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Abstract: Neuroblastoma (NBL) is a pediatric cancer responsible for more than 15% of cancer deaths
in children, with 800 new cases each year in the United States alone. Genomic amplification of the
MYC oncogene family member MYCN characterizes a subset of high-risk pediatric neuroblastomas.
Several cellular models have been implemented to study this disease over the years. Two of these, SK-
N-BE-2-C (BE2C) and Kelly, are amongst the most used worldwide as models of MYCN-Amplified
human NBL. Here, we provide a transcriptome-wide quantitative measurement of gene expression
and transcriptional network activity in BE2C and Kelly cell lines at an unprecedented single-cell
resolution. We obtained 1105 Kelly and 962 BE2C unsynchronized cells, with an average number
of mapped reads/cell of roughly 38,000. The single-cell data recapitulate gene expression signa-
tures previously generated from bulk RNA-Seq. We highlight low variance for commonly used
housekeeping genes between different cells (ACTB, B2M and GAPDH), while showing higher than
expected variance for metallothionein transcripts in Kelly cells. The high number of samples, despite
the relatively low read coverage of single cells, allowed for robust pathway enrichment analysis
and master regulator analysis (MRA), both of which highlight the more mesenchymal nature of
BE2C cells as compared to Kelly cells, and the upregulation of TWIST1 and DNAJC1 transcriptional
networks. We further defined master regulators at the single cell level and showed that MYCN is not
constantly active or expressed within Kelly and BE2C cells, independently of cell cycle phase. The
dataset, alongside a detailed and commented programming protocol to analyze it, is fully shared
and reusable.

Keywords: neuroblastoma; gene networks; single-cell; transcriptomics; master regulator analysis

1. Introduction

For decades, cell lines have been widely used in cancer biology as a standard setting to
investigate molecular mechanisms and to test the effects of genetic and chemical perturba-
tions. Experiments performed on cell lines often lay the foundation for further investigation
of biological response in animal models, ultimately providing valuable translational inputs
for clinical medicine [1]. After the advent of the omics era, scientists gained the capability
to match specific cell lines to the genomics, epigenomics and transcriptomics features of
specific tumor subtypes [2]. In recent years, advances in sequencing-based diagnostics
have allowed researchers to choose, virtually in real time, the top matching cell line model
for individual cancer patients as a key step of precision medicine approaches [3].

One of the main advantages of cell line-based experiments is their high reproducibil-
ity [4], based on the fact that cell lines are genetically stable and transcriptionally more
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homogeneous than in vivo tumor models [5]. However, it has been shown that cell lines
from different labs may show genetic and transcriptional alterations, due to clonal and
evolutionary divergences, which may account for occasional differences in phenotypes and
pharmacological responses [6]. While the between-lab diversity of cell lines has been criti-
cally and widely recognized [7], the within-lab and within-plate heterogeneity of cell line
cultures is often ignored, despite evidence that spatial biases exist even in cell cultures [8].

Recent technological advances have provided the unprecedented opportunity to
investigate heterogeneity at single-cell resolution [9], allowing researchers to quantita-
tively identify cellular subpopulations and to uncover molecular mechanisms underlying
phenotypic diversity among cells [10]. The majority of the single-cell RNA-Sequencing
(scRNA-Seq) studies published so far in cancer biology aim at deciphering tumor tissue
samples’ composition complexity and the interplay between cancer cells and the cellu-
lar components of the tumor microenvironment [11]. ScRNA-Seq has been successful in
delineating the previously uncharacterized histological heterogeneity of many different
tumors [12–14]. In cell lines, single-cell sequencing has been applied to investigating the
early insurgence of drug resistance mechanisms [15,16] and tumor evolution [17,18].

Among tumors, Neuroblastoma (NBL) is a representative example of a highly histolog-
ically heterogeneous cancer [19]. NBL is the most common extracranial solid tumor of early
childhood arising from neural crest cells, showing a wide spectrum of clinical behavior,
spanning from spontaneous regression without chemotherapy to a frequent metastatic
manifestation with a drug-resistant phenotype, especially in older patients [20–22]. There
exist at least three different molecular subtypes in which aggressive NBLs can be catego-
rized, named Mesenchymal, 11q Loss of Heterozygosity and MYCN-Amplified, the last
two of which are characterized by specific genomic alterations [23]. The MYCN-Amplified
subtype comprises roughly 20% of all NBLs, and 50% of high-risk patients, constituting
the most aggressive and least treatable form of this cancer [24]. There exist several cell
lines derived from MYCN-Amplified NBLs, which have been widely characterized both
transcriptionally by RNA-Sequencing [25], and epigenetically by ChIP-Sequencing [26–28]
and ATAC-Sequencing [29].

Despite these considerable characterization efforts, all current sequencing of MYCN-
Amplified cells has been performed on bulk samples, and therefore constitutes an average
of all cells within one or a few culture dishes.

In the present work, we provide the first scRNA-Seq dataset of two of the most used
MYCN-Amplified NBL model cell lines, namely SK-N-BE (2)C (herein referred to as “BE2C”
for brevity) and Kelly. We used a combination of 10× Genomics technology and Illumina
to carry out scRNA sequencing of two unsynchronized cell cultures. We extracted 962
BE2C cells and 1105 Kelly cells with an average number of genome-mapped reads/cells of
38,334 for BE2C and 37,760 for Kelly. The dataset is provided both as raw sequencing reads
(provided at the Sequence Read Archive as BAM files aligned on human genome version
hg19, but also containing unaligned reads) and as processed gene counts matrices in the
Supplementary Materials.

Each cell was investigated with respect to individual gene expression (with a focus
on commonly used housekeeping genes), single-cell pathway enrichment analysis and
single-cell master regulator analysis (MRA) [30]. The manuscript is accompanied by
a detailed executable R markdown document recreating all steps of the analysis and
providing researchers with a standard pipeline of investigation, using state of the art R
packages for normalization, summarization and plotting. Bringing single-cell resolution
to transcriptome quantification of cell lines used to investigate the deadly NBL pediatric
cancer will allow researchers to better appreciate the heterogeneity of cells in seemingly
homogeneous cell culture settings. We believe our study adds a fundamental layer of
transcriptomics complexity that cannot be extracted from classic bulk sequencing datasets.
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2. Materials and Methods
2.1. Cell Cultures

Cell lines were obtained from Sigma-Aldrich®. BE2C cells were cultured in high
glucose DMEM (Sigma-Aldrich®, St. Louis, MO, USA) +10% fetal calf serum (FCS, Gibco®);
Kelly cells were cultured in RPMI 1640 (Sigma-Aldrich®) +10% FCS (Gibco®). Both media
were supplemented with 2 mM L-Glutamine and 1% Penicillin/Streptomycin. BE2C and
Kelly cells were processed separately in all steps of cell culturing. Cells were grown adher-
ently in standard T-25 flasks at 37 ◦C with 5.0% CO2 [31] and passaged by trypsinization at
~75% confluency. A flask each of BE2C and Kelly cells at 70% confluency (Figure 1A for
BE2C, Figure 1B for Kelly) was filled to capacity (roughly 83 mL of volume) with growth
medium at 37 ◦C and tightly sealed for transport to the sequencing facility (roughly 25 min
away) for sequencing with the Chromium® instrument for 10× Genomics® (Pleasanton,
CA, USA) library preparation. No cell cycle synchronization strategy was used during the
cell culture steps.

Figure 1. Initial analysis of single-cell expression on Kelly and BE2C cell lines. (A) BE2C and (B) Kelly
cells prior to library preparation sequencing. (C,D) Plot showing the Log10 TPM average expression
for all genes in the dataset (y-axis) and the number of cells where the gene is detected (x-axis) with
TPM > 0 (i.e., more than one read) in BE2C and Kelly cells. (E,F) Selected representative genes shown
as bar plots of overall log10 TPM average expression, with error bars depicting standard deviation in
the dataset for BE2C and Kelly cells. A pseudovalue of 0.0001 (10−4) is added to TPM values (also in
the next figures) prior to calculation of logarithm.

2.2. 10× Genomics Library Preparation and Sequencing

Cells were harvested using trypsin-EDTA solution and centrifuged. The pellet was
resuspended in PBS 1× containing bovine serum albumin (BSA) 0.04%. Cell concentra-
tion was determined using the Countess II FL Automated Cell Counter (Thermo Fisher
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Scientific® Waltham, MA, USA). Trypan Blue staining was used to assess cell viability.
Chromium controller and Chromium Single Cell 3′ Reagents Kit v2 (10× Genomics®) were
used for partitioning cells into gel beads-in-emulsion (GEMs), where all generated cDNA
shares a common 10× barcode. Libraries were generated from the cDNA and checked with
both Qubit 2.0 Fluorometer (Invitrogen®, Waltham, MA, USA) and Agilent Bioanalyzer
DNA assay (Agilent®, Santa Clara, CA, USA). Libraries were prepared for sequencing fol-
lowing manufacturer’s instructions (Illumina®, San Diego, CA, USA) and then sequenced
in 150 bp paired-end mode on Illumina® HiSeq2500.

2.3. Data Processing

Raw reads were mapped to the human genome version hg19/GRCh37 using the STAR
aligner version 2.7 [32]. The resulting aligned reads data were saved in BAM format, which
also included unaligned reads. This BAM was then processed with Cell Ranger v4.0.0, in
order to obtain matrices of gene counts per cell in CSV (comma-separated value) format.

Gene count matrices were loaded in the R statistical software version 4.0.2, running
Bioconductor version 3.11. Plotting was performed using base R functions and the corto
package version 1.1 [33]. Raw gene counts were normalized using the transcripts per
kilobase million (TPM) method. Briefly, in TPM normalization, gene-wise read counts
were divided by the length of each gene (defined by the UCSC database) in kilobases.
These values, cell by cell, were then divided by the number of reads (in millions) mapped
in each cell. Correlation values were calculated using Spearman’s method. For data
dimensionality reduction and clustering analysis, normalization was performed on raw
gene counts with the Seurat package version 3.2.1 [34] using the LogNormalize method
with a scale factor of 10,000. Clustering was also performed using the Seurat package after
removing genes measured in less than 3 cells (out of 962 BE2C cells and 1105 Kelly cells,
for a total of 2067 cells). Assignment of cells to cell cycle phases was performed using
the Seurat package with cell cycle genes defined by the Regev and Garraway labs [35].
The variance shown in Figure 2B is the residual variance after subtracting the expression
levels using a loess regression (otherwise, the expression variance would always be highly
correlated to average expression).

Pathway enrichment analysis was performed using gene set enrichment analysis
(GSEA) as described before [36] using pathway definitions from MSigDB [37], KEGG [38]
and Reactome [39] databases. MRA and GSEA single-cell analyses were performed using
functions from the R suite corto [33] as described in the Supplementary Materials. The
normalized enrichment score (NES) calculated by corto indicates the magnitude of up- or
down-regulation of the TF network (i.e., the collection of targets and their weights [40])
and is calculated as the enrichment score of the corto analysis (applying the network on
the signature, in our case the BE2C vs. Kelly comparison) divided by the mean enrichment
score of all permutations (calculated by shuffling both networks and samples 1000 times).
A Benjamini–Hochberg-corrected p-value [41] is linearly associated with the NES, and
specifies the expected occurrence of permuted networks with an enrichment score greater
than or equal to the observed one.

The Harenza dataset [25] was used to compare the scRNA-Seq data with bulk RNA-
Seq. The dataset was downloaded from Gene Expression Omnibus (entry GSE89413). Bulk
and sc datasets were TPM-normalized to make them comparable.
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Figure 2. Comparison between BE2C and Kelly datasets and with bulk RNA-Seq. (A) Gene-by-gene comparison of log10
TPM average expression in BE2C (x-axis) and Kelly cells (y-axis). A linear regression line is shown, and the SCC is indicated
with the correlation p-value (precision limit: 10-302). (B) Gene-by-gene comparison of log10 TPM variance of expression
(after regressing out average expression with a loess regression) in BE2C cells (x-axis) and Kelly cells (y-axis). (C,D)
Gene-by-gene comparison between single-cell dataset expression (x-axis, shown as log10 sum of TPMs) and bulk expression
(y-axis, as log10 TPM expression of the cell line in the Harenza dataset [24]). The Spearman Correlation Coefficient (CC) is
indicated. (E) TSNE visualization (calculated on TPM data) including the entire Harenza bulk RNA-Seq dataset [24] and the
sum of TPMs of single-cell datasets. MYCN-amplified NBL cell lines are depicted as squares, not-MYCN-amplified cell
lines as circles. (F) Heatmap reporting Spearman Correlation Coefficient between single-cell aggregated TPM data and 20
bulk RNA-Seq samples from the Harenza dataset. Samples are ordered by correlation coefficient with the scKelly sample,
and reported in two rows for graphical convenience.
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3. Results
3.1. Characterization of Landmark Gene Expression

Under optical microscopy inspection, the appearance of both BE2C cells (Figure 1A)
and Kelly cells (Figure 1B) at ~70% confluence was consistent with the previous litera-
ture [42,43]. We quantitatively checked the presence of several genes, in terms of average
expression across the entire cell population (expressed as Log10 average TPM) and in
terms of number of cells with at least one read mapped on the gene (Figure 1C for BE2C,
Figure 1D for Kelly). We checked the expression of four commonly used housekeeping
genes: ACTB, GAPDH, B2M and GUSB [44]. All these genes are highly expressed and
could be detected in almost all cells, with the exception of GUSB, detected in only ~50%
of both Kelly and BE2C cells. As expected for MYCN-Amplified cells, the MYCN gene
is also amongst the most expressed, both in absolute TPMs and as number of expressing
cells. Its paralogs, MYCL and MYC, are expressed in extremely low amounts, in only a few
cells. As shown before [25], MYCN has a slightly higher expression value in BE2C cells
(Figure 1E) compared to Kelly cells (Figure 1F). We also confirmed the higher expression,
in Kelly as compared to BE2C, of the NBL oncogene LMO1, as shown before [45]. The ALK
gene, which carries a F1174L mutation in Kelly and is WT in BE2C [25], is expressed at low
levels in Kelly and is barely detectable in BE2C. Among the most expressed genes in both
cell lines are those encoding for ribosomal proteins, such as RPL37 and RPS9. Amongst
crucial factors of the MYCN regulatory network, including PRDM8, MYBL2, HMGB2 and
TEAD4 [23], HMGB2 showed the highest and most robust mRNA levels.

Kelly cells are characterized by high average levels of metallothionein genes, such
as MT2A, MT1X and MT1E, which are, however, detected in only a fraction of cells and
therefore display a high expression variance. The expression level of metallothionein genes
has been correlated with intracellular levels of metal ions (e.g., MT1X for copper [46]) and
their expression variance represents the most notable difference when compared between
BE2C and Kelly cells (Figure 2A,B). The two cell lines possess highly similar expression
profiles (Spearman Correlation Coefficient, SCC = 0.883) in terms of average expression,
with genes such as GAPDH, ACTB and MYCN highly expressed in both, with very low
expression of MYC and MYCL (Figure 2A). The two cell lines are highly similar when
comparing gene expression variances (Figure 2B, SCC = 0.781), where metallothionein
genes are the ones most characterizing the divergence between the two, with a much higher
variance in Kelly cells.

3.2. Comparison with Bulk RNA-Seq

The two single-cell datasets recapitulate the information contained in bulk data gener-
ated by another study [25]. We summed the gene TPMs across all single cells and correlated
these values with TPMs from bulk RNA-Seq (Figure 2C for scBE2C vs. bulk BE2C, and
Figure 2D for scKelly vs. bulk Kelly). The overall expression is highly correlated (SCC
= 0.85 for BE2C, SCC = 0.91 for Kelly), showing that single-cell sequencing is capable of
recreating a bulk experiment, adding extra information from individual cells. A TSNE vi-
sualization of all the bulk RNA-Seq from the Harenza NBL cell lines dataset shows that the
profile most similar to scKelly is bulk Kelly cells (Figure 2E). On the other hand, our BE2C
single-cell dataset is most correlated with both BE2C and BE2 (SK-N-BE-2, from which
BE2C derive), according to both TSNE visualization (Figure 2E) and whole-transcriptome
expression Spearman Correlation Coefficient analysis (Figure 2F). See also the attached sup-
plementary file S3, section “Comparison with bulk RNA-Seq data”, for a full comparison
with existing NBL cell lines sequenced at bulk resolution [25].

3.3. Dimensionality Reduction and Clustering of Cells

When clustered together, BE2C and Kelly cells show very distinct properties, be-
ing highly separated by both UMAP (Uniform Manifold Approximation and Projection,
Figure 3A) and TSNE (t-distributed Stochastic Neighbor Embedding, Figure 3B) projec-
tions. The Louvain method [47] shows two main clusters, clearly separating Kelly and
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BE2C cells. However, increasing the resolution parameter highlights two subpopulations
for BE2C cells (Figure 3A, see also Supplementary Material, section “Louvain clustering”,
for more details). The 20 marker genes most different between BE2C cluster 2 vs. BE2C
cluster 1 are shown in Table 1. Among these, we observed many genes coding for ribosomal
proteins, such as RPSA, RPL35A and RPL15, but also VCAN, which is expressed in 27% of
BE2C cluster 2 cells, and in only 26% of BE2C cluster 1 cells. VCAN codes for the versican
protein, a structural component of the extra cellular matrix in brain cells, and is considered
to be a pro-inflammatory driver of tumor progression [48].

Figure 3. Visualization of single cells following dimensionality reduction. (A) UMAP and (B) TSNE
representations of BE2C (red) and Kelly (blue) cells. Clustering assignment according to the Louvain
method (high resolution parameters) is indicated (BE2C cells are divided into light and dark red).
The numbers in panel A (0, 1, 2) correspond to inferred clusters. (C) Distribution of cells by predicted
cell cycle phase. (D) Overlay of cell cycle phase over coordinates from panel B. (E) Overlay of nr
of mapped reads (in thousands) per cell over coordinates from panel B. (F) Distribution of mapped
reads/cell across the two single-cell datasets; x-axis: number of reads, y-axis: relative abundance of
cells.
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Table 1. Top 20 marker genes differentiating cluster 2 and cluster 1 of BE2C cells (see Figure 3A), according to Seurat analysis.
A negative log fold change indicates lower expression in Cluster 2, and a positive log fold change a higher expression in
Cluster 2.

Gene p-Value Average Log Fold
Change

Fraction of Expressing
Cells in Cluster 1

Fraction of Expressing
Cells in Cluster 2

Adjusted
p-Value

RPSA 1.30 × 10−149 −0.92656 0.998 1 2.05 × 10−145

RPL35A 4.43 × 10−123 0.482077 1 1 7.00 × 10−119

VCAN 7.56 × 10−123 −0.74714 0.268 0.962 1.19 × 10−118

RPL15 3.18 × 10−116 −0.59664 0.998 1 5.01 × 10−112

RPL29 3.00 × 10−115 −0.41375 1 1 4.73 × 10−111

TMA7 5.28 × 10−111 −0.53624 0.995 1 8.33 × 10−107

SAMD11 2.40 × 10−108 −0.72644 0.805 0.99 3.79 × 10−104

RPL11 1.11 × 10−106 −0.53941 1 1 1.75 × 10−102

PPP1R14A 8.54 × 10−105 0.899921 0.945 0.428 1.35 × 10−100

MAGEA4 2.41 × 10−104 0.562087 0.899 0.333 3.80 × 10−100

RPL32 4.36 × 10−102 −0.43999 1 1 6.88 × 10−98

SRM 2.21 × 10−101 −0.58422 0.986 1 3.49 × 10−97

RPL22 1.89 × 10−97 −0.4962 1 1 2.98 × 10−93

CDKAL1 2.70 × 10−96 −0.64301 0.412 0.933 4.27 × 10−92

RPL14 2.26 × 10−95 −0.52412 1 1 3.57 × 10−91

RPL38 2.68 × 10−94 0.437493 1 1 4.23 × 10−90

ENO1 6.25 × 10−90 −0.53807 0.998 1 9.86 × 10−86

RPLP0 1.50 × 10−89 −0.30715 1 1 2.37 × 10−85

TMEM98 1.62 × 10−85 0.543221 0.892 0.474 2.56 × 10−81

RPL26L1 2.01 × 10−84 0.503347 0.984 0.95 3.17 × 10−80

Being unsynchronized, both cell populations appear to be in different cell cycle phases
(Figure 3C), with Kelly cells appearing predominantly in S phase (57.47%) and BE2C cells
more evenly distributed between G1, S and G2/M phases. More BE2C cells appear to be in
G1 phase (28.69%) than Kelly cells (19.73%). It has been shown elsewhere, in embryonic
stem cells, that more undifferentiated cells tend to spend a larger proportion of the cell
cycle in S phase, with shortened G1 and G2 phases [49]. The observed distributions of
BE2C and Kelly do not seem to correlate with known proliferation parameters of the two
cell lines: according to ATCC® [50], the doubling time of BE2C cells is roughly 18 h, while
according to the ExPASy database [51], the doubling time for Kelly cells is roughly 30 h.

The cell cycle is a major component of the observed TSNE-reduced structure of the cell
lines (Figure 3D). Another observable major source of variability is the number of measured
mapped reads per cell (Figure 3E). Globally, the cells in our dataset were measured with
a mean number of mapped reads of roughly 38,000 (38,334.42 for Kelly and 37,760.29 for
BE2C), with most of the cells having roughly 30,000 reads and only a handful of cells
surpassing the 100,000 reads threshold (Figure 3E).

3.4. Heterogeneity of Gene Expression

Our dataset can be used to detect the heterogeneity of expression of specific genes
within the cell populations, in terms of Log10 TPM (Figure 4). The housekeeping ACTB
gene is more expressed in BE2C cells (Figure 4, cluster above), and ranges within one
order of magnitude of expression (roughly 630-9772 in non-logarithmic scale TPM). Similar
considerations can be applied to the other two housekeeping genes, B2M and GAPDH.
ALK displayed low expression levels in the majority of the dataset, while both LMO1
and MYCN show notable differences across the dataset. Overall, this dataset shows an
unprecedented variability of gene expression within MYCN-Amplified cell lines, which
supports further investigation of cancer cell line models via single-cell sequencing.
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Figure 4. Single-cell distribution of selected genes, shown as log10 TPM. Color scaling is independent for each panel.
Cartesian coordinates representing single cells are the same as Figure 3B.

3.5. Differential Gene Expression

We aimed at characterizing the differences between BE2C and Kelly cells using our
dataset, comparing 962 BE2C cells vs. 1105 Kelly cells with the Seurat pipeline. Our analysis
shows a positive correlation with the bulk RNA-Seq BE2C vs. Kelly, with a correlation of
0.39 based on transcriptome-wide log2FC (see supplementary file S3, “comparison with
bulk signature” paragraph). The differences are marked, with 7645 genes upregulated in
BE2C vs. Kelly cells and 3099 downregulated, at a significance threshold set at adjusted
p-value = 0.01 (adjusted by the Benjamini–Hochberg method [41]). This high number of
differentially expressed genes, corresponding to roughly half of the transcriptome, suggests
that the number of samples is allowing the statistical tests to deem significant even small
changes with log2FC < 0.1. The number of significant genes drops to 3254 upregulated/1104
downregulated in BE2C at an adjusted p-value threshold of 10−20 and 622 upregulated/257
downregulated at an adjusted p-value of 10−100. The most upregulated gene in BE2C
cells (when compared to Kelly) is RPS25, coding for a ribosomal protein, as is the most
upregulated gene in Kelly, RPL27: as indicated in the next section, there are marked
differences in how the two cell lines express ribosomal genes and pathways. MYCN is
more expressed in BE2C than in Kelly (adjusted p-value = 4.70 × 10−44), probably due to
the higher copy number of the MYCN region in BE2C cells [25]. See supplementary file S3
“Visualization of differential expression by volcano plot” paragraph and associated table
for the full analysis.
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3.6. Pathway Analysis

We analyzed pathway enrichment both as a comparison between BE2C cells and Kelly
cells, and within each cell (Figure 5). The overall analysis highlights that BE2C cells have
a markedly higher expression of genes associated to Epithelial-Mesenchymal Transition
(EMT) (Figure 5A,B), a pathway generally associated with higher proliferation, chance
of metastasis, poor survival, and drug resistance [52]: it can be hypothesized therefore
that BE2C cells are a better model for highly aggressive MYCN-amplified NBL than Kelly
cells. Another strongly upregulated BE2C-specific pathway is the signaling downstream
of EGFRvIII, a mutated version of EGFR lacking ligand binding domain, often amplified
in tumors [53] (Figure 5B). On the other hand, as discussed in the previous section, Kelly
and BE2C differ in the expression of ribosomal protein-coding genes (Figure 5A): a marked
upregulation of rRNA metabolism and protein translation was observed in Kelly cells
(Figure 5A,B). Kelly and BE2C cells differ dramatically in the Reactome-defined pathway
“Nervous System Development” (Figure 5B) [39], which is upregulated in Kelly, indicating
a higher differentiation of these cells compared to BE2C, which is supported by the higher
mesenchymal pattern of BE2C cells (Figure 5B), according to GSEA profiling.

Figure 5. Pathway enrichment analysis. (A) Top ten upregulated and top ten downregulated pathways in the BE2C vs.
Kelly cells comparison. The score is calculated using gene set enrichment analysis (GSEA) [36] as normalized enrichment
score (NES). (B) Individual GSEA running score plots of four selected pathways in the BE2C vs. Kelly comparison. (C)
Single-cell-specific NES of two selected pathways in the dataset. BE2C cells are on top, following the same cartesian
coordinates as Figure 3B.
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We then analyzed the levels of relative pathway expression at the single-cell level [54,55],
providing a cell-by-cell analysis of all the 24,472 pathways from the Molecular signatures
database (MsigDB [37]) collection (available on the R markdown paragraph “Single-cell
GSEA” and associated results). As observed before, the ribosome-associated genes are
collectively upregulated in Kelly cells (Figure 5C, bottom group; see also Figure 3B for
reference assignment of cell types), but show a noticeable variance in BE2C cells: in these
cells, ribosome-associated protein-coding genes appear upregulated in cells in G1 phase
(compare Figures 3D and 5C). There are also heterogeneities within cells from the same
culture dish that are not attributable to cell cycle differences. For instance, an NBL-related
important pathway, the “Hallmark MYC canonical targets” in the MsigDB collections
(Figure 5C, bottom), shows high heterogeneity within both BE2C and Kelly populations,
without a clear association with cell cycle phase (Figure 3D).

3.7. Master Regulator Analysis

Master regulator analysis (MRA) aims at defining key transcription factors which
are likely to control the observed transcriptional changes in a specific perturbation or
comparison [33,56,57]. This analysis can be performed between groups of samples (e.g.,
in our case, all BE2C vs. all Kelly cells) or on a sample-by-sample basis [56]. Such an
analysis requires the transcriptome-wide definition of gene networks [57], often based
on coexpression analysis [58]. In this dataset, we used two networks commonly used in
Neuroblastoma research, based on data from the TARGET (Therapeutically Applicable
Research To Generate Effective Treatments) and NRC-Siopen consortia [23], and a network
generated from the Kocak Neuroblastoma cohort [59] via the corto R package [33]. Using
these networks, we performed a full MRA via the corto package, in order to highlight
differential activity of transcription factors in BE2C vs. Kelly cells. The results appear to be
robust, showing a high agreement when using different datasets to generate network mod-
els (Figure 6A). The common master regulators identified when interrogating independent
networks are: DNAJC1, ETV4, HEYL, HINFP, MBD3, NFRKB, NPAT, SCYL1, TAF10, TAF6,
TWIST1, ZCCH24, ZNF25, ZNHIT1 (all upregulated in BE2C cells) and SESN2, TRIM28,
UXT, ZNF581 (all upregulated in Kelly cells). Enrichment profiles of the networks of these
transcription factors are shown using the NRC network (Figure 6B), the TARGET network
(Figure 6C) and the Kocak network (Figure 6D).

Some of these differences are of notable relevance to NBL pathogenesis: one example
is SESN2, upregulated in Kelly cells, a regulator of mTORC1. High levels of SESN2 are asso-
ciated with apoptosis, while low levels are associated with drug resistance [60,61]. Another
example is TWIST1, upregulated in BE2C cells, a direct coeffector of the MYCN pathway
in NBL [62]. Other transcription factors are associated with cancer-related pathways, such
as NPAT [63], ZNF264 [64], HEYL [65] and ETV4 [66].

The overall MRA of the BE2C vs. Kelly comparison hides, however, the heterogeneity
of TF network activation within single cells. For example, SESN23 appears to be highly
active only in a fraction of Kelly cells, as is ZNF264 (Figure 7). Amongst the TFs with the
highest variance within cell types we find MAX, a well-known functional interactor of MYC
and MYCN [67], but also the already cited ZNF264, together with other less-characterized
zinc finger transcription factors ZNF429 and ZBTB43 (Figure 7).
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Figure 6. BE2C vs. Kelly master regulator analysis (MRA). (A) Comparison between MRA scores derived using the Kocak-
based network (y-axis) [52], and the networks derived from TARGET and NRC datasets (x-axis) [22]. Master regulator
scores, as plotted and defined by the corto R package [31] and expressed as NES, based on networks derived from (B) the
Kocak dataset [52], (C) the TARGET dataset [22] and (D) the NRC dataset [22].
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Figure 7. Single-cell master regulator analysis, calculated using the TARGET-derived network [22]. Single-cell scores are
reported as NES compared to the mean value of the entire dataset. Cell line is reported on top as salmon (BE2C cells) and
cornflower blue (Kelly cells). Cells are clustered using the R hclust algorithm based on Euclidean distance with default
parameters.

Another strategy to investigate sources of heterogeneity in single-cell datasets is the
single-cell latent variable model (scLVM) [68], which allows the identification of inter-
pretable and non-interpretable sources of variability. We applied the latest implementation
of the method, f-scLVM [69], in order to highlight what drives and explains the differences
in transcriptome we observe in the Kelly/BE2C single-cell dataset (Figure 8A). We used
gene annotations deposited in WikiPathways [70] to define annotated terms of hetero-
geneity. The two top terms associated with dataset heterogeneity are unannotated, or
“hidden” sources of variability, and correspond to the observed differences between Kelly
and BE2C cells and between the two BE2C major populations (Figure 3A). The genes most
associated to the Kelly/BE2C variability are the ENG glycoprotein, a component of the
TGFBR complex, and the transcription factor GATA4 (Figure 8B). The third source of hetero-
geneity can be mapped over the variability of genes associated with cholesterol metabolism
(Figure 8C), like the 3-Hydroxy-3-Methylglutaryl-CoA Synthase 1 (HMGCS1) and the
Methylsterol Monooxygenase 1 (MSMO1). The fourth term is cell cycle, which, as shown
before (Figure 3D) is a strong component in determining the between-cell transcriptional
differences of cultured neuroblastoma cells, as it is to be expected from unsynchronized
cell cultures. The genes most involved in cell-cycle-specific heterogeneity are the driver
of G2/M transition, PLK1, as well as the centrosome protein CENP2 and several cyclins
(CCNB1, CCNB2 and CCNA2).
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Figure 8. Dissection of heterogeneity in the single-cell dataset, according to the f-scLVM algorithm [69] based on known
pathway annotations available from Wiki Pathways [70] and MsigDB [37]. (A) Graph showing the most relevant factors
identified by the f-scLVM model, both annotated in Wiki Pathways (blue) or not annotated (red). (B–D) Loadings of the
most influential genes in (B) “hidden02, Kelly vs. BE2C”, (C) “cholesterol metabolism” and (D) “cell cycle” terms, defined
by the Absolute Weight parameter of the f-scLVM method.

4. Discussion

We investigated by single-cell technology the transcriptome landscape of the two most
used cell line models of MYCN-amplified NBL (Kelly and BE2C) at an unprecedented reso-
lution. We confirmed that the most used housekeeping genes (B2M, GAPDH, ACTB) are
characterized by both high expression and low variance in both cell lines. Metallothionein
transcripts, while highly expressed, proved highly variable in Kelly cells. Our analysis
shows that single-cell RNA-Seq data, when summing together all cell transcriptional abun-
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dances, is very similar to bulk RNA-Seq data, in this case generated by another lab [25],
so much so that it is possible to clearly identify the dataset cell type based on a simple
correlation analysis with the entire collection of NBL cell lines. Our analysis shows that
the two cell lines are clearly transcriptionally distinct (Figure 3). Clustering analysis with
higher resolution parameters highlights the presence of two BE2C subpopulations, which
do not seem to be associated with common sources of variance, such as cell cycle or read
coverage (Figure 3). Indeed, the expression of some key NBL genes, such as MYCN and
LMO1, is not constant across the dataset, and some cells appear to have a surprisingly low
expression of both (Figure 4). LMO1 is more expressed in Kelly cells, and this is compatible
with previous literature [71]. In fact, Kelly cells have a different genotype at locus rs2168101
within LMO1 first intron, which is G/–in Kelly and T/– in BE2C. The Kelly G allele forms
a GATA binding site, recruiting a transcriptional complex which increases levels of LMO1.
BE2C cells do not possess this strong enhancer site, leading to a very low LMO1 detection.

While BE2C and Kelly cells are widely used as interchangeable experimental models
for MYCN-amplified NBL, they showed transcriptional differences between them as well
as variability within each cell line. The transcriptional differences highlighted here could
be the basis for some observed experimental differences between the two cell lines, e.g., in
the transcriptional machinery following glutamine deprivation, which induces apoptosis in
BE2C cells, but apparently not in Kelly cells [72]. Our analysis suggests a more aggressive
phenotype of BE2C cells when compared to Kelly cells. In fact, while BE2C cells appear
to be more mesenchymal and with higher levels of MYCN (commonly associated with
poorer survival in patients), Kelly cells appear on the whole to be more differentiated
(Figure 5). However, both cell lines are to be considered as models of highly aggressive,
stage 4 NBL [73], and Kelly cells are often considered a better model for cell migration and
metastasis than BE2C [71].

Our study, beyond generating and analyzing this novel dataset, also extends the
commonly used pathway enrichment and master regulator pipelines to single-cell analysis.
We believe the current GSEA and MRA family of algorithms are optimally suited for
single-cell data, despite the low coverage of individual cells, since the intrinsic noise of
this measurement is diluted by aggregating many transcript levels into a single pathway
or transcriptional network [74]. The results we obtained with MRA are robust, as they
correlate well when using three different network models (Figure 6A).

In conclusion, we believe that single-cell RNA-Seq is able to fully recapitulate the
biological findings of bulk RNA-Seq, and define further avenues of research for testing by
delineating the cell-by-cell heterogeneity of individual genes, pathways and transcriptional
networks. We believe our analysis to be entirely generalizable for other cell line studies,
and we provide our entire analysis in a fully documented and reproducible R markdown
document.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-273
X/11/2/177/s1, The processed raw counts data are available in gzipped CSV format, as Supplemen-
tary File S1 (BE2C cells) and Supplementary File S2 (Kelly cells), an R markdown compiled document
(in HTML format) is available as Supplementary File S3, The R markdown source code (rmark-
down.Rmd) and all files used to process and visualize the dataset are provided as Supplementary
File S4, in 7zip archived format.
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