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Shock Structure in the 14 Moment System of Extended
Thermodynamics with High Order Closure Based on

the Maximum Entropy Principle

Andrea Mentrelli
Department of Mathematics & Alma Mater Research Center on Applied Mathematics AM2

University of Bologna

Abstract

An analysis of the shock structure in the 14 moment system of Extended Thermodynamics
with first, second and third order closure based on the maximum entropy principle (MEP) is
presented, as a follow up of a recent investigation of the shock structure in the 13 moment
system with first and second MEP-based closure.

It is seen that when adopting higher order closures, the strength of the subshock that
appears in the shock structure profile for large enough Mach numbers is remarkably reduced
with respect to what is found with the first order closure, and the overall profile of the shock
structure solution is in better agreement with experimental results.

1 Introduction

Rational Extended Thermodynamics (RET) is a phenomenological theory originally developed
for monatomic rarefied gases [1,2], which has gained a renewed attention in recent years after
being generalized to the case of polyatomic gases [3–6].

Originally intended as a generalization of the theory of Thermodynamic of Irreversible Pro-
cesses (TIP), RET belongs to the realm of continuum theories, but its mathematical structure is
closely connected to kinetic theory: The systems of first-order balance laws that distinguish the
theory are in fact intimately related to the systems of velocity moments obtained starting from
the Boltzmann equation.

One remarkable feature of RET, which derives from its relationship with kinetic theory, is that
it is applicable to non-equilibrium states for which classical continuum theory fails, namely states
with Knudsen numbers larger than those for which classical continuum theories are suitable.
The original approach of RET to the problem of the closure is based on universal principles
of continuum physics, i.e. the entropy principle, the principle of objectivity and the principle of
thermodynamical stability. This approach, which has proven to be powerful and useful in several
applications [2], also has its own shortcomings, since as the number of moments increases, it

Published on Ricerche di Matematica (Springer); https://doi.org/10.1007/s11587-020-00511-x (DOI:
10.1007/s11587-020-00511-x)

1

https://doi.org/10.1007/s11587-020-00511-x


becomes more and more difficult to effectively be used. In these cases, the strict relation to
kinetic theory provides methods and procedures useful to takle the problem of the closure: the
classical entropy principle can be replaced by the so-called Maximum Entropy Principle (MEP)
[7–10]. The two approaches have proven to be equivalent [11], but the second one turns out
to be easier to use when large number of moments are taken into account. Moreover, thanks to
the peculiar way in which MEP is exploited in RET (the solution of the entropy maximization
problem is sought only in the neighborhood of the local equilibrium) the combination of RET
theory and the maximum entropy principle avoid the major issues affecting traditional theories
with non-linear closure of the moment equations, i.e. the non convergence of the moments for
any truncation order [11, 12], and the non-convexity of the domain of definition of the flux of
the last moment equation [13].

These desirable features of the linear MEP-based closure has its own price: the validity of the
theory is now limited to the neighborhood of the local equilibrium state, and the resulting system
of equations loses the property of global hyperbolicity. In addition, since the systems of moment
equations of RET are hyperbolic with a convex entropy density at least in some neighborhood
of the equilibrium state, it was proven [14] that when the shock speed exceeds the maximum
characteristic velocity in the unperturbed equilibrium state, a subshock appears in the otherwise
continuous shock structure profile. The so-called subshocks – at least in the monatomic gas case
– appear as undesirable artificial discontinuities that are not actually observed in experimental
results. The case of a polyatomic gas turns out to be quite different from the case of monatomic
gas, as was pointed out for example, in [15–17].

In a recent paper [18], the effect of a second order closure on the extension of the hyperbolic-
ity region was investigated in the case of the 13 moment system of equations (the so-called Grad
system), leading to the remarkable indication that, at least in the case under study, an increase
in the order of the closure is accompanied by an increase (and a dramatic change of topology)
of the hyperbolicity region. The results presented in [18] has suggested to further investigate
the effects of second and even higher order MEP-based closure of the moment equations.

In a recent study an investigation along those lines was started. The features and the behav-
iors of the shock-structure solution were analyzed for the one-dimensional 13 moment system
when first and second order MEP-based closures are exploited [19].

It was shown that a second order closure is beneficial not only, as proven in [18], in terms
of the increase of the hyperbolicity region, but also from the point of view of the reduction of
the subshock strength which appears in far-from-equilibrium processes. Moreover, the compar-
ison of the results obtained with first and second order closures to those obtained by means of
kinetic theory, revealed that the second order closure provides predictions that are in far better
agreement with those obtained in the framework of the Boltzmann/BGK model.

In this paper, the analysis is extended to the well-known case of the 14 moment equations,
and along with first and second order MEP-based closures, a third order closure is proposed and
investigated.

The main motivation for extending the study to the 14 moment system is twofold: form one
side, it is legitimate to assume that an increase in the number of moments (i.e. in the rank of
tensorial system) can be accompanied by an increase in the order of the closure, and a third
order closure is proposed for the first time. The second motivation relies in the fact that the
14 moment system can be regarded as more meaningful, from a physical point of view, than
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the 13 moment system. This consideration is based on a recent pivotal study by Pennisi and
Ruggeri [20] who considered the classical limit of the moments associated with the relativistic
Chernikov-Boltzmann equation and found an unexpected and intriguing way of building the hi-
erarchy of moment equations, which leads to a natural and well identified sequence of moment
systems of increasing order for the classical moments for both monatomic and polyatomic rar-
efied gases. This natural sequence of increasing-order moment equations does not include the
13 moment system of equations (Grad system), but includes the 14 moment system. The latter
has been largely studied over the past decades, but the community was perhaps unaware of the
meaningful role of the 14 moment system that is now recognized as a natural system emerging
from the classical limit of the relativistic case.

The rest of the paper is organized as follows. In Section 2, the 14 moment system of a
monatomic gas is recalled, and in Sections 2.1, 2.2, and 2.3 the expressions of the closing fluxes
that are obtained exploiting the maximum entropy principle with, respectively, first, second and
third order closures are given for the one-dimensional case. The technique for finding the closure
of the moment equations at various different orders will not be outlined here, since it has been
extensively described elsewhere [19]. In Section 3, the basic elements of the shock structure
solution of a first-order balance law system are recalled, and the systems of ordinary differ-
ential equations that allow to obtain such a solution in the case of the 14 moment system of
a monatomic gas are provided for the first and second order closures (respectively, in Section
3.1, 3.2), being the equations for the third order quite long and not providing further insight
(the structure is similar to those of the first two orders). In Section 4, the Rankine-Hugoniot
compatibility conditions that permit to analyze the subshock formation in the case in which the
shock structure solution is not continuous are briefly outlined. Details concerning the emerging
systems of equations are not provided since they can be easily constructed following the proce-
dure described in [19]. In Section 5, a selection of the numerical results obtained for the shock
structure solution of the 14 moment system of a monatomic gas for various Mach numbers are
shown. Finally, in Section 6, some concluding remarks on the present investigation are outlined.

2 14 Moment System of a Monatomic Gas

Following the general theory and adopting the same notation as in [19], the system of moment
equations obtained taking the full tensorial equations of rank 0, 1 and 2, augmented by the trace
of the tensorial equation of rank 3, and by the double trace of the tensorial equation of rank 4
is the well-known 14 moment system, first proposed by Kremer [21].

The 14 moment system is a first-order balance law system obtained with the generating
weights Φ =

�

1, ci , cic j , ckckci , ckckcl cl

�T
. In the one-dimensional case (i, j = 1) this system,

reads:
∂tu+ ∂xF= P, (1)
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with

u=















F
F1
Fkk
F11
Fkk1
Fkkll















=















F̂
v F̂

v2 F̂ + F̂kk

v2 F̂ + F̂11

v3 F̂ + 2vF̂11 + vF̂kk + F̂kk1

v4 F̂ + 2v2 F̂kk + 4v2 F̂11 + 4vF̂kk1 + F̂kkll1















, (2)

F=















F1
F11
Fkk1
F111
Fkk11
Fkkll1















=



















vF̂
v2 F̂ + F̂11

v3 F̂ + 2vF̂11 + vF̂kk + F̂kk1
v3F + 3vF11 + F111

v4F + 5v2F11 + v2Fkk + 2vF111 + 2vFkk1 + Fkk11
v5F + 8v3F111 + 2v3Fkk + 6v2Fkk1 + 4v2F111+

+4vFkk11 + vFkkll + Fkkll1



















, (3)

and

P=















0
0
0

P11
Pkk1
Pkkll















=















0
0
0

P̂11

2vP̂11 + P̂kk1

4v2 P̂11 + 4vP̂kk1 + P̂kkll















. (4)

Since, for a monatomic gas, F̂ = ρ, F̂11 = p − σ, Fkk = 3p, Fkk1 = 2q, and writing F̂kkll =
15p2/ρ+∆ (being∆ the non equilibrium part of the internal moment F̂kkll), Eq. (2) and Eq. (3)
can be written as

u=















ρ
ρv

ρv2 + 3p
ρv2 + p−σ

ρv3 + 5pv − 2σv + 2q
ρv4 + 10pv2 − 4σv2 + 8qv + 15p2/ρ +∆















,

F=















ρv
ρv2 + p−σ

ρv3 + 5pv − 2σv + 2q
ρv3 + 3pv − 3σv + F̂111

ρv4 + 8pv2 − 5σv2 + 4qv + 2F̂111v + F̂kk11

ρv5 + 14pv3 − 8σv3 + 12qv2 + 15p2v/ρ +∆v + 4F̂111v2 + 4F̂kk11v















.

Adopting for the production terms the model [6]:

P̂11 = −
σ

τσ
, P̂kk1 = −

2q
τq

, P̂kkll = −
∆

τ∆
,
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where τσ, τq, and τ∆ are relaxation times, Eq. (4) reads as follows:

P=

�

0, 0, 0,
σ

τσ
,

2σv

τσ
−

2q

τq
,

4σv2

τσ
+

8qv

τq
−
∆

τ∆

�T

,

and it becomes apparent that in order to close the system the internal moments F̂111, F̂kk11, and
F̂kkll1 must be written as functions of the densities.

In addition to the density ρ, momentum ρv, and the pressure p, in the one-dimensional 14
moment system the non-equilibrium quantities σ (shear stress), q (heat flux) and ∆ appear.

In contrast to the previous study [19] in which, in order to make a comparison with the
kinetic model of the Boltzmann equation with the BGK approximation for the collision term
(which involves one single relaxation time), the relaxation times appearing in the 13 moment
system (τσ and τq) were assumed to be equal, in the following we shall let the three coefficients
have different values, which is more adherent to physical reality.

2.1 First Order Closure

Making use of the theory illustrated in [19,22], the maximum entropy principle with a first order
closure, provides expressions for the moments F̂111, F̂kk11, and F̂kkll1 (denoted, respectively, as
F̂ (1)111, F̂ (1)kk11 and F̂ (1)kkll1) which coincide with those obtained making use of the phenomenological
closure developed in the context or RET [2], i.e.

F̂ (1)111 =
6
5

q, F̂ (1)kk11 = 5
p2

ρ
− 7

pσ
ρ
+
∆

3
, F̂ (1)kkll1 =

28pq
ρ

. (5)

2.2 Second Order Closure

Adopting a second order closure, the algorithmic procedure provides the following expressions
for the moments F̂111, F̂kk11 and F̂kkll1, now denoted respectively as F̂ (2)111, F̂ (2)kk11 and F̂ (2)kkll1:

F̂ (2)111 = F̂ (1)111 −
36
25
σq
p

, F̂ (2)kk11 = F̂ (1)kk11 +
σ2

ρ
+

224
75

q2

p
−

14
15
σ∆

p
,

F̂ (2)kkll1 = F̂ (1)kkll1 −
56
5
σq
ρ
+

28
5

q∆
p

.
(6)

2.3 Third Order Closure

The third order closure obtained by means of the algorithmic procedure provides the following
expressions for the moments F̂111, F̂kk11 and F̂kkll1, now denoted respectively as F̂ (3)111, F̂ (3)kk11 and
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F̂ (3)kkll1:

F̂ (3)111 = F̂ (2)111 −
24

125
ρσq∆

p3
−

99
125

qσ2

p2
+

272
625

ρq3

p3
,

F̂ (3)kk11 = F̂ (2)kk11 −
28

225
ρσ∆2

p3
+
σ2∆

2p2
+

56
45
ρq2∆

p3
+

14
5
σ3

ρp
+

424
125

σq2

p2
,

F̂ (3)kkll1 = F̂ (2)kkll1 +
406
225

ρq∆2

p3
−

196
25
σq∆

p2
−

204
25
σ2q
ρp
−

168
25

q3

p2
.

(7)

3 Shock Structure Solution

A shock structure solution of the one-dimensional system given in Eq. (1) is a continuous solution
of the form

u= u (ϕ) , ϕ = x − st,

such that

lim
ϕ→−∞

u (ϕ) = u1, lim
ϕ→+∞

u (ϕ) = u0, lim
ϕ→±∞

du
dϕ
= 0,

where u0, u1 are equilibrium states and s is the speed of the travelling wave. Assuming, without
loss of generality, that s > 0, the states u0 and u1 are denoted, respectively, as unperturbed and
perturbed states.

Writing the system (1) in the form

∂tu+A (u)∂xu= P (u) , A=∇uF1,

where A is the Jacobian of the flux F with respect to the field variables u, it is seen [14] that a
shock structure solution satisfies

d
dϕ

�

−su+ F1
�

= P (u) ,

or, equivalently,

(−sI+A (u))
du
dϕ
= P (u) . (8)

The shock speed s is often replaced by the so-called Mach number which, evaluated in the unper-
turbed state u0, is defined as M0 = (s− v0)/c0, where v0 and c0 are, respectively, the gas velocity
and the sound velocity in the state u0 (in general, here and in the following the subscripts “0”
and “1” denote a quantity evaluated, respectively, in the unperturbed and perturbed state).

The integration of the first three scalar equations of the system (8), representing the conser-
vation laws of mass, momentum and energy, leads to the following relations between the two
equilibrium states u0 and u1, i.e. the Rankine-Hugoniot compatibility conditions of the equilib-
rium subsystem [23]:

ρ1

ρ0
=

4M2
0

M2
0 + 3

,
u1

u0
=

M2
0 + 3

4M2
0

,
p1

p0
=

5M2
0 − 1

4
,

where, having introduced the relative velocity u = v − s, the quantities ρ0, u0 = v0 − s, p0 and
ρ1, u1 = v1−s, p1 are the density, relative velocity and pressure of, respectively, the unperturbed
and perturbed states.
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3.1 First Order Closure

Introducing the following non-dimensional variables:

ϕ̂ =
ϕ

τσc0
, ρ̂ =

ρ

ρ0
, û=

u
c0
= −M0

u
u0

, p̂ =
p
p0

, σ̂ =
σ

p0
,

q̂ =
q

p0c0
, ∆̂=

∆

c2
0

, rq =
τσ
τq

, r∆ =
τσ
τ∆

,

the system of ordinary differential equations given in Eq. (8) with the flux F obtained by means of
the first order closure, i.e. with the closing fluxes given by Eq. (5), is written in non-dimensional
form after suitable manipulation as

ρ = −M0/u,

σ = −
5
3

M2
0 −

5
3

M0u+ p− 1,

q = −
5
6

M3
0 −

5
3

M02u−
5
6

M0u2 −
5
2

M0 −
3
2

pu− u,

d
dϕ

�

−9M3
0 + 27M2

0 u+ 21M0u2 − 27M0 − 81pu/5+ 81u/5
�

=

− 15M2
0 − 15M0u+ 9p− 9,

d
dϕ

�

∆M0 − 16M4
0 u− 7M3

0 u2 − 21M2
0 pu+ 4M2

0 u3 − 48M2
0 u+

−204M0pu2/5− 21M0u2/5+ 18p2u/5− 63pu/5
�

=

M0

�

rq

�

5M3
0 + 10M2

0 u+ 5M0u2 + 15M0 + 9pu+ 6u
�

+

−2u
�

5M2
0 + 5M0u− 3p+ 3

��

,

d
dϕ

�

u
�

35∆M0 − 210M4
0 u+ 210M3

0 p− 220M3
0 u2 − 35M2

0 u3−

630M2
0 u− 498M0pu2 + 630M0p− 132M0u2 + 315p2u

��

=

− 5M0

�

3∆r∆ − 4rqu
�

5M3
0 + 10M2

0 u+ 5M0u2 + 15M0+

9pu+ 6u) + u2
�

20M2
0 + 20M0u− 12p+ 12

��

where the “hat” symbol on the quantities ϕ, ρ, u, p, σ, q, ∆ was dropped for ease of notation
and the unperturbed Mach number M0 was used in place of the shock speed s.

3.2 Second Order Closure

When the flux F is obtained by means of the second order closure, i.e. making use of the closing
fluxes given by Eq. (6), the system of ordinary differential equations in Eq. (8), written in non-
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dimensional form, becomes:

ρ = −M0/u,

σ = −
5
3

M2
0 −

5
3

M0u+ p− 1,

q = −
5
6

M3
0 −

5
3

M02u−
5
6

M0u2 −
5
2

M0 −
3
2

pu− u,

d
dϕ

��

−450M5
0 − 1350M4

0 u+ 45M3
0 p− 1350M3

0 u2 − 1620M3
0 + 405M2

0 pu−

− 450M2
0 u3 − 2430M2

0 u− 15M0pu2 + 135M0p− 810M0u2 − 810M0+

+81p2u+ 243pu− 324u
�

/ (25p)
�

= −15M2
0 − 15M0u+ 9p− 9,

d
dϕ

��

1050∆M3
0 + 1050∆M2

0 u− 405∆M0p+ 630∆M0 + 1400M7
0+

+ 2900M6
0 u+ 300M5

0 u2 + 8400M5
0 + 1935M4

0 pu− 2500M4
0 u3+

+ 10440M4
0 u+ 4635M3

0 pu2 − 1300M3
0 u4 + 540M3

0 u2 + 12600M3
0+

− 3375M2
0 p2u+ 1575M2

0 pu3 + 7830M2
0 pu− 1500M2

0 u3 + 5220M2
0 u+

− 378M0p2u2 + 2781M0pu2 + 72M0u2 + 405p3u− 2025p2u+

−405pu)/ (225p)) = M0

�

rq

�

5M3
0 + 10M2

0 u+ 5M0u2 + 15M0 + 9pu+

+ 6u )− 2u
�

5M2
0 + 5M0u− 3p+ 3

��

,

d
dϕ

��

−3150∆M4
0 − 2100∆M3

0 u+ 1050∆M2
0 u2 − 9450∆M2

0 − 6615∆M0pu−

+ 1260∆M0u+ 5600M7
0 u+ 17000M6

0 u2 + 6300M5
0 pu+ 17400M5

0 u3+

+ 33600M5
0 u+ 28350M4

0 pu2 + 6200M4
0 u4 + 61200M4

0 u2 + 5670M3
0 p2u+

+ 37080M3
0 pu3 + 22680M3

0 pu+ 200M3
0 u5 + 31320M3

0 u3 + 50400M3
0 u+

+ 9180M2
0 p2u2 + 13905M2

0 pu4 + 70470M2
0 pu2 + 3720M2

0 u4+

+ 30600M2
0 u2 + 14526M0p2u3 + 17010M0p2u+ 22248M0pu3+

+11340M0pu+ 4176M0u3 + 5751p3u2 + 5508p2u2 + 2916pu2
�

/ (45p)
�

=

− 5M0

�

3∆r∆ − 4rqu
�

5M3
0 + 10M2

0 u+ 5M0u2 + 15M0 + 9pu+ 6u
�

+

+u2
�

20M2
0 + 20M0u− 12p+ 12

��

,

where, as before, the “hat” symbol was dropped from the quantities ϕ, ρ, u, p, σ, q and the the
shock speed s was replaced by the unperturbed Mach number M0.

Adopting the third order closure characterized by the closing fluxes given by Eq. (7), the
system of ordinary differential equations in Eq. (8) preserves the same structure as the systems
obtained for the first and second order closures but, being longer and cumbersome, is not re-
ported here for the sake of conciseness.
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4 Shock Structure Solution with Subshock

Denoting with λ(max)
0 the maximum characteristic speed (i.e. the largest eigenvalue of the matrix

A) in the unperturbed state u0, it was proven that when s > λ(max)
0 , no continuous shock structure

solution exists [14]. In this case, the solution develops a discontinuity known as subshock.
The study of the subshock features is based on the Rankine-Hugoniot compatibility conditions

that must hold across the subshock front:

−s [[u]]∗ +
��

F1
��

∗ = 0, (9)

where [[ψ]]∗ = ψ∗ −ψ0 represents the jump across the discontinuity (subshock) of the generic
quantity ψ (ψ∗ denotes the value of the quantity ψ evaluated in the perturbed state behind the
discontinuity, i.e. in the state u∗ connected to the unperturbed state u0 through the subshock).

According to the general theory of hyperbolic systems, shocks are one-parameter families of
solutions corresponding to the bifurcated branches of the trivial solution (null shock) obtained
when the shock parameter s approaches a characteristic velocity of the system. It is known that,

when M0 ¦
1
5

pp
826+ 49' 1.76= M cr

0 , the so-called fast shock appears.

The features of the solution of the system of non-linear equations given in Eq. (9) for the 14
moment system when a first, second, and third order closures are exploited, could be studied
along the lines presented in [19] for the case of the 13 moment system, restricted to only the
first two order of the closure (for the linear closure of the 13 moment system, see also [24]).

Since the main focus of the investigation presented here is the qualitative analysis of the
shock structure profile for the 14 moment system, the study of the strength of the subshock
developing above the critical Mach number will not be further pursued here.

5 Numerical results

In order to investigate the properties of the shock structure solution with and without subshock
obtained for the 14 moment system with first, second and third order MEP-based closures, the
system of differential equations presented in Section 2 has been numerically solved for different
values of the shock parameter, i.e. the unperturbed Mach number M0.

In this section, a selection of the numerical results is presented as to show the impact of
the chosen order of the closure (either first, second, or third) on the obtained shock structure
profiles. To this aim, in the following the density and velocity profiles across the shock structure
obtained numerically solving the 14 moment system with first, second, and thid order closures
for M0 = 1.7, 1.9, 2.1 are reported.

In Fig. 1, the case of the shock structure obtained with M0 = 1.7 is presented. In agreement
with the expectations [11, 23], in this case the shock structure profile is continuous, namely it
does not present any discontinuity connected with a subshock formation, being the unperturbed
Mach number M0 less than the critical value M cr

0 ' 1.76. The results obtained by means of a
first order closure present a continuous but some somewhat rapid transition from the unper-
turbed field to the perturbed one in the foremost part of the shock profile. Such a sharp (but
continuous) transition is smoothed out when the second order closure is adopted, leading to a
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Figure 1: Rescaled mass density profile ρ̄ = (ρ −ρ0)/ (ρ1 −ρ0) (on the left) and relative ve-
locity profile u = v − s (on the right) of the shock structure solution obtained for M0 = 1.7 in a
monatomic gas with the 14 moment system with the first order (top row), second order (middle
row) and third order (bottom row) MEP closure.
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Figure 2: Rescaled mass density profile ρ̄ = (ρ −ρ0)/ (ρ1 −ρ0) (on the left) and relative ve-
locity profile u = v − s (on the right) of the shock structure solution obtained for M0 = 1.9 in a
monatomic gas with the 14 moment system with the first order (top row), second order (middle
row) and third order (bottom row) MEP closure.

11



−20 −15 −10 −5 0 5 10 15 20
φ

0.0

0.2

0.4

0.6

0.8

1.0

̄ ρ

1st̄order

−20 −15 −10 −5 0 5 10 15 20
φ

−2.1
−1.9
−1.7
−1.5
−1.3
−1.1
−0.9

v

1st order

−20 −15 −10 −5 0 5 10 15 20
φ

0.0

0.2

0.4

0.6

0.8

1.0

̄ ρ

2nd̄order

−20 −15 −10 −5 0 5 10 15 20
φ

−2.1
−1.9
−1.7
−1.5
−1.3
−1.1
−0.9

v

2nd order

−20 −15 −10 −5 0 5 10 15 20
φ

0.0

0.2

0.4

0.6

0.8

1.0

̄ ρ

3rd̄order

−20 −15 −10 −5 0 5 10 15 20
φ

−2.1
−1.9
−1.7
−1.5
−1.3
−1.1
−0.9

v

3rd order

Figure 3: Rescaled mass density profile ρ̄ = (ρ −ρ0)/ (ρ1 −ρ0) (on the left) and relative ve-
locity profile u = v − s (on the right) of the shock structure solution obtained for M0 = 2.1 in a
monatomic gas with the 14 moment system with the first order (top row), second order (middle
row) and third order (bottom row) MEP closure.
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shock profile which arguably matches better the expected real behavior of the monatomic gas.
It is also observed that the difference in the shock structure profile between the second and the
third order closure is barely noticeable.

In Fig. 2, the case of the shock structure obtained with M0 = 1.9 is reported. In this case,
the profile of the shock structure includes a discontinuity, i.e. a subshock, when the traditional
first order closure of the 14 moment system is adopted. This is predicted by the theory, since
in this case the unperturbed Mach number M0 exceeds the critical value given by the largest
characteristic velocity in the unperturbed state (M cr

0 ' 1.76). The subshock formation is also
evident in the shock structure profile obtained with the second and the third order closures,
but in these cases the profiles are overall qualitatively different from the one obtained with the
linear closure. In particular, it is seen that the strength of the subshock, i.e. the jump in the
field variables across the subshock front is smaller than the one found making use of the linear
closure. This is in agreement with the theoretical and numerical results obtained for the 13
moment system discussed in [19]. Even in this case, the shock structure profile obtained with
the third order closure is similar (but distinguishable) from the one obtained with the second
order closure.

Despite the fact that the overall shock structure profile always feature a subshock and there-
fore cannot qualitatively match the results that we would expect to find in a real physical situa-
tion, it is safe to say that the formation of the unphysical subshock discontinuity is a less promi-
nent feature of the shock structure solution when the quadratic or cubic closures are adopted,
in comparison to the solution obtained with the linear one.

It is worth noticing that the subshock formation, which takes place when the speed s of the
shock front exceeds the maximum characteristic velocity of the system evaluated in the unper-
turbed state [11] is independent from the chosen order of the closure. This is due to the fact that,
as explained in [19], being the unperturbed state an equilibrium state, the fluxes of the moment
equations are clearly independent from the chosen closure in any equilibrium state. As a con-
sequence, the formation of a subshock is expected to be found independently from the order of
the closure; the strength of the subshock, in contrast, strongly depends on the non-equilibrium
fluxes, and hence on the adopted closure. For the 13 moment system, a detailed analysis of this
behavior is presented in [19].

The case of a shock structure profile with M0 = 2.1 is presented in Fig. 3. As predicted by the
theory, the shock profile obtained with the first order closure is affected by a rather pronounced
unphysical jump in the foremost part of the shock profile.

When the second and third order closures are adopted, the solution presents a much reduced
strength of the subshock, in comparison to the one obtained with the linear closure, and the
second and third order closures start to differentiate one from the other. As a next step of
the investigation, it would be interesting to compare the shock structure profiles obtained with
large Mach numbers to the profile obtained in the framework of the kinetic theory, by means for
example of a Boltzmann/ES-BGK model [25,26].

6 Conclusions

The closure of the 14 moment system of a monatomic gas is generally obtained assuming a linear
dependence of the closing fluxes on the non-equilibrium variables. In the framework of Rational
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Extended Thermodynamics (RET), this closure is obtained by means of the entropy principle,
with a phenomenological approach, or equivalently by means of the maximum entropy principle
(MEP).

The resulting 14 moment system has been largely investigated over the past decades, but only
recently it was understood the full physical interest of the 14 moment system after realizing that
this system, in contrast for example to the popular 13 moment system, is a natural system that
can be obtained as the classical limit of the moments associated with the relativistic Chernikov-
Boltzmann equation [20].

An investigation on the qualitative features of the shock structure solution of the 14 moment
system with second and third order closures based on the maximum entropy principle (MEP)
is here presented, and the results are compared to those obtained with the traditional first or-
der closure. It is remarkable that the subshock that appears in the shock structure profile for
large enough Mach numbers is noticeably reduced when the second and third order closures are
exploited. A similar behavior was already observed in the case of the 13 moment system, and
suggests that the adoption of higher order closures along with increasing number of moments is
potentially beneficial.
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