PHYSICAL REVIEW D 102, 105005 (2020)

Correlations between a Hawking particle and its partner
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The Fourier transform of the density-density correlation function in a Bose-Einstein condensate
(BEC) analog black hole is a useful tool to investigate correlations between the Hawking particles
and their partners. It can be expressed in terms of (*"agy *"'ajy), where °"ag' is the annihilation operator
for the Hawking particle and °“‘&L‘g is the corresponding one for the partner. This basic quantity is calculated
for three different models for the BEC flow. It is shown that in each model the inclusion of the
effective potential in the mode equations makes a significant difference. Furthermore, particle production
induced by this effective potential in the interior of the black hole is studied for each model and shown

to be nonthermal. An interesting peak that is related to the particle production and is present in some

models is discussed.

DOI: 10.1103/PhysRevD.102.105005

I. INTRODUCTION

Hawking’s 1974 prediction [1] that black holes
evaporate has not been directly verified, largely because
a black hole of mass M would emit radiation at a temper-
ature Ty ~ % x 1077 K. Some hope remains for a detec-
tion from black holes nearing the end of the evaporation
process, but “primordial” black holes, which formed in the
early universe, have not been detected and there is no
evidence for radiation from them [2].

It was shown in [3] that a fluid flowing from a subsonic
into a supersonic region, and thus having an acoustic
horizon, should also emit a thermal spectrum of phonons
via the Hawking effect and therefore serve as an analog
black hole. Even in analog systems the temperature of the
emission is usually very low. Bose-Einstein condensates
(BECs) have been particularly useful as analog black holes
because they are suited for testing low energy phenomena
as they can be cooled to 1077 K [4]. These systems can be
effectively trapped in a one-dimensional (1D) flow, creating
an analog spacetime with 1 + 1 dimensions. Direct detec-
tion of the produced phonons is still problematic; therefore,
other signatures of the Hawking process are the focus of
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current quantum field theory in curved space predictions
and analog black hole experiments.

The most notable prediction associated with the
Hawking effect in analog systems to date has been a peak
in the correlation function for the density ina 1 + 1D BEC
analog black hole. This prediction was originally made
using quantum field theory in curved space for a simple
model with a constant flow velocity and a varying sound
speed [5]. It was subsequently verified by a quantum
mechanics calculation [6,7] and a more sophisticated
quantum field theory in curved space calculation [8].

Experiments using a 14 1D BEC analog black hole
in 2016 [9] and 2019 [10] found very good qualitative
agreement with the prediction of the peak in the density-
density correlation function. These experiments have
position-dependent sound speeds and flow velocities in
an effectively one-dimensional system. The density for
all points in each experimental run is imaged at one lab
time. The experiment is repeated several thousands
of times to build an ensemble average for the density-
density correlation function. The peak predicted by the
constant flow velocity model is clearly evident in the
experimental results.

An attempt was made to model the 2016 experiment in
[11]. The model uses a step function potential to obtain an
analytic solution to the Gross-Pitaevskii equation which
governs the background condensate. Several quantities
were calculated including the density-density correlation
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function. An approximation was used in the calculation for
the density-density correlation function that involved set-
ting an effective potential that appears in the phonon mode
equation to zero. When the cross section of the resulting
density-density correlation function was compared to the
experimental result, there was nearly a factor of 2 difference
in the full width half maximum of the peak and ~50%
difference for the height of the peak.

In order to determine the temperature of the analog black
hole, the experimenters decomposed the peak found in the
density-density correlation function via a Fourier transform
to show the correlation spectrum for the Hawking particle
and its partner [10]. In [12], a theoretical quantity, which
we call the Hawking-partner (HP) correlator, was shown to
be related to this Fourier transform. In [10], the spectrum of
the HP correlator was calculated using an approximation in
which the effective potential in the phonon mode equation
was ignored. In this case, the HP correlator only depends on
the frequency of the modes and the surface gravity, and
hence the temperature of the analog black hole. A com-
parison was made with the experimental result. A disagree-
ment of 1% was found for the temperature of the analog
black hole. The authors estimated an experimental error in
this quantity of 5%. The effects of nonlinear dispersion on
this correlator were investigated in [13], but this calculation
did not include an effective potential in the phonon mode
equation.

In this paper, we will work with three different models
for a 1 + 1D BEC analog black hole. We calculate the
resulting HP correlator and two quantities related to the
population of phonons traveling upstream and downstream
in the frame of the fluid in the interior of the acoustic black
hole, and we find that there is a significant contribution
from the effective potential for each model to all of these
quantities.

The first model, previously discussed in [7,14], has an
effective potential consisting of a delta function in the
interior and a delta function in the exterior of the BEC
analog black hole. This model is simple enough so that
analytic results were obtained. We compare to the case with
no potential and thus no scattering or particle production
and find significant differences.

We then review the profile used in [6,8], which has a
varying speed of sound and a constant flow velocity. The
effective potential is included in the mode equation and we
find that the HP correlator, again, is significantly altered by
its inclusion.

The third model we look at is often called the waterfall
model [7,11,15,16]. It has been used to model the 2016
experiment in [11]. Here the term waterfall refers to an
analytic solution to the Gross-Pitaevskii equation for a BEC
analog black hole in which the condensate is flowing over a
step function potential. In this model, the sound speed,
flow velocity, and background density all vary along the
flow direction. In this case, we also find that the HP

correlator is significantly altered due to the scattering
and particle production caused by the inclusion of the
effective potential.

We then discuss a new peak found in [14] related to the
population of phonons propagating upstream and down-
stream in the frame of the fluid inside the horizon, for each
of these models. We will refer to these as the interior
upstream phonon number (UPN) and the interior down-
stream phonon number (DPN). This peak was found to
occur when the magnitude of the effective potential is larger
in the interior than in the exterior. The peak was noted
previously for the two-delta function potential in [14] when
the interior potential is chosen to be larger than the exterior.
The second profile, which has a constant flow velocity and
an effective potential whose magnitude is similar in the
interior and exterior regions, exhibits no such peak. The last
model we investigate is the waterfall model which displays
arelatively large peak in quantities related to the population
of phonons in the interior.

In Sec. II, we discuss the theoretical background for a
1 4+ 1D BEC analog black hole. We then derive the HP
correlator based on the creation and annihilation operators
for a Hawking phonon and its partner for the two-delta
function potential model. We also compute the HP corre-
lator when the effective potential is ignored. In Sec. III, first
the constant flow velocity model is reviewed and our results
for the HP correlator are given. Then the waterfall model is
reviewed and our results for the HP correlator for it are
shown. In Sec. IV, we discuss the overall effect of the
potential in each case on the appearance of the peak which
is related to particle production in the interior. In Sec. V, we
discuss our results.

II. BACKGROUND

The field equation for the phonon operator 8, if the flow
velocity, 7, sound speed, ¢, and density, n, change on scales
larger than the healing length1 &= ic’ with m the mass of
an atom, is (see e.g., [17])

—

—(0r 4V 7)— (0r+V-7)+V-—V |0, =0. (2.1

Ss

n
mc?
The coordinates 7 and X relate to the lab frame.
Equation (2.1) is equivalent to the Klein-Gordon equation

for a massless scalar field in a curved spacetime with line
element of the form

ds? = " [~(c?)dT? + (di — 7dT) - (d5 — 5dT))].

- (2.2)

We consider flows that are stationary and effectively one-

dimensional and we define a 1 4 1D field operator, 0@,
such that

"The healing length sets the scale of dispersion.
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mc(x) H(2)
n(x)alz "~

™
|

(2.3)

where /| is a length, defined by the transverse confinement
of the BEC. For analog black holes, the condensate is
flowing from a subsonic region ¢ > |7| (x > 0, region r)
into a supersonic region with ¢ < |¥| (x < 0, region 1). For

|

the models considered in this paper, the flows are directed
from x = o0 to x = —00, 80 ¥ = —v((x)%, with vy > 0. The
condensates we consider also have the property that they
either have or approach a constant flow velocity, sound
speed, and density as x — =oo. In the analog spacetime,
this translates to a region that is asymptotically flat. Using
the variable transformations

x vo(y) / x c(y)
t:T—/ dy——————=+a and x*= dy————"——+b, (2.4)
c(y)* = vo(y)? c(y)* = vo(y)?
with @ and b arbitrary constants,” the equation for 0@ is
(=0% + % + V)0? =0, (2.5)
with the effective potential
_ Vo de_vgdc 1 d’c vy dedn vpdedn  wydedvy vydedv
W23 d2 cdx | 2 d ' Pndxdx cndxdx | Adx dx ¢ dx dx
5v4 (de\? 303 (de\? 1 2y &En AdPn v) dndy
—_— R +_ - —_— S~
4¢* \ dx 2¢2 \dx 4 2¢tndx? 2ndx*  Andx dx
vt (dn\? % [(dn\? vid*n wvydndv v [(dn\?
+—2 (=) +—5|=) +25+=2——2-2 (=) . (2.6)
de*n” \dx 4n= \dx n dx ndx dx 2n- \dx

Note that v, and n are related by the continuity equation
nvy = const. The asymptotically constant flows we are
considering ensure that the effective potential vanishes in
the limit x — =oo. It also vanishes on the horizon, x = 0.
The wave equation (2.5) can be written in the form (D(2> +

V)@m =0 where (0? is the d’Alambertian for the two-
dimensional metric

[e(x)* = vg(x)?]
c(x)
and V = ¢(c? — v3) ™! V. Itis useful to define the ingoing

and outgoing null coordinates v =+ x* and u =t — x*,
and the Kruskal null coordinates

ds? = (—d® +dx?),  (2.7)

—Ku KV

and V=—.
K K

U=F¢ (2.8)

Here the — and + refer to the exterior and interior regions,
respectively, of the analog spacetime and the surface
gravity, k, is defined as

dc dvg
Kk=|———
dx dx

’It is useful to fix the constants a and b so that v = ¢ + x* is
continuous across the horizon.

(2.9)

hor

In order to proceed, we need to define two quantum states
for the field. These can be described by complete sets
of modes that are positive frequency on certain surfaces.
We start with the Boulware state which is defined by
solutions to the mode equation (2.5) that are positive
frequency with respect to ¢ on I_ and the past horizon
H_ in the region outside the future horizon. Inside the future
horizon they are positive frequency with respect to the time
coordinate x* on the past horizon. The Penrose diagram in
Fig. 1 helps illustrate the behaviors of these modes in the
analog spacetime. On the past horizon, they take the form

—iwu o eiwu
and mngint .
Varw S Varw

In what follows, we use the superscript “ext” to denote
modes that are positive frequency on a surface in the exterior
region and “int” to denote modes that are positive frequency
on a surface in the interior region. The subscript H or /
denotes whether that surface is a horizon or null infinity. The
superscript “in” denotes the in modes and the superscript
“out” denotes the out modes. The modes on /_ have the form

infext — (2.10)

—iwv
e

infext — (2.11)

drw

Since these modes form a complete orthonormal set, the
field can be expanded in terms of them as
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FIG. 1. Penrose diagram for an analog spacetime corresponding
to a BEC flowing from right to left. The in mode basis is
schematically illustrated in blue in the / and r regions of an analog
black hole. The out mode basis is schematically illustrated in red.

&5(2) :/ da)[mAext(mfexl)_’_m/\mt(mfml)

0
+ imgext(ingext)y 4 Hc.]. (2.12)
Here "a¢¥, it and "¢ are annihilation operators and the
Boulware vacuum is the state annihilated by these operators.

The Boulware state does not correctly describe the state
of the quantum field when the black hole is created
dynamically. In this case, at late times, the state of the
quantum field is well approximated by the Unruh state [18].
The Unruh state consists of modes that are positive
frequency with respect to the Kruskal time coordinate on
the past horizon so that

e—inU

Varwg

and modes that are positive frequency with respect to 7 on
I_ shown in Eq. (2.11). These two sets of modes form a
complete orthonormal set and the field can then be
expanded in terms of them as

f5 = (2.13)

30 = A ™ dogl(an, 5 + ab f5)

+ /oo da)[ina?xt(infixt) + in&f;XlT(infixt*)]' (214)

0

The Unruh |U) state is state annihilated by all the
annihilation operators entering the decomposition given

in (2.14). Here a,,, is an annihilation operator for the X
modes. The mode equation in Kruskal coordinates is not
separable; thus, it is preferable to work with the modes that
specify the Boulware state. The relation between the two
sets of annihilation operators is given by the following
Bogoliubov transformations:

o0

injext _ Xt A extx AT

ag = / dO)K[(li)Kw%K +ﬂw,<wawk]
0

in&}l}t - / dwK[ (uK(u wK +ﬂ2}1t;})\zik} (215)

0

For a late time observer, what we would think of as the
natural out vacuum state consists of a complete set of
modes that are positive frequency with respect to 7 or x*, on
I, where I, refers to the entire surface of future null
infinity. In the exterior region on /9, the upstream modes
take the form

e—iwu
= . 2.16
drw ( )

out fext
up

In the interior region, the upstream modes on the surface

wl a
out cint e
up = Jina (2.17)
and the interior downstream modes on ; /™ are
—iwv
outfmt (2. 1 8)

Vare'

The three surfaces that comprise /, and the out state are
illustrated in Fig. 1. The field can be expanded in terms of
these modes as well,

&(2) — Am dw[out&g}(’%outfﬁ)ﬁt) + out&‘{g}t(out {]ng)
+ outgint(outginty 4 H ¢ ], (2.19)

where the °"@’s are the associated annihilation operators.
In general, one can use scattering theory to relate the
modes in the in states to those in the ouf states. An exterior
in mode initially propagates downstream away from past
null infinity and is partially reflected upstream toward /5
with a reflection coefficient of R$*'. The transmitted portion
continues to travel downstream into the interior of the
analog black hole where it undergoes particle plroduction.3
After the particle production occurs, the part of the mode
that travels upstream toward upli“ has a total scattering
coefficient of R while the portion of the mode that

The scattering in the interior region is anomalous and this
leads to particle production; see [14].
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continues to travel toward /™ has a total scattering
coefficient 7. The other modes have similar behaviors
and one can write the in modes on [, in terms of the out
modes as follows:

inff[:xt — R?Xt Omfﬁ)f,t + Ti[nt oulfglst + RiInt outf{lnt»s7 (22021)
mfext Text outfext + Tmt outfmt Rmt outfmt* (2.20b)
infilgt _ R}rin outfhnst* + T}r}t outf{lrg. (2.20c)

Note that the tilde denotes a coefficient which does not
involve any scattering in the exterior region. One can now
formulate the scattering matrix and using scattering theory
we can then calculate the expressions for the annihilation
operators for the out state in terms of those for the
Unruh state,

outaext

dyp = (&(2),out le;l;t)
= [ dolan, (i + b (55T
0

i QEN RSN, (2.21a)

A

out'\lnt (¢
1nt int eXt ints
/ dwK a)K wKwT =+ a)Ka)R )

+

( intx Tlnt + oSt Rmt*)] + in&?XlTRiInt*

out 1nl)

(2.21b)
ougint — (¢, vy
= A " dog |, (aSt, T+ pint R
iy (B T 4 gl R )] 4 ngeTint. (2.21c)

The Bogoliubov coefficients relating these annihilation
operators are given by4

aa, — L [@ (o) (Zie) g g
K 27k \| g\ K K
1 o [(—iog\ % _[io
X = — r{—|, 2.22b
Ok 2k \ wg ( K ) ( K ) ( )
A 1 o (iog\ % _[io
m = —(— r , 2.22
Yoro 27K a)K< K ) ( K ) ( )
=L 2(_@,() T <—_iw>. (2.22d)
2z \| o \ K K

*These have been calculated in Ref. [8], but the expressions
there are missing a factor of x*¥.

A. The Hawking-partner correlator

The main peak which was found in the density-density
correlation function for the experimental results [9,10] is
composed of modes which are traveling upstream toward
I,. The main contribution to these modes can be under-
stood as arising from a Hawking particle in the exterior and
its partner in the interior. The peak was Fourier decom-
posed to show the resulting correlation spectrum in [10]. It
was shown in [12] that this correlation can be described by
the quantity S§|((°"agy")(*"ain))|% where S is defined as
the zero temperature static structure factor in Ref. [9] (see
also [12]). For relatively low momenta, which we will
consider in our calculations, it is a good approximation to
replace S3 with Aw?, where A is a constant that we will set
to one. For the other factor, we find

(Ul(vagy) (Mag)|u) P
v 2
er T 1 Tw .
= sz—(T?}“T?}‘ + T?_}(tRIIPI‘*eT) + R?XtRl[nt* ’

e rx —

(2.23)

where we have written the general expression in terms of
scattering coefficients. We call [(U|(*"agy) (“aiy)|U)| the
HP correlator.

In the case where there is no effective potential

and thus no scattering, 70t = T9' = 1, R = Ri" = (),
and Eq. (2.23) reduces to
. =12
(U|(*"ags) (*agy )| U)[* = T (2.24)

In this case, the upstream modes which are thermally
populated on the past horizon, simply travel toward I,.
This expression only depends on the surface gravity and
thus the Hawking temperature, Ty = 5-. However, if the
effective potential is included, the resultant quantities are
also dependent on the details of the sound speed and
velocity profiles away from the horizon.

B. Interior upstream and downstream phonon numbers

In [14], a new feature was found that is related to the
interior DPN, ni, and the UPN, nj. UPN refers to the
number of phonons which are traveling upstream in
the frame of the fluid in the interior, being dragged away
from the horizon in the lab frame and arriving at I{fg, while
DPN refers to phonons which are moving downstream and
arriving at /] ”“ . The DPN and UPN expressed in terms of the

creation and annihilation operators for the out modes are

n{llg < |0utA1ﬂt'out'\1m|U> and nmtf< ‘OUl&iizt+OUtaii[;t|U>'

(2.25)

>This approximation for S, can be derived using results in [19].
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Solving for [nif|* using the definition for the annihilation

operator in Eq. (2.21b), one finds

; 1 - o ) 2
|l’l:lfg 2 <ez”—“’ - |Tllrilt + R][_r}t*ele + |R1[nt*|2> ) (226)

In the case where Vg = 0, T = 1, and R} = R = 0,

. 1 2
Inip|* = <e2"_w— ]> . (2.27)
Thus, there is a thermal distribution of phonons.
For the DPN, one finds
int|2 1 int pintx ,Z2|2 :
|nt)> = ezﬂ—llTH +REEE1F) . (2.28)

Tint is associated with a mode in the exterior that is positive
frequency on H_ and is partially scattered into the interior.
Thus, in the absence of a potential 7' = 0 and RiI* = 0,
there is no particle production for these modes in the
interior of the analog black hole.

III. HP CORRELATOR WITH AN
EFFECTIVE POTENTIAL

We now apply this general formalism to the three models
previously mentioned.

A. Two-delta function potential

The first model we consider was discussed in [14]
where V was approximated by two Dirac delta functions,
one in region r and one in region /. We refer to this model as
the two-delta function potential model. The effective
potential is

{ Vind(x* = x50,),
Vet = " "
Vexté(x - xext)’

x <0,
3.1
x> 0. (3-1)

We review the resulting solution for the "f$*' modes for the
entire spacetime. In the exterior, it is given by

—iwt

1nf?xl — [e—la}x _|_ R;xleth L x* > x;xt — 07
Varw
e—iwt
— ext ,—iwx* * *
= T§tetox, Xt <xi, =0, (3.2)

drw

where R and T will refer to scattering coefficients through-
out. In the interior,

—iwt

infext __ ext ,—iwx* * *
'f5 —\/_T, e . Xt <xi, =0,
¥ 0}
e—iwt ) ) ) )
— m [Tllnte—m;x +R‘1"te”"x], x*>xi*nt:0’ (33)
T

The asymptotic form of the "f$** mode as x — oo is

—iwt

inf?xl — = [e—imx* +Re[:xteiwx‘] (34)
and for x — —oo it has the form
. . —iot . P . P
mfl[nt N [Tllnte—lwx + Rl]ntelmx } (35)

Varw

Similarly, the modes which originate on the exterior past
horizon have the following asymptotic form for x — —+oo:

—iwt

ingext \/mTﬁjte"“’x*. (3.6)
The form for x - —co is
. —iwt . - N
nfext — \/ém_w[R}‘}‘e"“”‘ + Tfte ). (3.7)

Finally, the modes which originate on the past horizon in
the interior have the form for x - —oo,

iwt
Varw

The transmission and reflection coefficients have been
computed in [14]. They are found by enforcing continuity
of the radial mode functions at the locations of the delta
function potentials and imposing the usual jump conditions
on the first derivatives of the radial mode functions at those
locations. The jump conditions are obtained by integrating
the mode equation (2.5) around the delta function potential
over an interval [—e, €] in the limit ¢ — 0. The resulting
scattering coefficients are

infi}r}t_) [Tilgte—iwx*_i_ie}r}teiwx*}_ (3.8)

2iw 1
TCXI — Vext TEXI —
1 2iw __ 1 H 1= Vex’
Vext 2iw
1 Vex&
ext __ ext 2iw
K=o R =1 v
Vext 2iw
Ryt =g, Ty = (1 — ) RSy
1w 110}

. V. ) V.
Tint — (1 = _ int Texl’ Rint — 7 int Rext,
! ( 2iw) ! B 2ip™ "
Vint Vint

, Rint _ .
2iw H " jw

Tint =1 — (3.9)

Using these scattering coefficients in Eq. (2.23) gives

(Ul (aig) v

e% 2iw— Vint Vimvext p.L0] Vim

=1 \2io Ve, dat vy, )T s

ex —1 lw ext o+ ext Vext_'—m
(3.10)

2
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FIG.2. The square of the product of the Hawking-partner correlator and the frequency for the two-delta function potential model (blue

dotted) and the case with Vg =
the right panel, the ratio of the two curves on the left is shown.

In the two-delta function potential model, the HP
correlator is finite as w — 0, whereas in the case without
scattering, it diverges in this limit. This can be seen in the
quantity w*[(U|(*"ag)(°ain)|U)|*> which is plotted in
Fig. 2 for both the two-delta function potential and the case
with no scattering. The ratio of the two cases is also shown.

B. Constant flow velocity model

We next consider a model which has been studied from
both the condensed matter perspective [7] and the quantum
field theory in curved space perspective [8] and shows good
agreement between the two. The profile has a varying
sound speed, but the flow velocity is held constant, and thus
due to mass continuity, the density is also constant. Such a
profile is theoretically possible if an external potential is
adjusted to keep the density constant while the coupling
constant, g, which is related to the s-wave scattering length,
is varied via a Feshbach resonance [19] allowing the speed
of sound, ¢ = \/% to vary.

The sound speed profile used in [6,8] is®

1 2 [(x+b
b = o, tan Tt vz—l(cz +C2) (3.11)
v ngt - Ciznt ’ 2 . " |

where b is defined so that the horizon occurs at x = 0. This
sound speed approaches a constant, c;,, in the interior, as
x — —oo and in the exterior approaches the constant c., as
x — oo. The flow velocity is ¥ = —vy%, where vy > 0 is
constant. The term o, is related to the width of the profile.
We use ¢iy = 1/2, cext = 1, v9 = 3/4, and 6, = 8 which
are the values used for some of the numerical calculations

in [8].

°In [6], this profile was used with b = 0.

0 (orange dashed) is shown in the left panel. Here |(°“aX ©Uai)| is the Hawking-partner correlator. In

up up

The scattering coefficients are calculated numerically
for each value of w and then used in Eq. (2.23). Unlike the
two-delta function potential case, the reflection coefficient
in the exterior does not approach one for low frequencies;
thus, the HP correlator is infrared divergent as it is when the
effective potential is ignored.

The results are shown in Fig. 3 where the quantity
w*|(agyam)|* is plotted both when Vi is included in the
calculation and when Vi = 0. The inclusion of the effective
potential increases the value of the HP correlator throughout
the frequency range of the plot. A ratio of the two cases is
also shown. In the low frequency regime, the HP correlator is
observed to be approximately 8% larger than its value when
Vere = 0. This inevitably will affect the main peak.

C. The waterfall model

A model, which more closely resembles the experiments
of [9,10], but which still has some significant differences,
has been studied in [11]. This model, often called the
waterfall model, is based on an analytic solution to the
Gross-Pitaevskii equation when an external step function

potential is applied. The resulting density profile can be
written as

n(x) = {n_[M_ +(1=M_)/(cosh(c(x+x0)))*] x>x

n_ x < Xgp,
(3.12)

where we have shifted the profile by x, ~ 9.6 x 1077 so that
the horizon is at x = 0. The subscript indicates the asymp-
totic value as x — —oo. The Mach number M(x)=
c(x)/vo(x) is used to characterize the flow, and its asymp-
totic value M_ = c_/v,_ gives insight into the strength of
the “waterfall.” The width of the profile is modified by ¢ =
(v/M_ —1)/& with £ the healing length. In this profile, the
flow velocity, sound speed, and density all vary along the
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and the case with V¢ = O (orange squares) is shown in the left panel. Here |(*"'agy *"ayy)| is the Hawking-partner correlator. In the right
panel, the ratio of the two curves on the left is shown.

FIG. 4. Various profiles are shown for the waterfall model with Mach number M_ = 4.1. The solid (blue) curve corresponds to the

density n2(x) multiplied by the factor 2.7 x 10~'"; the dashed (orange) curve corresponds to the sound speed c(x), and the dotted (green)
curve corresponds to the flow speed |v(x)].
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with Vi = 0 (orange squares) is shown in the left panel. Here |(**'agy ‘i) | is the Hawking-partner correlator. In the right panel, the
ratio of the two curves on the left is shown.
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dotted) and for the case where there is no potential (orange dashed). For the two-delta function potential model, V;,,=—«/100 and V., =

2k/3. C is a scaling factor whose value is chosen, where possible, for each curve so that Cw|n
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flow. The flow velocity is ¥ = —v(x)&, with vy(x) > 0. Itis The entire solution can be defined by a particular choice
simple to show that the continuity equation leads to vy &<+ for c_ and v_. Here we use values that loosely match the
(see e.g., [20]). experiment described in [9] with v_ = 1.02 x 10~ and
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FIG. 7. Upper: plot of the effective potential for the constant flow velocity model. Left: the quantity |@ni|?> vs @ is shown for the

constant flow velocity profile (blue dots) and for the case where there is no potential (orange squares). Right: the quantity |wn;

up

2 vs @ is
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dots) and for the case where there is no effective potential (orange squares). Bottom right: the quantity |wn|> vs @/x is shown for the
waterfall model (blue dots) and for the case with no effective potential (orange squares).

c_ = 0.24 x 1073, The resulting density, sound speed, and
flow velocity are plotted in Fig. 4.

The result for the HP correlator is shown in Fig. 5, where the
quantity w?|(*ags airt)|? is plotted for V;#0 and for
V.=0. There is a significant difference between these two
cases throughout most of the frequency range of the plot. The
ratio of the two cases is also shown, and there is an
approximately 10% increase in the low frequency values of
the HP correlator when the effective potential is included in the
calculation. This low frequency regime is especially important
when considering the main peak in the density-density
correlation function as both the width and magnitude of the
peak are heavily dependent on the low frequency modes.

IV. PARTICLE PRODUCTION IN
THE INTERIOR

The numbers of upstream and downstream phonons in
the interior of a BEC analog black hole were computed in
[14] for the two-delta function potential model. We review
these results and then calculate quantities related to the
interior UPN and DPN for the other two models.

ds

In Sec. II B, we have shown that if V. = 0 the spectrum

of |wnyi|* is based on a thermal distribution as seen in

Eq. (2.27) and |wni|?> = 0. For the two-delta function
potential, it was shown in [14] that nfinst is nonzero and that
both nijt and ! are nonthermal in the left and right panels,
respectively, of Fig. 6. In both plots, the spectrum for these
quantities when V.4 =0 is shown. Recalling that for
Vege = 0, |wniit|* has a thermal spectrum, it is clear that
the spectrum when V. # 0 is nonthermal.

Also visible in Fig. 6 is a peak. It was found in [14] that
this peak occurs when the magnitude of V4 is larger in the
interior than it is in the exterior.

For the first model, the delta-function effective potential
was introduced in an ad hoc way and the asymmetry in the
overall potential profile is thus not related to the sound
speed or flow velocity of the model. In the other two
models, the effective potential is derived from the profiles
for the sound speed and flow velocity according to (2.6).

The constant flow velocity model has a speed of sound
profile which, for the constants used in the calculations
of the HP correlator in Sec. IIIB, leads to a nearly
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antisymmetric effective potential (shown in Fig. 7). In this
case, the magnitude of the effective potential in the exterior
region is only slightly larger than its magnitude in the interior
region. The resulting quantities |wnift|* and |wn’f!|?, plotted
in Fig. 7, do not show a peak and instead are qualitatively
similar to |a)n{}‘pt 2 in the case where V4 = 0.

For the waterfall model, the nature of the profiles for ¢(x),
v(x), and n(x) results in the magnitude of the interior
effective potential being much larger than the exterior
effective potential, as can be seen in Fig. 8. This results
in a distinctive peak in the plot of |wnift|?, while the plot of
lwni|? is dominated by the peak as seen in the lower right
panel of Fig. 8. In the two-delta function potential and
waterfall models one finds for |wnit|* and |wni}'[* what
appears to be a peak superimposed on a distribution which is
almost thermal. The structure of |wnii|* and |wnit|* for the
waterfall model can still be described as a peak super-
imposed on a thermal distribution, but unlike the two-delta
function potential, the peak found in |wni|> has a much
higher magnitude when compared with the asymptotically
constant low frequency region. We also find that in the
waterfall model the peaks in both |wnixt| and |wnij|* appear
at higher frequencies in the distribution than was found for
the peaks in the two-delta function potential model.

V. CONCLUSIONS

We have studied the HP correlator, (2.23), and the
interior upstream and downstream phonon numbers,
(2.26) and (2.28) for a BEC analog black hole. The mode
equation for phonons in the hydrodynamic limit is a wave
equation with a potential that depends on the density, flow
velocity, and sound speed. In some previous studies, this
potential was neglected for simplicity. We have shown that
the inclusion of this effective potential has a significant
impact on the HP correlator and the interior numbers of
upstream and downstream phonons in each of the models
we have investigated.

Three different models were considered. The HP corre-
lator was calculated by solving the mode equation with the
effective potential, V., for each model and then comparing
the result with the case with no effective potential. The first
model has an effective potential consisting of two delta
functions, one in the exterior and one in the interior. The
behavior of the HP correlator for the two-delta function
potential model is quite different from the case where
V. = 0 as the low frequency HP correlator is finite for the
two-delta function potential model, whereas it is infrared
divergent if V4 = 0.

A second model has a constant flow velocity, but a
varying sound speed. In this case, the HP correlator is
qualitatively similar to the V. = 0 case. However, at low
frequencies, they differ by as much as 8%.

The third model, called the waterfall model, is a solution
to the Gross-Pitaevskii equation for the background density

if a step function potential is applied. The resulting profile
has a varying sound speed and flow velocity. The HP
correlator for this model differs significantly from the case
when V4 = 0. In the low frequency regime, in particular,
the HP correlator for the waterfall model is increased by
approximately 10% compared to the case when V4 = 0.

We have also calculated the interior UPN and DPN at
future null infinity for the constant flow velocity model and
the waterfall model and have also reviewed the results for
the two-delta function potential model in [14]. In the two-
delta function potential model, one finds a peak in both
lwnii|* and |wni'|* when the potential is adjusted so that
the interior effective potential is larger than the exterior.
The waterfall model, by its nature, has an interior effective
potential which is much larger in magnitude when com-
pared to the exterior and thus has an easily visible peak in
both quantities related to the UPN and DPN. The case with
a constant flow velocity does not have a larger effective
potential in the interior and no such peak is found in |wn} |*
or |wn|%,

The same particle production that leads to the peak
related to the interior UPN and DPN appears to have a
small impact on the HP correlator for the waterfall model.
This is only visible when looking at the ratio of the curve
with V¢ # 0 to the curve with Ve = 0 in Fig. 5. This
impact is small enough that we do not expect to see its
effect in the current experimental results [9,10].

In [12], it was shown that there is a relationship between
the HP correlator and the Fourier transform of the density-
density correlation function when one point is inside and
one point is outside the horizon. A similar relationship was
found in [12] between the Fourier transform of the density-
density correlation function when both points are inside the
horizon and the quantities |wni}|* and |wn/}!|*. Given the
prominence of the peak in the theoretical calculation for
the waterfall model, one could hope to see it in the
experimental data. Unfortunately, for the experimental
configuration in [9], this does not seem to be the case [21].
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