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Abstract. As side effects of the end of Dennard’s scaling, power and
thermal technological walls stand in front of the evolution of supercom-
puters towards the exaflops era. Energy and temperature walls are big
challenges to face for assuring a constant grow of performance in future.
New generation architectures for HPC systems implement HW and SW
components to address energy and thermal issues for increasing power
and efficient computing in scientific workload. In thermal-bound HPC
machines, workload-aware runtimes can leverage hardware knobs to guar-
antee the best operating point in term of performance and power saving
without violating thermal constraints.
In this paper, we present an integer-linear programming formulation
for job mapping and frequency selection for thermal-bound HPC nodes.
We use a fast solver and workload traces extracted from a real super-
computer to test our methodology. Our runtime is integrated into the
MPI library, and it is capable of assigning high-performance cores to
performance-critical processes. Critical processes are identified at execu-
tion time through a mathematical formulation, which relies on the char-
acterization of the application workload and on the global synchroniza-
tion barriers. We demonstrate that by combining long and short horizon
predictions with information on the critical processes retrieved from the
programming model, we can drastically improve the performance of the
target application w.r.t. state-of-the-art DTM solutions.

Keywords: HPC, thermal model, power model, workload model, energy
saving, thermal constraint, DTM, MPI, runtime, ILP, quantum espresso

1 Introduction

Driven by Moore’s law, the trend in increasing performance of CPUs has seen
as collateral effects the rapid increase of power consumption and power density
that in turn have limited the achievable performance and caused an acceleration
of chip aging. Cooling and heat generation are rapidly becoming the key limiters
for high performance processors, especially for HPC and data centres which
typically host clusters of thousands of high-performance processors.
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In High-Performance Computing (HPC) nodes the maximum safe temper-
ature at which the processing elements can run depends on the cooling tech-
nologies. For instance, Intel Xeon E5-26XX v3 server class processors have spec-
ifications on the maximum silicon temperature ranging from 69oC to 101oC
according to the package thermal resistance (cost) and the nominal thermal de-
sign power (TDP)1. To enforce these safe working temperatures, HPC nodes use
active-cooling solutions which translate in additional power consumption.

Dynamic thermal management (DTM) has been studied to limit the cooling
effort by controlling and reducing the heat generation. This is achieved moni-
toring the HW thermal sensors and the application workload reacting on CPU
dynamic voltage and frequency scaling (DVFS) states. New generation multi-
core CPUs, which are used in HPC systems, can apply a different voltage and
frequency to each core independently [17]. This opens new scenarios for fine-
grain DVFS control in DTM solution. Operating Systems use feedback loops
between sensors and DVFS states of each core to scale down frequency states to
avoid thermal hazards. Indeed, several solutions explore proactive techniques for
DTM strategies to improve performance in thermal-bound systems [2, 12, 20, 21].
DTM strategies take advantages of the heterogeneity in the thermal dissipation
of cores, which is related to chip and board design, and manufacture, to maxi-
mize the performance. However, these approachs often results in a performance
unbalance between the cores. Coldest cores run faster than hottest cores.

Applications in HPC take advantage of the parallel architecture to speed
up the execution of large scale simulations and workloads. The message passing
interface (MPI) programming model is the de facto standard in HPC programs
for splitting the workload in tasks that execute in parallel in the HPC machine.
During the execution of an MPI-based application, the tasks alternate phases of
computation on local data with phases of data exchange and synchronization. A
critical design parameter in MPI applications is the balancing of the workload
between the tasks, and the minimization of the waiting time for each tasks in
the synchronization points [19, 25]. Critical tasks, in a specific code segment, are
the ones which carry on the most workload and arrive late at a synchronization
point. In practice, they limit the application speed in the specific code segment.
Application developers and users in HPC systems parameterize the application
configuration to balance the workload between the tasks. This intended to limit
the slowdown induced by critical tasks. As previously seen, DTM techniques
can create local unbalance between cores to maximize processor’s throughput.
This can be significantly detrimental for application performance as it may slow
down critical tasks in parallel applications. However, this can be translated into
an advantage for DTM strategies. Indeed, critical tasks could be assigned to the
coldest cores at the application start-up phase and could reward critical tasks
slowing down the less critical ones. In this chapter we focus on this problem,
creating an application-aware dynamic thermal management runtime for HPC
processors.

1 Intel Xeon R©Processor E5 v3 Family Thermal Guide



Application-Aware Dynamic Thermal Control in HPC Nodes 3

We present a DTM solution for HPC systems to increase performance of
thermal-bound HPC systems exploiting thermal capacitances. We first propose
a novel thermal model description derived from state-space representation of a
real HPC node. We study the sensitivity of the application walltime to frequency
changes in the communication phases. Our exploration reveals that the penalty
in the application walltime caused by the frequency reduction decreases pro-
portionally with time spent in the MPI library. After that, we focus our work
on the workload distribution of of a real supercomputer’s application. We iden-
tify the presence of critical tasks, which will be prioritized w.r.t. the other MPI
tasks. Secondly, we present two novel ILP formulations for thermal-aware task
mapping and frequency selection for large parallel heterogeneous many-core. We
propose a task criticality model which relies on a mathematical formulation;
this model considers application workload and synchronization constraints to
reduce the slack times. We use the thermal characteristics of the compute node
to formulate both the ILP problems. In this context we explore the impact of
the time horizons at which future temperatures are predicted in the efficacy of
the proposed DTM solution. We then show that our optimization models can
significantly improve the performance in supercomputer environments without
inducing significant overhead in time-to-solution.

This chapter is an extension of the conference paper [8]. We extend the
previous work by: 1) A detailed analysis of the power consumed by the main
components (core and uncore) in supercomputer’s node under different DVFS
operational states. 2) A detailed analysis of the workload distribution in our
target HPC application among the MPI tasks , and of the task criticality in pe-
riods of tens seconds. 3) Proposing new module that we implement the proposed
thermal controller called ”Task Criticality Generator”. This module is respon-
sible to profile, calculate the MPI activity using a new proposed mathematical
formulation, and identify the task criticality of each task in each time period. 4)
Evaluating the performance trade-offs given by the ”Task Criticality Generator”.

The chapter is organized as follows. Section 2, presents state-of-the-art works
on thermal management. Section 3 characterizes thermal proprieties of a sci-
entific computing node and reports a study on workload unbalance in a target
scientific application. Section 4 shows our DTM solution for thermal-aware map-
ping and control based on ILP formulation and task criticality generator. Section
5 reports experimental results. While Section 6 describes the conclusions of this
work.

2 Related Work

Several works were focused on thermal-aware workload allocation based on DVFS
strategies. Those techniques include: (i) on-line optimization policies [11, 4, 10,
32], which are based on predictive models and embedded sensors to read the
current temperatures on the system; (ii) scheduling approaches for off-line allo-
cation [26, 24] which rely on simplified thermal models, usually embedded in the
target platform [4] or simulating chip temperature [31].
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Today’s thermal management works range from mobile to large scale parallel
machine, like supercomputer and HPC systems. Xie et. al. [30] show that mobile
systems are thermally constraint. Interestingly, thermal constraints, come from
user experience and not from silicon limits. Conficoni et al. [9] show that the
power cost of HPC cooling depends on several factors, for instance IT power
consumption, the cooling control policies, and the ambient temperature. On
the other hand, the power consumption is intertwined with workload execution
and computation phases [23, 7], which can produce high thermal heterogeneity
between nodes and CPUs. For this reason, over-provisioning cooling design can
causes severe inefficiencies.

Wang et. al. [29] show that fan power can account for up to 23% of typi-
cal server power and scales super-linearly with node utilization. Authors in [6]
extract a predictive thermal model directly from the multicore device correlat-
ing power, performance and thermal sensors implemented in HW. They show
that the thermal evolution of a multicore device can be modeled with a linear
state-space representation. the leakage-power dependency from temperature can
be modeled as a perturbation of the state matrix of the thermal model. Due to
different materials present in the heat dissipation path, the thermal transient
is multi-modal with time constants that vary from ms to tens of seconds. Ben-
eventi et al. [5] shows in an Intel based computing nodes with 36 physical cores,
that the increased number of processors integrated in the same die generates
significant thermal gradients and this thermal heterogeneity can be exploited by
thermal/aware MPI task allocation to reduce the fan speed and power without
impacting the application performance.

To find a close form solution of the fast mapping problem under thermal
constraint, Hanumaiah [18] assumes the absence of direct thermal exchange from
the hot to the cold cores of the same die. Mutapcic et al. [24] formulate a
convex optimization problem to control the speed of the processor, which is
subject to environment thermal constraints. They solve it with a specialized
algorithm. However, their optimization algorithm does not cover the case of an
higher number of cores than the number of tasks (some cores remain in idle
state).

Predictive controls are often based on thermal and optimization models which
can guarantee a safe-working condition applying performance constraints to the
systems. Rudi et al. [28] have developed an Integer Linear Programing (ILP)
model for task allocation and frequency selection to avoid thermal hazards in
many-core architectures. This thermal control is able to leverage on the idleness
of the cores when tasks are less than the number of available cores allocating
tasks on the coldest cores and leaving hottest ones in idle states. The limit of
[28] is the task allocation, which is not handled by the systems.

There are even significant works on energy-aware MPI library. Rountree et
al. [27] use DVFS mechanism to reduce the frequency when there are no critical
tasks running on the CPU. Adagio is not only one that use predictions to improve
energy efficiency with DVFS techniques [14, 15, 22]. Instead, Eastep et al. [13]
improve performance in power-constraint system balancing node’s power budget
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to speed up critical tasks. However, these solutions do not consider thermal con-
straint systems where CPU performance are limited to respect the safe-working
temperature.

3 Workload and Thermal Modelling of HPC

Dynamic thermal management policies aim to reduce the cooling effort and
power by adapting the processing element’s performance to ensure a safe working
temperature. In this section, we first introduce the nomenclature and the thermal
properties of HPC nodes with direct measurements. Then, we extract from real
scientific parallel workload a model linking the performance knob to the real
performance of the final application. Finally, we analyze how the application
workload is distributed among all the cores.

We took as a target machine an HPC system based on an IBM NeXtScale
cluster. Each node of the cluster is equipped with two Intel Haswell E5-2630 v3
CPUs, with 8 cores with 2.4 GHz clock speed and 85W Thermal Design Power
(TDP, [17]). This supercomputer is ranked in the Top500 supercomputer list [1].

3.1 Thermal Model

We focus our attention on a single node of the cluster as the rack is constructed
by replication of the same node. To understand the thermal properties of a com-
puting node, we have executed three main stress tests on which we have: (i)
Kept the system in idle and measured the total power and the temperature for
each core after ten minutes; (ii) We then have executed a stressmark2 in se-
quence on each core of each socket in the node, leaving idle the remaining ones.
We maintained the workload constant for ten minutes and measured the power
consumption and the temperature, we used this test to extract the maximum
steady state temperature gradient. Finally, (iii) we have simultaneously executed
the stressmark for ten minutes in all the cores of the node and measured the
temperature and the power consumption. In all the previous tests the temper-
ature and power values are measured using an infrastructure similar to the one
presented in [3], the Turbo mode was disabled to avoid power consumption to
workload dependency. The results of our analysis are reported in table 1.

As we will see in the experimental results section, we used the extracted char-
acteristics to create a thermal model using a distributed RC approach [4], with
one tuned RC per core to have similar thermal characteristics as the measured
ones.

3.2 Power Model

To model the impact of DVFS states on the target system, we have re-executed
the stressmark in each core while scaling down the frequency for each core in all

2 cpuburn stressmark by Robert Redelmeier: it is a single-threaded application which
takes advantage of the superscalar architecture to load the CPU
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Table 1. Thermal Model

AVG temperature - Idle cores 15.93oC
AVG temperature - Active cores 33.39oC
Gradient - Idle cores 4.47oC
Gradient - Active cores 4.79oC
Gradient - Active core vs idle cores 8.05oC
Stady-state time 120sec

the available speed steps. We maintained each configuration for ten minutes and
we measured the power consumed by each CPU. We collected these measure-
ments in a lookup-tables (LUTs), one for each CPU. We then used the LUTs
to compute the power dissipated by each CPU on each available frequency. We
measured a total power of 17.86 W when all cores in a computing node are idle.
The total power raises to 92.44 W when all the cores are active. We then ex-
tracted the power consumed by each core at each DVFS level with an average
standard deviation in between cores of 0.1 W. The average uncore region of the
CPUs contribute for 11.84 W and 17.85 W respectively when idle or active. The
Figure 1 shows the average power consumption for each core of the system at
all available frequency levels.
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Fig. 1. Average power consumption of cores at all available frequency levels.
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3.3 Workload Model

A HPC application can be seen as the composition of several tasks executed in a
distributed environment, interconnected with a low-latency high-bandwidth net-
work. HPC communications happen by sending explicit messages through a stan-
dard MPI programming model which takes advantage of the high-performance
interconnect sub-system. Usually, tasks are composed by computational inten-
sive phases on independent data segments interrupted by synchronization points
and communications. This characteristic impacts the sensitivity of the applica-
tion to each core’s performance as computational imbalance can lead to longer
synchronization phases.
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Fig. 2. Sensitivity loss w.r.t the reduction of frequency compared with the increment
of the time spent into MPI library

As support to this statement, in this work we use as benchmark Quantum
ESPRESSO (QE) [16], which is a real application widely used from the scientific
community in high-end supercomputers. Moreover, QE main computational ker-
nels include dense parallel linear algebra and 3D parallel FFT, which are both
relevant in many HPC applications. In our test we use a Car-Parrinello (CP)
simulation, which prepares an initial configuration of a thermally disordered
crystal of a chemical element by randomly displacing the atoms from their ideal
crystalline positions. This simulation consists of a number of tests that have to
be executed in the correct order.

In the following experiment, we have explored how the different ratio of ac-
tive code and MPI library for each QE task changes the impact of frequency
scaling on the overall application execution time. We computed QE-CP on two
computing nodes with 32 MPI tasks to increase the number of results respect
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to a run on a single node. We run QE-CP 32 times. At each run we configured
sequentially one core of the 32 at minimum frequency while the other are main-
tained at the maximum. We compared it with the run in which all the cores are
at the nominal frequency. We then correlated the overall QE-CP slow down and
the MPI percentage of the slowed down task. Figure 2 shows that the impact
of frequency reduction increases with percentage of MPI library present in each
task. This result is in line with what was shown in [27]. We can use it for ex-
tracting on-line the sensitivity to frequency for each MPI task. In this work, we
take advantage of this information to address energy saving at execution time.

3.4 Workload Distribution
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Fig. 3. Ratio of the time spent in application phases and MPI phases for each core and
every 10 seconds.

While figure 2 shows the workload unbalance for the entire application run, it
does not show how this unbalance is distributed in time -at a finer granularity-.
In this section we explore how the workload is spread among all the MPI tasks
and in time. We computed QE-CP on a single compute node with 16 MPI tasks.
For each MPI task, we extract the time spent in the application and we compare
it with the time spent in the MPI library. Every 10 seconds, we calculate the
ratio between application time and MPI time, we plot this result in figure 3. We
can see that the MPI task 0 spends more time in the application with respects to
the others. In our benchmark, the core that slows down the application execution
mostly is the core that runs the MPI task 0. If we slow down this core, we will
have the highest penalty in the total execution time.
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In the next section, we will see how this information can be extracted and
considered in the thermal management problem.

4 HPC Optimal Thermal control

In this section, we present a Dynamic and Thermal Management (DTM) ILP
formulation, namely the Optimal Thermal Controller (OTC), which matches all
the requirements of HPC systems and proactive thermal control: (i) limiting
the future temperature of all the cores below a critical threshold by selecting the
proper frequency for each core; (ii) maximizing the application performance (fre-
quency of all the cores); (iii) identifying cores that host critical tasks to promote
their performance; (iv) slowing down the cores’ frequency during communication.

As shown in Figure 4, the OTC operates at node level and it is composed
of two main components: the thermal-aware task mapper and controller and the
energy-aware MPI wrapper.

The thermal-aware task mapper and controller (TMC) is triggered: (a) after
the job scheduler has deployed the parallel application on the reserved portion
of the HPC machine for its execution; (b) periodically, with period Ts, and (c) at
the start/end of every MPI call. At scheduling point (a) the TMC specifies the
task to core mapping which will be maintained until the application completion.
Clearly, if a critical task is mapped to a thermally inefficient core this will more
likely cause a severe degradation of the final application performance. To capture
the task criticality, we use a task criticality generation module, which intercepts
every MPI call and extracts the time spent in both application and MPI library.
At every scheduling point, this runtime uses a mathematical formulation based
on the timestamps of the MPI calls to identify the criticality level (later named
task criticality) for each task, as will be described in 4.1. At scheduling point
(b), the TMC selects the optimal frequencies to be applied to the different cores
for the following interval (to maintain the future cores’ temperature below a safe
threshold). Our OTC solution solves the scheduling points (a) and (b) with an
ILP formulation and custom solver strategies as described in 4.2 and 4.3.

The energy-aware MPI wrapper (EAW) is event-driven and acts as a bridge
between the MPI synchronization primitives and the core’s frequency selection.
This programming model interface is reactive and reduces the core’s frequency
when the MPI library is busy waiting. When the execution flow returns to the
application code, the frequency is restored to the one selected by the Thermal
Controller.

4.1 Task Criticality Generator

The per-task criticality level is calculated based on the time spent by the task
in the application and waiting in the global synchronization points for each time
interval. It is not sufficient to consider only the total time spent in the application
during the last interval to compute a criticality level. We need to consider each
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Fig. 4. Optimal thermal controller at node level

global synchronization point independently and for each of them compute the
waiting time of each task.

We use a mathematical model to extract the per-task criticality level between
two global synchronization points and we calculate the criticality of each task
for all the global synchronization points in an interval. We define the criticality
level for each task in this interval time as the average of the criticality levels
weighted by the time which lasts between each pair of global synchronization
points.

Figure 5 shows a general HPC application section enclosed by two global
synchronization points where all the MPI tasks are involved. Every time that a
MPI task encounters a global synchronization point, it must wait all other tasks
to continue its execution. For each task, we identify three major time points
which we base our model on. These are Tl, Ts, and Te which represent the exit
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Fig. 5. General HPC application section with our naming convention for the mathe-
matical model to calculate the criticality for each MPI task.

time of the last MPI call, the start time of the current MPI call, and the exit
time of the current MPI call respectively. We use [i] as the index to identify the
MPI task id.

Tls = MAX(Ts[i]) (1)

Tcomp[i] = Ts[i] − Tl[i] (2)

Tslack[i] = Tls − Ts[i] (3)

Tcomm[i] = Te[i] − Tls (4)

Tavg = AV G(Ts[i]) (5)

δi =
Tcomp[i]

Tavg − Tl[i]
=
Ts[i] − Tl[1]
Tavg − Tl[i]

(6)

The last task that enters the global synchronization point unlocks all the
waiting tasks which can now continue their execution. Tls in eq. (1), identifies
the time at which the last task enters in the synchronization point. For each
application section and for each task [i] we define as computation time Tcomp[i]

in eq. (2) the time spent in the application code and MPI time the time spent
in the MPI library. The latter is composed by two factors: (i) Tslack[i] in eq.
(3), which represents the time that a task spends in the MPI library waiting
the last task reaching the synchronization point, (ii) Tcomm[i] in eq. (4), which
identifies the time spent to exchange data. Tavg in eq. (5) is the average of all the



12 D. Cesarini et al.

Tcomp[i]. We compute the task criticality level δi in eq. (6) as the ratio between
the Tcomp[i] and the Tavg. This metrics is proportional to the unbalance between
the tasks in each application section.

4.2 The First Step Problem - FSP

This optimization problem is solved during the initialization of the application.
Its purpose is to allocate the application tasks on the available cores and selecting
for each of them the maximum frequency which meets the thermal constraint
Tmax in the prediction interval (PIFSP ). As we will see in the experimental
results, the prediction interval (i.e. the time horizon) plays an important role.
Indeed, if it is too short, the TMC cannot predict the impact of a task allocation
on long term core’s temperature as its effect is hidden by the thermal capacitance,
making the problem trivial. On the contrary if the time horizon is too long the
TMC cannot take advantage of the thermal capacitance for sustaining short time
power burst.

In addition, not all tasks have the same criticality. This is captured by the
optimization model which maximizes the frequency of the highest critical task
penalizing the frequencies of other ones in case a thermal limit is reached. The op-
timization model considers K tasks to be assigned to N cores where the number
of tasks is lower or equal to the cores i.e., K ≤ N . Each core can be config-
ured with a frequency in a set of M level of frequencies. The Objective Function
(O.F.) maximizes the sum of frequencies of all active cores γjf weighted by the
criticality δi of the task assigned on that core. To model the problem, we use
two sets of binary decision variables:

xijf =


1 if core j(j = 1, . . . , N) works at frequency

f(f = 1, . . . ,M) executing task i(i = 1, . . . ,K)

0 otherwise.

(7)

yj =

{
1 if core j(j = 1, . . . , N) is idle,

0 otherwise, i.e., if it is working.
(8)

We can formulate the following ILP model with three constraints to model
the assignments and the thermal bounds:

O.F. = max

K∑
i=1

M∑
f=1

N∑
j=1

δiγjfx
i
jf (9)

N∑
j=1

M∑
f=1

xijf = 1 (10)

(i = 1, . . . ,K)
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K∑
i=1

M∑
f=1

xijf + yj = 1 (11)

(j = 1, . . . , N)

N∑
j=1

GSjl

pjyj +

K∑
i=1

M∑
f=1

pjfx
i
jf

 + T 0
l + T a ≤ TMAX (12)

(l = 1, . . . , N)

The constraint (10) specifies that a task must be assigned only on a single
core, which works at a given frequency. In addition, it specifies that all the N
tasks must be assigned. Constraint (11) is needed to determine the y decision
variables which represent the idle cores. These variables are used in constraint
(12) in case there are less tasks than cores i.e., K ≤ Mn. Finally, constraints
(12) guarantee that the temperature of each core does not exceed Tmax over the
prediction interval (PIFSP ). In the last constraint (12), GS is a gain matrix with
dimension N×N . This matrix is used to calculate the increment of temperature
of all the cores when a core is subjected to a constant power input for PIFSP

seconds . T l
0 represents the dependency of the future temperature(@ PIFSP )

from the current core’s temperature. These values can be derived from a state-
space thermal model as described by [28]. Ta is the ambient temperature. When
tasks are less than cores the decision variable yi is used in conjunction with the
vector of idle powers p̄, to add the idle power components.

4.3 The i-th Step Problem - ISP

After the tasks have been assigned to the cores in the FSP the TMC has to
periodically solve, at a finer time scale, the assignment problem of frequencies
to cores only. The ISP has the same objective function as FSP 4.2 as well as the
same thermal model formulation. However the prediction interval for the ISP
(PIISP ) can be generally different from the FSP.

Differently from the previous case, the model considers only active cores (T )
because the thermal constraints cannot be broken by an idle core. This reduces
the overall complexity. As tasks have been already allocated in FPS in this model,
tasks and core do not need separate variables, thus a criticality is referred to a
core.

xrf =


1 if core r(r = 1, . . . , T ) works at frequency

f(f = 1, . . . ,M),

0 otherwise.
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The ISP model has fewer constraints than FSP due the lower number of
variables.

O.F. = max
∑
a∈A

M∑
f=1

δaγafxaf (13)

M∑
f=1

xaf = 1 (14)

(∀a ∈ A)∑
a∈A

M∑
f=1

GSlapafxaf +
∑
i∈I

GSlipi + T 0
l + T a ≤ TMAX (15)

(∀l ∈ A)

The constraint (14) bounds each core to a selected frequency. The constraint
(15) guarantees the thermal limits imposed on the model. Where the set A = ai
contains the index of the active cores and the set I = ii contains the index of
idle cores directly defined from the solution of FSP. Where A ∩ I is empty. In
general, the ISP problem is computationally simpler than the FSP problem due
to the much lower number of decision variables and constraints.

In the next section we will evaluate the performance of the proposed TMC
in a realistic scenario and under different trade-offs in between the predicted
horizons of the FSP and ISP problems.

5 Experimental Results

In this section, we first describe the emulation framework we have created, start-
ing from the results of the characterization of computing nodes and real scientific
workload conducted in Section 3. We use this emulation framework to study the
implication of the prediction interval/horizon and the task criticality generator
in the thermal-aware task mapping and control of supercomputer nodes.

5.1 Emulation Framework

Our emulation framework is composed by the following components:
(i) The workload traces. The traces have been extracted using a commercial

tracing and profiling tool called Intel Trace Analyzer and Collector. The traces
contain all the MPI activities (MPI call, data transfer, source/destination MPI
task) with time instants. These have been extracted for the QE-CP running on
a computing node.

(ii) The thermal simulator. We have created a first order discrete state-space
model matched with the computing node as described in Section 3.1. The model
has a sample time of 10ms (TsTM ), and as state variables has the temperature
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of each core of the node. Each core’s power is computed with the power model
presented in Section 3.2. Workload traces which have resolution than the 10ms
have been averaged on this period to produce the percentage of time in which
each task was in the MPI library for each (TsTM ) interval. We use this value to
model the energy-aware MPI wrapper impacts on core’s power consumption.

(iii) The thermal-aware task mapping and control problem. The TMC opti-
mization problem proposed in Section 3 has been solved using IBM Ilog CPLEX
12.6.1. The emulator calls CPLEX each time there is a new TMC problem to be
solved. This happens once at the application start (FSP) and periodically each
ISP interval TsISP which matches the prediction interval in the ISP problem
(PIISP ).

At each CPLEX call, the emulator builds a new instance of the problem
with the new thermal parameters and the criticality of the tasks and it waits for
CPLEX results. During the waiting time the emulator is frozen, in this way the
overhead time does not impact on the chronological MPI events. CPLEX has
been executed on the same machine of the emulation framework, which is our
HPC node, therefore the time overheads reflect real measurement.

5.2 Evaluation of Prediction Horizons

In this section, we will explore how change the frequency level for high and
low critical tasks using different prediction horizon for FSP and ISP problem.
We conducted the following experiments with different prediction intervals for
both FSP and ISP problems. We considered PIFSP =1s,10s,100s,steady state
(SS) and PIISP =1s,10s,100s,steady state (SS) because the thermal propagation
in our system is in the order of tens of seconds as we reported in table 1. In
the following, we name these tests with the notation PIFSP − PIISP . It must
be noted that 1s-1s represent state-of-the-art DTM solutions with no thermal-
aware task-to-core mapping, while SS-SS represents state-of-the-art static DTM
solutions.

For all the experiments, we set the temperature limit to 65% of maximum
temperature which can be reached by the hottest core at the maximum frequency.

Figure 6 shows on the y-axis the temperature evolution of the coldest core
(#0) for five cases. Namely no thermal control active, no thermal control ac-
tive (NoTMC,NoEAW) but energy-aware MPI wrapper active (NoTMC,EAW),
TMC active with (1s-1s), (SS-1s), (SS-SS). For the same configurations, the Fig-
ure 7 shows on the y-axis the temperature evolution of the hottest core. Clearly,
according to the capability of the FSP problem, to predict the long term ther-
mal evolution the higher critical (HC) task will be mapped on the coldest core.
Indeed from Figure 6, we can notice that if no TMC calls are executed, the
coldest core executes a low critical task. When the FSP is empowered with a
steady-state thermal predictor instead the TMC allocates the higher critical task
on the coldest core and manages to run it always at the maximum frequency.
Vertical spikes of the frequency are caused by the energy-aware MPI wrapper,
which sets the minimum frequency of the core during the MPI phases. As a con-
sequence, the maximum temperature reached by NoTMC-EAW is lower than
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Fig. 6. Temperature and frequency evolution for the coldest core of the system - core
#0

NoTMC-NoEAW; showing its effectiveness in reducing the power consumption.
Differently, short time horizons (1s-1s) in the FSP do not allow the solver to
”see” the constraint and thus lead to a sub-optimal task mapping allocation. As
a consequence, the high critical task need to be frequency limited to meet the
thermal constraint as the thermal capacitance effect vanishes.

5.3 Evaluation of the Task Criticality Generator

As previously introduced, the task criticality is a key parameter for the final
application performance. Figure 8 shows the penalty in term of the execution
time of application, when we consider equal criticality for each task respected of
the one obtained by the TMC task criticality generator presented in section 4.1.

Figure 8 reports on the x-axis the cores where the highest critical task is
allocated. We can see when the highest critical task is located on the core #6
or on the core #8 we have the highest and lowest penalty in the execution time,
respectively 21.18% and 0.33%. When the root MPI task is located on the core
#8, we have a lucky case, this means that it runs on the “coldest” core of the
system where the TMC runtime can easily increase the core’s frequency without
violating the thermal constraint. On the other hand, when the root MPI task
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Fig. 7. Temperature and frequency evolution for the hottest core of the system - core
#14

is located on the “hottest” core we have a high penalty due the difficult of the
runtime to increase the frequency on that core. To conclude, we can evidently
see that in all cases the TMC criticality generator outperforms the cases with
task with the same criticality.

5.4 Performance Gain

Figure 9 depicts the average frequency of the cores that host the highest critical
tasks and the average frequency for all the cores in each configuration. Inter-
estingly, in all the cases the highest critical task never reaches the maximum
average frequency. This is the effect of the energy-aware MPI wrapper which
reduces the core frequency during MPI calls.

The error bars show the variance for each configuration among different exe-
cutions of the same QE-CP problem while moving the highest critical task from
the MPI root task to another one. This means that if we shift the default posi-
tion of highest critical task from 0 to 15 in the MPI rank all the configuration
with predict interval in the FSP (PIFSP ) of 1 and 10 seconds we have a huge
variation. This can be explained by the fact that in both experiments the FSP
has a prediction horizon which is too short to see the effect of long term thermal
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Fig. 8. Execution time penalty in benchmarks with equal per-task criticality level w.r.t.
the benchmark with the TMC criticality generator. Every run identify on which core
was pinned the highest critical task.

evolution and thus it cannot predict which core will hit the thermal constraint.
For this case the allocation FSP problem is trivial and tasks are allocated on the
first available core following a simple numerical binding where the task 0 will
be allocate to the core 0 and so on. This binding is also the default on the Intel
MPI library. In this particular case, if the highest critical task is lucky, it will
be pinned on a “cold” core. Vice versa, if the highest critical task is unlucky, it
will be mapped on a “hot” core. At the steady-state the frequency of the core
will be limited by the ISP to respect the thermal constraint. On the other cases,
the PIFSP is always enough to sense the thermal constraint. The optimization
model will avoid the binding of the highest critical task on a “hot” core. In this
case the highest critical task will be pinned on a “cold” core allowing the highest
critical task to work at maximum frequency.

We take as a baseline the SS-SS configuration, which model state-of-the-art
solutions based on static allocation of tasks and frequency. The 1s-1s and 10s-
10s induces performance penalties on the highest critical task, while they lead
to an increase of performance of the 4.97% and 4.50% respectively in average
in all the cores. For the remaining configurations, we measure no penalty for
the highest critical tasks and a gain of to 7.46%, 7.06% and 3.65% respectively
for the configuration SS-1s, SS-10s and SS-100s. These results show that short
horizon predictive models pay off in the ISP as it allows to take advantage of
the thermal capacitance. In the next section, we will add to this conclusion the
solver overhead.

Overhead time Figure 10 shows cumulative overhead for different configura-
tions and quantify the induced performance loss as it sums up to the execution
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Fig. 9. Comparison between average core frequency and the frequency of the highest
critical core using different configuration for the optimization problem.

time. The FSP bars represent the overhead time of the FSP problem solved only
once at the application start, while the ISP bars are the sum of the overhead
times of all iterations of the ISP solver.

For all the instances and the configurations, the solver is capable of finding
the optimal solution. CPLEX allow to bound the solution time by the so called
deterministic ticks, we use this approach to limit the solution time in case of
harder problem. Authors of [28] show for a 60 core instance that the optimally
gap always reduces below the 0.002% with a maximum number of 180 ticks.

We can see that for the 1s-1s and 10s-10s configuration the FSP solver time
is negligible. After 1 second or 10 seconds the thermal transient has not reached
the thermal constraint, for this reason the solution is trivial and consequently
the solution immediately converge. Instead, all the other configurations have an
average overhead time of 0.59% of total execution time.

The total overhead time for the ISP significantly changes when we vary the
PTISP and the TsISP . Obviously, the ISP with a prediction interval of 1 second
will be called hundred times more than a ISP with a prediction interval of 100
seconds. The results respect this trend, in particular for 1 seconds of prediction
interval leads to an average penalty of 10.20% of total execution time, which
makes this configuration worse than a static allocation (SS-SS) as cause of the
solution overhead (7.46% of performance gain - 10.20% of overhead). Interesting
the 10 seconds case (SS-10s) reduces the total penalty to the 0.64% which in
conjunction to the 7.06% of performance gain w.r.t. the static-allocation lead
to an overall performance gain of the 6%. At 100 seconds the total overhead
penalty decreases to the 0.09%. However, for this case the performance gain in
only of the 3.46% making it less performing than the SS-10s case.
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Fig. 10. Cumulative overhead induces by the optimization problem using different
configuration for the optimization problem.

6 Conclusion

In this chapter, we propose a thermal-aware mapping and control of thermally-
bound HPC nodes. Our system implements a novel ILP formulation for thermal-
aware optimization and an exploration analysis on the workload application to
address performance promoting critical MPI tasks. Our work is focused on real
HPC hardware and workload. We extracted thermal characteristics as well as
workload traces to study the workload distribution to identify critical MPI tasks.
Our control system relies on these information to optimize the task allocation
and the frequency selections in thermal-constraint HPC nodes.

In the experimental section, we compared our system with state-of-the-art
DTM solutions which dynamically control only the frequency selection of the
cores or can choose a statically task allocation with a specific frequency. Our
experimental results show that using a long-time horizon for the task allocation
and a short time horizon for selecting DVFS levels at execution time, our solution
can lead up to 6% performance gain including overheads. Moreover, our task
criticality model embedded in our DTM system can avoid the pinning of critical
tasks on hot cores where OTC cannot promote this task with high frequency. This
can cause high performance degradation up to 21.18% of the entire application
execution.
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