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We demonstrate the rise and fall of multiple pseudogaps in the Bardeen-Cooper-Schrieffer to Bose-Einstein
condensation crossover in two-band fermionic systems having different pairing strengths in the deep band and
in the shallow band. The striking features of this phenomenon are an unusual many-body screening of the
pseudogap state and the importance of pair-exchange couplings, which induces multiple pseudogap formation
in the two bands. The multiband configuration suppresses pairing fluctuations and the pseudogap opening in
the strongly interacting shallow band at small pair-exchange couplings by screening effects, with a possible
connection to the pseudogap phenomenology in iron-based superconductors. On the other hand, the multiple
pseudogap mechanism is accompanied by the emergence of binary preformed Cooper pairs originating from the
interplay between intraband and pair-exchange couplings.
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The discovery of unconventional superconductors, which
started with heavy fermions, followed by organic supercon-
ductors, and then by cuprate compounds, has prompted an
era of tremendous growth of activities in condensed matter
research [1,2]. The complex structure of the order parameter
in these systems brought a plethora of unique phenomena
and effects, with no counterparts in conventional supercon-
ductors, such as a broken time-reversal symmetry, collective
modes, and an unusual Josephson effect [3–5]. The new
degrees of freedom in multicomponent and multiband su-
perconductors have been anticipated to be a promising root
toward the realization of room-temperature superconductiv-
ity [6]. Such unconventional superconductors can exhibit
anomalous normal-state characteristics above their critical
temperature Tc, which are interpreted as the pseudogap
state [7,8], corresponding to the presence of gaplike fea-
tures above Tc but with a finite spectral intensity at low
frequencies [9]. The origin of the pseudogap is a key for
understanding the pairing glue in unconventional supercon-
ductors. Pseudogap effects have also been discussed in the
context of the Bardeen-Cooper-Schrieffer (BCS) to Bose-
Einstein condensation (BEC) crossover, where the BCS state
of overlapping Cooper pairs changes continuously to the BEC
of tightly bound molecules with increasing attractive interac-
tion [13–22]. It is experimentally achieved in ultracold Fermi
atomic gases exploiting Fano-Feshbach resonances [23–25].
Also, ultracold Fermi gases in the BCS-BEC crossover regime
exhibit strong pairing fluctuations and pseudogap effects
[26–29].

Among unconventional superconductors, the recently dis-
covered iron-based superconducting compounds attract atten-
tion, since some of them are expected to be placed in the
BCS-BEC crossover regime due to their large ratio between
the superconducting gap and the Fermi energy [30–33]. This
new class of superconductors opens a new frontier for the
study of the multiband BCS-BEC crossover, where nontrivial
features have been discussed [34–47]. As for other unconven-
tional superconductors, there is now expanding experimental
evidence that a pseudogap is realized in iron-based com-
pounds [48–52], despite some reports about the absence of
strong pairing fluctuations and pseudogap effects [53,54].
In order to understand the controversial pseudogap physics
in multiband and multicomponent systems such as iron-
based superconductors, a unified description of the multiband
BCS-BEC crossover is required. Such a theory can be use-
ful to describe also many-body physics in Yb Fermi gases
near the orbital Feshbach resonance [55–63], thus bridging
these atomic systems with multiband superconductors. The
multichannel many-body theory is also of importance to
unveil pairing properties in nanostructured superconductors
[34,35,64] and electron-hole systems [65–67].

In this Rapid Communication, we develop a theory of
the two-band BCS-BEC crossover in the normal state above
Tc based on the T -matrix approach [68], which has been
successfully applied to strongly interacting attractive Fermi
gases [69]. We address the single-particle density of states
(DOS) and elucidate competing mechanisms of screening and
enhancement of the pseudogap in two-band systems. The
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FIG. 1. (a) Two-band electronic structure considered in this
work. The two bands (i = 1, 2) are separated in energy by E0.
Resulting Fermi energies EF,i have the relation EF,1 = EF,2 + E0.
(b) Illustration of how the interactions Ui j work in our configuration.
While U11 and U22 cause intraband Cooper pairing in each band, U12

(= U21) introduces pair tunneling between the two bands. (c) and
(d) show Feynman diagrams for the self-energy �i and the multiband
T -matrix �i j in our T -matrix approach, respectively.

screening of pairing fluctuations and the resulting reduction
of the pseudogap regime are found in our results at the
unitarity limit of the shallow band for weak pair-exchange
couplings. This result suggests that, in the two-band system,
the Fulde-Ferrel-Larkin-Ovchinnikov state [70,71], tending to
be disrupted by pairing fluctuations [72,73], is more stable
compared to the single-band case, as observed in recent ex-
periments [74,75].

On the other hand, strong pair-exchange coupling leads to
multiple pseudogaps and the emergence of binary preformed
Cooper pairs in the crossover regime. This is in contrast with
the pseudogap in ultracold Fermi gases, which is induced by
strong intraband couplings. Hereafter, we take h̄ = kB = 1
and the unit volume. As shown in Fig. 1(a), we consider a
two-band model where the second shallow band (i = 2) is
coupled with the first deep band (i = 1) [76,77], as described
by the Hamiltonian [78]

H =
∑

k,σ,i

ξk,ic
†
k,σ,ick,σ,i +

∑

i, j

Ui j

∑

q

B†
q,iBq, j, (1)

where ξk,i = k2/(2mi ) − μ + E0δi,2 is the kinetic energy
measured from the chemical potential μ with the energy sep-
aration E0 between two bands and δi,2 is the Kronecker delta.
We use equal effective masses m = m1 = m2, for simplic-
ity. ck,σ,i and Bq,i = ∑

k c−k+q/2,↓,ick+q/2,↑,i are spin-σ =↑,↓
fermion and spin-singlet pair annihilation operators in the i
band, respectively. In this work, we use E0 = 0.6EF,1 where
EF,i = (3π2ni )

2
3 /(2m) is the noninteracting Fermi energy in

the i band, defined in terms of the number density ni. The
intraband couplings Uii can be characterized in terms of the
intraband scattering lengths aii as

m

4πaii
= 1

Uii
+

k0∑

k

m

k2
, (2)

where k0 is the momentum cutoff taken to be 100kF,t . Here,
kF,t ≡ √

2mEF,t is the Fermi wave vector associated with the
total Fermi energy EF,t = (3π2n)2/3/(2m), defined in terms of
the total number density n. In a similar way, one defines the
Fermi wave vectors kF,i in each band, which are used to define
the dimensionless intraband coupling strengths (kF,1a11)−1

and (kF,2a22)−1. In this work, we use (kF,1a11)−1 � −2 and
−1 � (kF,2a22)−1 � 1. With this choice of couplings, pairs
forming in the deep band (i = 1) have a BCS character, while
the BCS-BEC crossover is tuned in the shallow band (i =
2). Although we consider a three-dimensional (3D) system,
it is expected to be relevant to FeSe multiband supercon-
ductors since recent experiments exhibit a 3D wave-vector
dependence of the superconducting gap [79], indicating that
a 3D theoretical approach is applicable. In addition, the
strong-coupling regime from the unitarity to the BEC side
in 3D would be similar to the 2D counterpart due to the
presence of a two-body bound state. For convenience, we
also introduce a dimensionless pair-exchange coupling λ12 =
U12(k0/kF,t )2n/EF,t where U21 = U12 [76,77].

The i-band self-energy in the multiband T -matrix approach
reads

�i(k, iωs) = T
∑

q,iνl

�ii(q, iνl )G
0
i (q − k, iνl − iωs), (3)

where ωs = (2s + 1)πT and νl = 2lπT (s and l integers) are
fermionic and bosonic Matsubara frequencies, respectively.
G0

i (k, iωs) = [iωs − ξk,i]−1 is the bare Green’s function. The
many-body T -matrix {�i j}2×2, which sums up the ladder-type
diagram shown in Fig. 1(d), is given by

�i j (q, iνl ) = Ui j +
∑

�=1,2

Ui����(q, iνl )�� j (q, iνl ), (4)

where ��� is

���(q, iνl ) = −T
∑

p,iωs

G0
i (p + q, iωs + iνl )G

0
i (p,−iωs). (5)

Fixing μ by solving the number equation n = n1 + n2 with

ni = 2T
∑

k,iωs

Gi(k, iωs), (6)

where Gi(k, iωs) = [iωs − ξk,i − �i(k, iωs)]−1 is the dressed
Green’s function, we obtain the superfluid/superconducting
critical temperature Tc from the Thouless criterion [80]
[�22(q = 0, iνl = 0)]−1 = 0. [While in the presence of U12,
all the matrix elements �i j (q = 0, iνl = 0) diverge simultane-
ously at Tc, in the case of vanishing U12 only �22 diverges, due
to our choice of coupling strengths.]We numerically evaluated
the Matsubara frequency sum in Eqs. (3) and (6) with finite
cutoffs [81] and checked their convergences [82].

The DOS is obtained from

Ni(ω) = − 1

π

∑

k

Im Gi(k, iωs → ω + iδ), (7)

where we take δ = O(10−3)EF,t . For simplicity, the analytic
continuation is numerically performed by using the method of
Padè approximants [82,83] (see Supplemental Material [82]).

Figure 2 shows the DOS Ni(ω) in the multiband BCS-
BEC crossover. In the case of λ12 = 0, while the small
intraband coupling in the deep band (kF,1a11)−1 = −4 does
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FIG. 2. DOS Ni=1,2(ω) at T = Tc in the multiband BCS-BEC
crossover. The left (right) panels show N1(ω) [N2(ω)] at weak cou-
pling (kF,2a22)−1 = −1 [(a1), (a2)], unitarity (kF,2a22)−1 = 0 [(b1),
(b2)], and strong coupling (kF,2a22)−1 = 1 [(c1), (c2)]. In all panels,
we fix (kF,1a11)−1 = −4. The dimensionless pair-exchange coupling
is taken as λ12 = 0, 2, and 4. For reference, we present the spectral
weight A2(k, ω)EF,t = −Im G2(k, ω + iδ)EF,t/π at λ12 = 0.5 in the
inset of (b2). The inset of (c2) shows N2(ω) at λ12 = 4 because of
the large energy gap. N0 = mk2

F,t/(2π 2) is the noninteracting DOS
associated with total number density n.

not suppress a square-root behavior typical of noninteract-
ing gases, N0(ω) ∝ √

ω + μ, N2(ω) exhibits the pseudogap
around ω = 0 [84] due to strong pairing fluctuations asso-
ciated with U22. It is consistent with the results obtained in
the single-band counterpart. On the other hand, in the pres-
ence of nonzero pair-exchange coupling, N1(ω) also shows a
pseudogapped DOS even with weak intraband coupling. This
is thus a “pair-exchange-induced pseudogap.” In addition,
the coupling λ12 enlarges the pseudogap in N2(ω). The pair-
exchange-induced pseudogap in N1(ω) becomes larger when
the intraband coupling in the shallow band (kF,2a22)−1 gets
stronger. Eventually, at very strong pair-exchange coupling
such as λ12 = 4, both N1(ω) and N2(ω) show a fully gapped
structure due to the large two-body binding energy.

These features can be qualitatively understood as follows.
Quite generally, the size of pseudogap effects in the band
i can be roughly estimated by the energy scale 2

∞,i =
−T

∑
q,iνl

�ii(q, iνl ) introduced in Ref. [85] for a single band,
and here generalized to the multiband case. Even though in
general ∞ is related to the so-called Tan’s contact C [86],
it was shown in Ref. [87] that in the intermediate crossover
regime and close to Tc, ∞ is close to the pseudogap scale
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FIG. 3. The band-dependent pseudogap temperatures T ∗
i=1,2 and

the critical temperature Tc as functions of λ12. The intraband cou-
plings are chosen as (kF,2a22)−1 = 0 and (kF,1a11)−1 = −2. The re-
gions where Tc < T < T ∗

1 and T ∗
1 < T < T ∗

2 are double-pseudogap
(DPG) and single-pseudogap (SPG) regimes, respectively. The inset
shows the ratio (T ∗

2 − Tc )/Tc as a function of λ12 which character-
izes how the pseudogap regime in the shallow band is shrunk by
multiband effects. The horizontal dashed line in the inset shows the
single-band counterpart.

energy determined from N (ω). In the two-band case in the
presence of a finite λ12, �11(q, iνl ) and �22(q, iνl ) diverge
simultaneously at Tc, for q = 0 and νl = 0. For this reason,
the scales ∞,1 and ∞,2 become interconnected, explaining
in this way the pair-exchange-induced pseudogap in the deep
band.

To characterize the pseudogap state, we introduce the
band-dependent pseudogap temperatures T ∗

i=1,2 where the
minimum of Ni(ω) around ω = 0 disappears [26]. Figure 3
shows the obtained phase diagram at unitarity (crossover
regime) of the shallow band coupled with the weakly interact-
ing deep band, where (kF,2a22)−1 = 0 and (kF,1a11)−1 = −2.
In this figure, we plot the critical temperature Tc and pseudo-
gap temperatures T ∗

1,2 as functions of λ12. While the single
pseudogap (SPG) appears in the region T ∗

1 < T < T ∗
2 , the

double pseudogaps (DPGs) can be found below T = T ∗
1 . In

the case of vanishing λ12, since the deep band does not exhibit
pseudogap behavior, we obtain T ∗

1 = Tc. However, if λ12 is
shifted from zero to strong coupling, T ∗

1 deviates from Tc

due to the interband pairing fluctuations. Thus, the pseudogap
regime in the deep band (Tc < T < T ∗

2 ) originates purely from
the pseudogap induced by the transfer of pair fluctuations due
to the pair exchange (rise of an induced pseudogap).

The inset of Fig. 3 shows the ratio (T ∗
2 − Tc)/Tc as a

function of λ12. For a reference, we plot in this figure the
numerical value obtained in the single-band counterpart at the
unitarity limit. The pseudogap regime (Tc < T < T ∗

2 ) in the
two-band case with small λ12 is clearly reduced compared to
the single-band counterpart (fall of the pseudogap). This ten-
dency is consistent with the experiments for FeSe multiband
superconductors in the BCS-BEC crossover regime [53,54] as
well as with previous theoretical work [44,76]. This screening
effect is related to the Pauli blocking produced by the large
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FIG. 4. The pseudogap sizes Epg,i estimated from the single-
particle DOS at T = Tc (symbols) are compared with the mean-field
gaps 0,i at T = 0 (dashed lines) as a function of the dimensionless
pair-exchange coupling λ12. The intraband interaction parameters are
chosen as (kF,2a22)−1 = 0 and (kF,1a11)−1 = −2. The inset shows the
chemical potential μi ≡ μ − E0δi,2 referred to the bottom of each
band.

Fermi surface in the deep band for our two-band configuration
[39]. However, such a regime is destroyed if one shifts λ12 to
the strong-coupling regime (λ12 � 1) due to strong interband
pairing fluctuations.

Figure 4 shows a comparison between the pseudogap en-
ergies Epg,i obtained from our T -matrix approach at T = Tc

and the mean-field gaps 0,i at T = 0 [77]. Here, Epg,i is
the half width of the dip structure in Ni(ω) around ω = 0.
Specifically, we define Epg,i = (ω′

i − ωLM,i )/2, where ωLM,i <

0 is the frequency where Ni(ω) has a local maximum due to
the pseudogap and ω′

i > 0 is determined such that Ni(ω′
i ) =

Ni(ωLM,i ) [26,88]. The dependences of Epg,i and 0,i on λ12

are qualitatively similar. As for the single-band BCS-BEC
crossover, the pseudogap can be regarded as half the energy
needed to excite a single-particle by breaking a preformed
Cooper pair. The coexistence and different magnitudes of
the pseudogap energies Epg,1 and Epg,2 indicate the emer-
gence of binary preformed Cooper pairs. It is consistent with
our prediction of binary molecular BEC with different pair
sizes in the strong-coupling regime [76]. Indeed, different
intraband pair-correlation lengths, corresponding to different
Cooper-pair sizes in each band, are obtained also within the
mean-field approach at T = 0 [77]. In addition, this pic-
ture is supported by the emergence of binary Tan’s contacts
characterizing two kinds of pair correlations in the two-band
system [68]. The finding that Epg,i is smaller compared to 0,i

is also consistent with the single-band result [88]. We note
that in the strong pair-exchange coupling regime λ12 � 1.5,
μ2 = μ − E0 changes its sign (where μi = μ − E0δi,2 is the
chemical potential measured from the bottom of each band)
due to the large two-body binding energy associated with
U22 as well as with λ12 (see the inset of Fig. 4). In such a
regime, Ni(ω) exhibits a fully gapped structure and Epg,i pro-
gressively approaches the two-body binding energy. Although
not shown here, μ1 also changes sign in the stronger coupling
regime. Finally, we report the phase diagram of the two-
band BCS-BEC crossover for strong pair-exchange coupling
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FIG. 5. Two-band BCS-BEC crossover phase diagram in the
temperature vs intraband coupling (kF,2a22)−1 plane for a strong
pair-exchange coupling λ12 = 2 and (kF,1a11)−1 = −2. Tμ=0 shows
the temperature where μ = 0.

λ12 = 2, as shown in Fig. 5. At weak intraband couplings,
two pseudogaps simultaneously open in the two bands. These
multiple pseudogaps originate from the strong pair-exchange
coupling. On the other hand, when the intraband coupling in
the shallow band increases, the two pseudogap temperatures
deviate from each other, indicating multiple energy scales
of pseudogaps as shown in Fig. 4. This multiple pseudogap
regime evolves eventually into a molecular binary Bose gas
regime. Although the boundaries between these regimes are
not sharp, the temperature Tμ=0 at which the chemical poten-
tial μ goes below the bottom of the deep band could be used
as a qualitative crossover line separating the two regimes at
low temperature.

In conclusion, we have demonstrated how multiple pseu-
dogaps appear and when pair fluctuations are screened in
the two-band BCS-BEC crossover at arbitrary pair-exchange
couplings. While the pair fluctuations inducing the pseudogap
are screened by multiband effects at weak pair-exchange cou-
plings, this screening regime turns into multiple pseudogaps
at strong pair exchanges due to interband pairing fluctuations.
We have constructed the phase diagram of the two-pseudogap
state in the temperature and pair-exchange plane, and show the
pseudogap temperatures where single and multiple pseudo-
gaps appear in the single-particle density of states. Examining
the pseudogap temperature in the shallow band, we have con-
firmed that the screening of pairing fluctuations due to the
multiband nature can be found in the BCS-BEC crossover
regime. Furthermore, the different magnitudes of the pseudo-
gaps indicate the presence of binary preformed Cooper pairs
with different binding energies and sizes, as also confirmed
from the comparison between the pseudogap size at the criti-
cal temperature and the mean-field energy gaps at T = 0.

We believe our results to be quite general: By relaxing,
if required, some restrictions of the model considered here,
such as the fixed energy shift and the electronlike character of
the bands, the idea of multichannel pairing fluctuations could
be applied to a variety of strongly correlated multicomponent
systems such as cold atoms, electron-hole systems, nuclear
matter, and nanostructured materials.
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