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Abstract: Coastal flooding and retreat are markedly enhanced by sea-level rise. Thus, it is crucial to
determine the sea-level variation at the local scale to support coastal hazard assessment and related
management policies. In this work we focus on sea-level change along the Emilia-Romagna coast,
a highly urbanized, 130 km-long belt facing the northern Adriatic Sea, by analyzing data from three
tide gauges (with data records in the last 25–10 years) and related closest grid points from CMEMS
monthly gridded satellite altimetry. The results reveal that the rate of sea-level rise observed by
altimetry is coherent along the coast (2.8 ± 0.5 mm/year) for the period 1993–2019 and that a negative
acceleration of −0.3 ± 0.1 mm/year is present, in contrast with the global scale. Rates resulting
from tide gauge time series analysis diverge from these values mainly as a consequence of a large
and heterogeneous rate of subsidence in the region. Over the common timespan, altimetry and tide
gauge data show very high correlation, although their comparison suffers from the short overlapping
period between the two data sets. Nevertheless, their combined use allows assessment of the recent
(last 25 years) sea-level change along the Emilia-Romagna coast and to discuss the role of different
interacting processes in the determination of the local sea level.

Keywords: sea level; Adriatic Sea; satellite altimetry; tide gauges; vertical land movements; cli-
mate change

1. Introduction

Sea level lies among the 54 Essential Climate Variables (ECVs) that represent the
Earth system’s key parameters, as defined and periodically assessed by the Global Climate
Observing System (GCOS), in support of the United Nations Framework Convention
on Climate Change (UNFCCC) and of the Intergovernmental Panel on Climate Change
(IPCC). Direct observation of the sea level dates back to the 18th century [1] and this made
possible realistic models for the sea-level variation and its interconnection with climate
change. The ongoing sea-level change is the product of a continuous, mutable, and complex
interaction among several components through the whole Earth system, combining natural
and anthropic causes. It is commonly recognized that the increase in anthropogenic
greenhouse gasses emission in the atmosphere, plus a small increment of natural solar
irradiance, has led to a progressive effective radiative forcing (ERF) growth since the
1970s [2], hence to climate warming. More than 90% of the heat increase in the climate
system, derived from the ERF, has been stored by the ocean, with the consequential thermal
expansion and sea-level rise. At global scale, there is a general consensus that sea level
has been rising at 1.7 ± 0.2 mm/year over the last century [2], and at 3.3 ± 0.5 mm/year
over the last 25 years [3]. This is not a steady process since at both temporal scales,
a positive acceleration (0.084 ± 0.025 mm/year2) was also confirmed [4,5]. Presently,
there is the virtual certainty that sea-level rise and climate change will bring to society
and the environment significant consequences, especially in low-elevation coastal zones
where more than 620 million people live presently, a number that is expected to double
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by 2060 [6,7]. This enhances the climate-related concern about the sea-level rise impact at
global scale and at coasts.

Satellite radar altimetry (SA) missions started in the early 1990s with the goal of
providing, among other data, a fortnightly measure for the global sea surface height (SSH)
in the reference system of the Earth’s mass center. Given its reference frame, this is com-
monly referred to as the absolute sea level (ASL). SSH represents the difference between
the satellite altitude above the reference ellipsoid and the height of the satellite above the
instantaneous sea surface, measured by transmitting microwave radiations toward the
surface which are partly reflected to the satellite [8]. As a consequence of this configuration,
SSH measurements are affected by several sources of uncertainties. Such uncertainties
are resolved by compensating for the effect of instrumental drift, signal refraction pass-
ing through the atmosphere, Glacial Isostatic Adjustment (GIA), tides and atmospheric
pressure influence whose correction is commonly known as the Dynamic Atmospheric
Correction (DAC). However, in shallow water and at the coast SA data are influenced and
contaminated by both the presence of land in the satellite footprint and the spatio-temporal
scale reduction of atmospheric and oceanographic processes with respect to the open
ocean [8–10]. The need for reliable coastal altimetry data has led over recent years to the
development of new sophisticated altimetry products, where the improved reprocessing
and dedicated corrections aim to extend valid measurement to within < 20 km from the
coast [11–13].

On the contrary, tide gauges (TGs) provide a measure of the sea level with respect
to the pier at which the TG is attached and for this reason it is commonly referred to
as relative sea level (RSL). The largest TG database is the Permanent Service for Mean
Sea Level (PSMSL), where almost two thousand TG time series are collected, periodically
updated, and reduced to a common datum, producing the Revised Local Reference (RLR)
dataset [14–16]. Developed for different purposes, i.e., the observation of the harbor tide,
currently TG data used for long-term sea-level studies suffer from the contamination by
the vertical land movement (VLM) of the pier itself. This problem was sorted out in the
recent past by the co-location of GNSS (Global Navigation Satellite System) at the TG site.
However, this practice only started since the late 1990s [17,18] and for this reason it does
not cover the whole time series at most of the TG sites. Despite the long period coverage
(since 19th century for some specific cases) TGs data are geographically limited because of
their heterogeneous spatial distribution. TGs measurement has increased since the 1950s,
primarily throughout the Northern Hemisphere [19]. This limitation generates a bias that
may hinder accurate and reliable sea level consideration at global scale.

Despite SA and TG time series currently represent the two main source of information
for the sea level, the contrast between their observational ability remains an unresolved
point. RSL, measured by the TGs, reflects the local variations in sea level and it is influenced
by the VLM effect and the coastal processes, differently from the SA ASL records that
provide geocentric sea-level variations. SA and TG data sets are, moreover, characterized by
low and high acquisition rate, respectively [11]. Only SA measurement allows observation
of the variability on sea level from the open ocean towards the coastal area and it is
considered essential for giving perspective at regional and global scale without resolving,
however, some key coastal processes, which instead are recorded by TGs. RSL and ASL
variation and VLM are linked by means of the Sea Level Equation (SLE) that, in its simplest
form, reads [20]:

S = N − U (1)

where S is the RSL variation, N represents the ASL variation and U is vertical displace-
ment [21,22]. This equation tells that the sea-level change at the pier is the combination
of the absolute seal level variation in a geocentric reference frame minus the vertical
displacement at the TG coastal location.

At global scale, the drivers of sea-level change are primarily related to variations in
steric contribution [23,24] and ocean mass component [25–27]. By contrast, at regional
(e.g., the Mediterranean Sea) and local scale the sea-level change could be amplified or
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mitigated by several other drivers [28,29] such as VLMs, ocean dynamics (which become
significant in semi- enclosed basins [30,31]) and the GIA (i.e., the visco-elastic crustal
response to the inhomogeneous loading redistribution of ice melted water throughout
continents and ocean [32–34]). The sea-level variability observed in the Mediterranean Sea
is the consequence of several factors among which the circulation forced by heat and buoy-
ancy flux at the surface, wind stress, and water exchange through the Strait of Gibraltar,
varying periodically the water mass amount within the entire domain [30,35,36]. Regional
sea-level variations are, in fact, influenced also by the balance between evaporation pro-
cesses and precipitation–river runoff in the basin [37,38]. Wind stress can also lead to large
Mediterranean sea level, generating periodic non-steric fluctuations due to mass trans-
portation through Gibraltar from Atlantic [39,40]. A critical role of atmospheric forcing
on sea-level change since the 1960s, not constant in time, has been documented for the
Mediterranean Sea [41]. Indeed, several studies found a direct influence of inter-annual,
decadal, and multidecadal climate fluctuations on sea level, corresponding to several
tenths of mm/year [42,43]. This non-stationary variability is correlated with natural modes
of the coupled ocean–atmosphere system such as El Niño Southern Oscillation (ENSO),
North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation (AMO) [44,45].

The Emilia-Romagna (E-R) coast is a highly urbanized, 130 km-long belt of low-
elevated area (1.45 m maximum average elevation), located at the eastern margin of the Po
Plain in Northern Italy (Figure 1). Coastal anthropization started in the 1950s [46], in the
following decades the E-R coast became one of the most attractive tourist destinations in
Italy and an important source for the regional economy. The combined effect of subsidence,
sediment supply deficit due to the marked decrease in fluvial transport, removal of the
dune ridge and increased anthropic pressure, cause the E-R coastal tract to be extremely
sensitive to coastal flooding due to storm surges and sea-level rise [47]. In particular,
a considerable portion of the E-R coastal area is currently below sea level and this would
exacerbate the impact of future sea-level rise. As shown by Perini et al. [48] the combined
effect of the IPCC worst scenario [2] and of the current local subsidence would cause, at
2100 with respect to 2012, a further extension (346 km2) of the areas below mean sea level.
Also, for this reason, the determination of the relative sea-level (RSL, i.e., the local sea level
relative to a benchmark on land) variation at local scale for the E-R coast is paramount for
the management of the territory and of its fragile environment.

In this paper, we analyze the sea-level variation for the E-R coastal area by selecting
three sites along the E-R coast: Porto Garibaldi, Marina di Ravenna, and Rimini (Figure 1).
These are the only sites where a TG in operation currently exists. For each site we also
identify the closest SA altimetry cell to put the RSL observed at TGs in the framework
of the ongoing ASL for the region. TG times series cover different time spans, and this
complicates the analysis. The main objectives are: (i) to verify the consistency of different
instrumental sea-level records (TG/SA) at each site, by comparing in situ data with the
latest CMEMS (Copernicus Marine Environment Monitoring Service) altimetry products
(see Section 3); (ii) to observe and analyze differences among obtained sea-level data at the
three sites, i.e., at the coastal scale, with a focus on the local variability, heavily influenced
here by VLM; (iii) to assess the recent (last 25 years) sea-level change and if it can be
assumed as a reference for the E-R region, also highlighting the variability of sea-level rates
which strongly depends on the records length and (iv) to discuss this figure in the framework
of similar studies at the basin-scale (Adriatic/Mediterranean), and of climate change-related
processes. The determination of current sea-level rise at regional scale remains a complex task
especially when only short time series are available. However, since this remains a crucial
point in support of coastal hazard evaluation and related management/adaptation policies,
efforts should be made to understand sea-level variability and to describe its intricacy from
the coastal and basin perspective. The paper is organized as follows: Section 2 introduces
the study area, Sections 3 and 4 are dedicated to the description of data and analysis,
respectively. Results are presented in Section 5 and discussed in Section 6. Finally, in
Section 7, conclusions are drawn.
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Figure 1. Satellite overview of the study site. (a) The E-R coast with northern and southern limits marked by red lines, 
the location of the selected tide gauges (blue and yellow circles) and their nearest satellite altimetry grid points (green 
circles). The blue circle at Porto Garibaldi remarks that, differently from the other two, the TG site is co-located with a 
GNSS antenna. (b) map of the surficial (upper 10 m layer) Adriatic current directions and velocity vectors (November 
2018 monthly average, based on the MEDSEA_REANALYSIS_PHYS_006_004 model) [49]. (c) Detailed location of the 
three tide gauges considered in this work. 
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Figure 1. Satellite overview of the study site. (a) The E-R coast with northern and southern limits marked by red lines,
the location of the selected tide gauges (blue and yellow circles) and their nearest satellite altimetry grid points (green circles).
The blue circle at Porto Garibaldi remarks that, differently from the other two, the TG site is co-located with a GNSS antenna.
(b) map of the surficial (upper 10 m layer) Adriatic current directions and velocity vectors (November 2018 monthly average,
based on the MEDSEA_REANALYSIS_PHYS_006_004 model) [49]. (c) Detailed location of the three tide gauges considered
in this work.

2. Study Area

The coastal belt of E-R is located in the eastern part of the Po Plain, south of the Po
Delta (Figure 1). In geological terms, the Po Plain represents a foredeep basin suffering
from natural subsidence. VLMs are mainly due to the consolidation of Quaternary al-
luvial deposits, with estimated rates along the coastal area of about −1 mm/year and
−2.5 mm/year to the south and north of Ravenna municipality respectively, and twice as
much at the Po river Delta [50]. Long-term VLMs due to tectonic component have been
taken into account by Ferranti et al. [51] and Antonioli et al. [52,53] with rates in the order
of −0.95 mm/year since the Last Interglacial (last 125 kyrs) for the northern E-R coast,
while −0.22 ± 0.05 mm/year represents the glacio-hydro-isostatic contribution estimated
by different GIA models [48]. Since the second half of the 20th century, the subsidence rate
in the area has been markedly enhanced by the withdrawal of groundwater and gas extrac-
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tion [54], with rates locally exceeding the natural subsidence by one order of magnitude.
This caused land settlement locally exceeding 100 cm in a few decades [55]. The following
gradual decrease in subsidence observed for almost the whole E-R coast is commonly
attributed to the groundwater withdrawal cessation, occurred since the 1970s e.g., [54,56],
and it has become more evident in the last two decades [55,57]. Current estimates of VLM
based on the regional high-precision levelling network, regularly monitored since 1983 by
the Regional Agency for Prevention, Environment and Energy of the E-R region (ARPAE),
indicate average subsidence rates in the order of 5 mm/year for the last 15 years, decreasing
to 3–4 mm/year in the period 2011–2016 [55]; however, peak values in the order of about
20 mm/year are still locally observed in the Ravenna coastal tract. The Coastal Geode-
tic Network is now the base for the definition of the orthometric heights along the E-R
coast [58], integrated with InSAR techniques and GNSS measurements. Recently, Montuori
et al. [59] integrating GNSS and multitemporal DInSAR techniques for the monitoring of
land subsidence processes along the coastal plain, obtained average rates >3 mm/year,
increasing to over 5 mm/year for Ravenna and some tracts along the SE coast. Rates of
land subsidence for the Marina di Ravenna dock (from 1970 to present) based on geometric
levelling, InSAR techniques and GNSS measurements, are compared by Cerenzia et al. [60].

From a morphological point of view, the E-R coast is represented by fine to medium-
sand low-gradient dissipative beaches, 60% of which is the seat of hard protection struc-
tures [55]. The E-R coast is in general affected by low-energy waves, with Hs commonly
below 1.25 m and microtidal regime [61,62]. The main storms come from the Bora (north-
east) and Scirocco (southeast) winds, resulting in storm surge levels >1 m on a 100-year
return period [48]. This is a huge concern for such low-elevation coastal zones, exacerbated
by forthcoming climate change effects.

The E-R coast faces the northern Adriatic basin (Figure 1), a shallow sub-basin (a few
tens of m of depth) with a low topographic gradient. The Adriatic is a narrow epicontinental
shelf (800 by 200 km), communicating with the Ionian Sea through the Otranto Strait
(Figure 1). The sea-level variability in the Adriatic Sea significantly differs from the other
Mediterranean Sea sub-basins because of its setting [63–65]. It is dominated by cyclonic
circulation driven by wind and thermohaline currents, mainly represented by three gyres
centered in the southern, middle, and northern sector of the basin; northerly and southerly
currents flow along the eastern (Eastern Adriatic Current, EAC) and western (Western
Adriatic Current, WAC) coast, respectively (Figure 1) [64–67]. Previous analyses of sea-level
rise in the altimetry era found an average rate of 3.2 ± 0.3 mm/year over the 1993–2008
for the Adriatic Sea, not uniform on the whole period, but positive (9 ± 0.5 mm/year)
between 1993 and 2000 and negative (−2.5 ± 0.5 mm/year) between 2001 and 2008 [68].
Similar positive and negative rates before and after 2001 result for the (basin-average)
steric component of sea level, which is correlated with Adriatic Sea level. For the northern
sector of the Adriatic, rates of 4.25 ± 1.25 mm/year for the period 1993–2015 [69] and of
3.00 ± 0.53 mm/year for the period 1993–2018 [70] have been recently estimated.

3. Data

In situ sea-level signals are achieved from the three TGs currently operational along
the E-R coast (Figure 1). These are installed at Porto Garibaldi (TGPG), Marina di Ravenna,
also known as Porto Corsini (TGRA), and Rimini (TGRN). In particular:

TGPG has been operational since July 2009 and it is co-located with a permanent GNSS
(Figure 1) station (GARI) that provides VLM information for this site. Different sources
are freely available for geocentric surface velocity data at GARI [71]. In this work we
considered the GARI time series produced with the INGV (Istituto Nazionale di Geofisica
e Vulcanologia) solution by employing the GAMIT/GLOBK software and expressed in the
IGS14 (International GPS Service) reference frame [72]. Only TGPG and a portion of TGRA
are RLR data retrieved from the PSMSL.

At Marina di Ravenna, different TGs almost continuously collected relative sea-level
data since 1873 [73,74], with a main gap from 1922 to 1933. Presently, data are managed
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by the Italian National Tide Gauge Network (Rete Mareografica Nazionale, RMN) which
refers TG data to a local benchmark, located at the lighthouse, 150 m apart. TGRA has a
large gap between 2016 and 2019 and, for this reason, the time series considered in this
work terminates in December 2015. A permanent GNSS station has operated since 1996
close to TGRA [73] and is currently managed by the Department of Physics and Astronomy
of the University of Bologna (no open data).

TGRN has been in operation since July 2012, it is managed by Hera Group corporation,
and it is not equipped with a GNSS antenna. Despite the shortness of the data and the lack
of a co-located GNSS antenna, TGRN is valuable since it provides the only datum for the
southern portion of the E-R coast.

Both TGPG and TGRA operate with radar systems technology (the former coupled with
a float system sensor, following the Intergovernmental Oceanographic Commission (IOC)
directives [75]) while TGRN operates with a differential pressure transducer. Since only
float systems directly provide a SSH measurement, seawater density and gravitational ac-
celeration are considered to convert pressure measured by TGRN into sea level, while radar
systems are supplied with dedicated hardware and software that directly convert the
measures [76]. Regarding the SA, in this study we use the CMEMS daily gridded dataset
(SEALEVEL_MED_PHY_L4_REP_OBSERVATIONS_008_051), having a spatial resolution
of 0.125 degree x 0.125 degree [77]. This product is processed by the DUACS (Data Unifica-
tion and Altimeter Combinations System) multi-mission altimeter data processing system,
merging data from all the satellites available at a given time [77–81]. We selected the three
closest pixels (SAPG, SARA, SARN) to each of the TG (Figure 1), located at about 5, 13, and
9 km from Porto Garibaldi, Marina di Ravenna, and Rimini TGs, respectively. Each time
series was downsampled from daily to monthly by computing the average for the whole
samples of each month.

4. Analysis

To minimize the contrast between SA and TG time series, some procedures need to be
considered, depending on the purpose of the study. DAC correction in SA (see Section 1)
accounts for the low-frequency response of the sea surface to the atmospheric loading,
known as the Inverse Barometer (IB) effect [82], and for the high-frequency (HF) response
to wind and pressure forcing effect [83]. Since CMEMS products data are corrected by the
DAC, the IB and HF effects must be subtracted from TG data for comparison purposes.
However, the HF effect is negligible on periods longer than 10 days, hence no correction is
needed when monthly averaged data are used [23]. The correction for the IB effect allows
the subtraction of the atmospheric loading contribution from the observed RSL at TG.
The IB effect correction considered in this work is based on the Wunsch and Stammer [82]
formula:

IB(θ,λ,t) = −9.948 (∆rdry(θ,λ,t) - 1013.3) (2)

where ∆rdry(θ,λ,t) and −1013.3 are the local and global (standard) atmospheric pressure
(in millibar) respectively, and −9.948 a constant that accounts for the water density and
gravitational acceleration. The monthly mean time series of atmospheric loading at each
TG was recovered from the ERA5 reanalysis [84] developed by the European Centre for
Medium-Range Weather Forecasts (ECMWF). Furthermore, the application of the GIA
correction on TG time series is considered of great importance when reconstructing the
ASL, since no worldwide TG record can be assumed to be completely unaffected from the
GIA effect [85]. However, since we are interested in studying the local RSL change with
respect to the ASL change, and since we are considering short-lived time series, we can
neglect to apply this correction.

Assessing the rate of sea-level variations is a complicated task exacerbated when time
series are short and possibly affected by multi-annual and decadal oscillations, difficult to
determine on the short term. However, we stick on standard trend assessment by means of
ordinary least squares (using NumPy’s Python library [86]) to ease the comparison with
previous results even though we are conscious that more sophisticated analysis could
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provide different results and that this approach neglects the autocorrelation of the time
series. This weakness is compensated by the characterization of the periodic signals using
two separate approaches, first we compute the Lomb–Scargle periodogram [87,88] (LSP)
for each time series to provide a complete description of the frequency content by using the
Lomb package [89] implemented in R [90]. Then, we apply the Empirical Mode Decomposi-
tion (EMD) method [91,92], a standard method for splitting non-linear and non-stationary
time series into a limited sequence of empirically orthogonal “intrinsic mode functions”
(IMFs) that describe cyclic modes not necessarily characterized by a constant amplitude nor
phase. Differently from traditional spectral methods, the EMD is not requiring assumptions
on the functional expression of the regression model. This allows us to decompose each
time series in sequence of IMFs plus a residual. The latter, normally monotonic, helps to
define how a linear trend is a good model for the non-periodic component of each time
series. The significance of the resulting trends is discerned by means of standard test [93]
that checks the probability of the null hypothesis to be true. This test is reported beside
each trend with its significance code: *** p < 0.001; ** p < 0.01; * p < 0.05; ◦ p < 0.1; ‘ ‘ (blank)
p < 1.

5. Results
5.1. Sea-Level Assessment

Satellite altimetry time series (SAPG, SARA, SARN) are shown in Figure 2a. The visual
comparison among the three SA time series highlights excellent coherence that is confirmed
by the correlation coefficient [94] r = 0.98. To better characterize the frequency content of
these time series we compute the Lomb–Scargle periodogram (LSP; Figure 2b) for each of
them [87,88]. The time series are dominated by the annual and semi-annual oscillation,
both related to the seasonality, with peak-to-peak amplitude varying in the order of 150–300
mm (Figure 2a). The resulting LSPs (Figure 2b) also confirm the coherence between the three
sites and demonstrate the presence of multi-annual oscillation whose most relevant periods
are about 4 and 12 years (see Section 6.1 for detail). LSP significance analysis indicates a
small probability (<10%) for the peak at about 12 years to be artefact even though the large
sample spacing prevents an accurate definition of the period itself. Conversely, the random
peak probability is larger than 10% for the one at about 4 years.

Standard linear regression provides a coherent rate of 2.8 ± 0.5 mm/year over the
timespan January 1993–May 2019 (details in Table 1). These values are smaller but compa-
rable to the global average (in the range of 3.1–3.4 mm/year [95]) over the same timespan.
The rate assessed in our analysis is smaller than what observed for the northern sector of
the Adriatic for the period 1993–2015 (4.25 ± 1.25 mm/year) by Vignudelli et al. [69] even
though the two error bars partly overlap, and consistent with what observed for the period
1993–2018 (3.00 ± 0.53 mm/year) by Mohamed et al. [70]. We in fact observe that when
fitting the same time series with a second-order model (quadratic, Figure 2a), we get a
slight but statistically significant negative acceleration of −0.3 ± 0.1 mm/year2. This local
negative acceleration, in contrast with that at the global scale for which a slight positive
acceleration (0.084 ± 0.025 mm/year2) has been observed [4], is discussed in Section 6.3.

As summarized in Section 3, the three TG time series do not cover the same timespan
and are shorter than SA (Figures 3 and A1). This limits the comparison between different
sites and, for the shorter one, the reliability of the RSL rate assessment. The longest time
series is TGRA (January 1993–December 2015), showing a RSL rate of 5.8 ± 0.8 mm/year
(Table 2). This value is consistent with previous studies e.g., [60,68] and significantly higher
than the ASL rate observed offshore (January 1993–May 2019, Table 1), as a consequence
of the strong vertical land motion expected in this coastal sector. The rate from TGPG
has a large uncertainty that leaves the null hypothesis (absence of trend) likely, while
from TGRN it is largely negative. Despite the large disparity in the resulting RSL rate is
also a consequence of the different time spans, we note that the correlation coefficient,
restricted to the overlapping periods, is 0.80 between Porto Garibaldi and Marina di
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Ravenna, 0.94 between Porto Garibaldi and Rimini, and 0.77 between Rimini and Marina
di Ravenna.
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Table 1. Linear trend rate and acceleration estimated in this work from SA data. Symbol *** indicates
that the model is strongly significant with p < 0.001 and symbol * refers to p < 0.05.

SA
Rate (mm/year)

SA
Acceleration (mm/year2)

Porto Garibaldi
(January 1993–May 2019) 2.8 ± 0.5 *** −0.3 ± 0.1 *

Marina di Ravenna
(January 1993–May 2019) 2.8 ± 0.5 *** −0.3 ± 0.1 *

Rimini
(January 1993–May 2019) 2.9 ± 0.5 *** −0.3 ± 0.1 *
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Table 2. Linear trend rate (for raw data and IB-corrected data) for the tide gauges considered in
this work. The significance of the resulting trend varies according to the symbol beside each rate
(significance code: *** p < 0.001; * p < 0.05; ◦ p < 0.1; ‘ ’ p < 1).

TG Rate (mm/year) TG (IB-Corrected) Rate
(mm/year)

Porto Garibaldi (July
2009–December 2019) 1.4 ± 2.8 2.8 ± 2.2

Marina di Ravenna (January
1993–December 2015) 5.8 ± 0.8 *** 5.5 ± 0.8 ***

Rimini (July 2012–September
2020) −7.7 ± 3.6 * −5.1 ± 3.0 ◦

Since one of the goals of this study is the comparison between RSL and ASL to better
understand the different governing mechanisms and observational approaches, we apply
the IB correction to the raw TG data to compare them with SA time series (corrected
for DAC). This correction gives a valid reprocessing of the sea-level variability without
the meteorological effect influence [96]. We can observe that the IB correction leads to a
reduction, in amplitude, for most of the extrema (Figures 3 and A1) and this reflects in
smaller variance for the residual of the OLS regression and, indeed, in a smaller error
associated with the trend (Table 2). As expected, the IB-corrected TG time series result in
different RSL rates and smaller uncertainties. We also note that the quadratic fit for TGRA
returns a positive acceleration (0.7 ± 0.3 mm/year2), not present in the ASL data (Figure 3).

The SA time series have been shortened to match each of the three TG time series
(Figure 3). Also in this case the correlation coefficient is high (0.89) for Porto Garibaldi
e Rimini and moderate for Marina di Ravenna (0.66). We notice that the rates for the
shortened SA time series (Table 3) differ from what observed for the complete time series
(January 1993–May 2019). In particular, in the case of SAPG and SARN, for which we
consider only the last part of the time series, rates turn negative. In details, for SAPG
(timespan July 2009–May 2019) the trend is negative, while the corresponding rate of RSL
is positive (Table 3). This result for SA linear trends is not unexpected since it is consistent
with the observed negative acceleration (Table 1) that suggests a decrease in ASL rate of
about −5 mm/year over the removed 16 years (1993–2009). For the same reason, at SARA
the trend for the period January 1993–December 2015 is larger than the one computed
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for the whole SA timespan, and lower than the RSL rate (Table 3). Finally, for the case of
Rimini, SARN trend is negative (Table 3) but the large error bar demonstrates that the null
hypothesis (no trend) could not be rejected with 0.1 < p < 1. In other words, the large error
bar demonstrates the low significance of the linear model and that the rate could also be
null or even positive. As in the case of altimetry, the analysis of shorter-term time series
also modifies the TG trend values (compare Tables 2 and 3), except for TGRA whose time
series is fully covered by the altimetry and therefore does not need to be cut. Furthermore,
an important contribution to the local sea-level variation at different sites is represented by
the vertical movements (VLM) component included in the TG data. This will be taken into
account and discussed in Section 6.2.

Table 3. Linear trend rate comparison between SA and TG for the common timespan covered.
The significance of the resulting trend varies according to the symbol beside each rate (significance
code: *** p < 0.001; * p < 0.05; ‘ ’ p < 1).

SA
Rate (mm/year)

TG (IB-Corrected)
Rate (mm/year)

Porto Garibaldi
(July 2009–May 2019) −3.1 ± 2.0 1.2 ± 2.3

Marina di Ravenna
(January 1993–December

2015)
3.5 ± 0.6 *** 5.5 ± 0.8 ***

Rimini
(July 2012–May 2019) −3.3 ± 3.2 −7.6 ± 3.7 *

5.2. Periodic Signals

The large uncertainty in estimated rates, and in their variation over different time
spans, suggests analyzing the periodic components of the time series and to define their
relevance in terms of amplitude and frequency to better constrain the characteristics of the
sea-level change. With an approach similar to that used in Section 5.1 for SA, we analyze
the TG time series by means of LSP and EMD.

Results are shown in Figure 4. LSP analysis (Figure 4a) for the whole period range
confirms the prominence of the oscillation at 1 year (especially for longer time series),
while at shorter periods (below 1 year) different peaks emerge between 0.2 and 0.5 years
(i.e., between 2 and 6 months). For the case of Porto Garibaldi and Rimini we notice
that the IB correction enhances the signal for the annual oscillation and that a clear peak
emerges at 0.85 years (10 months). This partly contrasts with what observed for the LSPs
computed for the SA time series in which the semi-annual oscillation emerges more clearly.
The ascending termination of the periodograms at the longest period (right side) for the
case of TGRN and TGRA could reflect the presence of periodic signals at periods longer
than the timespan covered by this (very short) time series. We also notice that IB correction
reduces the power amplitude at longer periods.

To better discern the periodic signals from the long-term trend, we also applied the
EMD analysis to each IB-corrected time series. From Figure 4b, we note that at high
frequency (IMF1–2), large non-sinusoidal oscillations exist, and these show an overall
coherence between the three sites. This suggests a regional scale origin. IMF3, whose
periodic signals range between 1.5 and 3 years, is not coherent during the overlapping
timespan, pointing to a site-related effect. IMF4 exists only for Marina di Ravenna and
Rimini but these time series overlap for a very short timespan and this prevents any
comparison. IMF5 at even longer periods emerges only for Ravenna and it demonstrates
an almost sinusoidal oscillation with a period of about 10.7 years. Residuals confirm what
observed from linear regression (Table 3) and introduce some more complexity: Marina
di Ravenna shows short-lived positive acceleration around year 2000, Porto Garibaldi is
almost linear with two minor inflections, while Rimini shows a parabolic shape contrasting
with a linear model. For Rimini, the shortness of this time series limits the distinction



Remote Sens. 2021, 13, 97 11 of 26

between a branch of a parabola or of a sinusoid with period of about twice the length of
the time series.
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6. Discussion

The above data analyses provide a complex picture for the sea-level variation along the
E-R coast. Actually, different data and processing, and the large literature available for the
region suggest several perspectives for discussing and interpreting such complexity. In this
section, we propose a comprehensive interpretation of our results, also in the framework
of previous studies. We focus on factors affecting sea-level variability, on the role of the
VLM in the E-R coast, and on the difficulties of providing a figure for the current or recent
rate of sea level for the area.

6.1. Sea-Level Time Series and Rates for the E-R Coast

To verify the consistency of different instrumental sea-level records at the coastal
scale, TG and satellite altimetry time series were analyzed at three sites along the E-R
coast. Altimetry time series at the three sites turn out to be very consistent, showing
basically the same rate of sea-level rise (Figure 2a; Table 1) and variability in the last
25 years, also denoted by a perfect correlation among them (r = 0.98). On the other hand,
the results provided by the three TGs are more variable in terms of trend and variability
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both among them and with respect to the altimetry. This can be the consequence of some
critical factors. First, the TG time series cover different time spans (Figure 3), and this
can cause discrepancies in the observed rates (Tables 2 and 3). Indeed, the timespan for
which the three TG time series overlap is very short, thus preventing a reliable comparison.
Secondly, rate assessments based on short records are particularly sensitive to oscillations
especially at their extremes, thus they are not suitable for deriving climatological-related
information in the long term [2].

It is a common practice to reproduce the sea-level variation over time by a linear model.
However, this approach sometimes forces the observed phenomenon into a model that is
too simple, neglecting periodic and aperiodic variations of different time scale and size that
can bias the resulting trend. The addition or subtraction of a few samples at the time series
extrema can cause considerable variations of the trend rate as recognizable by comparing
values listed in Tables 1 and 2 with those of Table 3. For the case of the Adriatic Sea, the rate
of sea-level rise strongly varies with time because of the chosen record length [68,85,97,98],
and by the contamination of seasonal and inter-annual variability [99]. To constrain this,
we combined EMD analysis and LSP periodograms. LSP, among the expected annual and
semi-annual oscillations, demonstrates two oscillations at about 4 and about 12 years for
SA data, while the interpretation of TG data is more complex given the short timespan for
TGPG and TGRN. TGRA shows a more complex periodogram in this band, suggesting that
several events contribute to hinder the SA peaks; however, EMD analysis returns a period
signal at about 10.7 years. We can speculate that this oscillation and the SA peak at about
12 years are comparable with the 10 years-oscillation at Mediterranean scale observed by
Bonaduce et al. [100].

The oscillations that influence the Adriatic Sea are mainly due to cycles that act at
annual (stronger energy signal), semi-annual (6 months) and inter-annual (5 years and
higher) scales [101], as also demonstrated in our data (Figures 2a and 4a). The whole
Mediterranean basin is also influenced by oscillations at lower frequencies driven by
natural modes, which produce intermittent anomalies in the long-term rate. As analyzed
by Galassi and Spada [45] the NAO and AMO power are mainly concentrated at a period
of about 8 and 9 years respectively; they also pointed out that the AMO strongest signal is
found at multidecadal periodicities, i.e., between 50 and 70 years. Moreover, one of the
most energetic modes of variability in the Adriatic basin is linked to the periodic occurrence
(approximately 20 years) of opposite phases of the NAO and AMO [45] which produce a
large scale zonal atmospheric gradient [102] and a sea-level non-steric fluctuation directly
linked to mass transport through the Strait of Gibraltar driven by wind [39,103]. The last
occurrence of this phenomenon was determined as the cause of the large positive anomaly
recorded in sea-level signal during 2010–2011 [40,70] by all Mediterranean TG stations [100].
Indeed, the right site upgoing termination of the LSPs (Figures 2b and 4a) could be an
indicator of a longer period oscillation that could not be quantified here because of the
length of the time series.

One further cause of the variability in SL rate and corresponding uncertainties is
the different data processing and different corrections applied. An example of the above
cited complexity is the Marina di Ravenna site for which several previous studies exist,
based on the same TG time series but using different methodologies and adopted correc-
tions, as shown in Figure 5 where the results of some of the most representative studies
conducted on TGRA are summarized (see also Table A1). There is a relation between the
time series length and the error size of the trend resulting from OLS regression, i.e., the error
scales inversely with the number of samples of the analyzed time series [104]. Rate for
longest datasets generally agree, but only when similar data corrections are applied: Zerbini
et al. [73] and Bruni et al. [74] removed from data the non-linear VLM resulting from GNSS
data, while Cerenzia et al. [60] accounted for the linear VLM (from various geodetic data),
and Tsimplis et al. [41] normalized the data with respect to the TG time series of Trieste
(considered to be a tectonic stable site). Rates computed from long time series without
VLM correction are significantly higher [41,60,105] but still relatively grouped. By contrast,
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rates from short time series (i.e., less than 20 years, see [60,68,105,106]) denote extreme
variability and inconsistency between them regardless of the corrections applied, e.g., IB
correction and deseasoning, whose influence is relatively low here with respect to the
crustal movements corrections. This highlights how the natural variability and the con-
tribution of VLMs strongly influences the RSL signal at the TGs, preventing the estimate
of a univocal sea-level trend valid at the short-, middle-, and long-term scales. Given the
short time spans and the described complexities, we thus cannot establish if and how
the observed trends could be representative of the long-term rate of RSL rise. Also, the
time series analyzed in this work (Figure 3; Table 2) suggest that a not constant rate of
subsidence might play a crucial role in the observed RSL change at this time scale.
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Regarding the comparison between the two different techniques, the analyzed SA
and TG records have been downsized to cover only the overlapping timespan at each
site and this causes differences in the estimated rates at the three sites (Tables 2 and 3).
The results of this comparison are thus expected to improve in the next years/decades
when the available time series will be longer for the analyzed sites. An 18-year- [107] or
15-year-long [108] recording is needed to obtain a good correlation. It has been shown,
in fact, that over intervals shorter than 10 years the inter-annual variability affects more
the rate of global mean sea level from TG than from altimetry [68]. However, despite these
considerations, we obtain very high correlation between SA and TG sea-level time series
at the three studied coastal sites. In particular, the three downsized SA time series show
a strong correlation with the IB-corrected TG time series (Figure 3), especially at Porto
Garibaldi and Rimini (r = 0.98). This confirms the good quality of the chosen SA product
that, as suggested by Vignudelli et al. [69] for the northern Adriatic Sea, is less affected by
degradation at the coast than previous SA data. As a matter of fact, different linear rates
result for TG and SA at each of three study sites (Table 3). Since SA provides a coherent
rate along the E-R coastal area (Table 1), an important contribution to the spatial variability
of RSL at different sites should derive from the VLM component included in the TG data,
and this is the focus of the next section.
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6.2. The Role of Vertical Movements in Sea-Level Determination

In the E-R coastal area (and on a great portion of the Northern Adriatic coast, Italian
side) subsidence is widespread and occurs at high rates [109], while vertical deforma-
tions caused by other phenomena as GIA are more than one order of magnitude smaller
than subsidence that here dominates the VLM affecting RSL change [60,68,69,105,106,109].
Presently, different integrated techniques, such as high-resolution levelling, e.g., GNSS and
InSAR, provide data on VLM with increasing accuracy [57,58]. However, the small size
and short-lived variation of vertical deformation processes causes this information to be
not always comparable/homogeneous. Furthermore, the common practice of co-locating a
GNSS station at the TG site is relatively recent and many TGs do not have associated VLM
data with the necessary precision.

As mentioned in Section 3, TGPG has co-located GNSS station (coded name GARI)
since Jul. 2009. GARI station provides well constrained VLM data well reproduced by a
linear trend with rate equal to −2.8 ± 0.1 mm/year. At Marina di Ravenna, the VLM rate
estimated for the GNSS station located close to TGRA, estimated through the Gipsy software
over the timespan July 1996–December 2015, is −5.6 ± 0.2 mm/year [110]. These VLM
rates, when compared with rates of RSL at each site well explain a relevant portion of the
sea-level change in the considered time frames (Table 2) while the ASL contribution seems
low or negligible. At Rimini, the rate of RSL in the time frame Jul. 2012–Sep. 2020 (the
only one available at TGRN) is negative (−5.1 ± 3.0 mm/year; Table 2), in contrast with
what observed for TGRA and TGPG. Here, a GNSS station (ITRN) operated by the Coastal
Geodetic Network [57] (located at 2.6 km from the tide gauge, at 44◦2’54”N 12◦34’55.4”E)
shows a VLM rate almost null (0.00 ± 0.8 mm/year) for the period 2011–2016 (for further
details see [111] and references therein).

Integrated data on vertical deformations (topographic levelling, GNSS and InSAR) of
selected benchmarks of the E-R Coastal Geodetic Network and data previously acquired in
the framework of the Regional Network for subsidence monitoring [112], provide gradually
decreasing subsidence rates for all the coastal sites under study in the last 25 years [55,57]
(Table 4). These data are gridded at 100 m × 100 m and reproduced as isokinetics of VLM
at the regional scale; associated error is estimated as ±2 mm/year [57]. For the area that
contains the TG data, rates summarized in Table 4 can be considered representative of the
subsidence. Actually, these data agree with the rate observed by GNSS at Porto Garibaldi
and Marina di Ravenna. For Rimini, subsidence data suggest that this phenomenon is
gradually decreasing but not inverted, as the negative rate of RSL rise might suggest.

Table 4. Ranges for the rate of subsidence estimated over different time frames for each of the study
sites from selected benchmarks of the E-R Coastal Geodetic Network [111].

1992–2000
(mm/year)

2002–2006
(mm/year)

2006–2011
(mm/year)

2011–2016
(mm/year)

Porto Garibaldi 7.5–10 7.5–10 2.5–5 2.5–5

Marina di
Ravenna 7.5–10 7.5–10 5–7.5 2.5–5

Rimini 5–7.5 5–7.5 5–7.5 0–2.5

As a parallel approach, we use the SLE (Equation (1)) to compare the observed sea
level or ground variation with the one obtained by the combination of the over two data.
It must be pointed out, however, that the accuracy of this method is frequently larger
than 1 mm/year whatever its application [113–115]. Despite the coarseness of this method
(20 years of data should be required to yield a high-precision estimate, [115]) several
authors have applied it to regional studies, since understanding VLM for sea-level research
is of farthest significance e.g., [21,116–124].

For the case of Porto Garibaldi, the three variables that form Equation (1) are available
from the different observables considered for this work over the common period July
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2009–May 2019. This allows us to evaluate the different estimates obtained through the
two approaches, i.e., by comparing the rate obtained from the linear regression of the direct
observation (Table 3) with those computed by using Equation (1) (hereafter computed).
Visual inspection of Figure 6 suggests a strong correlation between the pairs (SA, U+S)
and (TG, N-U), this confirmed by r = 0.90. By contrast, the correlation between (N-S)
and the GNSS is low (r = 0.37). This follows the different accuracy of GNSS data (below
0.1 mm/year) with respect to TG data contained in N-S. The trend values related to the
computed time series (Table 5) slightly differ from those of the observed one (Table 3).
We note that only for U the null hypothesis (no trend) could be rejected. Figure 7 shows
that the observed and computed trends match within their error bars, despite the differ-
ences between their central values, suggesting a good coherence between the different
observations. In particular, the trend observed for N (from U+S) is lower in value than
the ASL derived from SAPG (−3.1 ± 2.0 mm/year) even though their error bars overlap
(Figure 7). The trend for S is almost null and its error bar shows good overlap with the
rate of RSL given from TGPG (1.2 ± 2.3 mm/year; Figure 3, Figure 6, and Figure 7). U is
affected by larger uncertainties with respect to the GNSS time series, with uncertainties
lower in value (−2.9 ± 0.1 mm/year in the time frame Jul. 2009–May 2019) and completely
contained in the U error bar (Figure 7).
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Table 5. U, N and S resulting from the SLE (Equation (1)) where N is the ASL variation, U is vertical
displacement and S is the RSL variation (values in mm/year). NA = not available. The significance of
the resulting trend varies according to the symbol beside each rate (significance code: *** p < 0.001).

U N S

Porto Garibaldi
(July 2009–May 2019) −4.3 ± 3.1 *** −1.7 ± 2.3 −0.2 ± 2.1

Marina di Ravenna
(January

1993–December 2015)
−2 ± 1 NA NA

Rimini
(July 2012–May 2019) 4.3 ± 4.9 NA NA
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be noted that the values of the observed and computed trends match within their error bars.

For the case of Marina di Ravenna and Rimini, only S and N can be directly determined,
since GNSS instruments are not co-located at these TGs. Then, Equation (1) can be applied
to indirectly estimate U. Figure 8 shows the time series (SA-TG) for Marina di Ravenna
and Rimini (with their related errors) whose rate (Table 5), according to Equation (1),
should represent (U = N − S). These values are quite unexpected since subsidence at
Marina di Ravenna is known to be larger (see Table 4); at Rimini this contrasts with the
observed subsidence (Table 4). However, if U for Marina di Ravenna is computed on
the reduced timespan for which GNSS data exist (July 1996–December 2015) the rate
of VLM is −4.7 ± 0.6 mm/year, smaller than that provided by the GNSS located near
TGRA (−5.6 ± 0.2 mm/year). The two results do not match within their error bar for only
0.1 mm/year. As mentioned above, this GNSS is in the vicinity of TGRA and, the larger
the distance between GNSS and TG, the smaller the representativeness of the real VLM
at the TG. It has been observed that, when large heterogeneities exist, a few hundred
meters of distance between TG and GNSS stations can cause decoupled movements [18].
This seems to be the case for the Marina di Ravenna harbor where Cerenzia et al. [60] found
different rates of subsidence at very short distances, likely due to the weight effect of the
structures themselves (e.g., the embankment with respect to the dock and the lighthouse).
Fenoglio-Marc et al. [68] reports similar results for the Marina di Ravenna site, where GNSS
observations provide a higher VLM rate with respect to the one computed from SA and
TG difference, attributing it to anthropogenic causes, to the distance between the TG and
the closest SA grid point and to the corrections applied on the RSL time series.

At Rimini, the context appears completely different with respect to Marina di Ravenna
and Porto Garibaldi. Despite the high correlation between TGRN with SARN, at Rimini
the RSL shows a negative trend (Figure 3), although the small timespan covered by TGRN
time series gives at this data very low statistical significance (Tables 2 and 3). The time
series (SA-TG) shows a positive trend for U (Table 5) indicating a “proxy-derived” local
effect of land uplift (Figure 8), in contrast with the VLM rates (0.00 ± 0.8 for the timespan
2011–2016) provided by the ITRN station. GNSS values agree with recent subsidence
monitoring activities using InSAR (Table 4). The error associated with InSAR measure is
2 mm/year, suggesting that for the period 2011–2016, some portion of the Rimini area that
includes the GNSS and TG stations may undergo opposite VLMs (uplift) with respect to
other sectors of the E-R coastal belt. At Rimini, the GNSS station is located 2.6 km apart
from the TG and this makes the data comparison even less effective than for the case of
Marina di Ravenna [18]. Measured subsidence at Rimini has markedly decreased in the
last two decades [57] and it cannot be excluded that VLM could reverse in the next decades;
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unfortunately, to date there is not enough data to support this hypothesis and more years
of data acquisition are required.
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6.3. The Sea-Level Trend Acceleration Issue

As anticipated in the introduction, at global scale the sea level has been rising at a rate
of 3.3 ± 0.5 mm/year [3], with a positive acceleration of 0.084 ± 0.025 mm/year2 [4] over
the altimetric era (1993–present). Global maps show that the sea-level rise is not spatially
uniform, with a diffused pattern of null rate and even showing a sea-level fall, see [125].
Then, it is not surprising that this heterogeneity also reflects in different local sea-level
acceleration as for the case of the small spot target of this study in which we observe,
for the same period, a negative acceleration of –0.3 mm/year2. Acceleration could be the
consequence of global short-lived phenomena, as for the case of the Pinatubo eruption in
1991 [126] or of climatological events. Moreover, given the length of the SA time series,
accelerations could be also a consequence of the contribution of multidecadal oscillations
for which only a portion of it is sampled. Because of this consideration, the observation
of a full cycle (at least) is required to properly model the oscillation itself, determine its
origin, and its plausible relation with climate change. Unfortunately, since the satellite
altimeter era only started in 1993, and long-term TG observations are contaminated by
an unknown non-linear VLM (measured only since co-located GNSS acquisition started,
i.e., in the late 1990s), it is currently complicate to properly attribute to the ongoing observed
regional sea-level variations to climatological origin. In our case, we observe a localized
negative acceleration for the E-R coast, whose interpretation should be put in the broader
context of the Mediterranean Sea in which a marked spatial variability of sea-level trend is
observed, for instance, by Bonaduce et al. [100]. The ASL negative acceleration observed
at the E-R coast in recent decades (Figure 2a; Table 1) has been previously noted by other
authors. After a positive acceleration of sea-level rise observed in the Mediterranean Sea
during the 1990s [127] since the early 2000s, in fact, the sea level stopped rising [128–130];
this seems to match well with the quadratic fit shown for SA in Figure 2a. As previously
explained in Section 6.1, ocean–atmosphere oscillations are responsible for inter-annual
and interdecadal cyclic sea-level variations in the Mediterranean; the main engine of these
phenomena has been associated, at a global scale, with natural modes (e.g., the NAO and
the AMO) inducing temporary reductions or magnification of sea-level trend amplitude at
the basin to regional scale [103]. Besides this inter-annual variability, changes in sea-level
acceleration on multidecadal time scales have been documented by several authors for
the whole 20th century which is generally characterized by a greater rate in the first half,
followed by an overall negative acceleration [43,131–133]; however, the processes causing
this variability, and their link to climate change, are not completely understood yet.

We showed in Section 5.1 that the SA time series, shortened for matching with the TG
time series (Figure 3), provide rates differing from what observed for the complete SA time
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series (January 1993–May 2019, Figure 2a). In particular, in the case of SAPG and SARN,
rates turn negative (Table 3; although for Rimini the hypothesis of no trend could not be
rejected), consistently with the observed negative acceleration (Table 1). For the Marina
di Ravenna site, the overlapping timespan (1993–2015) is long enough to obtain, from the
quadratic regression, a significant acceleration in the time series (Figure 3). Namely we
get 0.7 ± 0.3 mm/year2 for TGRA and −0.2 ± 0.2 mm/year2 for SARA. The opposite signs
suggest that two different phenomena govern the two accelerations and a good candidate
could be VLM that, as mentioned above, is governed here by subsidence. From Equation
(1), the VLM acceleration is the difference between those of the two terms mentioned above,
and it results equal to −0.9 ± 0.4 mm/year2. Actually, subsidence is slowing down in the
region and locally in the surrounding of TGRA as resulting from Table 1, and this should
reflect in a positive acceleration in the ongoing negative VLM. We can then argue that what
we are observing at TGRA is something different from the effects of the local subsidence or,
more likely, other phenomena are governing the acceleration at TGRA.

At the regional scale, the decrease of subsidence measured by the E-R Coastal Geodetic
Network over recent decades (see Table 4) is a favorable indication in terms of reducing
future flooding vulnerability for this area. However, as already pointed out by Cerenzia
et al. [60] and Fenoglio-Marc et al. [68], and discussed at Section 6.2, different rates of
VLM are available, depending on the precise site of measurement and not necessarily
representative of the VLM at the TG location. We thus remark the need for local and
repeated VLM measurements at the TG site to correctly interpret RSL series and for
detecting possible ASL positive or negative accelerations.

7. Conclusions

In this paper, we have studied the sea-level variation along the E-R coast by focusing
on monthly sea-level observations from the three available TGs located at Porto Garibaldi,
Marina di Ravenna, and Rimini. Data are compared with CMEMS SA data from the three
grid points closer to each of the TGs; The combined use of altimetry and tide gauge data
(supplemented by GNSS acquisition) is considered, in fact, a promising approach, in terms of
precision and cost-effective implementation, to better define various physical processes in the
coastal domains and to anticipate the impacts of future rise in sea levels [10,11,22,69,134–137].

Our results show that the ASL time series (from SA) are coherent along the coastal
tract, providing a rate of 2.8 ± 0.5 mm/year for the timespan Jan 1993–May 2019, smaller
but comparable to the global average (3.3 ± 0.5 mm/year). Moreover, we note in the
E-R coast a negative acceleration of −0.3 ± 0,1 mm/year2 that contrasts with the positive
global acceleration. The comparison with the IB-corrected TG time series suffers from
the short overlapping period between the two different datasets (Jul. 2009–May 2019 at
Porto Garibaldi; Jan 1993–Dec 2015 at Marina di Ravenna; Jul. 2012–May 2019 at Rimini).
Despite their shortness, the SA and TG time series show high correlation coefficient (0.89)
at Porto Garibaldi and Rimini, and a moderate one (0.66) at Marina di Ravenna. The lower
correspondence achieved at Marina di Ravenna, as well as the difference between ASL
and RSL rates for this site (Table 3), are mostly associated with the local rate of VLM.
Actually, VLM can hamper the detection of signals associated with sea-level change and
related spatial variations [22]. For all the three analyzed sites, this remains an important
contribution to quantify. It is remarked the need for co-located monitoring of the ground
motions at the TG sites, since the determination of VLM is a key element in understanding
how sea level has changed over the past century and how future sea levels may impact
coastal areas [22].

Finally, as already observed for other coastal areas [11,13,69], the good match between
altimetry and in situ observation confirms that high-standard satellite product can provide
consistent data even at short distance from the coast. Linking satellite altimetry measure-
ments with tide gauge, by bridging the open-ocean measurements with those in proximity
of the coast [12] is part of a new challenge in monitoring sea-level rise along coastal tracts.
In this view, the maintenance and implementation of observation stations for continuous
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monitoring of sea level in the coastal zone is a fundamental tool for coastal management
and defense strategies.
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AMO Atlantic Multidecadal Oscillation
ARPAE Regional Agency for Prevention, Environment, and Energy of the

Emilia-Romagna region
ASL Absolute Sea Level
CMEMS Copernicus Marine Environment Service
DAC Dynamic Atmospheric Corrections
DInSAR Differential Synthetic-Aperture Radar Interferometry
E-R Emilia-Romagna
EAC Eastern Adriatic Current
ECMWF European Centre for Medium-Range Weather Forecasts
ECV Essential Climate Variable
EMD Empirical Mode Decomposition
ENSO El Niño Southern Oscillation
ERF Effective Radiative Forcing
GARI Permanent GNSS station co-located at Porto Garibaldi tide gauge
GCOS Global Climate Observing System
GIA Glacial Isostatic Adjustment
GNSS Global Navigation Satellite System
HF High Frequencies response of sea level to wind and pressure forcing effects
Hs Significant wave Height
IB Inverse Barometer effect
IGS International GPS Service
IMF Intrinsic Mode Function
InSAR Interferometric Synthetic-Aperture Radar
IOC Intergovernmental Oceanographic Commission of UNESCO
IPCC Intergovernmental Panel on Climate Change
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GCOS Global Climate Observing System
LSP Lomb–Scargle Periodogram
NAO North Atlantic Oscillation
NGL Nevada Geodetic Laboratory
OLS Ordinary Least Square regression
PSMSL Permanent Service for Mean Sea Level
RLR Revised Local Reference
RMN Italian National Tide Gauge Network
RSL Relative Sea Level
SA Satellite Altimetry
SAPG Closest altimetry pixel to Porto Garibaldi tide gauge
SARA Closest altimetry pixel to Marina di Ravenna tide gauge
SARN Closest altimetry pixel to Rimini tide gauge
SLE Sea-Level Equation
SSH Sea Surface Height
TG Tide Gauge
TGPG Tide Gauge at Porto Corsini
TGRA Tide Gauge at Marina di Ravenna
TGRN Tide Gauge at Rimini
UNFCCC United Nations Framework Convention on Climate Change
VLM Vertical Land Movement
WAC Western Adriatic Current
DUACS Data Unification and Altimeter Combinations System
INGV Istituto Nazionale di Geofisica e Vulcanologia
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Figure A1. Raw TG time series. Dotted lines represent estimated linear models resulting from OLS regression. The offsets
between the time series are arbitrary for better readability.
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Table A1. Linear sea-level trend estimates (and related corrections applied) from some of the most
representative studies conducted on the Marina di Ravenna TG time series. Time frames considered
by various authors are indicated in brackets.

Rate (mm/year) Type of Data Considered

Antonioli et al., 2017 8.3 ± 0.3 monthly mean (2000–2013)

Bruni et al., 2019 1.25 ± 0.16 monthly mean (1873–2016), detrended for
non-linear VLM

Cerenzia et al., 2016

8.5 ± 0.2 annual mean (1897–2014)

7.7 ± 0.3 monthly mean (1970–2013)

9.8 ± 1.3 annual mean (1990–2013)

(2.2 ± 1.3) (detrended for linear VLM)

Fenoglio-Marc et al.,
2012 6.5 ± 1.5 monthly mean (1993–2008), IB correction,

deseasoning

Masina and Lamberti,
2013

8.6 ± 0.5 annual mean (1896–2011)

3.1 ± 0.7 annual mean (1896–1950)

10.3 ± 8.0 annual mean (2000–2011)

Tsimplis et al., 2012

3.1 ± 1.3 annual mean (1897–1921)

1.5 ± 1.3 annual mean (1905–1921), normalized for Trieste

8.4 ± 1.1 annual mean (1937–1972)

(7.1 ± 0.8) (normalized for Trieste)

3.9 ± 0.6 daily mean

Zerbini et al., 2017

1.22 ± 0.32 annual mean (1896–2012), IB correction,
detrended for non-linear VLM

1.05 ± 0.54 annual mean (1934–2012), IB correction,
detrended for non-linear VLM
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