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Energy homeostasis is pivotal for cell fate sincemetabolic regulation, cell proliferation and death are strongly de-
pendent on the balance between catabolic and anabolic pathways. In particular, metabolic and energetic changes
have been observed in cancer cells even before the discovery of oncogenes and tumor suppressors, but have been
neglected for a long time. Instead, during thepast 20 years a renaissance of the study of tumormetabolismhas led
to a revised andmore accurate sight of themetabolic landscape of cancer cells. In this scenario, genetic, biochem-
ical and clinical evidences place mitochondria as key actors in cancer metabolic restructuring, not only because
there are energy and biosynthetic intermediates manufacturers, but also because occurrence of mutations in
metabolic enzymes encoded by both nuclear and mitochondrial DNA has been associated to different types of
cancer. Here we provide an overview of the possible mechanisms modulating mitochondrial energy production
and homeostasis in the intriguing scenario of neoplastic cells, focusing on the double-edged role of 5′-AMP acti-
vated protein kinase in cancer metabolism. This article is part of a Special Issue entitled Mitochondria in Cancer,
edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
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1. Introduction

In 1964, the pioneering studies of Hans A. Krebs indicated that aden-
osine monophosphate (AMP) levels may be a crucial factor in determin-
ing whether glycolysis or gluconeogenesis predominates in cell
metabolism [1]. During the same period, Atkinson and coll. proposed
that the fate of an intermediate metabolite towards energy-yielding,
-demanding or -storing process may depend on the balance among
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concentrations of the adenine nucleotides [2]. In this study, the adenylate
energy charge (AEC) was conceptualized as a quantitative parameter of
the cell energy state regulating the intermediates flux throughmetabolic
pathways [2]. AEC is defined by the effective concentrations of adenine
nucleotides [(ATP) + 0.5 (ADP)]/[(ATP) + (ADP) + (AMP)] and ranges
between 0.87 and 0.94 values for most of cells in metabolic steady state
conditions [3]. Such values are reached through the balance between
combustion of fuel sources to produce energy (catabolism) and ability
to consume it to synthesize macromolecules (anabolism). AEC directly
controls the switch between catabolic and anabolic pathways, since ade-
nine nucleotides also act as allosteric modulators of specific metabolic
enzymes (i.e. phosphofructokinase 1 and pyruvate kinase for glycolysis,
pyruvate dehydrogenase, citrate synthase andα-ketoglutarate dehydro-
genase for tricarboxylic acid (TCA) cycle; pyruvate carboxylase for
anaplerotic reactions; fructose 1,6 bisphosphatase for gluconeogenesis;
other enzymes involved in glycogen, fatty acid and nucleotides metabo-
lism) [3]. Interestingly, mitochondria host most of these pathways pro-
viding a compartmentalized metabolic hub in communication with the
rest of the cell. For a long time, it has been assumed that cellular adenine
nucleotides levels were in a permanent steady state and that, conse-
quently, AEC value was constant. However, this hypothesis was in
contrast with the evidence that certain enzymes were regulated in re-
sponse to changes in adenine nucleotide levels. Indeed, recent studies
showed that adenine nucleotides concentrations are determined by os-
cillations and large local fluctuations, although the AEC value is usually
maintained within a narrow physiological range [4]. Such balance
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permits a fine regulation of cell metabolism, leading to the activation of
catabolism in order to prevent ATP depletion before a critical drop of
AEC values and the generation of metabolic intermediates for anabolic
reactions when AEC is close to 1 [5]. Since AEC is involved in the control
of multiple essential pathways, the maintenance of energy homeostasis
results critical for cell's fate in both physiological and pathological condi-
tions. In this review, we will describe the mitochondrial contribution to
energy production and homeostasis and how changes in AEC are per-
ceived by specific sensing systems. In this frame, the role of 5′-AMP acti-
vated protein kinase in carcinogenesis and tumor progression will be
revisited.

2. Energy homeostasis in non-cancer cells

In animal cells, ATP is mainly produced by glycolysis in the cytosol
and by oxidative phosphorylation (OXPHOS) into the mitochondria,
where complete glucose oxidation takes place. Glycolysis is a catabolic
process that provides energy (ATP), reduced molecules (NADH) and
metabolites feeding various anabolic pathways. Extracellular glucose is
up taken into the cell throughGLUT transporters andmetabolized to py-
ruvate in the cytosol. The fate of the latter largely depends on cellular
oxygen availability. Under normoxic conditions, glycolytic pyruvate en-
ters into the TCA cycle and reduced equivalents (NADH and FADH2) are
generated to feed the OXPHOS activity for ATP production. Other cata-
bolic pathways such as fatty acid oxidation (FAO) and amino acid degra-
dation replenish TCA cycle with Acetyl-Coenzyme A (Acetyl-CoA) and
pyruvate. The same pathways produce metabolic intermediates re-
quired for ATP-consuming reactions for the biosynthesis of amino
acid, nucleotides, fatty acids and sugars [3]. When O2 tension is low
and OXPHOS is slowed down, pyruvate is mainly transformed into lac-
tate through lactic fermentation that upon NADH oxidation restores
the NAD+ pool needed to drive glycolysis [3]. Mammalian OXPHOS sys-
tem comprises five multiprotein complexes (complexes I to V) and two
mobile electron carriers (ubiquinone and cytochrome c) embedded in
the lipid bilayer of the inner mitochondrial membrane. Complexes I to
IV allow the electron transfer from NADH and FADH2 to molecular oxy-
gen, while generating a proton gradient across the inner mitochondrial
membrane that is dissipated to synthesize ATP by Complex V or F1FO
ATPase (CV; EC 3.6.1.3) [6–8]. This enzyme is composed by two-coupled
rotary motors: (i) the hydrophilic domain F1 binds adenine nucleotides
and Pi; (ii) the membrane-embedded hydrophobic FO domain consti-
tutes the ion-translocating portion. These domains are connected by a
central and a peripheral stalk, being the former the key rotary element
transferring energy from FO to F1 and vice versa [9]. Under peculiar con-
ditions (i.e. lack of oxygen or dysfunctional respiratory chain), CV can
also hydrolyze ATP acting as a proton pump and generating a trans-
membrane ionic gradient [8,10]. This process can be repressed by the
protein IF1 [11], a non-competitive unidirectional inhibitor of ATP hy-
drolysis, displaying no inhibitory activity on ATP synthesis in presence
of a mitochondrial electrochemical gradient [8]. Indeed, the reversible
inhibition of ATP hydrolase activity of CV is pH dependent and plays a
crucial role in the presence of respiratory chain dysfunctions. Under
this latter condition, cells must manage equilibrium between themain-
tenance of mitochondrial membrane potential, in order to preventmas-
sive uncontrolled mitophagy, and to sustain a proper AEC avoiding an
excessive consumption of glycolytic ATP. Beside the inhibition of ATP
hydrolase activity, recent studies indicate that IF1 can also suppress
ATP synthesis activity of CV [12,13], being regulated also at transcription
level in a tissue specific manner or through post-translational modifica-
tions such as acetylation, succinylation and phosphorylation [14]. These
regulatory mechanisms link CV activity to the redox status of the cell,
through mitochondrial sirtuins [15,16], and to the calcium signaling
via protein kinase-A (PKA) [13]. In fact, PKA seems to play a critical
role in the regulation of mitochondrial function being able to trigger
the activity of respiratory complexes and to inhibit IF1, thus allowing
an efficient and coordinated ATP synthesis [17].
Newly synthesized ATPmolecules are exchangedwith cytosolic ADP
and Pi across the inner mitochondrial membrane into the cytosol. A
member of the solute carrier family named adenine nucleotide
translocator (ANT) catalyzes the ATP/ADP transfer, whereas Pi is ex-
changed with OH− via the phosphate transporter [18]. In humans,
four ANT isoforms (ANT1-4) are present, with ANT3 expressed ubiqui-
tously at low levels and the other isoforms in a tissue-specific manner
[19]. Interestingly, ANT2 is specifically expressed either in undifferenti-
ated cells or in tissues that are able to regenerate, and is considered a
marker of cell proliferation [19]. ANT transporters catalyze the electro-
genic and not energy dependent ATP4−/ADP3− exchange coupled to
theOXPHOS activity and driven by themitochondrialmembrane poten-
tial. In presence of a functional OXPHOS system, the ADP/ATP ratio can
be up to 100 fold smaller in the cytosol rather than that into the mito-
chondrial matrix. Conversely, when mitochondria are completely
depolarized, ANT proceeds with a high activity transferring at equal
rates ADP and ATP in both directions [20]. Mitochondrial ATP
translocated into the cytosolmust be available for anabolic reactions, al-
though in high energy demanding cells the diffusion rates of ATP or ADP
may be insufficient to distribute ATP properly in different cell compart-
ments [21]. To overcome this deficiency, cells evolved an energy buffer-
ing strategy based on phosphocreatine-creatine kinase (PCr-CK) and
adenylate kinase (AK) systems, connecting ATP production processes
(glycolysis and OXPHOS) with subcellular sites of ATP utilization [22].
In particular, AK catalyzes the interconversion of the adenine nucleo-
tides allowing their functional distribution in intracellular compart-
ments [23]. This biochemical step reaction is crucial to induce
relatively large changes in AMP/ATP ratio that regulates the activity of
key enzymes in metabolism and mediates intracellular AMP signaling
by 5′-AMP activated protein kinase (AMPK) [23].

3. Energy sensing and AMPK

In order to maintain the physiological AEC value and to face changes
in energy homeostasis (ADP/ATP and AMP/ATP ratios) cells have devel-
oped a sensitivemolecular system that integratesmultiple upstream in-
puts and regulates enzymes activity and transcriptional responses. The
core enzyme of such system is AMPK, an evolutionarily conserved ki-
nase whose activity is regulated in response to the variations of energy
charge [24]. Inmammals, AMPK is a heterotrimeric protein composed of
one catalytic (α1 or α2) and two regulatory subunits (β1 or β2 and γ1,
γ2 or γ3), leading to the generation of 12 possible combinations of the
enzyme. Very little is known about these different isoforms, although
there are some indications that theymay have various functions, differ-
ent subcellular localizations andmay be subjected to specific regulation
[25]. The overall function of AMPK is to restore AEC when intracellular
levels of ATP drops down, as in response to mitochondrial dysfunctions
or stress conditions.When activated, AMPKpromotes catabolic process-
es, i.e. glucose uptake, glycolysis, FAO, mitochondrial biogenesis and
OXPHOS and autophagy, while preventing ATP consuming anabolic bio-
synthetic reactions (Fig. 1) [24]. Hence, this sensor is amolecular switch
orchestrating the overall metabolic status of the cell and its activation
must be tightly controlled. In fact, phosphorylation of the conserved
Thr172 within the activation loop of the kinase domain is required
for AMPK activation. At least three different mechanisms of Thr172
phosphorylation have been described: (i) the AMP-dependent phos-
phorylation via liver kinase B1 (LKB1) (ii) the calcium-dependent phos-
phorylation via the calmodulin-dependent protein kinase kinase β
(CaMKKβ); (iii) hormonal activation via transforming growth factor-
β-activated kinase-1 (TAK1) (Fig. 1) [26]. The most common mecha-
nism of inactivation of AMPK consists in the dephosphorylation of
Thr172 by upstream phosphatases, although several other emerging
regulation mechanisms have been recently described including inhibi-
tory phosphorylation, ubiquitination, oxidation and subcellular com-
partmentalization (Fig. 1) [26]. Lastly, AMPK is allosterically regulated
by AMP and, to a lesser extent, by ADP, which can bind the CBS domain



Fig. 1. Mechanisms of AMPK regulation and its downstream pathways. AMPK is a
heterotrimeric kinase formed by one catalytic subunit (α) and two regulatory subunits
(β and γ). The phosphorylation of the conserved Thr172 is required for AMPK activation
and can be mediated by LKB1, CaMKKβ and TAK1. Dephosphorylation of Thr172
provided by upstream protein phosphatases (PP) or phosphorylation of other regulatory
residues by Akt switch off this enzyme. Allosteric activation is mediated by AMP,
whereas ATP binding suppresses AMPK activation. Active AMPK is required to sustain a
catabolic metabolism while the biosynthetic reactions are inhibited in order to maintain
a functional energetic balance.
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of the γ subunit. Such binding elicits also the LKB1-mediated phosphor-
ylation of Thr172 and protects the same residue from dephosphoryla-
tion, concurring to a most stable activation of the kinase (Fig. 1) [24].
Taking into account the central role of AMPK in the modulation of met-
abolic pathways that concur to the cell energetic rewiring under pecu-
liar stress conditions, it is not surprising that this protein has been
widely linked to a variety of pathological context, including cancer [26].

4. Metabolic reprogramming of cancer cells

One of the hallmark of neoplastic cells is their ability to reprogram
metabolism in response to the abnormal requirement of building blocks
necessary for uncontrolled cell proliferation and to adapt to the ever-
changing microenvironment in which tumors grow [27]. The classical
example of a rewiredmetabolic pathway in cancer is theWarburg effect
or aerobic glycolysis [28]. It iswell known that cancer cells display an in-
creased glycolytic flux regardless oxygen availability, which confers a
significant growth advantage and promotes tumor progression, inva-
sion and metastatic potential. The initial hypothesis of Warburg stated
that enhanced glycolysis may derive from a mitochondrial dysfunction,
leading to the diffuse idea that neoplastic cells generate their ATP al-
most exclusively from glycolytic reactions [29]. TheWarburg effect def-
inition has been now revisited, since it has been demonstrated that it
can be triggered by activation of oncogenes, such BRAF and c-Myc [30,
31], loss of tumor suppressors like p53 [32], and activation of the
mTORC1 pathway [33]. Nevertheless, it has become evident that mito-
chondrial function, including ATP production, is required for cell prolif-
eration and tumor progression [34], at least in specific phases such as
adaptation to nutrient and oxygen deprivation [35,36], and OXPHOS de-
pendent tumors have been identified [37]. These data clearly indicate
that the coexistence of glycolytic-dependent lactate production and
functional TCA cycle and OXPHOS activity offers a selective metabolic
advantage for cancer cells, providing energy and precursors for anabolic
pathways and permitting an unrestrained cell proliferation. Moreover,
neoplastic cells are also able to replenish TCA cycle and OXPHOS
through FAO and anaplerotic reactions, such as glutaminolysis and py-
ruvate carboxylation (Fig. 2) [38]. In particular, glutaminolysis feeds
the TCA cycle of α-ketoglutarate which, in turn, undergoes reductive
carboxylation, providing citrate and Acetyl-CoA that may be used for
fatty acid synthesis (FAS; Fig. 2) under stress conditions, such as defec-
tive OXPHOS or TCA cycle [39], hypoxia [40,41] or in specific cell types
[42,43]. On the other hand, FAO can replenish TCA cycle providing a re-
markable amount of “fuel” for ATP synthesis and sustaining the redox
potential through NADPH generation [44]. It is interesting to note that
FAO has been found critical for maintenance of leukemia initiating
cells pool [45] and contributes to glioblastomas and ovarian cancer to
feed aerobic respiration under nutrient deprivation [46,47]. Moreover,
it has been shown that KRAS regulates fatty acid uptake and FAO
through Acyl-CoA synthetase long-chain family member 3 (ACSL3)
[48] and that certain Ras-driven cancer cells scavenge lipids to support
ATP production under hypoxic stress [49]. Downregulation of key FAO
enzymes, such as ACSL3 and carnitine palmitoyltransferase 1a (CPT1a)
hampered tumor growth [48,50], indicating that FAO can be envisioned
as a target for novel therapeutic strategies. However, as for many others
metabolic processes, it must take into account that a balance between
FAO and FAS must be maintained in the context of tumor growth,
since lipids are essentia l for membrane generation in daughter cells
during unrestricted proliferation. Based on these findings, it comes to
light that cancer initiation, development, and/or growth strongly rely
on metabolic shifts that enable the generation of biosynthetic precur-
sors and ATP.

5. Mitochondrial energy homeostasis in cancer cells

5.1. Energy production – F1FO ATPase or Complex V

Several studies pointed out that mitochondrial CV may be a major
player in carcinogenesis and tumor progression. Indeed, CVhas a pivotal
role not only inmitochondrial ATP synthesis, but is also strictly involved
in the maintenance of mitochondrial membrane potential through its
ATP hydrolytic function, in the shaping of mitochondrial cristae and in
the regulation of the final phases of apoptosis events, being part of the
mitochondrial permeability transition pore [51]. A first link between
the modulation of CV activity and tumor progression is represented by
the occurrence of somatic mutations in mitochondrial DNA (mtDNA)
genes MT-ATP6 and MT-ATP8, encoding for two subunits embedded in
the inner mitochondrial membrane and belonging to the FO domain of
the enzyme. Such mutations have been reported in different types of
cancer (Table 1) but their functional significance has been only partially
elucidated. In fact, similar to mutations hitting other mtDNA genes, nu-
cleotide variants inMT-ATP6 andMT-ATP8 genes effect on enzyme func-
tion depends on mutation type and mutant load, being mtDNA
mutations subjected to the threshold effect [52]. Moreover, it is now
well established that highly damaging somatic mtDNA mutations are
subjected to negative selection in tumors [53], with the only remarkable
exception of oncocytomas [54]. In this regard, only 4/45 indels have
been found inMT-ATP6 and MT-ATP8 genes, and most of the mutations
are missense or silent variants (Table 1), implying a mild impact on
ATPase activity and not on its structure. Functional studies on the effect
of such mutations placed in the context of cancer cells are still missing.
To date only the well-characterized pathogenic m.8993TNG/MT-ATP6
mutation, known to repress ATP synthesis and to trigger mitochondrial
reactive oxygen species (ROS) production, has been investigated in pros-
tate cancer cell background [55]. Homoplasmic mutant cells were more
tumorigenic in immunodeficient mice and into the bone microenviron-
ment, indicating an active role of thismutation in prostate cancer etiology
and metastasis formation [55,56]. However, the m.8993TNG/MT-ATP6
mutation has never been reported in tumor samples so far, suggesting
that it may be counter-selected in patients,most likely because of its se-
vere detrimental effect on CV activity. Despite the fact that the severity
of mtDNA nucleotide variants may be attenuated in a condition of
heteroplasmy, mutations remains fixed genetic lesions that seem to
not satisfy the required metabolic plasticity of cancer cells. Moreover,
it is reasonable to hypothesize that a minimum function of the CV is re-
quired for cell survival and that the modulation of its subunits expres-
sion may permit a more controlled regulation of ATP production.
Indeed, the catalytic β subunit (ATP5B protein) of the enzyme has
been found downregulated in some types of cancer [57–59] and it has
been correlated with poor prognosis in terms of invasiveness,



Fig. 2. Metabolic reactions modulated by AMPK activation and energy charge. Several crucial enzymes of glycolysis, FAO, FAS and TCA cycle are tightly controlled by AMPK-mediated
phosphorylation or allosteric regulation mediated by adenine nucleotides levels (indicated with *). Such control is evident under physiological conditions, but also during metabolic
reprogramming of cancer cells. Enzymes involved in these reactions are: α-ketoglutarate dehydrogenase (αKGDH); acetyl CoA carboxylase (ACC); aconitase (ACO); aldolase (ALD);
ATP citrate lyase (ACLY); citrate synthase (CS); enolase (ENO); fumarate hydratase (FH); glutamate dehydrogenase (GDH); glutamine lyase (GLS); glyceraldehyde 3-phosphate
dehydrogenase (GAPDH); hexokinase (HK); isocitrate dehydrogenase (IDH); lactate dehydrogenase (LDH); malate dehydrogenase (MDH); OXPHOS complexes (CI-CV);
phosphofructokinase (PFK); phosphoglucose isomerase (PGI); phosphoglycerate kinase (PGK); phosphoglyceromutase (PGM); pyruvate dehydrogenase (PDH); pyruvate
dehydrogenase kinase (PDK); pyruvic carboxylase (PC); succinate dehydrogenase (SDH); succinyl-CoA synthetase (SCoAS); triose phosphate isomerase (TPI). Black arrows indicate
reactions, purple arrows indicate mechanisms of activation/inactivation, cytosolic enzymes are indicated in blue, mitochondrial enzymes are indicated in green.
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metastasis formation or patient survival [58,59]. These observations are
in line with the revisited Warburg hypothesis, since mitochondrial
OXPHOS is frequently repressed, but not absent, in different human
carcinomas and often correlates with poor response to chemotherapy,
highlighting that a minimal bioenergetic function to sustain tumor pro-
gression and malignancy is needed [60]. Reduced expression of ATP5B



Table 1
Mitochondrial DNA mutations in F1Fo ATP synthase genes found in tumors.
*Table 1 references are listed in Supplementary material.

Mutation Gene Amino acid
change

Tumor References⁎

m.8374ANG MT-ATP8 Synonym Head and neck tumor [100]
m.8429CNA MT-ATP8 p.L22I Breast cancer [113]
m.8439ANC MT-ATP8 p.Q25P Breast cancer [113]
m.8448TNC MT-ATP8 p.M28T Breast cancer [113]
m.8519ANG MT-ATP8 p.E52K Breast cancer [113]
m.8539CNT MT-ATP6 Synonym Osteosarcoma [114]
m.8542TNC MT-ATP6 p.F6L Osteosarcoma [114]
m.8546InsC MT-ATP6 Frameshift Osteosarcoma [114]
m.8592InsG MT-ATP6 Frameshift Osteosarcoma [114]
m.8610TNC MT-ATP6 Synonym Pylocystic astrocytoma [115]
m.8614TNC MT-ATP6 Synonym Pylocystic astrocytoma [115]
m.8617ANG MT-ATP6 p.I31V Leukemia [116]
m.8627CNT MT-ATP6 p.S34F Osteosarcoma [114]
m.8654TNG MT-ATP6 p.I43S Osteosarcoma [114]
m.8684CNT MT-ATP6 p.T53I Osteosarcoma [114]
m.8697GNA MT-ATP6 Synonym Pylocystic astrocytoma [115]
m.8697GNA MT-ATP6 Synonym Hürthle cell follicular

carcinoma and adenoma;
Breast cancer

[113] [117]

m.8704ANG MT-ATP6 p.M60V Pylocystic astrocytoma [115]
m.8778CNG MT-ATP6 Synonym Osteosarcoma [114]
m.8781CNT MT-ATP6 Synonym Osteosarcoma [114]
m.8803ANG MT-ATP6 p.T93A Head and neck tumor [100]
m.8822CNG MT-ATP6 p.S99C Osteosarcoma [114]
m.8832ANG MT-ATP6 Synonym Oncocytic pituitary

adenoma
[100]

m.8858GNC MT-ATP6 p.G111A Breast cancer [113]
m.8865GNA MT-ATP6 Synonym Osteosarcoma [114]
m.8922InsC MT-ATP6 Frameshift Osteosarcoma [114]
m.8930CNT MT-ATP6 p.T135M Oncocytic pituitary

adenoma
[100]

m.9000ANC MT-ATP6 Synonym Osteosarcoma [118]
m.9060CNT MT-ATP6 Synonym Head and neck tumor;

Oncocytic pituitary
adenoma

[100]

m.9119TNG MT-ATP6 p.L198R Breast cancer [113]
m.9124DelA MT-ATP6 Frameshift Osteosarcoma [114]
m.9128TNC MT-ATP6 p.I201T Osteosarcoma [114]
m.9130CNG MT-ATP6 p.L202V Breast cancer [113]
m.9139GNA MT-ATP6 Synonym Osteosarcoma [114]
m.9144CNG MT-ATP6 Synonym Osteosarcoma [114]
m.9145GNC MT-ATP6 p.A207P Osteosarcoma [114]
m.9148TNG MT-ATP6 p.L208V Osteosarcoma [114]
m.9149TNC MT-ATP6 p.L208S Osteosarcoma [114]
m.9151ANC MT-ATP6 p.I209L Osteosarcoma;

Ewing sarcoma
[114] [119]

m.9152TNA MT-ATP6 p.I209N Osteosarcoma [114]
m.9153CNA MT-ATP6 p.I209M Osteosarcoma [114]
m.9182GNA MT-ATP6 p.S219N Osteosarcoma [118]
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and energy production through CV have been linked to the overexpres-
sion and activation of IF1 in awide panel of human carcinomas and can-
cer cell lines [14]. Interestingly, some studies report high levels of IF1 as
a predictor of poor prognosis for patients' survival, underscoring its in-
volvement in adaptation to hypoxia, tumor proliferation, invasiveness
and metastasis formation [61–63]. How IF1 regulates mitochondrial
function and morphology, and consequently impacts on tumor biology
and malignancy, is still not completely understood. IF1 overexpression
prompts mitochondrial cristaemorphogenesis and blocks their remod-
eling upon pro-apoptotic insults, preventing the mitochondrial perme-
ability transition pore opening and the release of cytochrome c [64].
Moreover, the IF1-mediated inhibition of CV stimulates a mild ROS pro-
duction leading to a nuclear preconditioning aimed at preventing cell
death and supporting tumorigenesis [12,65]. Such involvement of IF1
in the apoptotic cascade is crucial in the context of cancer cells that
are intrinsically characterized by a resistance to cell death [27]. Besides
its role on regulation of apoptosis, increased expression or activation of IF1
prevents ATP depletion and induces the Warburg effect [12,13,66], al-
though conflicting data have been reported on the exact mechanism
through which this protein regulates the OXPHOS function [67,68]. A re-
cent in vivo study shows that the expression of an active mutant of
human IF1 inmouse hepatocytes induced a partial OXPHOSdefect charac-
terized by a reduced respiration and an inhibition of CV activity [69]. This
bioenergetic defect seemed to promote cell proliferation, resistance to ap-
optosis and ametabolic shift towards glycolysis viaAMPK activation, gen-
erating a predisposing background for primary carcinogenesis hits and
favoring tumor progression in liver [69]. Hence, IF1 has been proposed
as amolecular switch of OXPHOS function,which allows themaintenance
of the minimal mandatory mitochondrial bioenergetic competence but
also the response to altered metabolic request of the cell.

5.2. Mitochondrial transport of adenine nucleotides

As already described, when OXPHOS is active, ATP produced into the
mitochondria must be exchanged with ADP to ensure the energy
amount sufficient to sustain anabolic reactions, cell growth and survival.
In the context of a reprogrammedmetabolism inwhich OXPHOS can be
partially repressed and, thus glycolysis is enhanced, mitochondria may
suffer a status of energy depletion and ATP must be imported from the
cytosol and hydrolyzed to maintain the mitochondrial membrane po-
tential. In this frame, ANT exchangers participate in the regulation of en-
ergy homeostasis and may become key player in the regulation of
metabolic adaptation of neoplastic cells. Since ANT1, ANT3 and ANT4
isoforms are poorly expressed in proliferating cells their role in human
malignancies has been investigated only briefly. Conversely, ANT2 has
been found upregulated in several human tumors [70], in neoplastic
cell lines [71] and in cancer stem cells [72]. Downregulation of ANT2
in breast cancer cells induced mild ATP depletion, triggered apoptosis,
blocked cell cycle progression [73], repressed the expression of HER2/
Neu and the PI3K/Akt pathwaypreventing tumor growth, cell migration
and invasiveness [74], and overcame chemoresistance [72]. Similar re-
sults have been obtained by the same group also in hepatocellular carci-
noma and non-small lung cancer cell models. These data, reinforced by
the coordinated expression of ANT2 and glycolytic metabolism, support
the hypothesis that this exchanger may be necessary for the import of
glycolytic ATP into the mitochondria when the mitochondrial energetic
function is repressed, sustaining anabolism and cancer cell proliferation.
Indeed, it has been hypothesized that ANT2 may be the only ANT iso-
form able to import glycolytic ATP into themitochondria to support an-
abolic metabolism, since its knock out in mice is embryonically lethal
[19] and the expression of its yeast orthologue is restricted to anaerobi-
osis and essential to sustain cell proliferation on fermentable substrates
[19]. However, a recent study shows that ANT2 and ANT3 do not partic-
ipate in mitochondrial import of ATP in different cancer cell lines [75].
The authors suggest that a possible candidate for the mitochondrial
ATP importmay be theATP/Mg-Pi carrier, a non-electrogenic exchanger
of adenosine nucleotides. Interestingly, this protein has been found
overexpressed in several tumors and cancer cell lines, where it seems
to foster tumor growth by preventingmitochondrial permeability tran-
sition and lastly apoptosis [76]. This hypothesis is particularly intriguing
since an electroneutral exchanger may decreases cytosolic ATP/ADP ra-
tios of proliferating cancer cells stimulating glycolysis and prompting
the Warburg effect [75].

6. AMPK: a double-edged sensor in the modulation of cancer cell
metabolism

As encountering states of energy depletion during nutrient restric-
tion and hypoxia, neoplastic cells must rewire their metabolism in
order to sustain growth and proliferation. Being the orchestra leader
of metabolism, it is not surprising that AMPK has been widely involved
in tumor initiation, progression and metastasis formation [77,78]. It is
interesting to note that the primary AMPK upstream kinase LKB1 is a
tumor suppressor, whose germline mutations are causative of the
Peutz-Jeghers syndrome, a hereditary condition characterized by



Fig. 3. AMPK, a double-edged kinase in the regulation of tumorigenic potential. Active
AMPK may act as pro-tumorigenic inducer fostering metabolic plasticity and autophagy
leading to cell survival. On the other hand, AMPK may play an anti-tumorigenic role
through the inhibition of mTORC1 signaling and the induction of cell cycle arrest.
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predisposition to both benign polyposis and cancer [79]. Moreover, so-
matic changes in LKB1 have been associated with melanoma, lung can-
cer, pancreatic cancer and gynecological cancers [79]. Lying
downstream to a well-known tumor suppressor, AMPK has been long
suspected to be a tumor suppressor too or, at least, to negatively influ-
ence tumor formation and growth. However, recent studies highlight
the double-edged nature of AMPK, indicating that its activation can ei-
ther constrain tumor progression but also promote cancer cell adapta-
tion under specific environmental conditions and in a context-
dependent manner (Fig. 3 and Table 2). Differently from LKB1, genes
encoding for AMPK subunits are rarely mutated in human tumors and
there is no association of suchmutationswith any propensity to develop
cancer [25], indicating that AMPK is not a canonical tumor suppressor.
Indeed, a recent analysis of the mutation spectrum in AMPK genes in
human cancers shows that certain genes such as PRKAA1 and PRKAB2
(encoding for α1 and β2 subunits, respectively) are usually amplified,
similarly to oncogenes [25]. On the other hand, subunits like AMPKα2
are more prone to accumulate mutations, similar to tumor suppressors,
although the functional effects of these mutations have not been inves-
tigated [25]. Nonetheless, loss of AMPK caused by genetic ablation is not
a sufficient condition to induce cell transformation both in vitro and in
mouse models [80]. Such differential mutation pattern represents the
first line of evidence that AMPK has a double-faced nature and that its
involvement in tumor development and progression may be more tan-
gled than its only function as an energy sensor (Fig. 3). To further com-
plicate this scenario, AMPK can be found differentially expressed and/or
activated in different types of cancer, at different stages of the diseases
and associatedwith different outcomes and prognosis [77]. This pattern
may derive fromaltered upstreammechanisms. Interestingly, AMPK ac-
tivation is prevented inmelanoma cells withmutant BRAFV600E through
a phosphorylation cascademediated by ERK and Rsk kinaseswhich lead
to the inactivation of LKB1 [81]. Moreover, constitutive activation of the
PI3K/Akt pathway caused by loss-of-function mutations in PTEN have
Table 2
Effects of AMPK activation on tumor initiation and progression.
*Table 2 references are listed in Supplementary material.

Antitumorigenic effects

Loss of one AMPK allele favors lymphoma occurrence in c-Myc mutant animal models.
Active AMPK inhibits the mTOR pathway blocking cell cycle and proliferation.
Loss of AMPKα2 stimulates murine embryonic fibroblast H-RasV12 mediated transformat
Tak1 ablation stimulates the spontaneous formation of hepatocellular carcinomas in anim
Reduced expression of AMPK in breast cancer and hepatocellular carcinomas compared to
Loss of AMPKα2 in hepatocellular carcinoma cells stimulates aggressiveness.

Protumorigenic effects

Activation of AMPK favors metabolic plasticity in cancer cells.
Triggering of AMPK pathway promotes cancer cell growth and survival under stress condi
Active AMPK is highly expressed in triple negative breast cancers.
been also shown to repress AMPK activity through the phosphorylation
of Ser487 of the α1 subunit [82]. AMPK inhibition results in a defective
mitochondrial bioenergeticmetabolism and in the stimulation of a com-
pensatory glycolysis, directly contributing to thyroid hyperplasia in vivo
[83]. Lastly, PRKAA1 ablation promotes the Warburg effect and Myc-in-
duced lymphomagenesis in vivo, inducing biomass accumulation and
supporting cell proliferation [84], although the contribution of AMPK
in Myc-driven tumorigenesis seems to be context or tissue dependent,
as shown in osteosarcoma models [85]. Such divergences may be ex-
plained taking into account how AMPK integrates different intracellular
and extracellular signaling and its function within the context of meta-
bolic reprogramming and adaptation to hypoxia. On one hand, active
AMPK exerts an inhibitory effect on mTOR pathway [86,87] and pre-
vents the biosynthetic processes necessary for cell growth and prolifer-
ation, affecting tumor progression and clonal expansion of cancer cells
(Fig. 3). Indeed, it has been found that hepatocyte specific Tak1 KO in
mice triggers mTORC1 pathway, suppresses AMPK expression and in-
hibits autophagy in response to starvation or treatmentwithmetformin
[88]. These models spontaneously develop hepatocellular carcinomas,
whose formation can be reverted by inhibiting mTORC1 or stimulating
autophagy, indicating that TAK1 mediated AMPK activation inhibits tu-
morigenesis [88]. Conversely, AMPK also seems necessary to sustain the
metabolic plasticity of cancer cells during the phases of adaptation to
nutrient and oxygen paucity and exposure to oxidative stress (Fig. 3).
In fact, upon nutrient deprivation and hypoxia AMPK activation is in-
duced by different signaling pathways, including PI3K/Akt and ROS
[89,90], resulting in a metabolic rewiring towards aerobic glycolysis
[91], activating autophagy [92,93] and preventing cell death [92,94,
95]. However, whether autophagy stimulation represents a pro-survival
mechanism or prevents tumor growth is still unclear and may be cell
type dependent [93,96]. Emerging studies are showing that blocking au-
tophagy confines aggressive carcinomas into amore benign status of al-
most quiescent oncocytomas [97,98]. Interestingly, oncocytomas are
characterized by the accumulation of disruptive mutations in mtDNA
encoded genes, particularly those for respiratory complex I subunits
[99,100]. We demonstrated that such mutations induce a severe
OXPHOS dysfunction that lead to a profound energetic crisis as attested
from imbalanced AMP/ATP ratio and activation of AMPK in presence or
deprivation of glucose [101]. Such energetic stress conditions contribute
to an increased avidity for glucose, even if complex I defective cells fail
to establish a Warburg transcriptional profile because they are not
able to stabilize the Hypoxia Inducible Factor 1α (HIF1α) [36,101]. In-
deed, in our cell model the activation of AMPK did not modify cell ag-
gressiveness, whereas chemical stabilization of HIF1α partially
overcomes the block of tumor growth, indicating that AMPK activation
regulates the metabolic reprogramming and induces a compensatory
mitochondrial biogenesis in mitochondrial defective cancer cells, but
plays a secondary role in tumor progression of aggressive osteosarcoma
[101]. On the other hand, aerobic glycolysis can be triggered also in
AMPK defective models, being HIF1α the master regulator of the
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transcriptional response [84]. Reduced HIF1α levels and triggering of the
Warburg effect have been also foundwhenamitochondrial dysfunction is
induced by OXPHOS complexes inhibitors [102], uncoupling compounds
[103] or Myc inhibitors [104], although in these reports HIF1α seems to
be directly destabilized upon AMPK activation. Based on these findings,
AMPK may be raised to pivotal regulator of cancer cell metabolism and
thus it is not surprising that this enzyme has been widely implicated in
the processes of carcinogenesis and tumor progression, but remains the
piece of an intriguing puzzle still to be built.

7. Concluding remarks

It is now well established that deregulated energy metabolism is an
hallmark of cancer [27]. Neoplastic cells adapt to environmental pres-
sure globally rewiring their metabolism in order to sustain the aug-
mented request of energy and macromolecules building blocks.
Aerobic glycolysis, FAO and anaplerotic reactions strongly contribute
to biosynthetic anabolic pathways in proliferating cells. Such ATP con-
suming processes must be counterbalanced, in order to maintain AEC
values within a physiological range, since its deregulation impact on
cell survival. Hence, in cancer cells energy homeostasis must be main-
tained by sustained catabolism and mitochondrial ATP production. In
fact, a growing number of studies report that a certain mitochondrial
function is necessary for transformed cells, underscoring its role of met-
abolic hub that integrate differentmetabolic routes. Functional OXPHOS
is required during specific phases of tumor progression when cancer
cells are subjected to nutrient and oxygen deprivation. During these
phases, ATP depletion may activate AMPK sustaining metabolic and
hypoxic adaptation and thus stimulating mitochondrial biogenesis and
autophagy. However, a functionally active AMPK may also represent
an inhibiting factor during the first phases of carcinogenesis, since it
prevents cell proliferation limiting the mTOR pathway. Based on the
current literature, the exact molecular mechanisms through which
AMPK affects carcinogenesis and tumor progression are still controver-
sial and debated. The main open questions concern the role of different
AMPK isoforms, the context in which AMPK may influence tumor biol-
ogy and how different oncogenes or tumor suppressors regulate this ki-
nase. It can be hypothesized that, similar tomitochondrial genes coding
for OXPHOS complexes subunits, AMPK can be envisioned as an
oncojanus [105], since itmay exert divergent effects in different cell con-
text and during specific phases of tumor progression (Fig. 3). Hence, a
precise definition of a therapeutic window is necessary, since a pharma-
cological targeting of AMPK has been proposed as a feasible approach to
prevent or hamper tumor development. Beside the reports on the acti-
vation of AMPK mediated by the antidiabetic drug metformin and can-
cer epidemiology [106,107], a continuously increasing interest in AMPK
pharmacological activators and inhibitors has been shown by the scien-
tific community. While specific inhibitors of AMPK are still missing
[108], a wide panel of natural and synthetic activators is available, al-
though the vast majority of these compounds acts indirectly since
they modulate the AMP/ATP ratio through the inhibition of mitochon-
drial OXPHOS [109]. An illustrative case is represented by metformin
that inhibits respiratory complex I without triggering ROS production
[110,111]. This drug is widely and safely used for type 2 diabetes first
line therapy and it is currently investigated also for treatment of differ-
ent types of cancer [112]. Whether the antitumorigenic properties of
metformin derive from its action at cellular or systemic level, or in a syn-
ergistic manner, is still debated. However, it is extremely intriguing that
complex I inhibition and AMPK activation concur during tumor growth
arrest as it is nowwell established that respiratory complex I is required
for cancer cell adaptation to metabolic and hypoxic constraints during
tumor progression [36,101,105]. In this context, further studies on the
effects of AMPK activators on OXPHOS system and the design of novel
and more selective AMPK activators and inhibitors are necessary in
order to find new, effective and selective strategies to combat cancer
development.
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