Supplementary Material

Choline-based eutectic mixtures as catalysts for effective synthesis of cyclic carbonates from epoxides and CO₂

Martina Vagnoni*, Chiara Samorì, Paola Galletti

Address: Department of Chemistry "Giacomo Ciamician", University of Bologna, Ravenna Campus, Via S. Alberto 163, Ravenna (Italy).

Contents

1. TABLE S1. Table of reagents.

2. GC-MS chromatogram, ¹H NMR spectrum of reaction crude for conversion of 1a into 2a (Table 3, entry 1^a), ¹H and ¹³C NMR spectra of isolated <u>PRODUCT 2a</u> (Table 3, entry 1^a).

3. GC-MS chromatogram, ¹H NMR spectrum of reaction crude for conversion of 1b into 2b (Table 3, entry 2^a), ¹H and ¹³C NMR spectra of isolated <u>PRODUCT **2b**</u> (Table 3, entry 2^a).

4. GC-MS chromatogram, ¹H NMR spectrum of reaction crude for conversion of 1c into 2c (Table 3, entry 3^b), ¹H and ¹³C NMR spectra of isolated <u>PRODUCT **2c**</u> (Table 3, entry 3^b).

5. GC-MS chromatogram, ¹H NMR spectrum of reaction crude for conversion of 1d into 2d (Table 3, entry 4^b), ¹H and ¹³C NMR spectra of isolated <u>PRODUCT 2d</u> (Table 3, entry 4^b).

6. GC-MS chromatogram, ¹H NMR spectrum of reaction crude for conversion of 1e into 2e (Table 3, entry 5^a), ¹H and ¹³C NMR spectra of isolated <u>PRODUCT **2e**</u> (Table 3, entry 5^a).

7. TABLE S2. Comparison of various homogeneous/heterogeneous IL-type, DES-type or ammonium-based catalysts, for the synthesis of styrene carbonate from CO₂ and styrene oxide.

8. TABLE S3. TON/TOF values calculated for substrates **1a-1f**.

1. TABLE S1. Table of reagents

The water content shown in the table is that provided by the technical specifications. Particularly hygroscopic reagents (Choline chloride, choline iodide, Glycerol, Ethylene Glycol and carboxylic acids) were used after vacuum drying and kept in dryer.

REAGENT (abbreviation in the text)	CAS number	PRODUCER	PURITY	WATER CONTENT	
Choline Chloride (ChCl)	67-48-1	Sigma-Aldrich	≥98%	<1%	
Choline Iodide (ChI)	17773-10-3	Alfa Aesar	98%	<0.5%	
Styrene Oxide	96-09-3	Sigma-Aldrich	97%	Not given	
Benzyl Glycidyl Ether	2930-05-4	Sigma-Aldrich	99%	Not given	
Epichlorohydrine	106-89-8	Alfa Aesar	99%	Not given	
Allyl glycidyl ether	106-92-3	Alfa Aesar	97%	Not given	
2-Ethylhexyl glycidyl ether	2461-15-6	Sigma Aldrich	98%	Not given	
Cyclohexene oxide	286-20-4	Alfa Aesar	98+%	Not given	
Urea	57-13-6	Sigma Aldrich	99-100.5%	Not given	
Ethylene Glycol	107-21-1	Sigma Aldrich	99.8%	<0.003%	
Glycerol	56-81-5	Sigma-Aldrich	>99.5%	<0.1%	
Oxalic Acid	144-62-7	Sigma-Aldrich	98%	<0.7%	
Citric Acid	77-92-9	Sigma-Aldrich	>99.5%	Not given	
Maleic Acid	110-16-7	Sigma-Aldrich	99%	<2%	
Malonic Acid	141-82-2	Sigma-Aldrich	99%	Not given	
L-(+)-Tartaric Acid	87-69-4	Sigma-Aldrich	99+%	Not given	
DL-Malic Acid	6915-15-7	Sigma-Aldrich	99%	Not given	
Fumaric Acid	110-17-8	Sigma-Aldrich	99+%	Not given	
alpha-Hydroxyisobutyric Acid	594-61-6	Sigma-Aldrich	98%	Not given	
3-Hydroxybutyric acid	300-85-6	Sigma-Aldrich	95%	Not given	
Crotonic acid	107-93-7	Sigma-Aldrich	98%	Not given	
Benzoic acid	65-85-0	Sigma-Aldrich	>99.5%	Not given	
Octanoic Acid	124-07-2	Sigma-Aldrich	>98%	Not given	
Butyric Acid	107-92-6	Sigma-Aldrich	>99%	Not given	
Acetic Acid	64-19-7	Sigma-Aldrich	99-100%	Not given	
Tetrabutylammonium Iodide	311-28-4	Sigma Aldrich	98%	Not given	

2. <u>PRODUCT 2a</u>

2.1 GC-MS chromatogram of reaction crude for conversion of 1a into 2a (Table 3, entry 1^a)

2.2 ¹H NMR spectrum of reaction crude for conversion of 1a into 2a (Table 3, entry 1^a)

2a. ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.42 (m, 3H), 7.39 – 7.35 (m, 2H), 5.68 (t, *J* = 8.0 Hz, 1H), 4.80 (dd, *J* = 8.4, 7.7 Hz, 1H), 4.35 (dd, *J* = 8.6, 7.9 Hz, 1H).

3a. (diagnostic signals) ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.42 (m, 3H), 7.39 – 7.35 (m, 2H), δ 4.49 (m, 1H), 3.81 – 3.73 (m, 1H), 3.73 – 3.64 (m, 1H).

2.3 ¹H and ¹³C NMR spectra of isolated product **2a** (Table 3, entry 1^a)

2a. ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.33 (m, 5H), 5.68 (t, *J* = 8.0 Hz, 1H), 4.80 (t, *J* = 8.4 Hz, 1H), 4.35 (dd, *J* = 8.5, 8.0 Hz, 1H).

2a. ¹³C NMR (100 MHz, CDCl₃) δ 154.77, 135.76, 129.71, 129.21, 125.83, 77.96, 71.1

3. <u>PRODUCT 2b</u>

3.1 GC-MS chromatogram and of reaction crude for conversion of 1b into 2b (Table 3, entry 2^a)

3.2 ¹H NMR spectrum of reaction crude for conversion of 1b into 2b (Table 3, entry 2^a)

2b. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (m, 5H), 4.82 (ddt, *J* = 8.1, 6.0, 4.1 Hz, 1H), 4.66 – 4.57 (m, 2H), 4.49 (t, *J* = 8.4 Hz, 1H), 4.40 (dd, *J* = 8.4, 6.1 Hz, 1H), 3.72 (dd, *J* = 10.9, 4.1 Hz, 1H), 3.64 (dd, *J* = 10.9, 3.7 Hz, 1H). **3b.** (diagnostic signals) ¹H NMR (400 MHz, CDCl₃) δ 3.94 – 3.89 (m, 1H), 3.61 – 3.55 (m, 2H).

3.3 ¹H and ¹³C NMR spectra of isolated product **2b** (Table 3, entry 2^a)

2b. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.28 (m, 5H), 4.81 (ddt, *J* = 7.9, 6.1, 3.9 Hz, 1H), 4.60 (m, 2H), 4.48 (t, *J* = 8.4 Hz, 1H), 4.39 (dd, *J* = 8.4, 6.1 Hz, 1H), 3.71 (dd, *J* = 10.9, 4.0 Hz, 1H), 3.62 (dd, *J* = 10.9, 3.8 Hz, 1H).

4. PRODUCT 2c

4.1 GC-MS chromatogram and of reaction crude for conversion of 1c into 2c (Table 3, entry 3^{b})

4.2 ¹H NMR spectrum and of reaction crude for conversion of 1c into 2c (Table 3, entry 3^b)

2c. ¹H NMR (400 MHz, CDCl₃) δ 4.97 – 4.93 (m, 1H), 4.59 (dd, *J* = 8.8, 8.3 Hz, 1H), 4.42 (dd, *J* = 8.9, 5.7 Hz, 1H), 3.80 – 3.71 (m, 2H). **4c.** (diagnostic signals) ¹H NMR (400 MHz, CDCl₃) δ 4.07 (m, 1H).

2c. ¹H NMR (400 MHz, CDCl₃) δ 4.96 (m, 1H), 4.59 (t, *J* = 8.6 Hz, 1H), 4.41 (dd, *J* = 8.9, 5.7 Hz, 1H), 3.75 (m, 2H).

2c. ^{13}C NMR (100 MHz, CDCl₃) δ 154.08, 74.20, 66.95, 43.57.

5. PRODUCT 2d

5.1 GC-MS chromatogram of reaction crude for conversion of 1d into 2d (Table 3, entry 4^b)

5.2 ¹H NMR spectrum of reaction crude for conversion of 1d into 2d (Table 3, entry 4^b)

2d. ¹H NMR (400 MHz, CDCl₃) δ 5.88 (ddt, *J* = 17.1, 10.5, 5.7 Hz, 1H), 5.33 – 5.22 (m, 2H), 4.87 – 4.79 (m, 1H), 4.51 (t, *J* = 8.3 Hz, 1H), 4.41 (dd, *J* = 8.4, 6.1 Hz, 1H), 4.07 (m, 2H), 3.70 (dd, *J* = 11.0, 4.1 Hz, 1H), 3.63 (dd, *J* = 11.0, 3.8 Hz, 1H). **3d.** (diagnostic signals) ¹H NMR (400 MHz, CDCl₃) δ 3.90 (m, 1H), 3.59 – 3.51 (m, 2H).

5.3 ¹H and ¹³C NMR spectra of isolated product **2d** (Table 3, entry 4^b)

2d. ¹H NMR (400 MHz, CDCl₃) δ 5.87 (ddd, *J* = 22.8, 10.8, 5.6 Hz, 1H), 5.33 – 5.19 (m, 2H), 4.82 (ddt, *J* = 8.1, 6.1, 3.9 Hz, 1H), 4.50 (t, *J* = 8.4 Hz, 1H), 4.40 (dd, *J* = 8.3, 6.1 Hz, 1H), 4.10 – 4.00 (m, 2H), 3.69 (dd, *J* = 11.0, 4.0 Hz, 1H), 3.62 (dd, *J* = 11.0, 3.8 Hz, 1H).

6. PRODUCT 2e

6.1 GC-MS chromatogram of reaction crude for conversion of 1e into 2e (Table 3, entry 5^a)

6.2 ¹H NMR spectrum of reaction crude for conversion of 1e into 2e (Table 3, entry 5^a)

2e. ¹H NMR (400 MHz, CDCl₃) δ 4.82 – 4.76 (m, 1H), 4.51 – 4.36 (m, 2H), 3.62 (m, 2H), 3.39 (dd, *J* = 5.7, 1.9 Hz, 2H), 1.55 – 1.45 (m, 1H), 1.40 – 1.20 (m, 8H), 0.88 (dt, *J* = 10.6, 7.0 Hz, 6H). **3e.** (diagnostic signals)¹H NMR (400 MHz, CDCl₃) δ 3.53 – 3.49 (m, 2H), 1.50 (dt, *J* = 12.0, 6.0 Hz, 14H).

6.3 ¹H and ¹³C NMR spectra of isolated product **2e** (Table 3, entry 5^a)

2e. ¹H NMR (400 MHz, CDCl₃) δ 4.83 – 4.73 (m, 1H), 4.48 (t, *J* = 8.3 Hz, 1H), 4.39 (dd, *J* = 8.3, 6.0 Hz, 1H), 3.62 (m, 2H), 3.39 (dd, *J* = 5.7, 2.0 Hz, 2H), 1.55 – 1.45 (m, 1H), 1.40 – 1.26 (m, 8H), 0.87 (dt, *J* = 10.2, 7.0 Hz, 6H).

2e. ¹³C NMR (100 MHz, CDCl₃) δ 154.91, 75.02, 74.83, 69.87, 66.28, 39.55, 30.37, 29.02, 23.72, 22.98, 14.03, 11.02

7. TABLE S2. Comparison of various homogeneous/heterogeneous IL-type, DES-type or ammonium-based catalysts, for the synthesis of styrene carbonate from CO_2 and styrene oxide.

Substrate	Homogeneous/ Heterogeneous	Active site	Catalyst Loading (mol%)	Pressure (MPa)	T (°C)	Time (h)	Yield ^a (%)	Reference
SO	Homogeneous	$\frac{u^{(\alpha)} - u^{-\frac{1}{\alpha}} - u^{\alpha}}{u^{(\alpha)} - u^{-\frac{1}{\alpha}} - u^{\alpha}}$	2	0.8	150	5	82.3	[1]
SO	Homogeneous	L-Proline/Propanedioic Acid ZnBr ₂	2 0.3	1.2	150	5	55.6	[2]
SO	Homogeneous	PEG6000-supported hexaalkylguanidinium bromide	0.5	4	110	4	97 (Selectivity 99)	[3]
SO	Homogeneous	NEt(HE) ₃ Br	1	1.5	130	2	97 (Selectivity 99)	[4]
SO	Heterogeneous	C ₄ H ₉ -N ₂ -M ^{-Me} x ⁹ X = BF ₄ [C ₄ -mim] ⁺ [BF4]/SiO2 1-butyl-3- methylimidazolium ionic liquids supported on silica gel	1.8	8	160	4	96 (Selectivity 98)	[5]
SO	Homogeneous	[DMAPH]Br 4-(dimethylamino)pyridine hydrobromide	1	0.1	120	4	96 ^b (Selectivity 99)	[6]
SO Homogeneous		[HO NBu ₃] Tri-n-butyl-(2-	2	0.5	90	2	95	[7]
		hydroxyethyl) ammonium iodide	5	1.0	45	18	89	
SO Homogeneous		TBAI: TBAB (1:1 w/w)	250 (w/w)	0.1	120	4	83° (purity >95%) ^{a,b}	[8]
50	nomogeneous	TBAI	10 (w/w)	60	22	80° (purity >95%) ^{a,b}	L-1	
SO	Homogeneous	DBU based protic ionic liquids (DBPILs)	6	0.1	50	6	87 ^b	[9]
SO	Homogeneous	TBAI and Ascorbic Acid	4 / 2	0.1	60	23	96°	[10]
SO	Homogeneous	Bu4NBr	1	2	100	4	59	[11]
SO	Heterogeneous		0.49 (Zn)	1	120	3	81 (Selectivity 98)	[12]

SO	Heterogeneous	CH2OH H {√(CHHCH ₂)-OH ^M x x ⁻ H ₂ N ² ⊂ NH ₂ X = Br	1.5	2	130	5	99	[13]
so	Homogeneous	CBDMAPy]Br	1	2	130	0.33	85°	[14]
SO	Homogeneous	Et ₃ [©] ⊢H I [⊝]	10	0.1	40	24	97°	[15]
so	Heterogeneous	Ho (supported on molecular sieves)	1	molar ratio of CO ₂ : epoxide = 1.5–1.87	110	5	95	[16]
SO	Homogeneous	BrBu ₃ N-PEG ₆₀₀₀ -NBu ₃ Br	0.5	8	120	6	94 (Selectivity 98)	[17]
SO	Homogeneous	Cholie Iodide (+ EtOH as solvent)	6	1	85	6	99°	[18]
SO	Heterogeneous	H_2O	1 0.02 ml (20 mmol of epoxide)	1	80	18	66 ^b	[19]
SO Heterogeneous	Heterogeneous	он в) он он он он он он он он	2	1	90	6	85°	[20]
		PS N OH				4	93°	
SO	Homogeneous	HO HO HO Choline Iodide/Glycerol	5	0.1	80	7	90 ^b 88 ^c	This work

^a Determined by GC

^b Determined by ¹H NMR

^c Isolated Yield

References

[1] K. Wu, T. Su, D. Hao, W. Liao, Y. Zhao, W. Ren, C. Deng, H. Lü, Choline chloride-based deep eutectic solvents for efficient cycloaddition of CO2 with propylene oxide, Chem. Commun. 54 (2018) 9579–9582. https://doi.org/10.1039/C8CC04412K.

[2] H. Lü, K. Wu, Y. Zhao, L. Hao, W. Liao, C. Deng, W. Ren, Synthesis of cyclic carbonates from CO2 and propylene oxide (PO) with deep eutectic solvents (DESs) based on amino acids (AAs) and dicarboxylic acids, Journal of CO2 Utilization. 22 (2017) 400–406.

https://doi.org/10.1016/j.jcou.2017.10.024.

[3] X.-Y. Dou, J.-Q. Wang, Y. Du, E. Wang, L.-N. He, Guanidinium Salt Functionalized PEG:

An Effective and Recyclable Homo-geneous Catalyst for the Synthesis of Cyclic Carbonates from CO2 and Epoxides under Solvent-Free Conditions, Synlett. 2007 (2007) 3058–3062. https://doi.org/10.1055/s-2007-992362.

[4] W. Cheng, B. Xiao, J. Sun, K. Dong, P. Zhang, S. Zhang, F.T.T. Ng, Effect of hydrogen bond of hydroxyl-functionalized ammonium ionic liquids on cycloaddition of CO2, Tetrahedron Letters. 56 (2015) 1416–1419. https://doi.org/10.1016/j.tetlet.2015.01.174.

[5] J.-Q. Wang, X.-D. Yue, F. Cai, L.-N. He, Solventless synthesis of cyclic carbonates from carbon dioxide and epoxides catalyzed by silica-supported ionic liquids under supercritical conditions, Catalysis Communications. 8 (2007) 167–172. https://doi.org/10.1016/j.catcom.2006.05.049.

[6] Z. Zhang, F. Fan, H. Xing, Q. Yang, Z. Bao, Q. Ren, Efficient Synthesis of Cyclic Carbonates from Atmospheric CO2 Using a Positive Charge Delocalized Ionic Liquid Catalyst, ACS Sustainable Chem. Eng. 5 (2017) 2841–2846.

https://doi.org/10.1021/acssuschemeng.7b00513.

[7] H. Büttner, K. Lau, A. Spannenberg, T. Werner, Bifunctional One-Component Catalysts for the Addition of Carbon Dioxide to Epoxides, ChemCatChem. 7 (2015) 459–467. https://doi.org/10.1002/cctc.201402816.

[8] V. Caló, A. Nacci, A. Monopoli, A. Fanizzi, Cyclic Carbonate Formation from Carbon Dioxide and Oxiranes in Tetrabutylammonium Halides as Solvents and Catalysts, Org. Lett. 4 (2002) 2561–2563. https://doi.org/10.1021/ol026189w.

[9] X. Meng, Z. Ju, S. Zhang, X. Liang, N. von Solms, X. Zhang, X. Zhang, Efficient transformation of CO2 to cyclic carbonates using bifunctional protic ionic liquids under mild conditions, Green Chem. 21 (2019) 3456–3463. https://doi.org/10.1039/C9GC01165J.

[10] S. Arayachukiat, C. Kongtes, A. Barthel, S.V.C. Vummaleti, A. Poater, S. Wannakao, L. Cavallo, V. D'Elia, Ascorbic Acid as a Bifunctional Hydrogen Bond Donor for the Synthesis of Cyclic Carbonates from CO2 under Ambient Conditions, ACS Sustainable Chem. Eng. 5 (2017) 6392–6397. https://doi.org/10.1021/acssuschemeng.7b01650.

[11] J.-Q. Wang, K. Dong, W.-G. Cheng, J. Sun, S.-J. Zhang, Insights into quaternary ammonium salts -catalyzed fixation carbon dioxide with epoxides, Catalysis Science & Technology. 2 (2012) 1480–1484. https://doi.org/10.1039/C2CY20103H.

[12] J. Tharun, K.-M. Bhin, R. Roshan, D. Woo Kim, A. Cherian Kathalikkattil, R. Babu, H. Young Ahn, Y. Sun Won, D.-W. Park, Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO 2, Green Chemistry. 18 (2016) 2479–2487. https://doi.org/10.1039/C5GC02153G.

[13] X.-L. Meng, Y. Nie, J. Sun, W.-G. Cheng, J.-Q. Wang, H.-Y. He, S.-J. Zhang, Functionalized dicyandiamide–formaldehyde polymers as efficient heterogeneous catalysts for conversion of CO 2 into organic carbonates, Green Chemistry. 16 (2014) 2771–2778. https://doi.org/10.1039/C3GC42331J.

[14] X. Meng, H. He, Y. Nie, X. Zhang, S. Zhang, J. Wang, Temperature-Controlled Reaction– Separation for Conversion of CO2 to Carbonates with Functional Ionic Liquids Catalyst, ACS Sustainable Chem. Eng. 5 (2017) 3081–3086. https://doi.org/10.1021/acssuschemeng.6b02612.

[15] Y. Kumatabara, M. Okada, S. Shirakawa, Triethylamine Hydroiodide as a Simple Yet Effective Bifunctional Catalyst for CO2 Fixation Reactions with Epoxides under Mild Conditions, ACS Sustainable Chem. Eng. 5 (2017) 7295–7301.

https://doi.org/10.1021/acssuschemeng.7b01535.

[16] A. Zhu, T. Jiang, B. Han, J. Zhang, Y. Xie, X. Ma, Supported choline chloride/urea as a heterogeneous catalyst for chemical fixation of carbon dioxide to cyclic carbonates, Green Chem. 9 (2007) 169–172. https://doi.org/10.1039/B612164K.

[17] Y. Du, J.-Q. Wang, J.-Y. Chen, F. Cai, J.-S. Tian, D.-L. Kong, L.-N. He, A poly(ethylene glycol)-supported quaternary ammonium salt for highly efficient and environmentally friendly chemical fixation of CO2 with epoxides under supercritical conditions, Tetrahedron Letters. 47

(2006) 1271-1275. https://doi.org/10.1016/j.tetlet.2005.12.077.

[18] A.J.R. Amaral, J.F.J. Coelho, A.C. Serra, Synthesis of bifunctional cyclic carbonates from CO2 catalysed by choline-based systems, Tetrahedron Letters. 54 (2013) 5518–5522. https://doi.org/10.1016/j.tetlet.2013.07.152.

[19] Y.A. Alassmy, Z. Asgar Pour, P.P. Pescarmona, Efficient and Easily Reusable Metal-Free Heterogeneous Catalyst Beads for the Conversion of CO2 into Cyclic Carbonates in the Presence of Water as Hydrogen-Bond Donor, ACS Sustainable Chem. Eng. 8 (2020) 7993–8003. https://doi.org/10.1021/acssuschemeng.0c02265.

[20] C. Kohrt, T. Werner, Recyclable Bifunctional Polystyrene and Silica Gel-Supported Organocatalyst for the Coupling of CO2 with Epoxides, ChemSusChem. 8 (2015) 2031–2034. https://doi.org/10.1002/cssc.201500128.

8. TABLE S3. TON/TOF values calculated for substrates 1a-1f

Entry	Substrate	Product	Time (h)	Yield 2 [%] ^c	TON ^d	TOF ^e
-------	-----------	---------	-------------	---------------------------------	------------------	------------------

1ª	O la	7	90 (88)	18.1 (17.6)	2.6 (2.5)
2ª		7	94 (87)	18.8 (17.4)	2.7 (2.5)
3 ^b		7	80 (80)	16 (16)	2.3 (2.3)
4 ^b		5	91 (80)	18.1 (16)	3.6 (3.2)
5ª	le le	22	95 (83)	19 16.6	0.9 0.7
6 ^{a,b}	O If	23	0	-	-

^a Reaction conditions: 2.6 mmol of substrate, ChI: Glycerol (1: 1) 5%, 80°C (5^a 100°C), p(CO2) =0.1 MPa (balloon)

^bReaction conditions: 1.3 mmol of substrate, ChCl: Malic Acid (1:1) 5%, 80°C, p(CO2) =0.4 MPa (autoclave) ^c Calculated by ¹H-NMR (see experimental part), isolated yields in parentheses ^d Turnover number, defined as mol_{cyclic carbonate (2)}/mol_{choline}

e TOF = TON/h