
13 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Overview of Application Instrumentation for Performance Analysis and Tuning / Vysocky O.; Riha L.;
Bartolini A.. - ELETTRONICO. - 12044:(2020), pp. 159-168. (Intervento presentato al convegno 13th
International Conference on Parallel Processing and Applied Mathematics, PPAM 2019 tenutosi a Poland
nel 2019) [10.1007/978-3-030-43222-5_14].

Published Version:

Overview of Application Instrumentation for Performance Analysis and Tuning

This version is available at: https://hdl.handle.net/11585/788570 since: 2023-11-24

Published:
DOI: http://doi.org/10.1007/978-3-030-43222-5_14

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

https://hdl.handle.net/11585/788570
http://doi.org/10.1007/978-3-030-43222-5_14

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Vysocky O., Riha L., Bartolini A. (2020) Overview of Application Instrumentation for
Performance Analysis and Tuning. In: Wyrzykowski R., Deelman E., Dongarra J.,
Karczewski K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019.
Lecture Notes in Computer Science, vol 12044. Springer, Cham.
https://doi.org/10.1007/978-3-030-43222-5_14

The final published version is available online at: https://doi.org/10.1007/978-3-030-
43222-5_14

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi.org/10.1007/978-3-030-43222-5_14
https://doi.org/10.1007/978-3-030-43222-5_14
https://doi.org/10.1007/978-3-030-43222-5_14

Overview of application instrumentation
for performance analysis and tuning

Ondrej Vysocky1[0000−0001−7849−2744], Lubomir Riha1[0000−0002−1017−5766], and
Andrea Bartolini2[0000−0002−1148−2450]

1 IT4Innovations national supercomputing center,
VŠB – Technical University of Ostrava, Ostrava, Czech Republic

{ondrej.vysocky,lubomir.riha}@vsb.cz
2 University of Bologna, DEI, via Risorgimento 2, 40136 Bologna, Italy

a.bartolini@unibo.it

Abstract. Profiling and tuning of parallel applications is an essential
part of HPC. Analysis and improvement of the hot spots of an application
can be done using one of many available tools, that provides measurement
of resources consumption for each instrumented part of the code. Since
complex applications show different behavior in each part of the code, it
is desired to insert instrumentation to separate these parts.
Besides manual instrumentation, some profiling libraries provide differ-
ent ways of instrumentation. Out of these, the binary patching is the
most universal mechanism, that highly improves user-friendliness and
robustness of the tool. We provide an overview of the most often used
binary patching tools and show a workflow of how to use them to im-
plement a binary instrumentation tool for any profiler or autotuner. We
have also evaluated the minimum overhead of the manual and binary
instrumentation.

Keywords: Binary Instrumentation · Performance Analysis · Code
Optimization · High Performance Computing

1 Introduction

Developers of HPC applications are forced to optimize their applications to reach
maximum possible performance and scalability. This request makes the perfor-
mance analysis tools very important elements of the HPC systems, that have
a goal in the identification of the hot spots of the code that provides space for
improvement. Except basic, single-purpose applications every region of an ap-
plication may have different requirements on the underlying hardware. In gen-
eral, we may speak about several application kernels, that are bounded due to
different (micro-)architectural components (e.g. compute, memory bandwidth,
communication or I/O kernels) presented in [1] and evaluated in [13, 29].

An application performance analysis tool provides profiling of the application
- stores current time, hardware performance counters et cetera, to provide infor-
mation about the program status at the given time. In general there are several

2 O. Vysocky et al.

ways how to connect the profiling library with the target application to select
when the application’s state should be captured, (1) insert the profiling library
API functions into the code of the profiled application, or (2) the profiling li-
brary implements a middleware for a specific functions (e.g. memory access, I/O
or MPI etc). Another option could be monitoring or simulating the application
process, however these approaches may have a problem to profile exactly the
application performance. The advantage of the monitoring is that it does not
require to instrument the application, which means that identification of exact
location in such code is ambiguous. Instrumentation can be inserted manually
to the source code, by a compiler at the compilation time or the application’s
binary can be patched using dynamic or static instrumentation tools.

1.1 Motivation

The list of the HPC applications profiling tools is quite long, and despite many
features are shared among them, every tool brings something extra to provide
slightly different insight into the application’s behavior. New HPC machines
come with new challenges that require different ways how to optimize the code.
With the upcoming HPC exascale era, there is pressure to reduce energy con-
sumption of the system and the applications too. Several projects develop auto-
tuning tools for energy savings based on CPU frequencies scaling or using Intel
RAPL power capping [9], e.g. GEOPM [6], COUNTDOW [5], Adagio [22] or
READEX [20, 23].

One of the READEX tools is MERIC [14, 29] library, that has been devel-
oped, to provide application behavior analysis and information about its energy
consumption when different application or system parameters are tuned. MERIC
dynamically changes the tuned parameters and searches for the configuration in
which each part of the application fully utilizes the system, not to waste the
resources and bring energy or time savings. This way user can detect that some
parts of the target application when uses just one of two sockets is as fast as
when using them both due to strong NUMA (Non-Uniform Memory Access)
effect, or that the frequency of the CPU cores can be significantly reduced, due
to inefficient memory access pattern. MERIC supports manual instrumentation
only, which we have identified as a weak spot on a way to reach maximum
possible savings. First of all process of localization where to insert the manual
instrumentation to the source code is time consuming, which may lead to the
situation that some parts of the code will not be sufficiently covered, and due
to that the code analysis may miss identification some of the code’s dynamicity
and result configuration will be sub-optimal.

It is barely possible to specify a single rule for all autotuning frameworks that
decides which parts of a code should be instrumented, but the most universal
way is specification of a minimum region size. Under the READEX project has
been specified that the minimum size of an instrumented function is 100 ms to
the tuning framework be able to change the system settings of the contempo-
rary Intel x86 processors and provide reliable energy measurement for all the

Overview of application instrumentation for performance analysis and tuning 3

instrumented regions (Intel RAPL counters [12] and HDEEM [11], 1 kHz power-
sampling energy measurement systems have been used in the project).

To reach maximum possible savings, the application should contain the max-
imum possible amount of regions, that may show different behavior. It results
in search for all regions that last more than the selected threshold and instru-
ment them, nevertheless the threshold can be extended if the instrumentation is
too heavy. In general, too detailed instrumentation can be handled also at the
tuning framework side, that may ignore some of the regions, but anyway even
this solution will lead to some minimal overhead depending on the framework’s
implementation (e.g. minimal time between regions’ starts, maximum level of
nesting). For purpose of identification regions with runtime longer than a speci-
fied threshold a Timeprof library [14] has been developed. The library does time
measurement of the application’s functions and provides a list of functions that
fulfill the condition.

2 Performance Analysis Tools

List of HPC tools for application performance analysis is very long so we de-
cided to focus on open-source tools that are selected by OpenHPC [19] project
whose mission is to provide a reference collection of open-source HPC software
components and best practices, lowering barriers to deployment, advancement,
and use of modern HPC methods and tools. The project mentions the following
tools:3

LIKWID [27] is one of the performance monitoring and benchmarking suite
of command-line applications. Extrae [24] is a multi-platform trace-file generator
to monitor the application’s performance. Score-P is a library for profiling and
tracing, that provides core measurement services for other libraries - Scalasca [7],
TAU [25], Vampir [17] and Periscope Tuning Framework (PTF) [8]. Scalasca and
TAU are very similar profiling and tracing tools that can also cooperate - e.g.
Scalasca’s trace-files can be visualized using TAU’s profile visualizer. Vampir
framework provides event tracing and focuses mainly on the visualization part
of the analysis process. On the other hand, PTF is an autotuning framework, pro-
viding many plugins to tune the application from various perspectives. GEOPM
is an autotuning tool focused on x86 systems, that dynamically coordinating
hardware settings across all compute nodes used by an application according to
the application’s behavior and requests from the resource manager. The last tool
from our list is the mpiP [21], which is a lightweight profiling library for MPI
applications, based on middleware of the MPI functions, despite that it also has
a limited list of C API functions to manually instrument the application, as well
as all the mentioned tools.

Besides splitting the application into different parts of the code, some tools
also provide an opportunity to instrument the most time consuming loops of
the target application (e.g. in case of Score-P we speak about a Phase region,

3 OpenHPC project list of performance analysis tools besides mentioned libraries con-
tain tools without API (e.g. visualization libraries) and also PAPI [26]

4 O. Vysocky et al.

GEOPM terminology uses word Epoch, etc.). This kind of annotation is useful
especially in case of tools that do not only analyze the application but also
provide the opportunity to tune the application performance using some kind of
optimization.

3 Manual And Compiler Inserted Instrumentation

Manual instrumentation usually wraps a function, block of functions (with the
similar behavior) or is inserted inside a loop body, to detect different behavior
within the iterations, or in case of autotuning tools to identify optimal configu-
ration by switching the configuration in each iteration.

Manual source code instrumentation requires access to the source code to in-
sert the API functions and at least a basic knowledge of the application behavior,
to instrument the most significant regions. The application must be recompiled
for each change in the instrumentation. Due to these requirements, manual in-
strumentation is time-consuming and inconvenient.

Despite some of the performance analysis tools provides options how to ana-
lyze the application without doing changes in the source code, using the middle-
ware (mpiP), compiler instrumentation (Score-P) or binary instrumentation (ex-
trae, TAU), anyway all of the mentioned tools have their own API to let the
application user/developer extend the instrumentation about specific parts of
the application.

Compiler instrumentation is provided by the Score-P or by the GNU pro-
filer gprof [10], it provides a possibility to wrap applications’ functions with the
instrumentation at the compilation time. In comparing to the manual instru-
mentation it removes the requirement to browse the source code to locate the
requested functions, however, the handicap of accessing the source code persists.
In default settings compiler instruments all the application’s functions, without
any limit on the function size, which in many cases may cause high overhead
of the profiling, when measuring performance of the shortest regions too. Due
to that, the compiler provides an option on how to select/filter a subset of the
functions to instrument. Unfortunately, it leads to repeated compilation of the
target application, which is usually slower than plain compilation (e.g. Score-P
does not support parallel compilation).

4 Binary Patching

Binary patching means a modification of an application execution without re-
compilation of the source code. The modifications can be done dynamically dur-
ing the application run or statically rewrite the binary with all the necessary
changes and store the edited binary into a new file.

Dynamic Binary Instrumentation (DBI) tools [18, 16, 4] interrupt the ana-
lyzed application process and switch context to the tool at a certain point that
should be instrumented, and execute a required action. This approach causes

Overview of application instrumentation for performance analysis and tuning 5

an overhead that is usually not acceptable for autotuning or performance anal-
ysis. On the other hand, a binary generated by a Static Binary Instrumentation
(SBI) tool should not cause any extra overhead in comparison to manually instru-
mented code, which confirms our measurements presented later in this Section.

SBI tools not only insert functions calls at certain positions in the instru-
mented binary, but also add all the necessary dependencies to the shared li-
braries, so it is not required to recompile the application for its analysis. Also,
SBI tools can access both mangled and demangled names of the functions even
though the application has been compiled without debug information. SBI tools
are provided by TAU (using Dyninst [3] or Pebil [15] or MAQAO [2]) and ex-
trae (using Dyninst) and Score-P uses Dyninst to instrument the code by its
compiler.

PEBIL is a binary rewriting tool allowing to patch ELF files for the x86-
64 architecture. Unfortunately, PEBIL project is closed since 2017, so support
for new platforms is not guaranteed. Due to that, we will focus on Dyninst
and MAQAO only, from which MAQAO-2.7.0 supports the IA-64 and Xeon Phi
architectures only, on the other hand, Dyninst-10.0.0 InstructionAPI implemen-
tation supports the IA-32, IA-64, AMD-64, SPARC, POWER, and PowerPC
instruction sets and ARMv8 is in experimental status.

We have evaluated overhead of instrumentation when inserted manually with
statically inserted instrumentation by MAQAO and Dyninst. We have used
MERIC library for this measurement, that reads requested system information
and store the value in memory. A single thread application (to remove the influ-
ence of an MPI/OpenMP barriers on the measurement) contained one region,
that had been performed thousand times. We have not seen any difference in the
overhead of manual instrumentation and SBI. Overhead of one instrumentation
call on an Intel Xeon E5-2697v4 is:

– 175µs – when reading timestamp
– 375µs – when reading energy consumption using Intel RAPL (read four

hardware counters and timestamp)

In the case of binary patching of a complex application, the time that is
required to insert the instrumentation should not exceed the time needed for the
application compilation. According C. Valensi MAQAO is able to insert 18 000
function calls in less than a minute [28].

4.1 A Binary Parsing

Dyninst as well as MAQAO holds the executable in a structure of components
as the application was decomposed by a compiler. The components and their
relations are illustrated in the Fig. 1. A binary base element is one or several
images, which is a handle to the executable file associated with this binary.
Each image contains a list of functions and global variables. A function can be
also inspected for local variables and basic blocks (BBs), which is a sequence
of the instructions with a single entry point and single exit point. The BBs are

6 O. Vysocky et al.

Fig. 1. Components of an application binary produced by a compiler.

organized in a control-flow graph (CFG), that represents the branches of the
code. From a basic block, it is also possible to access its instructions.

When using Dyninst to browse through an application binary for its analysis
or patching all the components on higher levels must be accessed first, on the
other hand, MAQAO interface allows a user to access them directly. Anyway,
we are primarily interested in the insertion of a function call before and after
selected functions, we may stay at the level of functions.

4.2 Workflow

In this section, we will present a process of an SBI using MAQAO or Dyninst,
with a goal insert a profiler function call before and after a select application
function. The patching libraries provide much more functionality than presented
(e.g. static binary analysis or insertion of a function call at more general loca-
tions), however for most of the profilers and autotuners wrapping a function
with its instrumentation should be sufficient.

BPatch bpatch;
BPatch_binaryEdit *appBin = bpatch.openBinary("a.out", false);
BPatch_image *appImage = appBin->getImage();
// prepare function printf with its paramters to be inserted
std::vector<BPatch_function*> insertFunc;
appImage->findFunction("printf", insertFunc, true, true, true);
std::vector<BPatch_snippet*> args;
BPatch_snippet* param1 = new BPatch_constExpr("FUNC %s\n");
BPatch_snippet* param2 = new BPatch_constExpr("main");
args.push_back(param1);
args.push_back(param2);
// identify target location for insertion
std::vector<BPatch_function*> functions;
std::vector<BPatch_point *> *points;
appImage->findFunction("main", functions);
points = functions[0]->findPoint(BPatch_entry);
// function call insertion and store the new binary to a file
BPatch_funcCallExpr insertCall(*(insertFunc[0]), args);
appBin->insertSnippet(insertCall, *points);
appBin->writeFile ("b.out");

Listing 1: Dyninst code to instrument main function in a.out binary.

Both Dyninst and MAQAO open the binary and starts with its decomposition
into the components as it was previously presented. We can select a function to

Overview of application instrumentation for performance analysis and tuning 7

insert from the dependent shared libraries of the application. If the application
has been compiled without the profiling library, the first step should be adding
all the necessary dependencies, which is a single function call.

With all the necessary dependencies, it is possible to find the function we
want to insert under the application image, as well as the functions we want
to wrap into the profiler instrumentation. To find the function that should be
instrumented, the binary (modules in case Dyninst) must be browsed for this
function. The function may have several code locations that could be instru-
mented, from which we are interested in its entry and exit points (addresses).
With this point, it is possible to associate a function call with the requested list
of arguments (be aware that there is no argument type control). This change
must be committed to the binary. The edited binary is then stored and is ready
to be executed to analyze its performance.

Listings present a code snapshots that insert printf call, that will print
”FUNC main” at the beginning of execution main function of a C applica-
tion a.out and stores the binary as b.out using Dyninst (Listing 1) or MAQAO
(Listing 2) libraries. The examples assume that printf function is available to
be added, otherwise relevant shared library dependency must be added too, also
return codes are ignored to reduce size of the Listings.

project_t* proj = project_new("instrument_proj");
asmfile_t* asmf = project_load_file(proj, "a.out", NULL);
elfdis_t* elf = madras_load_parsed (asmf);
madras_modifs_init (elf, STACK_KEEP, 0);
fct_t* func = hashtable_lookup(asmf->ht_functions, "main");
if (func != NULL) //if main function has been found in the binary
{ //search for entry instructions of the main function
queue_t * instructions = fct_get_entry_insns(func);
list_t* iter = queue_iterator(instructions);
while (iter != NULL)
{ //insert printf function call and its parameters

insn_t * inst = iter->data;
modif_t* ifct = madras_fctcall_new(elf, "printf", NULL, inst->address, 0, NULL, 0);
madras_fctcall_addparam_fromglobvar(elf,ifct,NULL,"FUNC %s\n",'a');
madras_fctcall_addparam_fromglobvar(elf,ifct,NULL,"main",'a');
iter = iter->next;

}
madras_modifs_commit(elf, "b.out"); //store the edited binary to a file

}
project_free(proj);
madras_terminate(elf);

Listing 2: MAQAO code to instrument main function in a.out binary.

5 Conclusion

Compiler and binary instrumentation are solution for a fully automatized appli-
cation analysis and following optimized run of the application, but only in the
case that such instrumentation does not lead to significantly higher overhead
than in case of the manual instrumentation. Our measurements have not seen

8 O. Vysocky et al.

any measurable difference in manual and static binary instrumentation provided
by MAQAO or Dyninst. We consider SBI as simple and the most powerful solu-
tion and based on this conclusion when writing a tool for an application behavior
analysis we recommend to provide also an SBI support and present samples of
code using both Dyninst and MAQAO to show how simple a basic SBI tool is.

The problem of the ideal instrumentation (amount and location of the probes)
has a massive impact on the effectiveness of every auto-tuning framework. Au-
toinstrumentation tool can be written to instrument the analyzed application
according to the requirements of the autotuner and its way of tuning the appli-
cation. Timeprof library helps to identify the significant regions of the application
to analyze their behavior. We can easily measure the runtime of all the functions
of the application with Timeprof, which will provide us a selection of the regions.
Afterward, the identified regions are instrumented with the selected library.

6 Acknowledgment

This work was supported by The Ministry of Education, Youth and Sports from
the Large Infrastructures for Research, Experimental Development and Innova-
tions project IT4Innovations National Supercomputing Center LM2015070. This
work was supported by the Moravian-Silesian Region from the programme ”Sup-
port of science and research in the Moravian-Silesian Region 2017” (RRC/10-
/2017). This work was also partially supported by the SGC grant No. SP2019/59
”Infrastructure research and development of HPC libraries and tools”, VŠB -
Technical University of Ostrava, Czech Republic.

References

1. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer,
K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.:
The landscape of parallel computing research: A view from berkeley. Tech.
Rep. UCB/EECS-2006-183, EECS Department, University of California, Berke-
ley (Dec 2006), http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-
183.html

2. Barthou, D., Charif Rubial, A., Jalby, W., Koliai, S., Valensi, C.: Performance
tuning of x86 openmp codes with maqao. In: Müller, M.S., Resch, M.M., Schulz,
A., Nagel, W.E. (eds.) Tools for High Performance Computing 2009. pp. 95–113.
Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

3. Bernat, A.R., Miller, B.P.: Anywhere, any-time binary instrumenta-
tion. In: Proceedings of the 10th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools. pp. 9–16. PASTE ’11, ACM,
New York, NY, USA (2011). https://doi.org/10.1145/2024569.2024572,
http://doi.acm.org/10.1145/2024569.2024572

4. Bruening, D., Zhao, Q., Amarasinghe, S.: Transparent dynamic instru-
mentation. In: Proceedings of the 8th ACM SIGPLAN/SIGOPS Confer-
ence on Virtual Execution Environments. pp. 133–144. VEE ’12, ACM,
New York, NY, USA (2012). https://doi.org/10.1145/2151024.2151043,
http://doi.acm.org/10.1145/2151024.2151043

Overview of application instrumentation for performance analysis and tuning 9

5. Cesarini, D., Bartolini, A., Bonfà, P., Cavazzoni, C., Benini, L.: COUNTDOWN -
three, two, one, low power! A run-time library for energy saving in MPI communica-
tion primitives. CoRR abs/1806.07258 (2018), http://arxiv.org/abs/1806.07258

6. Eastep, J., Sylvester, S., Cantalupo, C., Geltz, B., Ardanaz, F., Al-Rawi, A., Liv-
ingston, K., Keceli, F., Maiterth, M., Jana, S.: Global extensible open power man-
ager: A vehicle for hpc community collaboration on co-designed energy manage-
ment solutions. In: ISC. pp. 394–412. Springer International Publishing, Cham
(2017)

7. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr,
B.: The scalasca performance toolset architecture. Concurr. Comput. :
Pract. Exper. 22(6), 702–719 (Apr 2010). https://doi.org/10.1002/cpe.v22:6,
http://dx.doi.org/10.1002/cpe.v22:6

8. Gerndt, M., Cesar, E., Benkner, S.: Automatic tuning of hpc applications
- the periscope tuning framework (ptf). In: Automatic Tuning of HPC Ap-
plications - The Periscope Tuning Framework (PTF). Shaker Verlag (2015),
http://eprints.cs.univie.ac.at/4556/

9. Gholkar, N., Mueller, F., Rountree, B.: Power tuning hpc jobs on power-
constrained systems. In: Proceedings of the 2016 International Confer-
ence on Parallel Architectures and Compilation. pp. 179–191. PACT ’16,
ACM, New York, NY, USA (2016). https://doi.org/10.1145/2967938.2967961,
http://doi.acm.org/10.1145/2967938.2967961

10. Graham, S.L., Kessler, P.B., McKusick, M.K.: Gprof:
A call graph execution profiler. SIGPLAN Not. 39(4),
49–57 (Apr 2004). https://doi.org/10.1145/989393.989401,
http://doi.acm.org/10.1145/989393.989401

11. Hackenberg, D., Ilsche, T., Schuchart, J., Schne, R., Nagel, W.E., Simon,
M., Georgiou, Y.: HDEEM: High definition energy efficiency monitoring.
In: 2014 Energy Efficient Supercomputing Workshop. pp. 1–10 (Nov 2014).
https://doi.org/10.1109/E2SC.2014.13

12. Hähnel, M., Döbel, B., Völp, M., Härtig, H.: Measuring energy con-
sumption for short code paths using rapl. SIGMETRICS Perform. Eval.
Rev. 40(3), 13–17 (Jan 2012). https://doi.org/10.1145/2425248.2425252,
http://doi.acm.org/10.1145/2425248.2425252

13. Haidar, A., Jagode, H., Vaccaro, P., YarKhan, A., Tomov, S., Don-
garra, J.: Investigating power capping toward energy-efficient sci-
entific applications. Concurrency and Computation: Practice and
Experience 31(6), e4485 (2019). https://doi.org/10.1002/cpe.4485,
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4485, e4485 cpe.4485

14. IT4Innovations: MERIC library. https://code.it4i.cz/vys0053/meric, ”[Online; ac-
cessed 2019-04-21]”

15. Laurenzano, M.A., Tikir, M.M., Carrington, L., Snavely, A.: Pebil: Efficient static
binary instrumentation for linux. In: 2010 IEEE International Symposium on Per-
formance Analysis of Systems Software (ISPASS). pp. 175–183 (March 2010).
https://doi.org/10.1109/ISPASS.2010.5452024

16. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: Building customized program analysis tools with
dynamic instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. pp. 190–200. PLDI
’05, ACM, New York, NY, USA (2005). https://doi.org/10.1145/1065010.1065034,
http://doi.acm.org/10.1145/1065010.1065034

10 O. Vysocky et al.

17. Müller, M.S., Knüpfer, A., Jurenz, M., Lieber, M., Brunst, H., Mix, H., Nagel,
W.E.: Developing scalable applications with vampir, vampirserver and vampirtrace.
In: PARCO (2007)

18. Nethercote, N., Seward, J.: Valgrind: A framework for heavyweight dy-
namic binary instrumentation. SIGPLAN Not. 42(6), 89–100 (Jun 2007).
https://doi.org/10.1145/1273442.1250746

19. OpenHPC: Community building blocks for HPC systems.
https://openhpc.community/, ”[Online; accessed 2019-04-21]”

20. READEX: Horizon 2020 READEX project. https://www.readex.eu (2018)
21. Roth, P.C., Meredith, J.S., Vetter, J.S.: Automated characteriza-

tion of parallel application communication patterns. In: Proceed-
ings of the 24th International Symposium on High-Performance Par-
allel and Distributed Computing. pp. 73–84. HPDC ’15, ACM, New
York, NY, USA (2015). https://doi.org/10.1145/2749246.2749278,
http://doi.acm.org/10.1145/2749246.2749278

22. Rountree, B., Lowenthal, D.K., de Supinski, B.R., Schulz, M., Freeh, V.W., Bletsch,
T.K.: Adagio: making dvs practical for complex hpc applications. In: Proceed-
ings of the 23rd International Conference on Supercomputing. pp. 460–469. ICS
’09, ACM, New York, NY, USA (2009). https://doi.org/10.1145/1542275.1542340,
http://doi.acm.org/10.1145/1542275.1542340

23. Schuchart, J., Gerndt, M., Kjeldsberg, P.G., Lysaght, M., Horák, D., Ř́ıha, L.,
Gocht, A., Sourouri, M., Kumaraswamy, M., Chowdhury, A., Jahre, M., Di-
ethelm, K., Bouizi, O., Mian, U.S., Kruž́ık, J., Sojka, R., Beseda, M., Kan-
nan, V., Bendifallah, Z., Hackenberg, D., Nagel, W.E.: The readex formalism for
automatic tuning for energy efficiency. Computing 99(8), 727–745 (Aug 2017).
https://doi.org/10.1007/s00607-016-0532-7

24. Servat, H., Llort, G., Huck, K., Gimnez, J., Labarta, J.: Framework
for a productive performance optimization. Parallel Computing 39(8),
336 – 353 (2013). https://doi.org/https://doi.org/10.1016/j.parco.2013.05.004,
http://www.sciencedirect.com/science/article/pii/S0167819113000707

25. Shende, S.S., Malony, A.D.: The tau parallel performance system.
Int. J. High Perform. Comput. Appl. 20(2), 287–311 (May 2006).
https://doi.org/10.1177/1094342006064482

26. Terpstra, D., Jagode, H., You, H., Dongarra, J.: Collecting performance data with
papi-c. In: Müller, M.S., Resch, M.M., Schulz, A., Nagel, W.E. (eds.) Tools for High
Performance Computing 2009. pp. 157–173. Springer Berlin Heidelberg, Berlin,
Heidelberg (2010)

27. Treibig, J., Hager, G., Wellein, G.: Likwid: Lightweight performance tools. In:
Bischof, C., Hegering, H.G., Nagel, W.E., Wittum, G. (eds.) Competence in High
Performance Computing 2010. pp. 165–175. Springer Berlin Heidelberg, Berlin,
Heidelberg (2012)

28. Valensi, C.: A generic approach to the definition of low-level components for multi-
architecture binary analysis. Ph.D. thesis, Universit de Versailles Saint-Quentin-
en-Yvelines (7 2014)

29. Vysocky, O., Beseda, M., Riha, L., Zapletal, J., Nikl, V., Lysaght, M., Kannan,
V.: Evaluation of the HPC applications dynamic behavior in terms of energy con-
sumption. In: Proceedings of the Fifth International Conference on Parallel, Dis-
tributed, Grid and Cloud Computing for Engineering. pp. 1–19 (2017), paper 3,
2017. doi:10.4203/ccp.111.3

