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Abstract 

This paper deals with the development of an Artificial Neural Network methodology for the 

prediction of the liquid phase diffusion coefficient between species at infinite dilution in binary 

mixtures. The proposed methodology was implemented to estimate the diffusion coefficients with 

improved accuracy with respect to empirical correlations, which are widely used despite their 

significant errors, especially on organic mixtures. The final aim of the work is to propose a novel 

methodology to apply in industrial fields where the mass transport by diffusion between organic 

liquids plays a key role, e.g. the lubricant degradation and scraping due to the dilution with the 

liquid fuel in the engine combustion chamber and the dilution of heavy oils and bitumens with 

organic solvents. In spite of the classical use of Artificial Neural Networks, this work is based on 

the mutual support between a reference empirical correlation and the Neural Network model, where 

the former is used to directly calculate the diffusion coefficient while the latter is trained to correct 

the correlation's result depending on the bonds strength in the solvent and the solute. Moreover, 

since the prediction of the diffusion coefficient for new mixtures (i.e. where no experimental 

measures are available) with Artificial Neural Network models should not be taken blindly, a 

Bayesian Neural Network is implemented, since it is capable to provide the degree of uncertainty of 

its prediction. This Bayesian Neural Network, given a selection of fluid properties as input features, 

was trained on 263 experimental data collected from literature findings. The proposed methodology 

achieved the prediction of the 80% of the available data with absolute relative errors lower than 

10%, while the most recognized empirical correlations predicted the same data with absolute 

relative errors from 30 to 45%. A proof of the reliability of this methodology is the fact that the 

experimental data corresponding to the points predicted with the higher errors however fall in the 

predicted uncertainty, whose average width is below the ±20% of the predicted mean. 
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Nomenclature 

Variables and symbols 

%w Mass fraction (%) 

A Association factor (-) 

C Number of carbons 

D Liquid phase diffusion coefficient (m2/s) 

f Number of input features 

LV Latent heat of vaporization (kJ/kg) 

M Molecular weight (g/mol) 

MARE Mean Absolute Relative Error (%) 

MSE Mean Squared Error (%) 

n Number of points in the dataset 

O Number of oxygens 

p Generic probability distribution 

RMSE Root Mean Squared Error (%) 

R2, Ra
2 R-squared, adjusted R-squared 

𝑟𝑗 Paired rank for the jth dataset 

𝑟𝑆 Spearman correlation coefficient 

𝑟�̅� Average rank for the jth dataset 

T Temperature (K) 

V Molar volume (cm3/mol) 

𝑉𝑏 Molar volume at the Normal Boiling Point (cm3/mol) 

w Weight of the Artificial Neural Network model 

X, Y Generic datasets 

Greek letters 

γ Surface tension coefficient (N/m) 

η Dynamic viscosity (mPa‧s) 

θ Machine learning correction factor (-) 

µ Machine learning predicted mean value 

ρ Density (kg/m3) 

σ Machine learning predicted standard deviation 



ϕ Solvent/solute molar volumes ratio (-) 

Subscripts 

1 Solvent 

2 Solute 

NBT Normal Boiling Temperature 

p Predicted 

1. Introduction 

The research topic of this work is the mass diffusion between liquids in multi-fluid systems, with 

the focus on methods to estimate the diffusion coefficient that is a transport property of great 

importance for different industrial applications. In petroleum engineering solvents such as light 

hydrocarbons (HCs) are injected in the oil reservoirs to dilute heavy oils and bitumens that are 

immobile at reservoir condition because of their high viscosity. Solvent based methods for the oil 

viscosity reduction are attractive for the production and the secondary recovery of heavy oils and 

bitumens since they allow both water and energy saving in comparison with thermal methods ([1]) 

(e.g. Steam Assisted Gravity Drainage (SAGD)), which are affected by water consumption and heat 

loss, being based on hot steam injection. Since heavy oils and bitumens are a great part of the world 

wide fossil fuel reserves for the petroleum supply in the next future, the accurate estimation of the 

diffusion coefficient between the oil and the solvents may help the simulation and the early stage 

design of the solvent based extraction process. In automotive application dilution between the liquid 

fuel and the lubricant oil on the cylinder wall is one of the challenges to face for the development of 

the next low impact internal combustion engines. In order to comply with low green-house gases 

emission, pollutants emission regulation and fossil fuels saving, downsizing with Direct Injection 

(DI) is among the most adopted technological solutions in the nowadays gasoline-powered engines. 

However, despite the many advantages, injecting the liquid fuel directly into the combustion 

chamber puts some concerns, in particular in downsized engines where the time and the mean free 

path available for the liquid fuel evaporation are shorter due to the reduced displacement. As a 

result, the non-evaporated liquid fuel may hit the engine walls, likely resulting in liquid fuel film 

formation on the piston crown and on the cylinder wall, which is wetted by a thin lubricant oil film. 

The diffusion between the fuel and the lubricant oil onto the cylinder wall has proven to be source 

of soot emission ([2]), abnormal destructive combustion events at low speed and high load known 

as Low Speed Pre-Ignition (LSPI) ([3, 4, 5]), mechanical losses and parts wear increasing ([6]). 

Reliable methods to estimate the diffusion coefficient between the fuel and the lubricant oil are 

needed to develop oil-fuel dilution models for the study and assessment of engine configurations in 

terms of LSPI, emissions increasing and lubricant oil degradation risks. 



The experimental measure of the liquid phase diffusion coefficient is known to be annoying, time 

and cost and care expensive. Moreover, experiments involving oils are challenging due to their own 

high viscosity and opacity. Currently, the most common approach to estimate the diffusion 

coefficients is the use of empirical and semi-empirical correlations that were developed decades 

ago. In this field, a milestone that inspired a number of works is the Einstein-Stokes equation, 

which describes the diffusion of a dispersed spherical particle that moves with Brownian pattern in 

a viscous fluid medium depending on molecules frictional resistance and intermolecular forces. The 

Einstein-Stokes equation was widely used in the study of mass diffusion in dilute solutions where 

the solute is present in mole concentrations below the 10%, being well represented by a dispersed 

particle in a fluid medium, i.e. the solvent. Several Authors have based their works on the main 

assumptions of the Einstein-Stokes equation while improving it by including different terms that 

positive correlated with the intermolecular forces. Wilke and Chang ([7]) conducted experiments on 

several different species and introduced the solvent corrected molecular weight with the so called 

association factor A, which depends on the liquid polarity (A = 2.6 for strongly associated liquids 

(e.g. water), A = 1.5-2 for associated liquids (e.g. alcohols) and A = 1 for non-associated liquids 

(e.g. HCs)). Siddiqi and Lucas ([8]) assumed that the calculation at the Normal Boiling Point (NBP) 

of both the solvent and the solute molecular volumes was an adequate measure of the 

intermolecular forces and used a collection of several hundred literature experimental data to fit 

their correlation. King ([9]) and Tyn and Calus ([10]) respectively introduced the latent heats of 

vaporization solvent-solute ratio and the surface tension coefficients solvent-solute ratio as 

representative terms of the intermolecular forces. Despite the fact that the literature correlations 

remain helpful and viable methods to estimate the diffusion coefficients, they lack of accuracy, in 

particular when predicting dilution between HCs. In [8] the Authors reported the average absolute 

error of different recognized correlations with respect to the experimental data underlining errors 

about 13-20% for aqueous mixtures and 20-35% for organic mixtures. Thus, since the available 

correlations do not meet the ever higher accuracy requirements of modelling in industrial 

applications, accurate, reliable and affordable methods to estimate liquid phase diffusion 

coefficients are needed. 

Due to the recent advances in computing power, Artificial Neural Networks (ANNs) have shown 

their potential to approach several issues of engineering interest, including the estimation of fluid 

properties such as the thermal diffusivity ([11]), the void fraction ([12]), the liquid hold-up ([13]), 

the laminar flame speed ([14]), the mixtures Liquid-Liquid Equilibrium ([15]) and Vapour-Liquid 

Equilibrium ([16]) and the diffusion coefficient itself ([17]). However, the prediction of targets that 

highly differ from the training points leads to increase the sensitivity of the ANN model to the so 



called epistemic uncertainty, which is related to the lack of sufficient number of data. Therefore, 

since the experimental data on mixtures comprising heavy HCs (i.e. number of carbons over C9 that 

behave similarly to mixtures of petroleum and engine interest) are very few, their prediction with 

plain ANNs (i.e. based on a deterministic approach) may suffer from epistemic uncertainty. 

Currently, Authors rely on Bayesian Neural Networks (BNNs) ([18, 19]) for the prediction of both 

the target variable and its confidence with respect to different type of uncertainties (e.g. epistemic 

and aleatoric) ([20]). The present paper is focused on the implementation of a novel BNN 

methodology for the estimation of the liquid phase diffusion coefficient for dilute binary mixtures 

once commonly available fluid properties are given. The methodology is developed into two steps: 

a) implementation of a novel plain ANN workflow called hybrid mode; b) implementation of the 

BNN according to the hybrid workflow. The results are compared with some of the most recognized 

empirical correlations and validated over experimental data selected from literature findings. 

Finally, the prediction of the liquid phase diffusion coefficient and the corresponding confidence is 

performed for some sample mixtures of industrial interest (gasoline-lubricant oil and heavy oil-light 

HC combinations) that are created on purpose by the present Authors to test the methodology. 

2. Methodology  

2.1 Database creation 

Since the ANN learning relies on numerous and reliable data, the creation of an extensive and 

consistent database was performed. After a deep literature review, the experimental diffusion 

coefficient at room conditions (298 K, 101325 Pa) was collected for 263 mixtures given by the 

combination of 73 different liquids comprising water, alcohols, aromatics, paraffins and other 

organic compounds. For each liquid, the following properties were collected to play the role of 

input for the ANN: chemical formula, molecular weight, dynamic viscosity, density at room 

conditions from [21]; latent heat of vaporization at the saturation point from [21, 22]; molar volume 

calculated as in Eq. (1) at room conditions and as in Eq. (2) at NBP. In Eq. (2) the density is 

calculated by using the temperature-dependent correlations in [21] with the Normal Boiling 

Temperature (NBT) and zero vapor fraction. Despite the fact that several correlations based on the 

molecule structure are available in literature to estimate the NBP molar volume ([22, 23, 24]), Eq. 

(2) was adopted once its relative error was checked against the experimental data provided in [24] 

and compared with the relative error of two recognized correlations. As visible in Table 1, Eq. (2) 

shows small errors (< 1%) with very regular distribution over different sample liquids. 
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The four empirical correlations by Wilke and Chang (Eq. (3)), Siddiqi and Lucas (Eq. (4, 5)), King 

(Eq. (6)), Tyn and Calus (Eq. (7)) are selected as benchmark for the comparison with the ANN 

methodology. 
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The created database is summarized in the maps shown in Fig. 1, where the points are placed at the 

pairs property corresponding to collected solvent-solute combinations, whilst the surrounding bars 

represent how frequently the liquid corresponding to that property is present in the database as a 

solvent or as a solute. In Fig. 1 dense data are visible in the properties region of the light HCs (i.e. 

C1-C9) with particular focus on the groups C6-C8, whose properties are respectively in the ranges: 

0.1-0.4 mPa‧s for viscosity (Fig. 1a); 110-140 cm3/mol for NBP molar volume (Fig. 1b); 70-110 

g/mol for molecular weight (Fig. 1c); 300-350 kJ/kg for latent heat of vaporization (Fig. 1d). The 

low frequency sparse data visible in Fig. 1a, 1b, 1c are mainly due to heavy HCs points (η = 3-35 

mPa‧s, Vb = 340-480 cm3/mol, M = 200-400 g/mol). Those points are not highlighted in Fig. 1d 

since they are included in the light HCs dense region due to the comparable latent heat of 

vaporization (≈ 200 kJ/kg). The straights data with high frequency visible in Fig. 1d represent 

mixtures comprising water, whose latent heat of vaporization (2270 kJ/kg) is significantly higher 

than that of HCs. 

2.2 Plain hybrid neural network methodology 



ANNs are multi-layer networks of base elements, called neurons, that are organized in layers (of 

any width) connected each other. In this work a Feed-Forward ANN (FFANN) was implemented, 

where information are transferred one-way without any recurrence or matrix manipulation step from 

the input layer, whose neurons receive the so called input features (variables that positive correlate 

with the prediction target), to the output layer, whose neurons return the regression task. The layers 

(two or more) in-between the input and the output layer, which perform the non-linear 

transformations, are called hidden layers. 

The FFANN is implemented in Python 3.7.4 with the Keras ([25]) and Tensorflow ([26]) open-

source software libraries. A novel workflow called hybrid mode, which is described in the 

following, was developed and applied to the plain FFANN. Considering the diffusion coefficient as 

the prediction target, a standard used ANN is trained to return the regression task, which is the 

prediction target itself, hence, the diffusion coefficient is directly predicted by the ANN model. In 

the proposed hybrid mode, the regression task is an intermediate parameter that aims to correct the 

diffusion coefficient returned by a reference empirical correlation. In this work the classical 

empirical correlation by Wilke and Chang (Eq. (1)) was considered as the reference after the 

implementation of slight modifications aimed to integrate the correlation with the ANN in a 

physical manner. As a result, Eq. (8) was achieved by following these steps: a) due to the dilute 

solution assumption, the mixture viscosity and temperature were replaced with the ones of the 

solvent; b) the molecular weight was expressed as function of the density and the molar volume 

both at room conditions by rearranging Eq. (1); c) the solute NBP molar volume was replaced by 

the solute molar volume at room conditions; d) the fit exponent for the solute NBP molar volume 

was turned to 0.5 allowing to put the solvent and the solute molar volumes under the same exponent 

so that the diffusion coefficient directly depends on the solvent-solute molar volume ratio (ϕ = 

V1/V2); e) the association factor (A) was removed. At this point, the modified correlation would not 

account for the intermolecular forces since in the original correlation that dependence was 

represented by the NBP molar volume and the association factor. However, the original idea of 

Wilke and Chang to represent the intermolecular forces by introducing a sort of effective molecules 

weight with a correction factor was maintained. The solvent-solute molar volume ratio (ϕ) is 

multiplied by a θ correction coefficient resulting in the effective molar volumes ratio depending on 

the bonds strength in the solvent and the solute. This θ correction is the regression task of the hybrid 

mode ANN, thus, in this novel workflow the output layer provides the θ value. 

𝐷12 = 7.4 ∙ 10−12 [
𝑇1

𝜂1 𝜌1
−0.5  ∙ (𝜃 𝜙)0.5] (8) 



Besides the fluid properties mentioned in 2.1 (density, viscosity, latent heat of vaporization, molar 

volume, molecular weight, carbons, hydrogens and oxygens number), other input features called 

secondary features were taken into account. The secondary features were features derived from the 

application of mathematical operations such (e.g. exponentials) and ratios to the solvent and the 

solute properties. The introduction of the secondary features was decided after that mathematical 

operations tested on some fluid properties have proven to give stronger relationships with the 

regression task. The input features were normalized following the traditional approach of 

transforming each input variable to present mean value = 0 and standard deviation = 1. The scaled 

parameters were fitted on the train set only, in order to verify with the test and the validation sets 

the validity of the whole pipeline, and not just of the regression model. 

2.3 Preventing the over-fitting  

Providing to the input layer with the whole set of features, together with the limited number of data 

against those recommended for the ANN learning process, increased the risk of overfitting, namely 

the ANN model memorizes the training points with excellent performances on the train set without 

being able to generalize to new data. In order to limit this risk, different strategies were adopted: a) 

selection of only the most meaningful features based on the statistic measure of the degree of 

association between the regression task and every single primary and secondary feature; b) 

implementation of an early stop strategy of the network weights update; c) addition of noise to the 

selected input features; d) integration of one of the hidden layers with a L2 kernel regularizer with 

the aim to improve the robustness of the prediction [27]; e) use of a repeated k-fold cross-validation 

approach. Focusing on the first point (a), the features are ranked based on the Spearman rank-order 

analysis that provides the strength and the direction (positive or negative) of the monotonic 

relationship between two generic data sets X and Y. The Spearman rank-order analysis is performed 

with the calculation of the Spearman correlation coefficient (𝑟𝑆) in Eq. (9), where 𝑟𝑋 and 𝑟𝑌 are the 

paired ranks for the considered input feature (X) and the θ correction (Y) while �̅�𝑋,𝑌 are the averaged 

ranks over the number of cases (n). For both X and Y, ranks are integer numbers from 1 to n that are 

assigned to each of the cases according to the following criterion: 1 is assigned to the higher value 

in the set, then the other reals from 2 to n are assigned to each value in the set following the 

descending order. After applying the Spearman rank-order analysis, only the f features with 𝑟𝑆 

greater than 0.1 (Fig. 2) were provided to the input layer. 

𝑟𝑆 =
∑ (𝑟𝑋,𝑖 − �̅�𝑋) ∙ (𝑟𝑌,𝑖 − �̅�𝑌)𝑛

𝑖=1

√∑ (𝑟𝑋,𝑖 − �̅�𝑋)
2

∙𝑛
𝑖=1 ∑ (𝑟𝑌,𝑖 − �̅�𝑌)

2𝑛
𝑖=1

 
(9) 



According to the second point (b), during the training step the maximum number of epochs, i.e. the 

number of times that the database is used to update the weights of the neurons, can be bypassed 

with an exit control strategy that stops the training if the performance on the train set would not 

improve after 10 consecutive iterations. As mentioned in the third point (c), the ANN is integrated 

with an extra input layer that adds Gaussian noise to the input features. In Fig. 3 focusing on the 

train set (solid lines), regardless to the noise amplitude, as the epoch increases the Mean Squared 

Error (MSE, Eq. (10)) decreases to a minimum asymptotic value. Despite the MSE decreasing trend, 

the persistence of a significant gap between train and test sets when providing the clean features 

(i.e. without noise addition, orange curve) is a clear sign of overfitting. Focusing on the test set 

(dashed lines), after an initial transient behaviour that does not optimize the weights on the train set, 

the MSE with noise addition follows the expected performance, reducing the gap between train and 

test (blue and green curves). Thus, increasing Gaussian noise has proven to be an effective strategy 

to prevent the overfitting issues even though it results in a bit lower accuracy on the train results. 

Moreover, Fig. 3 shows that the use of noise addition allows to achieve the minimum asymptotic 

value faster, thus, to stop the epochs earlier. 

𝑀𝑆𝐸 =
∑ (𝐷𝑖 − 𝐷𝑖,𝑝)

2
𝑖

𝑛
 (10) 

Concerning the fifth point (e), in this work the repeated k-fold cross-validation is an iterative split 

of the dataset under review into train set and test set, so that the evaluation of the model’s 

performance is independent from choice of the data-split. 

2.4 Optimization and comparison 

In order to provide a comprehensive evaluation of the performance of the ANN model, the full 

database (236 points) was divided into two subsets i.e. the reference set and the validation set. Since 

the focus of the work is to improve the future predictions with particular focus on mixtures of 

petroleum and engine interest, the solvent/solute combinations listed in Table 2 were selected as 

validation set. The remaining data are the reference set, which was used in the repeated k-fold 

cross-validation process mentioned in 2.3. As a consequence, the points in the validation set (Table 

2) were not present in any of the train and test sets split. Thus, they were used as new data to 

perform a further check of both the accuracy and the generalization capability of the ANN model 

after the training step. The optimization targets were the network architecture, i.e. the number of 

hidden layers and the number of neurons per layer, and the model hyperparameters, i.e. the 

activation functions, the noise standard deviation and the lambda value for the L2 regularizer. 

Different sets of architectures and hyperparameters were generated automatically with a Bayesian 



optimization algorithm [28] once it was provided with 5 initial sample sets defined by the present 

Authors. Each sample set was tested with the aforementioned repeated k-fold cross-validation (2.3), 

where the training step was performed with the Adam iterative based optimization algorithm [29] 

for the network weights update. For the training step, the maximum number of epochs was set to 

1E5, however the algorithm is able to stop early if the aforementioned (2.3) exit control strategy 

condition is reached. Therefore, the accuracy of the model achieved with the architecture and 

hyperparameters set under review, was evaluated by averaging the error metrics on the test and the 

validation sets of all the k-repetitions. At this point, the Bayesian optimization algorithm, having 

recorded the performance increase/decrease associated with the initial sample sets, was able to 

generate the new sets, which were tested following the same procedure applied to the sample sets. 

The error metrics adopted to evaluate the accuracy of the model are the R-squared (R2, Eq. (11)), 

the adjusted R-squared (Ra
2, Eq. (12)), the Mean Absolute Relative Error (MARE, Eq. (13)) and the 

Root Mean Squared Error (RMSE, Eq. (14)), which were calculated for the training, the test and the 

validation sets. In Eq. (11, 12, 13, 14) 𝐷 is the generic experimental diffusion coefficient, 𝐷𝑝 the 

corresponding predicted value, �̅� the average experimental diffusion coefficient calculated on the 

dataset under analysis, n is the number of points and f is the number of input features. 

𝑅2 = 1 −
∑ (𝐷𝑖  

− 𝐷𝑖,𝑝)
2 

𝑖=1

∑ (𝐷𝑖  
− �̅�)

2 
𝑖=1

 (11) 

𝑅𝑎
2 = 1 − (1 − 𝑅2) ∙

𝑛 − 1

𝑛 − 𝑓 − 1
 (12) 

𝑀𝐴𝑅𝐸 = ∑
|𝐷 𝑖

− 𝐷𝑖,𝑝|

𝐷𝑖
∙ 100

𝑖

 (13) 

𝑅𝑀𝑆𝐸 =  √∑ (𝐷𝑖,𝑝 − 𝐷𝑖)
2

𝑖

𝑛
∙ 100 (14) 

For sake of clarity, the optimized hybrid mode ANN is presented while compared with a standard 

used ANN, where the regression task is the prediction target itself i.e. the diffusion coefficient. The 

standard ANN was implemented by assuming the same methodologic (overfitting approach) and 

optimization techniques reported for the hybrid mode. The optimized network architecture for both 

the standard and hybrid modes is composed by 2 hidden layers of 24 and 32 neurons each. The 

activation functions are the tanh (hyperbolic tangent) for the first hidden layer and the ReLU 

(Rectified Linear Unit i.e. a function that set the input to zero if the original input is ≤ 0 and passes 

the input without any modification if the original input is > 0) for the second. The optimized std of 



the Gaussian noise is 0.02 and the lambda value for the L2 regularizer is 0.01. For the output layer, 

a linear activation function is chosen since no normalization of the target values was performed 

because not necessary given their almost normal distribution.  

Table 3 shows the comparison between the hybrid and the standard modes in terms of accuracy with 

the considered error metrics. As visible in Table 3, whilst the performance of the hybrid and the 

standard modes are comparable on the three sets in terms of %MARE and %RMSE, the hybrid mode 

behaves significantly better on the test and the validation sets in terms of R2. As shown in Table 3, 

the hybrid mode addresses the accuracy target better than the standard mode on both the test set and 

the validation set. Furthermore, the hybrid mode relies on small R2 differences between train and 

test and between train and validation with respect to the standard mode. This is reported since small 

R2 differences between train and evaluation (test and validation in this case) are a recognized proof 

that the model is not overfitting the train set. As a result, one can assume that the developed hybrid 

mode reasonably prevents the overfitting and that it is capable to generalize to new data better than 

the standard mode. Moreover, it must be considered that the hybrid mode allows the interpretability 

of relevant dependencies that are not assigned to the regression task. Fig. 4 shows the target vs 

predicted regression line for the train, the test and the validation sets. It can be observed that the test 

set prediction is affected by some random sparse points around the 1:1 line. However, the reliability 

of the model for the prediction of new mixtures is ensured by the fact that in the region where the 

gasoline/lubricant oil and the heavy oils/HC solvent mixtures are expected (yellow frame), the 

prediction of the test set as well as the ones of the validation set are very close to linearity. The R2, 

the slope and the intercept associated with Fig. 4 are listed in Table 4. According to the above 

analysis, the hybrid mode is the winner methodology for the implementation of the Bayesian 

approach. When the hybrid mode is applied to predict the full database, R2 = 0.888 (slope = 0.922, 

intercept = 0.117) and Ra
2 = 0.879 result. In Fig. 5 a scheme of the hybrid mode workflow with a 

brief resume of the network topology is shown. 

2.5 Bayesian neural network methodology 

Plain ANNs have the potential to perform extremely accurate predictions based on a sufficiently 

large dataset and an optimization of the network topology and weights. Their predictions, however, 

may suffer mostly from two different types of error: aleatoric (due to uncertainty in the training 

data) and epistemic (due to the distribution of the points in the train set with respect to the 

prediction domain). Whilst the aleatoric uncertainty is intrinsic in the dataset and it has been 

addressed by utilizing only accurate and reliable experimental data for the training set, the epistemic 

uncertainty is traditionally more complicated to calculate and, consequently, to reduce. To this aim, 



a new approach called Bayesian has been recently proposed. The Bayesian approach adopts 

probability distributions in place of single weights for describing the connections between the 

nodes. The optimization process must therefore identify the optimal distributions rather than the 

optimal weights, leading to the training of an ensemble of networks which share the same weight 

distributions, rather than a unique representation of the system.  

Given a domain d(X, Y) (our dataset) comprised of n observations, and a probabilistic model p(Y|X, 

w) that represents the dataset, with w weights of the model, the Bayes’ theorem statement (Eq. (15)) 

says that: given the training data d, the posterior distribution of the weights p(w|d) (i. e. the 

probability distribution of the weights of the neurons updated after having observed the training 

data) is proportional to the prior probability of the weights p(w) (i. e. the initially guessed 

probability distribution of the weights of the neurons) with the proportionality coefficient p(d|w) 

defined as the likelihood function (Eq. (16)). In Eq. (15) the denominator p(d) is the distribution of 

the training set and is intended as a normalization term. 

𝑝(𝑤|𝑑) =
𝑝(𝑑|𝑤) ∙ 𝑝(𝑤)

𝑝(𝑑)
 (15) 

𝑝(𝑑|𝑤) = ∏ 𝑝(𝑌𝑖|𝑋𝑖, 𝑤)
𝑛

𝑖=1
 (16) 

The maximization of the product in the numerator of Eq. (15) provides the maximum a-posteriori 

estimate of the weights. The optimization of the product instead of the maximization of p(d|w) only, 

prevents the risk of overfitting. The posterior predictive distribution can be rewritten as in Eq. (17), 

which describes how the final prediction is achieved by performing a weighted average of the 

predictions of an ensemble of networks, weighted on the posterior probabilities of the parameters w. 

The numerical implementation of this approach required the computation of the output value a 

sufficient number of times (> 100, controlled iteratively on the residuals of mean and standard 

deviation of the predictions) performed with random weights taken from the trained distributions 

for the connections between nodes. 

𝑝(𝑌|𝑋, 𝑑) = ∫ 𝑝(𝑌|𝑋, 𝑤) ∙ 𝑝(𝑤|𝑑)𝑑𝑤 (17) 

With regards to the training phase, the optimization of the parameters of an ANN is traditionally 

implemented with the back-propagation algorithm. This requires the computation of the derivatives 

of the activation functions, which is intractable with the probability distributions of the weights, 

therefore a variational approximation form has been proposed. The exact derivation is the same as 

that proposed in the original article ([30]), from which the cost function to minimize is 



approximated as in Eq. (18), where p(w) is the prior distribution of the weights, which is called 

complexity cost and it is assumed as a Gaussian distribution, whilst q(w|z) is the variational form of 

the distribution p(w|d). The target variational posterior distribution q(w|z) is described by z = (µ, σ), 

which is parametrized as a Gaussian distribution with mean value vector (µ) and its standard 

deviation (σ). Therefore, the BNN is parametrized with twice the number of parameters than a plain 

ANN. The optimization process of the network architecture and hyperparameters has been 

performed through the same steps as for the plain ANNs, with repeated k-fold cross validation and 

early stopping during training. The final topology and hyperparameters are the same as those listed 

in 2.4 for the plain network. 

𝐹(𝑑, 𝑧) ≅
1

𝑛
∑ [log(𝑞(𝑤𝑖, 𝑧)) − log(𝑝(𝑤𝑖)) − log (𝑝(𝑑|𝑤𝑖))]

𝑛

𝑖=1
 (18) 

3. Results 

3.1 Validation 

In this section the BNN is validated and discussed against the previously mentioned validation set 

(Table 2). The final prediction, transformed for calculating the diffusion coefficient, has reported a 

mean standard deviation of 0.02E-9 m2/s in the train set and of 0.03734E-9 m2/s in the test set. The 

97% of the training points and the 96% of the test points fall into the 2σ distance from the predicted 

mean value, that is an appropriate result for a well fitted normal distribution, thus, it is assumed 

reliable for predicting the epistemic uncertainty on new points. In Fig. 6 the predicted mean value 

and epistemic uncertainty (mean prediction ± 2σ) are reported with respect to the experimental data. 

A general good agreement with experiments is obtained for the mean value. Furthermore, for the 

points with the larger gaps between measurements and predicted mean value, the experimental data 

is however included in the confidence interval predicted by the BNN. The epistemic uncertainty can 

be therefore adopted to estimate the applicability of the prediction method for new mixtures of 

interest for which experimental data are not available. 

Comparing the four benchmark empirical correlations and the BNN methodology on the full 

database, the cumulative distributions of the Absolute Relative Error (ARE) shown in Fig. 7 are 

reported. It must be underlined that the general error reduction achieved by the BNN can be 

attributed to the database points that were used in the training set. However, the gain in accuracy is 

visible by the fact that the 70% of the database is predicted with errors below the 5% while the 

empirical correlations achieve the same error threshold with about the 20% of the database. 

Moreover, the proposed methodology predicts almost the full database (90%) with errors below 

25% against errors over 40% that may be committed with the empirical correlations. The blue area 



over the BNN distribution in Fig. 7 represents the cumulative error of the predicted confidence 

interval, whose trend is assessed as follows: when the experimental measure of the point falls in the 

predicted confidence interval (± 2σ), the error associated to the point is zero while when the 

confidence interval is exceeded (positive or negative), the ARE is calculated as the difference 

between the experimental measure and the maximum deviation from the predicted mean (D12 + 2σ 

if positive, D12 - 2σ if negative). Fig. 7 shows that for the 80% of the full database, which is 

predicted with ARE in the range 0-10%, the BNN is capable to provide results with a reliable 

confidence. 

Before moving on the prediction of the diffusion coefficients of petroleum and engine mixtures, 

Fig. 8 shows the trend of the predictive potential of this BNN on new HC mixtures. Fig. 8 is 

realized assuming constant properties for the solvent, identified as n-heptane for representing a 

generic fuel, while the number of carbon atoms of the solute is increased from C10 (threshold 

carbons number conventionally used to intend heavy HCs) to C34 (representative of the mean 

carbons number in oils ([31])). As shown in Fig. 8, the higher is the solute carbon number, the 

lower is the liquid diffusivity (as reported in literature) with an increased uncertainty in the BNN's 

prediction the more the target is distant from the training domain. However, since the predicted 

mean values well matches the reference experimental points available from C10 to C16, one can 

expect that the real diffusion coefficients for the higher carbon numbers in the solute remain close 

to the traced mean curve (red) and, at worst, in the yellow band (half the confidence interval) with 

absolute relative errors below the 20%. 

3.2 Prediction of new mixtures 

Once the validation step has been reported in terms of both improved accuracy against the current 

standard, i.e. empirical correlations (Fig. 7), with reasonable proofs of reliability (confidence 

intervals, Fig. 8), the BNN methodology is applied to organic mixtures of industrial interest, which 

are created on purpose by the present Authors in order to test the methodology against liquids that 

are very uncommon in diffusivity measurements. With regards to the petroleum application, n-

hexane (C6H14), n-heptane (C7H16) and naphthalene (C10H8) are considered as a solute, being 

common proposals in solvent injection methods whilst a cold lake blend crude oil is assigned as a 

solvent in representation of heavy oils and bitumens. Concerning the automotive application, two 

different SAE lubricant oils, the single-grade oil SAE 30 and the multi-grade oil SAE 10W-30, are 

considered as a solutes whilst a four-component (45.95w% i-octane (C8H18), 12.91w% n-heptane 

(C7H16), 37.18w% toluene (C7H8), 3.96w% 1-pentene (C5H10)) surrogate representative of the 

thermo-physical properties (density, viscosity, latent heat of vaporization) of a commercial gasoline 



is assigned as a solvent. In the calculation, the cold lake oil, the gasoline surrogate and both the 

SAE oils are treated as pseudo-pure liquids by averaging their properties. 

The first two rows of Table 5 show the gasoline-lubricant oil combinations. It can be noticed that 

the predicted mean values are consistent with the trend shown in Fig. 8. Indeed, since the 

combination of n-heptane (C7) with C34 (representative of the average carbons number for HC 

lubricant oils) gives diffusion coefficients about 1.0E-9 m2/s, it is reasonable to think that the 

combination of commercial gasolines, which usually comprise small fractions of C10-C12, with 

real lubricant oils, which may contain fractions with carbons number about C50, shows diffusion 

coefficients lower than 1.0E-9 m2/s. Another proof of the reasonability and the robustness of the 

mean predictions is that using the SAE 10W-30 instead of the SAE 30 the diffusion coefficient 

increases consistently with the experimental evidence that the diffusion is faster the lighter is the 

solute (SAE 10W-30 in this case) due to the reduced friction between the solute particle and the 

medium. Furthermore, even though the confidence interval predicts maximum deviations from the 

mean values of 18% (SAE 30) and 26% (SAE 10W-30), it needs to be remembered that Fig. 8 

showed that the real values tend to be included in half the confidence interval, hence, maximum 

deviations of 9% (SAE 30) and 13% (SAE 10W-30) can be expected. 

The last three rows in Table 5 show the results for solvent-solute combinations that are 

representative of heavy oils dilution with the solvent injection method. As proof of concept, it is 

remarkable that even though the database lacks of specific information on heavy and high viscosity 

liquids comparable to those oils, the predicted orders of magnitude and values are very close to 

experimental findings on topic. In [32] the Authors measured the diffusion coefficient at infinite 

dilution and at room conditions of n-hexane and naphthalene in both i-octane and different HC oils 

with increasing viscosity from 3 to 5000 mPa‧s. Considering the viscosity-diffusion coefficient 

curves presented in [32], diffusion coefficients in the range 0.03-0.05 m2/s can be observed 

corresponding to the viscosity of the cold lake oil at 293 K (≈ 30 mPa‧s). According to the last three 

rows in Table 5, the three considered solvents are comparable between each other in terms of the 

predicted mean value even though n-hexane and naphthalene show a bit faster dilution. Moreover, 

in the case of oil dilution with naphthalene, the implemented BNN guarantees a very small 

uncertainty. 

4. Conclusion 

In this work the implementation of a Bayesian Neural Network based methodology is performed for 

the prediction of the liquid phase diffusion coefficient in binary mixtures at infinite dilution. The 

need of this implementation is related to the fact that the results returned by the empirical 



correlations, that are commonly used for those estimations, may be affected by severe errors. The 

proposed methodology deals with the coupling (in a physical manner) of the predictive power of 

Neural Network models with the interpretability of the most relevant dependencies given by the 

empirical correlations and with the capability of the Bayesian implementation to approach the 

uncertainties (in particular the epistemic uncertainty) predicting the confidence interval of the 

solution. This methodology has led to more accurate predictions (MARE ≈ 9%) with respect to 

several experimental data of different species against the empirical correlations of Wilke and 

Chang, Siddiqi and Lucas, King, Tyn and Calus (MARE ≈ 35%) that are the current standard for 

those estimations. The reliability of the methodology has been shown by checking that almost all 

the available measures (80%) are included in the confidence interval predicted by the Bayesian 

Neural Network. The methodology was applied to the simulation of gasoline-lubricant oil and 

heavy oil-liquid solvent mixtures resulting in predictions that are consistent with experimental 

evidences both in quantitative terms i.e. order of magnitude and value, and in qualitative terms i.e. 

capability to capture diffusion trends. 
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Table 1  

Comparison between experimental and calculated NBP molar volumes (cm3/mol). Relative error in parenthesis 

calculated as (calc. - exp.)/exp. ‧ 100 

Liquid Experimental Le Bas [24] Tyn & Calus [24] Eq. (2) 
Water (H2O) 18.70 14.80 (-20.85%) 19.34 (3.44%) 18.78 (0.45%) 
Acetone (C3H6O) 77.50 74.00 (-4.52%) 78.43 (1.20%) 77.47 (-0.03%) 
Methanol (CH4O) 42.50 37.00 (-12.94%) 42.05 (-1.06%) 42.74 (0.56%) 
Cyclohexane (C6H12) 117.00 118.20 (1.03%) 116.43 (-0.49%) 116.66 (-0.29%) 
n-Heptane (C7H16) 162.00 162.80 (0.49%) 164.71 (1.67%) 162.98 (0.60%) 

 

Single column fitting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2 

Mixtures selected for the validation set and their diffusion coefficient 

Solvent/solute D12 x1E9 (m2/s) 

Butanol (C4H10O) /Oleic-acid (C18H34O2) 0.25 

n-Hexadecane (C16H34) /n-Decane (C10H22) 0.57 

n-Hexadecane /n-Octane (C8H18) 0.68 

n-Hexadecane /n-Heptane (C7H16) 0.74 

n-Hexadecane /n-Hexane (C6H14) 0.85 

n-Tetradecane (C14H30) /n-Octane 0.84 

n-Tetradecane /n-Heptane 0.93 

Kerosene /Carbon-tetrachloride (CCl4) 0.96 

n-Tetradecane /Toluene (C7H8) 1.02 

n-Hexadecane /n-Hexane 1.42 

 

2-column fitting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3 

Comparison between standard and hybrid mode plain Neural Networks on different datasets 

Dataset Error metric Standard mode Hybrid mode 

Train 
R2 0.996 0.987 

MARE (%) 2.77 3.52 
RMSE (%) 6.06 8.10 

Test 
R2 0.860 0.953 

MARE (%) 21.53 22.46 
RMSE (%) 23.00 21.00 

Validation 
R2 0.914 0.999 

MARE (%) 7.62 5.94 

RMSE (%) 7.90 7.60 

 

Single column fitting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4 

Regression line results for the prediction of train, test and validation sets with the hybrid mode 

Dataset R2 Slope Intercept 

Train 0.987 0.986 0.019 

Test 0.953 0.916 0.128 

Validation 0.999 1.090 -0.073 

 

2-column fitting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5 

Bayesian neural network predictions (diffusion coefficient and its confidence) for mixtures of industrial interest 

Solvent/Solute Mean x 1E-9 (m2/s) ± 2σ 
Gasoline surr/SAE 30 0.6885 0.1263 
Gasoline surr/SAE 10W-30 0.8864 0.2317 
Cold lake oil/n-Hexane (C6H14) 0.0255 0.0177 
Cold lake oil/n-Heptane (C7H16) 0.0230 0.0166 
Cold lake oil/Naphthalene (C10H8) 0.0256 0.0095 

 

Single column fitting 

 

 

 

 

 

 

 

 

 



 

Fig. 1. Dynamic viscosity (a), molar volume (b), molecular weight (c), latent heat of vaporization (d) distribution and 

frequency in the database 

Single column fitting 

 

 

 

 

 



 

Fig. 2. Results of the Spearman rank-order analysis on the f top ranked features 

2-column fitting 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 3. Mean Squared Error for increasing level of input noise (σ) on train (solid lines) and test (dashed lines) sets 

2-column fitting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 4. Linear regression test on the predicted diffusion coefficients on train, test and validation sets 

Single column fitting 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 5. Scheme of the architecture and the workflow of the hybrid mode Artificial Neural Network 

2-column fitting 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 6. Validation of the Bayesian Neural Network on the validation set 

Single column fitting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 7. Comparison of the Absolute Relative Error distribution on the full database with four literature empirical 

correlations and the Bayesian Neural Network 

2-column fitting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 8. Bayesian Neural Network prediction and its confidence for different combinations of n-heptane (solvent) with 

increasing carbons number n-alkanes (solutes) 

2-column fitting 


