωK

κ

%−iω
κ

Γ
$
iω
κ

%
; ð2:22cÞ

βintωKω ¼ 1

2πκ

ffiffiffiffiffiffi
ω
ωK

r $
iωK

κ

%iω
κ

Γ
$
−iω
κ

%
: ð2:22dÞ

A. The Hawking-partner correlator

The main peak which was found in the density-density
correlation function for the experimental results [9,10] is
composed of modes which are traveling upstream toward
Iþ. The main contribution to these modes can be under-
stood as arising from a Hawking particle in the exterior and
its partner in the interior. The peak was Fourier decom-
posed to show the resulting correlation spectrum in [10]. It
was shown in [12] that this correlation can be described by
the quantity S20jhðoutâextup ÞðoutâintupÞij2, where S0 is defined as
the zero temperature static structure factor in Ref. [9] (see
also [12]). For relatively low momenta, which we will
consider in our calculations, it is a good approximation to
replace S20 with Aω2, where A is a constant that we will set
to one.5 For the other factor, we find

jhUjðoutâextup ÞðoutâintupÞjUij2

¼
&&&&

e
πω
κ

e
2πω
κ −1

ðText
H T̃ int

H þText
H Rint(

H e
πω
κ ÞþRext

I Rint(
I

&&&&
2

; ð2:23Þ

where we have written the general expression in terms of
scattering coefficients. We call jhUjðoutâextup ÞðoutâintupÞjUij the
HP correlator.
In the case where there is no effective potential

and thus no scattering, T̃ int
H ¼ Text

H ¼ 1, Rext
I ¼ Rint

I ¼ 0,
and Eq. (2.23) reduces to

jhUjðoutâextup ÞðoutâintupÞjUij2 ¼
&&&&

e
πω
κ

e
2πω
κ − 1

&&&&
2

: ð2:24Þ

In this case, the upstream modes which are thermally
populated on the past horizon, simply travel toward Iþ.
This expression only depends on the surface gravity and
thus the Hawking temperature, TH ¼ κ

2π. However, if the
effective potential is included, the resultant quantities are
also dependent on the details of the sound speed and
velocity profiles away from the horizon.

B. Interior upstream and downstream phonon numbers

In [14], a new feature was found that is related to the
interior DPN, nintds , and the UPN, nintup. UPN refers to the
number of phonons which are traveling upstream in
the frame of the fluid in the interior, being dragged away
from the horizon in the lab frame and arriving at Iintup, while
DPN refers to phonons which are moving downstream and
arriving at Iintds . The DPN and UPN expressed in terms of the
creation and annihilation operators for the out modes are

nintup ¼ hUjoutâint†up
outâintupjUi and nintds ¼ hUjoutâint†ds

outâintds jUi:
ð2:25Þ

4These have been calculated in Ref. [8], but the expressions
there are missing a factor of κ'

iω
κ . 5This approximation for S0 can be derived using results in [19].
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Solving for jnintupj2 using the definition for the annihilation
operator in Eq. (2.21b), one finds

jnintupj2 ¼
$

1

e
2πω
κ − 1

jT̃ int
H þ Rint(

H e
πω
κ j2 þ jRint(

I j2
%

2

: ð2:26Þ

In the case where Veff ¼ 0, T̃ int
H ¼ 1, and Rint(

H ¼ Rint(
I ¼ 0,

jnintupj2 ¼
$

1

e
2πω
κ − 1

%
2

: ð2:27Þ

Thus, there is a thermal distribution of phonons.
For the DPN, one finds

jnintds j2 ¼
$

1

e
2πω
κ − 1

jT int
H þ R̃int(

H e
πω
κ j2

%
2

: ð2:28Þ

T int
H is associated with a mode in the exterior that is positive

frequency on H− and is partially scattered into the interior.
Thus, in the absence of a potential T int

H ¼ 0 and R̃int(
H ¼ 0,

there is no particle production for these modes in the
interior of the analog black hole.

III. HP CORRELATOR WITH AN
EFFECTIVE POTENTIAL

We now apply this general formalism to the three models
previously mentioned.

A. Two-delta function potential

The first model we consider was discussed in [14]
where Veff was approximated by two Dirac delta functions,
one in region r and one in region l. We refer to this model as
the two-delta function potential model. The effective
potential is

Veff ¼
'
V intδðx( − x(intÞ; x < 0;

Vextδðx( − x(extÞ; x > 0.
ð3:1Þ

We review the resulting solution for the infextI modes for the
entire spacetime. In the exterior, it is given by

infextI ¼ e−iωtffiffiffiffiffiffiffiffiffi
4πω

p ½e−iωx( þ Rext
I eiωx

( &; x( > x(ext ¼ 0;

¼ e−iωtffiffiffiffiffiffiffiffiffi
4πω

p Text
I e−iωx

(
; x( < x(ext ¼ 0; ð3:2Þ

where R and T will refer to scattering coefficients through-
out. In the interior,

infextI ¼ e−iωtffiffiffiffiffiffiffiffiffi
4πω

p Text
I e−iωx

(
; x(<x(int¼0;

¼ e−iωtffiffiffiffiffiffiffiffiffi
4πω

p ½T int
I e−iωx

( þRint
I eiωx

( &; x(>x(int¼0: ð3:3Þ

The asymptotic form of the infextI mode as x → þ∞ is

infextI →
e−iωtffiffiffiffiffiffiffiffiffi
4πω

p ½e−iωx( þ Rext
I eiωx

( & ð3:4Þ

and for x → −∞ it has the form

infintI →
e−iωtffiffiffiffiffiffiffiffiffi
4πω

p ½T int
I e−iωx

( þ Rint
I eiωx

( &: ð3:5Þ

Similarly, the modes which originate on the exterior past
horizon have the following asymptotic form for x → þ∞:

infextH →
e−iωtffiffiffiffiffiffiffiffiffi
4πω

p Text
H eiωx

(
: ð3:6Þ

The form for x → −∞ is

infextH →
e−iωtffiffiffiffiffiffiffiffiffi
4πω

p ½Rint
H e−iωx

( þ T int
H eiωx

( &: ð3:7Þ

Finally, the modes which originate on the past horizon in
the interior have the form for x → −∞,

infintH →
eiωtffiffiffiffiffiffiffiffiffi
4πω

p ½T̃ int
H e−iωx

( þ R̃int
H eiωx

( &: ð3:8Þ

The transmission and reflection coefficients have been
computed in [14]. They are found by enforcing continuity
of the radial mode functions at the locations of the delta
function potentials and imposing the usual jump conditions
on the first derivatives of the radial mode functions at those
locations. The jump conditions are obtained by integrating
the mode equation (2.5) around the delta function potential
over an interval ½−ϵ; ϵ& in the limit ϵ → 0. The resulting
scattering coefficients are

Text
I ¼

2iω
Vext

2iω
Vext

− 1
Text
H ¼ 1

1 − Vext
2iω

;

Rext
I ¼ 1

2iω
Vext

− 1
; Rext

H ¼
Vext
2iω

1 − Vext
2iω

;

Rint
I ¼ V int

2iω
Text
I ; T int

H ¼
$
1 − V int

2iω

%
Rext
H ;

T int
I ¼

$
1 −

V int

2iω

%
Text
I ; Rint

H ¼ V int

2iω
Rext
H ;

T̃ int
H ¼ 1 −

V int

2iω
; R̃int

H ¼ V int

2iω
: ð3:9Þ

Using these scattering coefficients in Eq. (2.23) gives

jhUjðoutâextup ÞðoutâintupÞjUij2

¼
&&&&

e
πω
κ

e
2πω
κ − 1

$
2iω−V int

2iω−Vext
− V intVext

4ω2 þV2
ext

e
πω
κ

%
þ V int

Vext þ 4ω2

Vext

&&&&
2

ð3:10Þ
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In the two-delta function potential model, the HP
correlator is finite as ω → 0, whereas in the case without
scattering, it diverges in this limit. This can be seen in the
quantity ω2jhUjðoutâextup ÞðoutâintupÞjUij2 which is plotted in
Fig. 2 for both the two-delta function potential and the case
with no scattering. The ratio of the two cases is also shown.

B. Constant flow velocity model

We next consider a model which has been studied from
both the condensed matter perspective [7] and the quantum
field theory in curved space perspective [8] and shows good
agreement between the two. The profile has a varying
sound speed, but the flow velocity is held constant, and thus
due to mass continuity, the density is also constant. Such a
profile is theoretically possible if an external potential is
adjusted to keep the density constant while the coupling
constant, g, which is related to the s-wave scattering length,
is varied via a Feshbach resonance [19] allowing the speed
of sound, c ¼

ffiffiffiffign
m

p
to vary.

The sound speed profile used in [6,8] is6

cðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2int þ
1

2
ðc2ext − c2intÞ

!
1þ 2

π
tan−1

$
xþ b
σv

%"s

;

b ¼ σv tan
!

π
c2ext − c2int

$
v20 −

1

2
ðc2ext þ c2intÞ

%"
; ð3:11Þ

where b is defined so that the horizon occurs at x ¼ 0. This
sound speed approaches a constant, cint in the interior, as
x → −∞ and in the exterior approaches the constant cext as
x → ∞. The flow velocity is v⃗ ¼ −v0x̂, where v0 > 0 is
constant. The term σv is related to the width of the profile.
We use cint ¼ 1=2, cext ¼ 1, v0 ¼ 3=4, and σv ¼ 8 which
are the values used for some of the numerical calculations
in [8].

The scattering coefficients are calculated numerically
for each value of ω and then used in Eq. (2.23). Unlike the
two-delta function potential case, the reflection coefficient
in the exterior does not approach one for low frequencies;
thus, the HP correlator is infrared divergent as it is when the
effective potential is ignored.
The results are shown in Fig. 3 where the quantity

ω2jhâextup âintupij2 is plotted both when Veff is included in the
calculation andwhenVeff ¼ 0. The inclusion of the effective
potential increases the value of the HP correlator throughout
the frequency range of the plot. A ratio of the two cases is
also shown. In the low frequency regime, theHP correlator is
observed to be approximately 8% larger than its value when
Veff ¼ 0. This inevitably will affect the main peak.

C. The waterfall model

A model, which more closely resembles the experiments
of [9,10], but which still has some significant differences,
has been studied in [11]. This model, often called the
waterfall model, is based on an analytic solution to the
Gross-Pitaevskii equation when an external step function
potential is applied. The resulting density profile can be
written as

nðxÞ¼

(
n−½M−þð1−M−Þ=ðcoshðσðxþx0ÞÞÞ2& x≥ x0
n− x≤ x0;

ð3:12Þ

where we have shifted the profile by x0 ≈ 9.6 × 10−7 so that
the horizon is at x ¼ 0. The subscript indicates the asymp-
totic value as x → −∞. The Mach number MðxÞ≡
cðxÞ=v0ðxÞ is used to characterize the flow, and its asymp-
totic value M− ¼ c−=v0− gives insight into the strength of
the “waterfall.” The width of the profile is modified by σ ¼
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M− − 1

p
Þ=ξ with ξ the healing length. In this profile, the

flow velocity, sound speed, and density all vary along the

FIG. 2. The square of the product of the Hawking-partner correlator and the frequency for the two-delta function potential model (blue
dotted) and the case with Veff ¼ 0 (orange dashed) is shown in the left panel. Here jhoutâextup

outâintupij is the Hawking-partner correlator. In
the right panel, the ratio of the two curves on the left is shown.

6In [6], this profile was used with b ¼ 0.
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FIG. 4. Various profiles are shown for the waterfall model with Mach number M− ¼ 4.1. The solid (blue) curve corresponds to the
density nðxÞmultiplied by the factor 2.7 × 10−11; the dashed (orange) curve corresponds to the sound speed cðxÞ, and the dotted (green)
curve corresponds to the flow speed jvðxÞj.

FIG. 3. The square of the product of the Hawking-partner correlator and the frequency for the constant flow velocity model (blue dots)
and the case with Veff ¼ 0 (orange squares) is shown in the left panel. Here jhoutâextup

outâintupij is the Hawking-partner correlator. In the right
panel, the ratio of the two curves on the left is shown.

FIG. 5. The square of the product of the Hawking-partner correlator and the frequency for the waterfall model (blue dots) and the case
with Veff ¼ 0 (orange squares) is shown in the left panel. Here jhoutâextup

outâintupij is the Hawking-partner correlator. In the right panel, the
ratio of the two curves on the left is shown.
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flow. The flow velocity is v⃗ ¼ −v0ðxÞx̂, with v0ðxÞ > 0. It is
simple to show that the continuity equation leads to v0 ∝ 1

n
(see e.g., [20]).

The entire solution can be defined by a particular choice
for c− and v−. Here we use values that loosely match the
experiment described in [9] with v− ¼ 1.02 × 10−3 and

FIG. 6. In the left panel, the quantity jCωnintupj2 is shown for the two-delta function potential model (blue dotted) and for the case where
there is no potential (orange dashed). In the right panel, the quantity jCωnintds j2 is shown for the two-delta function potential model (blue
dotted) and for the case where there is no potential (orange dashed). For the two-delta function potential model, V int¼−κ=100 and Vext¼
2κ=3. C is a scaling factor whose value is chosen, where possible, for each curve so that Cωjnintupj¼1 or Cωjnintds j¼1 for ω ¼ 10−6.

FIG. 7. Upper: plot of the effective potential for the constant flow velocity model. Left: the quantity jωnintup j2 vs ω is shown for the
constant flow velocity profile (blue dots) and for the case where there is no potential (orange squares). Right: the quantity jωnintds j2 vs ω is
shown for the constant flow velocity profile (blue dots) and for the case where there is no potential (orange squares).
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c− ¼ 0.24 × 10−3. The resulting density, sound speed, and
flow velocity are plotted in Fig. 4.
The result for theHPcorrelator is shown inFig. 5,where the

quantity ω2jhoutâextup
outâintupij2 is plotted for Veff≠0 and for

Veff¼0. There is a significant difference between these two
cases throughout most of the frequency range of the plot. The
ratio of the two cases is also shown, and there is an
approximately 10% increase in the low frequency values of
theHPcorrelatorwhen the effectivepotential is included in the
calculation. This low frequency regime is especially important
when considering the main peak in the density-density
correlation function as both the width and magnitude of the
peak are heavily dependent on the low frequency modes.

IV. PARTICLE PRODUCTION IN
THE INTERIOR

The numbers of upstream and downstream phonons in
the interior of a BEC analog black hole were computed in
[14] for the two-delta function potential model. We review
these results and then calculate quantities related to the
interior UPN and DPN for the other two models.

In Sec. II B, we have shown that if Veff ¼ 0 the spectrum
of jωnintupj2 is based on a thermal distribution as seen in
Eq. (2.27) and jωnintds j2 ¼ 0. For the two-delta function
potential, it was shown in [14] that nintds is nonzero and that
both nintup and nintds are nonthermal in the left and right panels,
respectively, of Fig. 6. In both plots, the spectrum for these
quantities when Veff ¼ 0 is shown. Recalling that for
Veff ¼ 0, jωnintupj2 has a thermal spectrum, it is clear that
the spectrum when Veff ≠ 0 is nonthermal.
Also visible in Fig. 6 is a peak. It was found in [14] that

this peak occurs when the magnitude of Veff is larger in the
interior than it is in the exterior.
For the first model, the delta-function effective potential

was introduced in an ad hoc way and the asymmetry in the
overall potential profile is thus not related to the sound
speed or flow velocity of the model. In the other two
models, the effective potential is derived from the profiles
for the sound speed and flow velocity according to (2.6).
The constant flow velocity model has a speed of sound

profile which, for the constants used in the calculations
of the HP correlator in Sec. III B, leads to a nearly

FIG. 8. Plot of the effective potential for the waterfall model in the interior (upper left) and exterior (upper right) of the analog black
hole. The vertical axes of the upper-right and upper-left plots have different scales since the magnitude of the effective potential in the
interior is significantly larger than it is in the exterior. Bottom left: the quantity jωnintup j2 vs ω=κ is shown for the waterfall model (blue
dots) and for the case where there is no effective potential (orange squares). Bottom right: the quantity jωnintds j2 vs ω=κ is shown for the
waterfall model (blue dots) and for the case with no effective potential (orange squares).
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antisymmetric effective potential (shown in Fig. 7). In this
case, the magnitude of the effective potential in the exterior
region is only slightly larger than its magnitude in the interior
region. The resulting quantities jωnintupj2 and jωnintds j2, plotted
in Fig. 7, do not show a peak and instead are qualitatively
similar to jωnintupj2 in the case where Veff ¼ 0.
For the waterfall model, the nature of the profiles for cðxÞ,

vðxÞ, and nðxÞ results in the magnitude of the interior
effective potential being much larger than the exterior
effective potential, as can be seen in Fig. 8. This results
in a distinctive peak in the plot of jωnintupj2, while the plot of
jωnintds j2 is dominated by the peak as seen in the lower right
panel of Fig. 8. In the two-delta function potential and
waterfall models one finds for jωnintupj2 and jωnintds j2 what
appears to be a peak superimposed on a distribution which is
almost thermal. The structure of jωnintupj2 and jωnintds j2 for the
waterfall model can still be described as a peak super-
imposed on a thermal distribution, but unlike the two-delta
function potential, the peak found in jωnintds j2 has a much
higher magnitude when compared with the asymptotically
constant low frequency region. We also find that in the
waterfall model the peaks in both jωnintupj2 and jωnintds j2 appear
at higher frequencies in the distribution than was found for
the peaks in the two-delta function potential model.

V. CONCLUSIONS

We have studied the HP correlator, (2.23), and the
interior upstream and downstream phonon numbers,
(2.26) and (2.28) for a BEC analog black hole. The mode
equation for phonons in the hydrodynamic limit is a wave
equation with a potential that depends on the density, flow
velocity, and sound speed. In some previous studies, this
potential was neglected for simplicity. We have shown that
the inclusion of this effective potential has a significant
impact on the HP correlator and the interior numbers of
upstream and downstream phonons in each of the models
we have investigated.
Three different models were considered. The HP corre-

lator was calculated by solving the mode equation with the
effective potential, Veff , for each model and then comparing
the result with the case with no effective potential. The first
model has an effective potential consisting of two delta
functions, one in the exterior and one in the interior. The
behavior of the HP correlator for the two-delta function
potential model is quite different from the case where
Veff ¼ 0 as the low frequency HP correlator is finite for the
two-delta function potential model, whereas it is infrared
divergent if Veff ¼ 0.
A second model has a constant flow velocity, but a

varying sound speed. In this case, the HP correlator is
qualitatively similar to the Veff ¼ 0 case. However, at low
frequencies, they differ by as much as 8%.
The third model, called the waterfall model, is a solution

to the Gross-Pitaevskii equation for the background density

if a step function potential is applied. The resulting profile
has a varying sound speed and flow velocity. The HP
correlator for this model differs significantly from the case
when Veff ¼ 0. In the low frequency regime, in particular,
the HP correlator for the waterfall model is increased by
approximately 10% compared to the case when Veff ¼ 0.
We have also calculated the interior UPN and DPN at

future null infinity for the constant flow velocity model and
the waterfall model and have also reviewed the results for
the two-delta function potential model in [14]. In the two-
delta function potential model, one finds a peak in both
jωnintupj2 and jωnintds j2 when the potential is adjusted so that
the interior effective potential is larger than the exterior.
The waterfall model, by its nature, has an interior effective
potential which is much larger in magnitude when com-
pared to the exterior and thus has an easily visible peak in
both quantities related to the UPN and DPN. The case with
a constant flow velocity does not have a larger effective
potential in the interior and no such peak is found in jωnintupj2
or jωnintds j2.
The same particle production that leads to the peak

related to the interior UPN and DPN appears to have a
small impact on the HP correlator for the waterfall model.
This is only visible when looking at the ratio of the curve
with Veff ≠ 0 to the curve with Veff ¼ 0 in Fig. 5. This
impact is small enough that we do not expect to see its
effect in the current experimental results [9,10].
In [12], it was shown that there is a relationship between

the HP correlator and the Fourier transform of the density-
density correlation function when one point is inside and
one point is outside the horizon. A similar relationship was
found in [12] between the Fourier transform of the density-
density correlation function when both points are inside the
horizon and the quantities jωnintupj2 and jωnintds j2. Given the
prominence of the peak in the theoretical calculation for
the waterfall model, one could hope to see it in the
experimental data. Unfortunately, for the experimental
configuration in [9], this does not seem to be the case [21].
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