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ABSTRACT: Computational studies play an increasingly important role in chemistry and
biophysics, mainly thanks to improvements in hardware and algorithms. In drug discovery
and development, computational studies can reduce the costs and risks of bringing a new
medicine to market. Computational simulations are mainly used to optimize promising new
compounds by estimating their binding affinity to proteins. This is challenging due to the
complexity of the simulated system. To assess the present and future value of simulation for
drug discovery, we review key applications of advanced methods for sampling complex free-
energy landscapes at near nonergodicity conditions and for estimating the rate coefficients of
very slow processes of pharmacological interest. We outline the statistical mechanics and
computational background behind this research, including methods such as steered
molecular dynamics and metadynamics. We review recent applications to pharmacology and drug discovery and discuss possible
guidelines for the practitioner. Recent trends in machine learning are also briefly discussed. Thanks to the rapid development of
methods for characterizing and quantifying rare events, simulation’s role in drug discovery is likely to expand, making it a valuable
complement to experimental and clinical approaches.
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1. INTRODUCTION

Medical treatments are becoming more effective and more
widely available to the global population, driven in part by the
introduction of new drugs to treat more conditions with fewer
side effects. Sustaining this progress is a social, industrial,
financial, and scientific challenge. Most current drugs are small
organic molecules of natural or synthetic origin (molecular
weight ≤ 500 Da). In comparison, biological macromolecules
(e.g., antibodies) are a new frontier, biochemically, clinically,
and in terms of computational investigations.1−4 For both
kinds of drugs, their discovery and development requires
massive investment by pharmaceutical companies, national
governments, and other funding institutions. A huge basic
research effort is required to fully understand the pathological
processes of a given disease. Moreover, for each new drug
approved for use in humans, an estimated 5,000−10,000
chemical compounds will undergo chemical and biological
studies. Of these, approximately 250 will enter preclinical
testing, and 5 will enter clinical trials.5 Bringing a new drug to
market is estimated to take 10−15 years and cost up to 1.5−
2.0 billion US dollars.5 Despite advances in technology and in
our understanding of biological systems, it is still challenging to
predict how a living organism will respond to a medicine. Yet
accurate predictions can reduce the time and expense of drug
discovery and development. In recent years, the dominant drug
discovery paradigm has been to modulate a single biological
target to tackle the symptoms and/or progression of a given
disease.6 There is, however, growing evidence to suggest that,
when seeking to understand a drug’s activities, one should also
consider polypharmacological mechanisms of action.6 Most
drug targets are proteins, whether cytosolic (e.g., kinases,
proteases, and nuclear receptors) or membrane-embedded
(e.g., G-protein-coupled receptors and ion channels). Bio-
molecules such as nucleic acids are also emerging as potential
targets for treating several diseases. When a drug makes
contact with its biological target, they establish a set of
atomistic interactions, which are responsible for the drug’s
potency and therapeutic effect. These atomistic interactions
can be explored in great detail nowadays with experimental and
computational tools. Ultimately, a drug can bind into different
pockets, which are referred to as orthosteric or allosteric
binding sites. Different biochemical responses can be triggered
by binding to one pocket type or the other. This makes it more
challenging to interpret a new drug’s molecular mechanism.
The orthosteric binding site is the pocket (either shallow or
deeply buried) where a protein binds its natural substrate. It is
therefore the most obvious binding pocket for small molecules
designed to modulate proteins that are misregulated in
pathological conditions. By preferentially occupying the
orthosteric binding site, a small molecule can prevent this

site being occupied by its natural substrate. In contrast,
allosteric binding sites are alternative pockets that, once
occupied by a drug, may affect the molecular mechanism at the
orthosteric site via cross-talk communication. In mechanistic
terms, when a drug occupies an allosteric site, it alters the
protein’s conformation or plasticity, thus changing its ability to
bind and release its natural substrate at the orthosteric site.
Allosteric binding can be used to achieve better drug
selectivity. Indeed, while orthosteric sites are broadly
conserved across wide classes of proteins (e.g., the ATP
binding site in kinases), allosteric sites can be more specific,
allowing more selective control over a protein’s function and
limiting the side effects. Needless to say, allosteric binding is
challenging to investigate computationally. This is because of
the great number and variety of sites to be probed and because
their a priori identification is often difficult.7

At the microscopic level, the interactions driving these
molecular processes are known. In principle, one could use the
laws of physics to predict the time evolution of even the most
complex biomolecular transformation. The eventual feasibility
of this idea is supported by remarkable developments in
computational biochemistry and biophysics, which have
already provided a meaningful understanding of various
biological processes.8 However, we are far from achieving a
general applicability of these approaches to pharmacology.
This is because, in pharmacology, the local molecule−molecule
interaction is just one part of the problem. One must also
consider systems biology aspects of the various effects and the
eventual fate of a compound introduced into a living organism.
Nevertheless, our knowledge of the molecular basis and
mechanisms of life is already so advanced that we now design
new drugs by applying this knowledge to drug−target
interactions and effects at the microscopic level. More
importantly, this knowledge is rapidly increasing along with
our ability to analyze, organize, and simulate reality by
computational means.9

It will be useful, at this stage, to summarize the conceptual
basis of these developments and to imagine what the future has
in store for pharmacology as a result. We define and limit the
scope of this review to the computational prediction of the
equilibrium and nonequilibrium evolution of a complex
consisting of a drug and its target in solution or perhaps
embedded into a biomembrane, while neglecting most other
effects from the host organism as a whole. Such computational
predictions are challenging because a comprehensive descrip-
tion must cover a range of time scales, from the femtosecond
period of molecular vibrations to the slow diffusion rate of all
species in solution, up to the millisecond and beyond to follow
the binding and unbinding of drugs and targets.10 From a
physics standpoint, it should be possible to comprehensively
describe these phenomena using a combination of quantum
and statistical mechanics. This description could be summar-
ized as a set of thermodynamics and kinetics relations, which
could ultimately account for the affinity/potency of a drug
toward its target and its efficacy in vivo. Hence, an accurate
estimation of the thermodynamics and kinetics of drug-target
interactions can provide useful information for predicting the
efficacy/toxicity of a new medicine in the human body. From a
chemistry standpoint, understanding the chemical mechanism
responsible for the free energy and kinetics of the binding can
help us to develop drugs with an improved therapeutic profile
and reduced toxicity. Indeed, understanding how the atoms of
a drug and its target interact is key to identifying chemical
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modifications to improve the drug’s thermodynamic and
kinetic profile. There are several experimental methods for
measuring the thermodynamics and kinetics of drug-target
binding at the molecular level. These approaches can be
biochemical (e.g., ELISA, enzymatic, and radioactive assays) or
biophysical (e.g., surface plasmon resonance, isothermal
titration calorimetry, and FRET).11,12 Supporting structural
information is routinely provided by high-resolution X-ray
diffraction13 and by neutron scattering.14 All these methods
provide the (often extremely accurate) experimental values of
thermodynamic (e.g., Ka, Kd, IC50, and EC50) and kinetic (e.g.,
koff and kon) constants, which are necessary to progress a drug
candidate through the discovery and development pipeline.
These experimental observables are quantitatively related to
the free energy and the binding/unbinding kinetics (koff and
kon) of the drug-target interaction. For instance, the Gibbs
binding free energy is directly related to the equilibrium
concentration of bound ([PL]) and unbound ligand ([L]) and
protein ([P]) complexes, according to

Δ =◦G RT K Cln /Dbind 0 (1)

where T is the temperature, R is the gas constant, and C0 is the
standard state concentration of 1 mol/L. KD is the dissociation
constant (usually obtained experimentally at pH 7) and is
defined by

= [ ][ ]
[ ]

K
L P
PLD

(2)

KD, in turn, is expressed in terms of the kinetic coefficients
kon and koff through the relation:

=K
k
kD

off

on (3)

In terms of equilibrium thermodynamics, the ergodic theorem
then provides a suitable theoretical framework for linking the
chemical world to the physical observables used to assess drug
potency and efficacy. In particular, for closed systems, the time
average of their properties is equal to the average over the
entire space. This provides the statistical properties of a system
in thermodynamic equilibrium. Molecular simulation can thus
merge the microscopic and macroscopic worlds by estimating
the time that the system spends in a certain microscopic state.
If the simulations are sufficiently extensive, they can also
estimate the probability of that state. This is becoming ever
more feasible thanks to modern algorithms and efficient
hardware architectures. The resulting in silico studies are
extensive, covering a growing range of size and time scales. In
drug discovery, recent microsecond-to-millisecond-long simu-
lations have allowed the unbiased study of multiple processes
of a ligand binding to a biological target.15−19

This emphasis on equilibrium thermodynamics should not
distract from the fact that life is inherently a nonequilibrium
process. Every living organism is an out-of-equilibrium system,
powered by external energy and crisscrossed by fluxes of heat,
chemical species, and ionic currents driven by a corresponding
variety of gradients.20 Researchers are therefore starting to
consider several scenarios of nonequilibrium. For instance,
(un)binding kinetics, which is an out-of-equilibrium parameter,
is attracting increasing attention. Recent publications have
pointed out that, at least for some systems, the efficacy of a
new drug in vivo (i.e., in nonequilibrium conditions) is highly
correlated to the unbinding kinetics (or its reciprocal, known

as “residence time”). Binding free energy is the classical
quantity that correlates with efficacy, but kinetics is also
relevant. There are many experimental and computational
methodologies for measuring and computing residence time,
which is a direct indicator of the time a drug spends in contact
with its biological target.21−26 These approaches are being
applied more and more by the drug discovery community.
Nevertheless, one should always consider that efficacy in vivo
is affected by many other factors, including metabolism and
pharmacokinetics.
In this review, we report on recent progress in developing

(and applying) molecular simulation approaches to calculate
and predict the free energy and kinetics of drug-target binding.
One section covers the theoretical background, outlining
molecular dynamics and enhanced sampling. These methods
are at the forefront of computational approaches to drug
discovery. This is because they are increasingly capable of
providing mechanistic and energetic (thermodynamics and
kinetics) information at an unprecedented level of detail.
Thanks to the availability of larger computational infra-
structures and codes optimized for this hardware, it is now
feasible to use previously prohibitive methods (i.e., MD and
related methods) for computational drug discovery. The
central section focuses on applications to drug discovery. In
particular, we discuss the use of molecular simulations to
estimate the free energy and kinetics of binding. First, we
report on selected applications of molecular simulation to
estimate the binding free energy. Some approaches estimate
the absolute binding free energy. They require massive
computations for adequate statistics and a robust estimation
of thermodynamic observables. Other approaches estimate free
energy differences within a series of congeneric molecules.
These methods are mainly based on free energy perturbation
and thermodynamic integration. They do not provide the
absolute binding free energy. However, they are efficient in
predicting potency difference, particularly within series of
congeneric compounds. Alchemical methods and similar
comparative approaches are nowadays widely used in the
lead optimization phase of drug discovery. Then, we discuss
the kinetics of binding and unbinding, which are emerging
concepts in drug discovery and development. In terms of
sampling, the binding and unbinding observables (kon and koff)
are related to the activation free energy. This can only be
estimated with an accurate and exhaustive sampling of high-in-
free-energy states in order to properly describe the probability
density function of these points in the free energy surface. Here
too, methods that compare the unbinding kinetics within a
series of congeneric compounds are more practical for drug
discovery, and their use is increasing. Accurate absolute
(un)binding kinetics predictions are still very limited and are
one of the biggest challenges in computational drug discovery.
Next, we briefly report recent machine learning and deep
learning trends, highlighting their scope and limitations for
drug discovery and development. We then discuss some
practical guidelines for the practitioner. Lastly, we discuss
major challenges and perspectives.
This review offers the concepts and information necessary to

properly understand the role and challenges of the various
simulation approaches in drug design and discovery. It is
therefore suitable for readers (including nonexperts) wishing
to learn how molecular simulation can be used to obtain an in-
depth molecular and mechanistic understanding of drug-target
binding in terms of thermodynamics and kinetics.
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2. BASICS ON MOLECULAR SIMULATION

2.1. Models

The simulation of drug-target binding is a specialized branch of
computational biochemistry and biophysics. As such, it largely
uses the models and methods of this field. Let us consider a
system made of molecules. We will focus on microscopic
models, in which the molecules are represented by interacting
particles that, in most cases, correspond to atoms. The system
is thus described by a set of coordinates {ri; i = 1, ..., N} ≡ {rN}
and their conjugate momenta {pi; i = 1, ..., N} ≡ {pN}, which
collectively define the system phase space. Equilibrium
properties, in particular, are expressed as averages of suitable
distribution functions over the system phase space. In classical
mechanics, one often deals with the configuration space, which
comprises all the admissible coordinates.
Under the conditions of interest, classical mechanics

provides a fair description of the system properties, covering
the structure, dynamics, and overall time evolution. Equili-
brium and nonequilibrium properties can be determined from
knowledge of the system’s potential energy for every point in
configuration space, which we define for simplicity’s sake as a
single-valued function of coordinates U ≡ U({rN}). In the case
of atomistic models, the potential energy can be determined ab
initio using quantum chemistry methods or density functional
theory. Biochemical and biophysical simulations, however, are
the realm of molecular force fields, which split the potential
energy into nonbonded and bonded interactions:

{ } = { } + { }U U Ur r r( ) ( ) ( )N N N
b nb (4)

Bonded interactions depend on the molecular topology.
This is defined by the distribution of covalent bonds among
atoms. In popular force fields, bonded contributions consist of
interactions up to four-body. A standard form for these terms
is

∑ ∑

∑

θ θ

ϕ ϕ

= [ − ̅ ] + [ − ̅ ]

+ [ + − ̅ ]

{ } { }

{ }

U k r r k

k n

1
2

1
2

1
2

1 cos( )

ij
ij
s

ij ij
ijk

ijk
b

ijk ijk

ijkl
ijkl
t

ijkl ijkl

b
2 2

(5)

where i, j, k, and l are atoms joined by consecutive covalent
bonds, kij

s , kijk
b , and kijkl

t are force constants, and ri̅j, θ̅ijk, and ϕ̅ijkl
are reference values for bond lengths, bending and dihedral
angles, respectively, defining stretching (s), bending (b), and
torsion (t) energy contributions. These are selected to
reproduce molecular properties measured by spectroscopy or
computed by ab initio methods. The integer parameter n in the
torsional term reflects the (usually two- or 3-fold) periodicity
of torsion potential. The single four-body term in eq 5 is
sometimes replaced by a short Fourier sum over n. One can
also include terms such as the Urey−Bradley potential and,
more often, improper torsions.
Nonbonded interactions are primarily pair-additive and

account for Coulomb forces, short-range repulsion arising from
Pauli exclusion, and dispersion forces. By representing the last
two contributions with, for example, a Lennard-Jones (LJ)
potential, nonbonded interactions can be written as

∑ ∑
π

σ σ
=

ϵ
′ + ′ϵ −

≠ ≠
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ij

ij

ij

ij
nb

0

12 6

(6)

where the {qi} are atomic charges, and σij and ϵij are the length
and energy scales of the LJ potential. The prime on each sum
indicates that pairs of atoms separated by one and two
consecutive bonds are excluded, and the contribution from
pairs separated by three consecutive bonds might be reduced,
often by a factor of 2. Coulomb interactions act through the
vacuum (of electric permittivity ϵ0) and, in most cases, are
described within the rigid ion approximation, although there is
increasing appreciation of the role of polarization contribu-
tions.27

Covalent bonds in organic chemistry are remarkably
transferable from one molecule to another, opening the way
for general force field parametrizations that are valid for large
classes of compounds. Their broad coverage of organic
molecules greatly eases the task of moving across the vast
expanse of chemical space. Popular parametrizations include
OPLS,28 Amber,29,30 Gromos,31 and CHARMM.32,33 Over the
years, these parametrizations have led to more refined versions
or have been specialized into different subsets that target more
restricted classes of molecules. Thus, the current Amber
parametrization for proteins is ff14SB, while GAFF,34 suitable
for pharmacological applications, was developed to model
ligands interacting with proteins. A similar evolution of
CHARMM gave rise to several improved versions, exemplified
by the popular CHARMM22, CHARMM27, and
CHARMM36 parametrizations. Gromos generated the param-
eter sets 45A4, 53A5/6, 54A7, and 54A8, which are optimized
for specific applications, such as computing the thermody-
namic properties of liquids or targeting lipids and nucleic acid
systems. The newest OPLS generation, as of 2019, is
OPLS3.0e,35 which is also optimized for free energy
computations. The large number of atom types in OPLS has
prompted the development of a web server to carry out
automatic parametrization of OPLS potentials.36 Further
software tools37 (e.g., Antechamber in the Amber package)
can facilitate the sometimes difficult task of analyzing the
topology of complex molecules, writing the input for the
corresponding simulation engine.38

Most parametrizations for ligands leave out atomic charges,
which must be computed with semiempirical (AM1-BCC39 in
the case of Antechamber) or ab initio methods on a case by
case basis. However, the partition of the total electron charge
among atoms is not unique. Popular methods for assigning
charges40 to atoms (ions) include Mulliken, Löwdin, Bader,
Davidson, and Hirshfeld.41 Fitting the electric field around a
gas-phase molecule is an appealing approach, which underlies
the so-called electrostatic potential model (ESP).42 It turns out
that determining these fitting charges is ill-conditioned for all
but the simplest molecules, and restraints are added in the
RESP method.43 By construction, the fit considers only points
of negligible electron density. Therefore, condensed phases
cannot be used as the basis for the charge assignment.
However, the ill-conditioning of the fit reflects the fact that
many different sets of charges give nearly the same electrostatic
field. Thus, the precise choice of charges might not be so
crucial. There is an obvious physical reason for assigning
charges that sum to an integer value (in units such that e = 1)
for each molecular species in the system. However, this often
results in low diffusion constants. These can be corrected by
scaling charges by a factor of ∼0.8.44 This rescaling is generally
seen as a very empirical way to account for polarization effects.
The lengths that define the molecular frame of covalent

bonds may be kept fixed, or they may change in time according
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to the balance of intramolecular and intermolecular inter-
actions. Fixed rigid bonds are enforced by constraints using
methods such as SHAKE45 or LINCS.46 By removing the fast
stretching modes, rigid bond models allow more efficient
sampling of the remaining degrees of freedom.
Water force fields are a research subject in themselves.47

This is because of water’s importance, the complexity of its
hydrogen bond network, and the several anomalies apparent in
its phase properties.48 The simplest models (e.g., SPC, SPC/E,
and SPC/Fw)49 treat the water molecule as comprising three
atoms and two covalent bonds. The multipolar distribution of
electron charge is better represented in four-site models, such
as the various TIP4P50 models available in the literature.
Finally, the tetrahedral symmetry of the sp3 hybridization of
oxygen in water is better represented by five-site models, such
as TIP5P,51 supplementing the three atomic positions with
dummy particles to mimic the effect of the two lone pairs
around oxygen.
Water models have had only fair success in reproducing the

full complexity of the water phase diagram. Nevertheless,
several of these models can complement the force field
description of most biosystems in solution, sufficiently
describing their structural, thermodynamic, and dynamical
properties in the explicit solvent. As a consequence, no clear
winner has emerged among the available water models in
biophysics and biochemistry, and several water models are
currently being used. However, it is advisible to ensure the
consistency of the force field for water and the other molecular
species in the system. For instance, the Amber ff15ipq force
field has been parametrized for SPC/Eb water, and it should be
used precisely in that combination.
Full-blown ab initio simulations of biosystems are not yet

the norm, mainly because they cover only a short time frame.
However, hybrid approaches such as QM-MM52,53 play an
important role in modeling organometallic complexes (e.g.,
prosthetic groups in proteins) and in investigating reactions
involving a localized change in molecular topology.54,55

2.2. Molecular Dynamics

Computer simulation determines equilibrium properties at
nonzero temperatures. The first broad distinction is between
molecular dynamics (MD) and Monte Carlo (MC) methods.
The former computes trajectories in real time, the latter
samples the equilibrium distribution over the configuration
space. We will briefly detail the former here.
MD ability to compute equilibrium properties relies on the

ergodic theorem, which states that the average over phase

space of a sufficiently smooth operator ̂ is the time average
⟨ ̂ ⟩E over a microcanonical trajectory Φ(t) ≡{rN(t)}:

∫τ
̂ [Φ ] = ⟨ ̂ ⟩τ

τ

→∞ t tlim
1

( ) d E
0 (7)

Trajectories, in turn, are determined by the numerical (and
thus approximate) integration of the system equations of
motion. For simplicity, we adopt the Hamiltonian formulation
with Cartesian coordinates and focus on Newton’s equation of
motion:

̈ = −∇m Ur r( )i
N

ri (8)

where, again, {i = 1, ..., N}, N being the number of atoms in the
system. Newton’s equations of motion are time-reversible,

hence, in the absence of a time-dependent external field, the
total energy is conserved.
The numerical integration is usually carried out by some

form of discretization, evolving the system in small timesteps
dt starting from a suitable initial state {ri; pi}. Many integration
rules56,57 have been proposed and tested over the years,
including a variety of predictor-corrector forms. At present, the
Verlet algorithm and the virtually equivalent velocity Verlet are
widely used.
In principle, the time step can reach, at most, one-hundredth

of the highest vibrational frequency in the system. In practice,
timesteps of 1 fs are the norm. This can be extended to 2 fs by
increasing the mass of the hydrogen atoms or, more often, by
fixing the length of every covalent bond involving an H atom.
The integration of Newton’s equations of motion (eq 8)
samples the microcanonical ensemble. Extensions to other
ensembles are available, following precise prescriptions.57 One
example is thermostats to maintain a specific temperature (i.e.,
NVT and NPT ensembles).

3. ENHANCED SAMPLING METHODS

Molecular dynamics is extensively used to sample the
Boltzmann equilibrium probability distribution in phase
space and to reproduce the real-time dynamics of macro-
molecules and biosystems. Despite the validity (up to the force
field representation capability) of these methods, systems and
phenomena of interest for drug discovery still pose a severe
challenge, partly because of the complexity and size of the
systems of interest, and especially because of the wide range of
time scales spanned by phenomena such as the ligand-protein
binding and unbinding or the protein folding. These
phenomena typically require milliseconds but reach up to
seconds and beyond. Considering, for instance, a time step of 1
fs in MD, it is important to verify that sampling events in the
millisecond or second time scale require 1012 or 1015

integration steps. This amount of computing time is far
beyond the current available computational technology,
making such endeavors unfeasible. Practical considerations of
this type have until now hampered the use of simulation in
fields such as drug discovery, making methods such as
docking58 the de facto standard. The recent advent of
graphical processing units (GPUs) has partially mitigated this
issue, allowing the microsecond time scale to be easily
achieved. However, the millisecond and seconds time scale
are unavailable to most researchers, apart from very specific
efforts.59 One significant technological effort is the D.E. Shaw
group’s development of a dedicated hardware for MD only,
called Anton.59 This unique and expensive hardware solution
has achieved millisecond time scales, demonstrating MD’s
reliability in reproducing the protein−ligand binding process.17
However, the seconds time scale is still elusive. Despite the
significant technological achievements of the last 20 years,
certain phenomena simply cannot be simulated via plain MD.
This state of affairs is likely to continue for years to come.
Besides these practical considerations, the pedestrian extrap-
olation of methods devised for simpler systems and problems
to a whole new domain is also conceptually unattractive.
Two related but distinct needs are apparent in the drug

discovery context. First, one must sample a complex landscape
in configuration space, consisting of hierarchically organized
basins, separated by barriers, causing the near breaking of
ergodicity. The second and more difficult challenge is to
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quantify the kinetics of biosystems evolving under stationary
state or fully nonequilibrium conditions.
A shared feature of these sampling methods is a way of

accelerating the events of interest. From a Bayesian standpoint,
some constitute a class of methods where a priori information
is used to focus the sampling in specific regions of the phase
space. This acceleration can be obtained in several ways, such
as adding an external potential to the original one, defining
proper restraints to collect statistics in a specific point of phase
space and morphing the system Hamiltonian with a reference
one. These methods are not only able to accelerate the
sampling but in some cases also allow a free energy
reconstruction. To achieve enhanced sampling, collective
variables are often used: these order parameters include
distances, angles, RMSD, and, in general, more or less complex
observables, whose changing values represent the index of
evolution of the phenomenon under analysis. We will call such
an observable ξ. In the first approximation, for instance, the
distance between two groups can represent the obvious
reaction coordinate for a protein−ligand binding study (see
Figure 1).

In the following sections, we briefly present a series of
enhanced sampling and free energy methodologies that are
currently used for protein−ligand binding problems.
3.1. Steered MD

In the steered MD methodology, one adds to the plain MD
potential U a parabolic potential ΔU to increase the probability
of sampling a specific phase space region (see Figure 2).
Additionally, the center of the parabola moves in time over the
desired range of the reaction coordinate ξ. In detail, one has

ξ ξΔ = −U K t
1
2

( ( ))0
2

(9)

where the center ξ0(t) often moves at constant velocity as in

ξ ξ= +t vt( ) (0)0 0 (10)

v is the value of the constant velocity in the collective variable
space.
In a fundamental work,61 Park and Schulten developed a

theory for extracting the potential of mean force (the free
energy profile) from these kind of simulations. Namely, they
considered how a nonequilibrium process such as steered MD
can be connected to an equilibrium concept such as the

potential of mean force. In turn, the theory in ref 61 is based
on an important relation in statistical mechanics, the
Jarzynski’s equality, derived in ref 62. The free energy can be
reconstructed by running several independent replicas of the
same steering process.
3.2. Adiabatic Bias Molecular Dynamics

Adiabatic bias molecular dynamics (ABMD) is a conceptually
simple method for navigating the phase space. It is particularly
well-suited to reaching a given target value in collective variable
space.63 The key aspect of this biasing method is that the
applied perturbation conserves a characteristic energy. Suppose
ξ is the reaction coordinate and the bias at time tn is

α ξ ξ= −V t t( ) ( ( ) )n n 0
2

(11)

Then, the center ξ0 is updated dynamically based on the
advancement or not of the collective variable in the desired
direction. Suppose that an increasing ξ is desired then the
update equations for the center become:

ξ
ξ ξ ξ

ξ ξ ξ
=

<

≥

l
m
ooo
n
ooo

t

t t

( )

( ) ( )

n

n n
0

0 0

0 (12)

Evidently, if a decreasing ξ is desired then the opposite update
equations hold. ABMD can be seen as an analog of the pawl
and ratchet mechanical system (see Figure 3). The wheel (the
collective variable) can only progress in one direction. If the
system tries to move in the wrong direction, a harmonic
restraint prevents these motions. It is similar to steered MD,
but the key difference here is that the speed at which the center
is moved is not ruled by the user only but also by the natural
evolution of the process toward the final value of the collective
variable. Still, the user can tune the process speed by modifying
the restraint constant; the higher this constant, the stronger is
the reluctance of the simulation to visit previous stations and

Figure 1. Idealized potential of mean force for protein−ligand
binding. The reaction coordinate represents the observable that allows
the binding process to be tracked. Reproduced from ref 60. Copyright
2016 American Chemical Society.

Figure 2. Graphical representation of steered MD in the protein−
ligand case. The yellow component represents schematically a protein
and the green component represents the ligand. A spring is attached
to the ligand, and the center of the spring (in gray) is moved along
time by increasing distances to promote the unbinding event. Time is
increasing from the top in arbitrary units.
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thus the higher the speed. ABMD can be interpreted as an
adaptive and gentle version of steered MD.
3.3. Parallel Tempering

Parallel tempering is a technique (or, more properly, a family
of techniques) which allows one to overcome free energy
barriers without explicitly introducing a collective variable.64 In
this enhanced sampling technique, the increased sampling
capability is achieved through the increase of the temperature.
Identical replicas of the same system, differing only in the
temperature, are run in parallel. Let M be the number of
parallel replicas run at different temperatures Ti where T1 is the
correct base temperature and the other ones for i > 1 are
higher. Then, these parallel simulations are allowed, from time
to time, to exchange the configurations between consecutive
(e.g., i and i + 1) replicas. This allows a constant exchange of
configurations and thus the migration from one high
temperature configuration to a low one, and thus the correct
sampling, at low temperatures, of a free energy basin, which
would not have been visited with the low-temperature
simulation only. Important aspects include the number of
replicas and the exchange probability in order to maximize
sampling efficiency and ensure successful exchanges between
replicas. Parallel tempering satisfies the detailed balance, since
exchanges between replica i and replica j are accepted with
probability:

β β= { [ − − ]}p U r rmin 1, exp ( )( ( ) U( ))i j i j (13)

Among other features, to achieve equal acceptance ratios, a
geometric progression of temperatures is required. For
concision, we will not discuss here the many other technical-
ities of an efficient tempering protocol.64

However, tempering techniques are not a method but a class
of methods. In addition to replicas at different temperatures,
the exchange could also involve other observables. For
example, the bias in parallel metadynamic runs can be
exchanged.65

3.4. Scaled MD

Scaled MD is an extremely simple enhanced sampling method.
It has been used to increase, in a simple temperature-like way,
the probability of escaping from free energy minima.66−68 If we
define a positive constant μ ∈ (0, 1] then we define a new
potential:

μ̂ =U Ur r( ) ( ) (14)

where U(r) is the potential energy of the system. Hence, μ = 1
is plain MD, and intermediate values represent a more or less
pronounced scaling of the potential (see Figure 4).

The scaling action can be interpreted as a smoothing factor
of the potential, which uniformly flattens all the barriers in the
potential energy surface. This last property was recently
used25,69−71 to accelerate the unbinding and binding process.
For the case of unbinding,25 in addition to the potential
scaling, one applies harmonic restraints on the part of the
protein backbone that is not involved in the binding. This
prevents unfolding. Upon scaling, the time when the ligand is
completely surrounded by water molecules for the first time is
defined as unbinding time. The unbinding process is repeated
several times (usually at least 20) to define an average
unbinding time. Compounds are ranked according to this time.
This methodology has been successful25,69,70 in providing a
koff-based ranking of compounds. This protocol is widely
applicable thanks to the reduced number of free parameters,
the absence of a reaction coordinate, and the relatively fast
computing time. One disadvantage is that, due to the presence
of restraints, one requires a priori knowledge of the residues
involved in the binding/unbinding process. Although this is
formally different from a reaction coordinate, the role is
similar. A second disadvantage is that a heavy scaling, while
useful for ranking, can sometimes lead to significantly
approximate unbinding trajectories. This, in turn, makes it
difficult to obtain clear mechanistic insights into the unbinding
process. In addition to accelerating the unbinding process, this
methodology has been applied to the dynamic docking
process.71 In this last case, together with the potential scaling,
a cylinder-shaped wall is used to restrict the configurational
space that the ligand explores, thus increasing the local
concentration and hence binding probability.
3.5. τ-RAMD

The τ-RAMD protocol was recently proposed by Wade and
co-workers24 for studying the residence time of some HSP90
binders. The protocol is built upon the random acceleration
molecular dynamics simulation method (RAMD) [also known
as random expulsion MD (REMD)]. The method involves
periodically applying a random force on the ligand during a

Figure 3. ABMD is similar to a pawl and ratchet system. The
collective variable can evolve in one direction only (the wheel
rotation); it is restrained if it tries to go in the opposite direction (the
wheel is stopped if it tries to go back).

Figure 4. Scaling the potential by μ < 1 increases the crossing rate
between the two basins. A constant scaling is equivalent to a 1/μ
scaling of the temperature.
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prescribed time window. If the ligand does not move in the
desired direction (assessed by a distance threshold) then the
force is reassigned randomly. This simple procedure is effective
in accelerating the unbinding time by several orders of
magnitude with respect to the physical unbinding time. On
average, between 40 and 200 simulations were run for each
compound and the mean unbinding time τ (from which the
name derives) was used to build correlations. RAMD is a kind
of supervised method, in that the randomness of the force is
coupled with a prescribed albeit obvious collective variable,
namely the distance that accounts for the unbinding progress.
3.6. Metadynamics

Metadynamics (MetaD)72 is a method for escaping local free
energy minima. Metadynamics is part of the family of adaptive
bias methods, where a history-dependent bias is modified over
time to ideally achieve a fully diffusive behavior on the chosen
reaction coordinate. Among other methods in this family,73−79

we discuss metadynamics here because of its widespread use
and availability in the computational drug discovery
community.80,81 In the first version of metadynamics, con-
strained and coarse-grained simulations were used.72 Later, a
continuous version emerged.82 Here, we discuss this second
version, which is widely used.
Given a vector of reaction coordinates ξ of dimension d at

time t, the metadynamics bias potential is

∫ ∑ξ ω
ξ ξ τ
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(15)

where ω is an energy rate and σi is the width of the Gaussians
corresponding to the ith CV. The term ω is the ratio between
Gaussian height W and a Gaussian deposition stride τG. The
method eventually achieves a time-continuous deposition of
Gaussians along the collective variable space (see Figure 5).

In contrast to umbrella sampling (discussed later), the key
advantage of metadynamics is that it automatically explores the
collective variable space and computes the free energy when at
convergence. This can be seen as an advantage or a drawback
because the sampling is not under the user’s control. This is in
contrast to umbrella sampling, where the sampling is

particularly controlled. Under some hypothesis,82 and based
on empirical observations, one has

ξ ξ→ ∞ = − +V t F C( , ) ( )g (16)

where F is the free energy surface and C is an arbitrary additive
constant. The error associated with the reconstruction is also
proportional to83

ω
βD (17)

where D is the diffusion coefficient in the ξ space, and β =
(kBT)

−1. However, it is often daunting to compute this error.
Independent runs are therefore used to assess the reliability of
the free energy surface. Despite this set of shared positive
features, metadynamics presents two significant drawbacks.
First, given that the Gaussian deposition is continuous in time,
it is difficult to understand when to stop a metadynamics
simulation. Additionally, stopping a simulation at a certain
point means getting an arbitrary bias in the free energy surface
due to the last deposited Gaussian, which can happen at any
point of ξ if one assumes a nearly diffusive regime. Second,
there is no perfectly satisfying proof of its convergence.
These compelling problems led to a solution called well-

tempered metadynamics (WTMetaD),84 which was defined to
fix the first problem and then proved to converge85 to the real
free energy surface for sufficiently long simulation times.
3.7. Mechanisms and Kinetics of Rare Events

Many events of interest for biophysics and biochemistry
correspond to what one could loosely call a rare event.
Examples of rare events include the crossing of a reaction
barrier, the rotation of a protein domain, the flipping of a
phospholipid molecule in a biomembrane, and the absorption
or release of a ligand by a receptor. The defining property of
these phenomena is that, at equilibrium, they are separated by
a long waiting time τw, while the event itself takes place over a
short time τev, which is a tiny fraction of the time τtot = τw + τev
required to investigate the phenomenon. No clear precursor
allows one to identify or trigger the beginning of the transition
state. Hence, the task is challenging due to the need to cover
τtot at a resolution sufficient to analyze τev. Fortunately, in
recent years, advances in hardware and algorithms have pushed
back the challenging range of τtot/τev by orders of magnitude.
However, the broad distribution of characteristic times in
complex biosystems means that the exploration of rare events
is still a great challenge. Here, we briefly present some
methodologies that specifically address the rare events problem
and that have been applied successfully to protein−ligand
binding problems.

3.7.1. Markov State Models (MSM). Markov State
Models are a statistical method that can be applied to a set
of plain MD simulations to retrieve kinetic information. The
first task in building an MSM is to subdivide the configuration
space into a complete partition of nonoverlapping sets {A1, ...,
An}. Then, the basic quantity defining the model is the matrix
of transition rates among these macrostates. We name this
quantity T. More precisely, T is an n × n matrix, whose Tij
matrix gives the probability of state i going to j within a time
scale τ, known as the lag time. This must be long enough for
transitions to be memoryless86 (Markov property assumption)
and short enough to allow for high resolution. The Chapman-
Kolmogorov test can be used to validate the choice of lag time
compatible with the loss of memory assumption.87 The

Figure 5.Metadynamics bias potential time evolution. Basin A is filled
with Gaussians first, then basin B, and finally basin C until
convergence. Reproduced from ref 60. Copyright 2016 American
Chemical Society.
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diagonal elements Tii represent the probability for the system
at state i to remain in the same state. Because of general
properties of probability, the elements on each row of T sum to
1. All transition probabilities given by T represent equilibrium
properties, measuring the diffusion of the system over discrete
states due to thermal fluctuations. Once built, the model can
be interrogated to predict the long-term evolution of a system
prepared in an out-of-equilibrium state, relying once again on
the relaxation-fluctuation theorem. The results of the first
development stages can drive the model’s refinement, requiring
the redefinition of the set of states {Ai} and the computation of
new transition rates using targeted and relatively short MD
runs. In this basic form, MSM has been used to analyze protein
folding88−90 and protein−ligand binding simulations.15,16,91,92

MSMs are particularly efficiently applied to diffusive problems,
whereas their application to activated (high barrier) problems
is less efficient. This is because, in the original formulation of
MSMs, the user simply runs many independent plain MD
simulations without any prescribed strategy to decide when
and where (in phase space) to start a new simulation. This is in
contrast to transition path sampling methodologies.93,94

Needless to say, this quick overview omits many important
details. For more detail, the interested reader is directed to the
original papers, or their convenient summaries in recent
reviews (see refs 89, 95−97).
3.7.2. Weighted Ensemble. An original variant of the

more general path sampling93,98−104 is represented by the
weighted ensemble (WE) method,105 which was originally
conceived by von Neumann and then revived and first
implemented with the Huber-Kim algorithm.106

As in many path sampling methods, the separation between
the initial state A and the final state B is divided into partitions
(bins, in the WE language). One starts a set of trajectories (say
M) in the bin containing A, and the algorithm alternates
simulations advance for a (relatively short) fixed amount of
time τ to resampling steps where trajectories are pruned or
spawned, keeping the number of walkers within each bin
invariant. The cycle is repeated until state B is reached. The
time evolution step may follow whatever dynamics (micro-
canonical MD, stochastic, Brownian, etc.) is deemed suitable
for the problem at hand.
The potential energy surface underlying trajectories is

unbiased. In simple cases, in which the A → B involves two
basins only and a single barrier between them, kinetic rates can
be computed directly from the trajectories joining the two
basins. Whenever intermediate states are present, this
procedure becomes inefficient and a postprocessing stage
may be needed to compute rates, in which the unbiased

trajectories are used to estimate the hopping rates among bins,
opening the way to reconstruct the steady state. In this
approach, kinetic rates are usually expressed as first passage
time (FPT).
This brief outline already points to the close relation of WE

to Markov state models. Compared to MSM, the correlation of
trajectories due to their resampling makes WE somewhat more
efficient and, on contrast to MSM, WE does not rely on a
Markovian assumption for the transitions among bins.
Moreover, it turns out that MSM prediction depends more
heavily on the definition of free energy basins than the WE
estimates of kinetic parameters depend on the choice of the
bins.107

Besides similarities with both transition path sampling and
MSM, WE possesses several interesting (nonexclusive) proper-
ties. The most remarkable property is that WE provides
unbiased predictions on time scales longer than the aggregated
duration of the underlying dynamical simulations. This
property derives from the validity of the Hill relation,
expressing the mean first passage time (MFPT) as a function
of steady-state fluxes (FLLL):

108

→ =
→
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a B

MFPT( )
1

FL ( )SS (18)

Moreover, WE can describe both nonequilibrium steady state
conditions and equilibrium, which is a special case of steady
state. Its multitrajectory character makes it suitable for
describing transitions that occur following different pathways.
The same multitrajectory aspect makes WE easy to parallelize.
The definition of bins does not need to remain unaltered from
the beginning to the end of simulations, but it can be defined
by an adaptive strategy, as implemented in WExplore.94 Last
but not least, although not widely exploited yet, WE is rather
scale-neutral and can be used to describe a wider variety of
dynamical processes than simply the time evolution of
particles.105

It has been claimed that WE does not need any collective
variable, although a careful analysis of the algorithm shows that
the definition of bins relies on a metric, such as the
displacement of a molecule from its initial position. A metric
is nothing other than a collective variable. This claim is shared
with MSM, where one can also argue that the MSM definition
of basins depends on a metric, hence on a collective variable.
WExplore, first introduced in ref 94, is a recent and effective

version of the Weighted Ensemble protocol for biomolecule
and biophysics simulations. In this strategy, bins are
dynamically and hierarchically defined, thus avoiding the
problem of defining bins a priori, while also reducing a high-

Figure 6. Simplest umbrella sampling scheme for protein−ligand binding. Harmonic restraints are applied along the distance connecting the
protein (in yellow) with the ligand center of mass (in green).
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dimensional order parameter space to a manageable size. Bins
consist of Voronoi polyhedra on the space of the sampling
variables. Then, to test whether a trajectory belongs to a
specific region, computations on the configuration can be used
inside the hierarchical tree.

4. METHODS FOR FREE ENERGY COMPUTATIONS
In this section, we provide a concise description of some of the
most currently used methods to compute free energy in
protein−ligand binding problems.
4.1. Umbrella Sampling

To provide unbiased results, approaches for free energy
computations need to visit all the relevant configuration space,
overcoming barriers that may divide it into barely connected
basins. Umbrella sampling109 is historically the first and one of
the most popular methods used to enhance the sampling in the
presence of near-nonergodicity conditions. Umbrella sampling
is the progenitor of the family of enhanced sampling methods.
The method derives its name from its ability to cover different
basins of the configuration space. In this technique, similarly to
steered MD, instead of sampling with the potential U(r), one is
sampling with the potential

ξ ξ̂ = + −U U Kr r r( ) ( )
1
2

( ( ) )0
2

(19)

where the second term is a harmonic restraint centered on ξ0
(see Figure 6 for a simple application to protein−ligand
binding).
Reconstructing the free energy profile over a broad interval

of coordinates is possible but not trivial. First, one simulation
might not be sufficient to cover the range of the ξ variable of
interest. Second, once one realizes that several centers are
required to cover the space, one needs a method to recombine
the umbrella sampling information into a unique free energy
profile. Indeed, assuming that one is analytically able to
reconstruct the free energy on each center, then, considering
that the free energy is always known up to a constant, one
should find a way to align the various free energies from each
simulation into a unique profile. This is the aim of the
Weighted Histogram Analysis Method (WHAM).110 However,
WHAM is not the only method for reconstructing the free
energy [the Multistate Bennett Acceptance Ratio (MBAR)111

is a notable example]. There is a second class of methods that
directly leverage the mean force concept without the need to
align the free energies from the different simulations.112,113 In
several ways, these methods are an adaptation of thermody-
namic integration to umbrella sampling, where a generalized
force is considered to reconstruct the free energy profile.
4.1.1. Computing the Standard Binding Energy.

Umbrella sampling simulations can recover the potential of
mean force profile. However, attention is required to move this
quantity to a free energy of binding that is comparable to
results from experiments. Indeed, to rigorously compare
computational values to experimental quantities, one should
resort to the standard free energy of binding.114

To do so, one must first observe that
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where ΔGPMF is the free energy difference from the PMF and
Qb and Qu are the partition functions of the bound and

unbound regions, respectively. Let W(ξ) be the PMF profile,
that is the reversible work profile of the binding process, then
one has114
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where the two integrals are on the bound and unbound
partition of the PMF profile. To get the standard free energy of
binding ΔGo, we must take into account the free energy
contribution for moving from the standard-state volume V0 =
1661 Å3, which corresponds to a C0 = 1 M concentration, to
the actual unbound volume sampled during the simulation.
Finally one gets

Δ = Δ + ΔG G Go
VPMF (22)

this quantity is a formally correct quantity to be compared to
free energies coming from experimental values. In detail, one
has
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where Vu is the unbound volume sampled along the simulation.
In umbrella sampling simulations, there are often restraints
applied orthogonal to the reaction coordinate. In this case, an
additional free energy term must be taken into account.114

Throughout the text, for simplicity, we will use ΔG to indicate
the binding free energy.

4.2. Adaptive Biasing Force

The adaptive biasing force method was first theoretically
founded in ref 115 then rediscussed and popularized in ref 116.
Similarly to thermodynamic integration and to some of the
reconstruction techniques for umbrella sampling, this method
is based on the concept of mean force.117 Here, one estimates
on the fly this mean force acting on the reaction coordinate. At
the same time, a bias opposing the mean force is applied, such
that one can escape local free energy minima. Then, on a long
time scale, as the running average of the mean force converges
to the true mean force, the total force felt by the system
virtually vanishes. This, ideally at convergence, allows for a
diffusive regime over the entire range of the collective variable
and the free energy to be estimated.
4.3. Relative Binding Free Energy

The free energy of binding of a molecule to a receptor ΔGbind
(or more precisely the KD) can be reliably experimentally
measured.118 Nevertheless, a computational machinery able to
predict the experimental values would be useful, saving time
and reducing the cost of a fully experiment-based drug
discovery campaign. Computing ΔGbind can be done, for
example, using the double annihilation119 or the double
decoupling method120 (see details later). The latter differs in
the details of the system transformation and especially in their
rigorous use of position restraints. In these methods, a
thermodynamic cycle is used to efficiently compute ΔGbind.
This class of methods, in which molecular entities appear and
disappear in the simulation box, are commonly referred to as
alchemical methods because they follow a nonphysical path to
perform the transformation. Since free energy is a state
function, the nonphysical nature of the path followed is
irrelevant from the theoretical viewpoint.
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Now, we detail the slightly simpler yet extremely useful case,
in which one seeks a relative binding energy between drugs.
Here, instead of annihilating an entire entity (such as a ligand),
we only morph the changing part of the ligand (or the
protein). Figure 7 depicts a thermodynamic cycle, in which
one ligand a is mutated into ligand b.
The importance of this thermodynamic cycle arises from the

fact that, while horizontal transformations in Figure 7 are hard,
the vertical ones are significantly simpler. Indeed it holds that

ΔΔ = Δ − Δ

= Δ → − Δ →

G G b G a

G a b G a b

( ) ( )

( ) ( )
BIND BIND BIND

COMPLEX FREE (24)

This forms the basis for the application of the free energy
perturbaton (FEP) method to compute differences in the
binding free energy in series of ligands. The methodology has
had some success121,122 and is a strong candidate protocol for
prioritizing ligands during lead optimization.123

To perform the ligand mutations in the binding site and in
the bulk, one must build topologies for both end states. Then,
two different ways to morph ligand a into ligand b can be
chosen, known as the single topology and the dual topology
methods, respectively. In single topology, one specifies a set of
force field parameters at each stage of the transformation.
These are often taken as the weighted average of the end-point
parameters. In this way, an atom (e.g., an O) can mutate into a
different atom (S) literally in place. In dual topology, the
potential energy system is a given interpolation of the two end-
point energies, such as

λ λ λ λ= + − ≤ ≤U U Ur r r( ; ) ( ) (1 ) ( ) 0 1b a (25)

where Ub is the potential of the destination state and Ua is the
initial state. In this way, only the end-point force field
parameters need to be specified and, during the trans-
formation, the original O atom and S atom coexist, albeit in
scaled forms. There is no clear consensus on which is the best
approach for performing the transformation. On the one hand,
the single topology approach minimizes the number of
transformations, thus facilitating convergence. On the other
hand, one is elongating and shortening chemical bonds, which
is never a weak perturbation. A further problem with dual
topology is that, close to the end states, emerging atoms can
clash against the residual component of vanishing atoms. The
problem is mainly due to the singularity of the van der Waals
potential. For this reason, a modified soft core potential was
introduced:124
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where αLJ is a positive constant and σij and ϵij are the Lennard-
Jones parameters. Consistently, the Coulombic contribution is
also changed to
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where ϵ0ϵr is the dielectric constant of the medium and αC is a
positive constant (see125 for further recent developments).
The baseline FEP protocol has been extended in several

ways, with the FEP/REST122 approach being one of the most
notable. REST stands for replica exchange with solute
tempering. In contrast to classical replica exchange, the
advantage of this variation is that the hot region is restricted
to the solute, thus excluding water molecules. This, in turn,
significantly reduces the number of replicas needed with
respect to parallel tempering. For FEP, the hot region
comprises the ligand and the nearby residues. The protocol
associates a specific solute temperature with each of the m λ
windows. In particular, the series is (λ0 = 0, T = T0), (λ1, T =
T1), ···, (λm/2, T = Th), ···, (λm−1, T = T1), and (λmS, T = T0),
where T0 is the physical temperature and Th is the maximal
physical temperature. The increased solute tempering
ensemble allows the conformational space to be sampled
more efficiently, overcoming potentially high energetic
barriers122 (e.g., in dihedral space).

4.4. Double Annihilation and Double Decoupling Methods
for Absolute Binding Energy

Beside relative free energy estimators, absolute binding energy
is also important, although not yet so widely used in drug
discovery. Two important methods in this class are the double
annihilation and the double decoupling method, with the latter
being a rigorous version of the former.
Denoted by the ligand (L), the protein (P), and the

protein−ligand complex (PL), and using the subscripts wat
and gas to denote the water and gas phases, one wants to
compute ΔGbind:

+ ⎯ →⎯⎯⎯⎯⎯⎯⎯
Δ

L P
G

PL( ) ( ) ( )wat wat
bind

wat (28)

Figure 7. Thermodynamic cycle used to compute relative binding free energies (ΔG). Horizontal transformations are difficult as they require the
complete annhilation of the ligand in the site and the appearance of the ligand in the solvent. The vertical transformations are more convenient as
they are simple perturbations and they can be used to estimate the relative binding free energy.
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In the double annihilation method,119 alchemical trans-
formations are used to compute the absolute binding energy
ΔGbind. In particular, the computation of the free energy is split
into two components ΔG1 and ΔG2:

⎯ →⎯⎯⎯⎯
Δ

L
G

L( ) ( )wat
1

gas (29)

⎯ →⎯⎯⎯⎯
Δ

+PL
G

P L( ) ( ) ( )wat
2

wat gas (30)

In the first of the two equations, the ligand is transferred
from the water to the gas phase. In the second phase, the
ligand is still transferred to the gas phase when in a complex
with the protein. From these two phases, the method takes the
name double annihilation, and the free energy is computed
with

Δ = Δ − ΔG G Gbind 1 2 (31)

This procedure has some problems. First, the rigorous free
energy depends on the standard state,120 but this estimation
does not take it into account. Strictly speaking, results from
this procedure cannot therefore be compared to experimental
results. The second problem concerns the sampling. During
the decoupling phase in the second step, the ligand is
completely decoupled from the protein. This means that the
ligand is free to sample the entire simulation box. To get
converged results, the ligand should explore all the possible
orientations and positions in the simulation box, which makes
the endeavor very difficult. To overcome these limitations,
Gilson proposed the double decoupling method.120 In this
thermodynamically correct version of the double annihilation
method, restraints are introduced to maintain the ligand in the
binding site during the second step. This trick avoids the
sampling problem and obtains a correct standard binding free
energy. This additional restraint introduces the need to
compute the free energy component due to the restraints
themselves. In general, this can be difficult: for protein−ligand
binding, Karplus and co-workers126 obtained a simple and
elegant analytical estimation of this additional free energy

component. This gives the double decoupling scheme a
rigorous and elegant formulation and practical applicability for
the protein−ligand binding problem.
4.5. MM-PBSA and MM-GBSA

The MM-PBSA (Molecular Mechanics, Poisson−Boltzmann,
and Solvent Accessible) and MM-GBSA (Molecular Mechan-
ics, Generalized Born, and Solvent Accessible) methods127−131

represent classes of popular methods, devised to compute
absolute and relative free energies, whose accuracy and
reliability lie between scoring functions132 (or machine-
learning black box models) and more rigorous physics-based
methods such as FEP.133 The rationale of these methods is to
trade some accuracy for computational speed, achieved by
resorting to an implicit solvent model and to an approximate
and largely empirical approach to computing free energies.
The MM-PBSA method was originally proposed by

Kollmann and co-workers127 and is now widely used in the
drug discovery community, including pharma companies. In
this class of methods, the binding energy of a ligand to a
protein is usually computed using the familiar relation:

Δ = − −G G G Gbind,solv complex,solv protein,solv ligand (32)

where Gcomplex,solv, Gprotein,solv and Gligand in principle are absolute
free energies. The binding free energy can also be estimated
with a more complex thermodynamic cycle (see Figure 8).
Both MM-PBSA and MM-GBSA are usually intended as

postprocessing stages running on top of a standard MD or MC
simulation based on a classical (sometimes ab initio) force field
with explicit solvent. The free energy of each component (i.e.,
complex, protein, ligand) is computed by averaging:

= + + + Δ + Δ −G E E E G G TSbnd el vdW pol np solute

(33)

over a set of configurations extracted from the simulation
trajectory. In this last equation, the first three terms are
classical molecular mechanics contributions and ΔGpol + ΔGnp
are estimates of the solvation free energy, divided into the
polar and nonpolar component. The polar component is

Figure 8.MM-PBSA binding free energy calculation with a thermodynamic cycle. In black, the ΔG terms that are explicitly computed. Reproduced
from ref 130. Copyright 2012 American Chemical Society.
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obtained from the Poisson−Boltzmann equation solution or
from Generalized Born approaches, whereas the nonpolar
component is often expressed as a linear function of the
solvent-accessible surface. Often, the nonpolar contribution
plays a lesser role with respect to the polar one.
The average over configurations implies the choice of the

ensemble, from which the conformations are to be sampled. In
this respect, a further simplification is often made by
simultaneously selecting representative configurations for the
complex, the protein, and the ligand from the single trajectory
of the complex in solution, roughly halving the simulation
time.
In addition to efficiency considerations, this single-trajectory

variant aims to exploit error cancellations. These are
exemplified by the exact compensation of all MM energies
when computed on the same coordinates for the bound and for
the unbound moieties. This approximation is valuable as long
as there is no major conformational change in the binding site
or in the ligand conformation when one has the protein or
ligand alone. If major conformational changes are present, a
multitrajectory approach is advisible to improve sam-
pling.134,135 In this case, convergence will be more difficult
to obtain because of the uncorrelated fluctuations.
The entropic contribution to the ΔGbind,solv of eq 32 is the

most challenging part to determine, although widely and freely
available software (such as the Python package
MMPBSA.py,130 using the Amber engine136) allows a high
degree of automation in the computing process. In practice,
the vibrational entropy of all species can be computed at the
harmonic or quasiharmonic130 level from the vibrational
frequencies of normal modes at local minima, identified by
quenching the representative configurations for all species. The
problem with computing vibrational frequencies is that one
must build and diagonalize a Hessian matrix. The approach is
time-consuming because filling the Hessian matrix scales as

N((3 ) )2 while the diagonalization scales as N((3 ) )3 , where
N is the number of atoms. Hence, the normal modes analysis
of the complex and the protein may be expensive. A saving
grace in binding free energy computations is that one can
assume that the entropy of the protein and the ligand do not
change upon forming the complex, but this is a rather drastic
assumption. Further entropy contributions come from the
solvent and are approximatively taken into account by the PB
and GB terms, as well as by the SA contribution. Last but not
least, the protein and to a lesser extent the ligand might exist in
several conformational variants, adding one last entropy term.
This term can only be accounted for by extensive sampling of
conformations by the full simulation in explicit solvent. A
major source of uncertainty and error is associated with the
presence of water molecules in the binding pocket, whose
entropy variation is often not negligible and whose effect is
difficult to model.
Altogether, it is not easy to definitively assess these methods,

since the results depend on the details of the implementation,
such as the choice of the force field and especially of the
atomic charges, the PB or the GB approximation, the single-
trajectory or multitrajectory variant, and the inclusion or
exclusion of selected water molecules in the explicit system. As
noted in Section 5.1.1, the quality is system-dependent,
reflecting the different importance and partial cancellation of
all the uncertainties for different chemical species.

5. APPLICATIONS

Here, we focus on the most recent literature (approximately 10
years) on applications of small-molecule ligands. This review
does not cover other drug families, such as monoclonal
antibodies1−4,137 or biologicals, in general, because they have
not been extensively investigated with computational means.
For the biological targets, we focus on proteins, although
compounds binding to other biomolecules (e.g., nucleic acids)
also play an important role in modern drug discovery.
Computational simulation and MD in particular is not so
widely used to investigate these biological targets because of
uncertainties in the available force fields. However, these
limitations are progressively being removed.138,139

An important prerequisite in any computational drug
discovery campaign and in a biophysical study is the availability
of reliable 3D models, often represented by crystallographic
structures, whose resolution should preferably be less than 2.5
Å. The availability of cocrystal structures (i.e., the structure of
the crystallized drug-target complex) allows thermodynamics
and kinetics simulations that start from reliable initial
configurations. Combining docking with free energy methods
is a more questionable strategy in terms of accuracy. However,
in several real-world drug discovery scenarios, this is the only
viable alternative. When protein structures are not available,
homology modeling140 could be used instead. The idea then is
that the protein sequence is available together with one or
more 3D templates of homologous proteins, which allow a full
geometric reconstruction of the target protein. Using these
structures to initialize computations is an explored possibility
of uneven success.141 Clearly, however, structure-based drug
design performs best when coupled with solid experimental
crystallographic information. Below, in addition to mentioning
certain historical achievements, we review recent applications,
taking 2010 as the chronological cutoff for identifying the state
of the art.142−144

5.1. Absolute Binding Free Energy Applications

A major aim for computational drug discovery is the accurate
and reliable determination of the binding free energy of a
small-molecule ligand to a target protein. Estimating relative
binding free energies across families of homologous com-
pounds already allows researchers to prioritize drug candidates.
However, only the knowledge of absolute binding free energies
provides the unambiguous measure of the intrinsic strength of
a binder, which is inherently related to the efficacy of the drug
candidate. Absolute binding free energies, in turn, are the
natural outcome of end-state free energy computations. For
clarity, what follows is organized according to methods,
although a strict partition is not possible, since many studies
also discuss the comparison of different approaches. In each
case, a few paradigmatic studies are discussed in some detail,
and references to most recent papers are briefly provided.

5.1.1. Validation and Applications of MM-PB/GBSA.
Of the methods for computing absolute free energies, the MM-
PB/GBSA class129,145−150 has been widely adopted for drug
discovery.151 Their accuracy lies somewhere between fast
scoring functions and more accurate methods such as FEP152

or potential of mean force (PMF) computations, but their low
computational cost makes them a reasonable compromise.
A first validation of the method for drug discovery151

considered its applications at various stages of the drug
discovery pipeline, i.e., for ranking ligands, for virtual
screening, and for the de novo design of molecular scaffolds.
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After extensive testing, carried out over many ligands and eight
different proteins, the authors concluded that MM-PBSA is
preferable to docking scoring functions, but, because of the
many residual errors in ranking compounds, it is questionable
to use MM-PBSA to operatively choose a chemical substituent
before synthesis. Moreover, at the level of MM-PB/GBSA
discussed in ref 151, thermodynamic integration/free energy
perturbation approaches are far superior. Predictions based on
a single relaxed configuration were better than those obtained
by systematic sampling of MD trajectories. Also, short MD
runs (∼200 ps) were found to give better predictions than
longer (∼500) ones. The lack of systematic convergence to a
better result upon improving the various steps of MM-PB/
GBSA may cast a shadow on this method’s reliability.
The accuracy of MM-PB/GBSA results and their sensitivity

to the choice of force field and the sampling of configurations
is further discussed in ref 153, where the authors also compare
the sampling of trajectories generated with explicit or implicit
solvent. This study focused on the avidin−biotin complex,
since the remarkable strength of its noncovalent bonding
makes it a natural benchmark. More importantly, the crystal
structure is known for avidin complexes with several biotin
analogues, providing a broad basis for the assessment. The
Amber 8.0 package was selected to run the simulations,153 and
the DelPhi PB154 solver was used to compute the continuum
part of the free energy. The entropy was determined from the
frequency of vibrational normal modes, while the nonpolar
component was evaluated with the solvent-accessible surface
area (SASA) approach, already implemented in the Amber
molsurf module. For each complex, free energy contributions
and differences were averaged over 20 configurations. The
standard deviation of ΔGbind over the 20 configurations was
dominated by the entropic contribution, which is thus the
major source of uncertainty. Over the seven biotin analogs
considered in the study, the mean absolute deviation of
computed and measured binding energies was 16 kJ/mol, with
no systematic error. Poisson−Boltzmann (PB) performed
better than Generalized Born (GB) as a model for the implicit
solvent component of the free energy, as theory dictates.
Moreover, concerning the choice of explicit or implicit solvent,
the result was significantly poorer with the geometries obtained
using GB as an implicit solvent model during MD runs. For
instance, the avidin tetramer was not stable in this model,
contrary to experimental evidence, and split into two dimers.
As in ref 151, a single snapshot usually performed as well or
better than several snapshots (with exceptions153), although
the starting stage of minimizing the configuration becomes
crucial for a single snapshot. Moreover, the authors found that
several force fields gave equivalent results and that using a
polarizable force field was not advantageous. In MM-PBSA
computations, the entropic term129 is often assumed to cancel
between reactants and products, but the major reason for
setting ΔS = 0 is the poor reliability and time cost of this term.
Extracting configurations from many short independent
simulations tends to give more converged results than one
long simulation. The best implicit solvent method is probably
PB, yet its results depend heavily on radii and charges whose
values are affected by sizable uncertainties and relatively poor
transferability. It is well-known that the molecular surface,
radii, and dielectric values significantly influence the reaction
field energy, namely, the energy term that arises from the
induced charge distribution on the molecular surface.155

A similar choice of many short trajectories156 provided
results for nine inhibitors of factor Xa. Factor Xa is a protein
involved in the conversion of prothrombin into thrombin. It
thus affects the formation of blood clots. This work compared
MM-PB/GBSA with thermodynamic integration (TI). In
contrast to other studies, the authors found that GB is better
than PB in this case. Once again, this observation points to the
lack of unambiguous trends for a possibly overparameterized
method that defies attempts at systematic improvement. This
limitation should be expected, considering the number of
degrees of freedom involved in protein ligand binding. Despite
these drawbacks, ref 156 states that MM-GBSA performs
better than TI for ligand or protein transformations that
involve a change of electrostatic charge. It is known, however,
that applying TI or FEP to perturbations that change the
system charge requires special care.157 Since this technical
point is not discussed in the paper, it is difficult to judge the
novelty and the relevance of the statement. As a side issue, ref
156 questions the efficiency claim of MM-PB/GMSA
compared to TI. However, the proposed comparison is rather
uncertain, since the cost of MM-GBSA strictly depends on the
implementation and protocol. More importantly, with
increasing simulation time, TI converges to the exact result
(up to the force field quality), while the convergence
properties of any MM-GBSA are much harder to assess. A
few studies even suggest that the distribution of binding free
energies from independent MM-PB/GBSA measurements is
broader than normal (Gaussian) and difficult to estimate
correctly. Moreover, besides statistical convergence, the
method has many other limitations so seems justified mainly
for a quick and dirty application.
Many other assessments of the MM-PB/GBSA methods

have followed in recent years (see, for instance, refs 148−150
and especially ref 146), from which a set of prescriptions might
be distilled.146 Despite the conceptual and practical limitations
identified by the studies discussed above, MM-PB/GBSA and
similar methods have been used extensively in pharmaceutical
investigations. The scientific literature, which certainly does
not cover all studies carried out in industrial settings, already
reports a large number of applications. A comprehensive
review was recently published.146 Here, we report further
recent applications of the method and briefly discuss the
possibility of extracting best practices.
Binding properties of HIV-protease inhibitors are of obvious

pharmaceutical interest and have been extensively investigated,
see for instance ref 134 and ref 158. Ref 134, in particular,
reports a thorough retrospective analysis of all (nine)
inhibitors approved by the FDA at that time. It was found
that replica estimates of binding affinity, each based on a single
measurement (trajectory), can differ from each other by as
much as the value for the best and the worst binder. However,
ensemble averages computed over many independent measure-
ments converge to a stable value from about ∼50 replicas, each
4 ns long. The positive message is somewhat spoiled by the
model’s intrinsic limitations. In this case, the model over-
estimates the binding free energy of the two largest binders,
since it neglects the free energy cost of deforming the protein.
Moreover, other data in the paper show that the variance of the
50-replica ensemble is not a monotonic function of the time
duration of each trajectory in the sample. Assuming
decorrelation of configurations over ∼1 ns, it is difficult to
put together a fully consistent picture of the statistical and
convergence properties of MM-PB/GBSA.
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Ref 158 considers how mutations at the binding site of HIV
protease affect its binding to four FDA-approved drugs
(ritonavir, saquinavir, indinavir, and nelfinavir). Binding free
energies from MM-GBSA replicated the experimental trends,
but the agreement was only qualitative and with clear
exceptions. The study is interesting because of the application
of an approach to partitioning the binding free energy into pair
contributions,159 attributed to residues (on the protein) and
atomic groups (on the ligand). This analysis is intended to
provide a rational basis for designing better inhibitors, which
are less sensitive to mutations in the active site.
A popular approach for pharma companies is the use of

docking followed by MM-PB/GBSA rescoring. This approach
is exemplified in ref 160, where it is applied to 33 inhibitors of
sirtuins (Sirt1, Sirt2, and Sirt3), which play a role in the
evolution of cancer, neurological disorders, and viral diseases.
The advantage of this approach is that it is systematically better
than using docking scoring functions only, while still being fast.
Remarkably, in this paper, the MM part was dealt with in MD
simulations as short as 100 ps. Despite the short simulation
time, with some preliminary tuning of model and parameters,
this approach achieves fair, linear correlations with respect to
experimental values.
For the final study in this section, we briefly discuss a

contribution161 that is somehow a mix of machine learning and
MM-GBSA approaches. The subject of the study is the binding
to acetylcholinesterase (AChE) of (−)-Huperzine A, a natural
product drug for Alzheimer’s disease. The aim is to
characterize not only the binding free energy but also the
binding and unbinding kinetics, by computing the binding free
energy landscape (see Figure 9). The free energy sampling is
carried out using MM-GBSA. Analysis of the data is carried out
using a combination of purpose-built in-house programs and
standard grid algorithms. At first, a training stage is performed
to tune the free energy surface, with the analysis giving
thermodynamic and kinetic parameters in excellent agreement
with the data measured during the same study. Given the
limitations of the underlying MM-GBSA engine, the achieved
accuracy is remarkable.
As is clear from the literature, it is difficult to identify an

optimal strategy for MM-PB/GBSA, since the available studies
often reach contradictory conclusions. But it is also clear that,
to obtain reproducible results, different replicas are needed to
get estimations within a preset error, as required by statistical

mechanics. However, this might spoil the MM-PB/GBSA
advantage of speed, making other more rigorous approaches
such as TI/FEP more appealing. From another standpoint, the
literature is not clear on whether moving from MM to QM-
MM can improve the prediction ability of MM-PBSA.
The literature on applications of MM-GBSA/PBSA methods

is quite broad. Here, we highlight some recent works, with
particular focus on rescoring approaches. In ref 147, a variant
of MM-GBSA that takes into account explicit water molecules
was applied successfully to penicillopepsin, HIV1-protease, and
BCL-XL systems. The work in ref 162 instead proves that
MM-GBSA can detect the binding mode more correctly than
docking. These simulations were done with the androgen
receptor ligands phosphodiesterase 4B. The authors in ref 163
demonstrated the benefits of ensemble average rescoring of
MM-GBSA for a series of antithrombin ligands. Finally, ref 164
again shows how rescoring by MM-GBSA for docking is
beneficial.
Our operative suggestion is that MM-PBSA cannot be

considered accurate enough for absolute binding energy
estimations, but it can be an effective scoring method
particularly for large virtual screening campaigns.146 Moreover,
it can be fruitfully used in cases that are computationally too
expensive for other methods. Applications of this type also
include protein−DNA and protein−protein interactions.

5.1.2. Applications Based on Thermodynamic Inte-
gration and Free Energy Perturbation Theory. Methods
such as alchemical transformations, umbrella sampling, and
metadynamics are rooted in a stronger physical basis than
MM-PB/GBSA. They thus tend to be more quantitative in
absolute binding free energy computations, at least when
implemented using state-of-the-art atomistic force fields and
explicit solvent models.
In the past ten years, there have been several successful

applications of alchemical transformations (i.e., using thermo-
dynamic perturbation theory) to compute absolute binding
free energies of drug-like ligands to proteins,165,166 achieving
an error of ∼2 kcal/mol compared to isothermal titration
calorimetry measurements.
A recent example of such a computation is ref 167, where

the alchemical transformation was used to estimate the
absolute binding free energy of 11 small-molecule inhibitors
to selected bromodomains. A suitable nonphysical (alchem-
ical) cycle (see Figure 10) is first applied retrospectively, using

Figure 9. Free energy landscape of the binding process of Huperzine A against acetylcholinesterase computed by MM-PBSA along two collective
variables measuring the distance of the ligand from the binding site and the root-mean-square deviation of the ligand configuration at the binding
site and at the current position. The red line marks the minimum free energy path from the unbound (B0) to the bound (B3) state. Other
metastable states are marked as B1 and B2. P1 and P2 are local free energy maxima. Reproduced with permission from ref 161. Copyright 2013
National Academy of Sciences, USA.
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experimental geometries and comparisons with known
experimental binding free energies, and then prospectively,
starting from geometries obtained from docking computations.
The retrospective stage validates the method, showing that,
with the correct geometries, the error in binding free energies
is of the order of 1 kcal/mol. Due to the slight uncertainty in
the starting geometry determined by docking, the error of the
prospective protocol is somewhat increased, but the protocol
remains close to 1 kcal/mol, greatly outperforming the bare
docking stage. Needless to say, the computational cost is also
not comparable, since each alchemical cycle requires
simulations on the microsecond time scale for explicit solvent
samples of medium-large size, corresponding to ∼103 − 104

(state of the art 2019) core hours. These requirements exclude
alchemical methods from extensive screening methods, but
alchemical methods are of interest for rescoring the results of
docking computations, where they provide remarkably
accurate results.
The similarity of the binding pocket among homologous

proteins, exemplified by the kinase family or by the remarkable
conservation of the binding fold of bromodomains, raises the
issue of the ligand’s selectivity. Namely, the selectivity might
need to be sharpened to avoid side effects or relaxed to
enhance the drug efficacy. Since differences among proteins are
too large to be directly amenable to perturbative comparison,
absolute binding free energies are required and provide a
comprehensive solution.
The value of alchemical methods has been demonstrated in

this difficult case too, as shown in a computational study,168

which provides a rational picture of the different selectivity of
related inhibitors (Gleevec, G6G) with respect to two (Abl
tyrosine, c-Src) kinase proteins. A detailed understanding of
the selectivity mechanism might help prevent drug resistance
by identifying the minimal mutations on the protein binding

pockets that could prevent or at least greatly weaken the ligand
binding.
A related broad investigation169 used alchemical methods to

study the effect of 762 distinct mutations on the thermo-
stability of several proteins. This work found remarkably good
agreement to within 1 kcal/mol with experimental results. The
dependence on the model is decreased by a consensus
refinement of the results of six different force fields. As
expected, better results are obtained for mutations that
conserve the charge, while charge-changing mutations fare
slightly worse. In addition to the force field, the residual
discrepancy is attributed to incomplete sampling and the
experimental error bar. This study, however, is especially
interesting for biophysics and biotechnology, and only
indirectly relevant to pharmacology.
Another comprehensive study of selectivity170 used

alchemical transformations and absolute binding free energies
to analyze the affinity profile of 36 complexes with the double
decoupling method.120 The study considered 22 bromodo-
mains from different families, in combination with three
ligands (RVX−OH, RVX-208, bromosporine), comparing the
computational results with isothermal titration calorimetry
data. The first two ligands displayed a somewhat different
selectivity profile, with RVX-208 being more selective than
RVX−OH, and thus providing an ideal testing ground for the
method. Moreover, RVX-208 is pharmaceutically relevant,
since it is being considered in clinical trials for diabetes,
atherosclerosis, and cardiovascular diseases. RVX−OH is the
chemical precursor of RVX-208. This complex interplay of
similarity and small crucial differences requires highly accurate
methods. Since different domains are involved, relative binding
free energies would hardly be computable and absolute free
energy methods are the most suitable choice. As the crystal
structure of the complexes was not available, docking was used
to generate binding poses, followed by clustering to reduce the

Figure 10. Thermodynamic cycle used to compute binding free energies by the alchemical method. The ligand is white when noninteracting and
orange when interacting. The paper clip indicates that restraints are applied, as discussed in the text. The target ΔG0 of binding is indicated in red,
other real or alchemical free energies are in black. Reproduced with permission from ref 167. Copyright 2016 The Royal Society of Chemistry.
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number of geometries to be considered. Results for both RVX
ligands combined with seven bromodomains show a standard
deviation from experimental data of less than 1 kcal/mol, a
maximum deviation of less than 2 kcal/mol, and a high linear
correlation of computational and experimental data. Compared
to the results of a protocol based on machine learning,171 the
physics-based methods have a clear advantage. The second
part of the same work170 concerns bromosporine, which is a
broad-spectrum bromodomain inhibitor primarily used in
biochemistry research. The results obtained by the same
protocol are somewhat less accurate than in the previous case,
with a standard error of ∼2 kcal/mol, which, although
relatively low, still corresponds to a factor of 30 in
concentration. The linear correlation of computational results
is also not as good as in the RVX case. The overall results were
improved by replacing the AM1-BCC charges with RESP
charges and by generally refining the charges and torsional
bonded parameters, pointing to the likely cause of disagree-
ment. In summary, the paper shows that absolute binding free
energies can be computed with a sufficient accuracy to impact
drug discovery, although at a high computational cost.
However, results can be ligand-dependent and the role of
force fields is prominent in the success of the campaign (a
similar outcome was reported in ref 167 where experimental
crystal structures are used instead). Additionally, bromodo-
mains are relatively stable structures, which facilitates the free
energy computation. As discussed later, flexibility has an
important role in absolute free energy computations. Never-
theless, ref 170 is a reference study for this kind of
computation and is complemented by a useful guide for
beginners.172 Their protocol is also remarkable because it
provides a clear example of the correct management of the
ligand during the annihilation process: restraints are imposed
on the ligand to avoid unbinding. Moreover, this contribution
is analytically taken into account when defining the final
binding energy.
Besides fulfilling their primary aim, high-level alchemical

transformations are also routinely used to assess the quality of
less expensive approaches such as MM-PB/GBSA.168,173 The
comparison confirms and expands the assessment based on
experimental data, suggesting that simpler methods, although
useful in practice, are nevertheless affected by nonsystematic
errors exceeding the kcal/mol scale. For instance, a systematic
comparison of single-trajectory MM-PBSA and alchemical
absolute free energy computations is carried out in ref 173,
considering the same set of ligands and bromodomains as ref
170. For MM-PBSA, three setups are tested: MM-PBSA
without entropy estimation, MM-PBSA with entropy estima-
tion, and MM-PBSA with explicit water molecules in the
vicinity of the ligand (see Figure 11 to see the effect on
including explicit water molecules).
MM-PBSA was unable to consistently estimate the absolute

binding free energy to within an RMSD error of about 5 kcal/
mol in the best case. However, MM-PBSA with entropy
estimation was only slightly inferior to alchemical approaches
in terms of ranking correlation or linear correlation. This is
particularly relevant because, with only 5% of the computa-
tional effort of absolute methods, MM-PBSA recovered about
90% of the accuracy in ranking terms.
In a similar spirit, an absolute free energy study174 analyzed

in great detail the binding to albumin of ibuprofen, a widely
used nonsteroidal anti-inflammatory drug. Albumin is the most
abundant protein in blood plasma and is important due to its

ability to transport a variety of compounds, including several
drugs. As required of transport proteins, albumin presents a
variety of binding sites, which can deform and adapt to ligands
of different size and shape through marked plasticity.
Experimental evidence (e.g., the X-ray diffraction structure of
complexes) shows that ibuprofen binds to several albumin sites
with a rather broad range of affinities. The complexity of
ibuprofen and albumin binding is such that several
experimental results may look contradictory, especially for
the competing binding to albumin of ibuprofen and other
compounds. Moreover, since hydrogen atoms are virtually

Figure 11. Dependence of the Pearson correlation of experimental
and MM-PBSA binding affinities on the number Wn of water
molecules included in the computation. Cases 1, 2, and 3 correspond
to different drug-model bromodonain pairs. Case 1a and 1b differ in
the pose selected for starting the computation. The improvement can
be significant, but it depends on the system and on the starting point.
Reproduced from ref 173. Copyright 2017 American Chemical
Society.

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.0c00534
Chem. Rev. XXXX, XXX, XXX−XXX

Q

https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00534?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00534?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00534?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00534?fig=fig11&ref=pdf
pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c00534?ref=pdf


invisible in X-ray diffraction, the protonation state of ibuprofen
is not obvious, although it is expected to bind in its
deprotonated anionic state, since its pKa = 4.4 is relatively
low. To shed light on the albumin-ibuprofen interaction in
atomistic detail, the study in ref 174 combines docking with
plain MD to identify the ibuprofen docking poses, which are
then used for an alchemical determination of absolute binding
free energies. More precisely, in a first stage, docking is used
for an unbiased search of binding sites, exploring the entire
protein volume. The number of sites retained for the following
step is reduced by clustering and filtering, resulting in a total of
31 binding poses to be refined by the alchemical method.
These 31 poses comprise 13 poses for neutral ibuprofen and
18 poses for the anionic form. Restraints are used during the
thermodynamic cycle, and analytical corrections are introduced
to take their effect into account when computing free energies
of binding. The results show a systematically stronger binding
for the charged form, although the unpolarizable force field
might exaggerate the binding strength of charged species. The
most stable bound configurations found by the computations
correspond to the most stable binding sites found in
experiments. Moreover, a broad variety of binding sites are
found, again in agreement with the experimental results. The
spatial distribution of sites, and their geometric and mechanical
relation, might clarify unexplained observations about com-
peting binding from different species.
Upon the binding of a ligand to its target, the system

entropy tends to decrease for the loss of translational and
rotational contributions, but the entropy balance can also
change sign because of the softening of vibrational modes or
due to the release of hydration water molecules. Hence,
dissecting the binding free energy into its enthalpy and entropy
contributions might point to the binding mechanism, possibly
suggesting ways to rationally optimize a drug. Such an analysis
is carried out in ref 175 considering the binding of the now-
classical HIV-1 protease and two inhibitors, Nelfinavir (NFV)
and Amprenavir (APV). First, agreement is demonstrated
between the experimental values and the binding free energies
computed according to the double decoupling method. Then,
the entropy change of each reaction is estimated through the
thermodynamic relation ΔS = −(∂G/∂T). Since G or, more
precisely, ΔG is not analytically known, the derivative is
computed numerically. This task is challenging, since the small
difference of free energy at two slightly different temperatures
is affected by a large relative error. Moreover, at variance from
free energy, entropy does not satisfy a variational principle, and
its determination is consequently more uncertain. Never-
theless, the results show that the binding of APV relies
primarily on a favorable enthalpy change, while entropy is the
major driving force in the binding of NFV. Moreover, the
analysis of ref 175 shows that, in both cases, the entropy
balance involves a gain due to the release of water molecules
hydrating the solute, competing (and winning in the NFV
case) with the entropy loss due to the ligand-HIV-1 protease
interaction.
Biomolecular flexibility due to the coexistence of nearly

equivalent but separate configurations connected by slow
dynamical modes is a serious challenge to any simulation
method based on MD, particularly to absolute binding free
energy methods based on TI. The problem is also severe
because it is difficult to decide a priori whether a system suffers
from near-nonergodicity, and it is complicated to verify a
posteriori that it has visited all relevant pockets of phase space.

Since poor ergodicity can arise in each of the system
components, in ref 176 this aspect is thoroughly discussed at
the protein, ligand, and solvent level. Absolute binding free
energies are computed according to a rather complex
thermodynamic cycle, still primarily based on alchemical
transformations in a combination called independent-trajecto-
ries thermodynamic-integration (IT-TI). The independent
trajectory aspect, which could be seen as a surrogate of the
replica-exchange method,177 is meant to enhance the sampling
of weakly coupled basins, and it is compared to the cost of
running a single longer trajectory. The influenza surface
protein N1 neuraminidase and its ostelmavir inhibitor were the
first target of this study. As the name suggests, the N1 protein
plays a role in the influenza infection, since it favors the spread
of viruses from infected cells. Its active site presents several
flexible loops and is highly solvent-exposed. It is thus a suitable
benchmark for assessing the flexibility effects on free energy
estimates. The binding of the Mycobacterium tuberculosis
enzyme with ligand 77074 is the second target of this study.
This enzyme is important for the assembly of the impermeable
mycobacterial cell wall. To validate the IT-TI method,
calculations were repeated 20 times, exploring variations of
the length of simulations and of the number of TI windows
and testing the parallel or serial organization of the simulation.
The serial organization, in principle, has the advantage of
equilibrating samples in cascade. The distributions of free
energies from different trajectories are reported and discussed
together with mean and variance. The N1-ostelmavir complex,
whose accessible phase space is more deeply divided into
distinct basins, is affected by the largest standard deviation of
binding free energies. The phase space of the Mycobacterium
tuberculosis enzyme and ligand 77074 is more evenly
connected, and the variance is lower. The detailed analysis
allows the researcher to trace the origin of the variance in the
different system components and stages of the thermodynamic
cycle. Not surprisingly, the protein determines the variance
with its flexibility. Somewhat surprisingly, the parallel protocol,
forgoing the cascade equilibration and starting all TI steps
from the same unperturbed sample, seems to be the most
effective strategy, giving the lowest standard deviation of the
computed binding free energies.
Finally, we briefly highlight some very recent works on this

topic. First, we note that open source codes are nowadays
available that support fast GPU-based thermodynamic
integration, e.g., Amber.178 This increases the wide applic-
ability of these methods. The work in ref 179 uses alchemical
transformations to study the antimicrobial peptide microcin
J25 (MJ25). This peptide is active against Gram-negative
bacteria and binds to the outer-membrane receptor FhuA. This
kind of work is important because it can shed light on relevant
aspects of antibacterial activity. A further work of interest,180

which is still rare in the drug discovery community, applies
FEP enhanced by a Gaussian algorithm to compute the
absolute binding free energy of 7 protein targets and more than
100 ligands. The same computational study led to the
discovery of a potent (subnanomolar) inhibitor of phospho-
diesterase-10, which is a target considered to treat colon cancer
and a few nervous system (CNS) disorders. Lastly, authors
address the problem of uncertainty quantification in alchemical
free energy methods.135

Overall, in terms of best practice, the strength and
weaknesses of the different choices seem to depend on the
system and on the severity of near-ergodicity. It is therefore
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difficult to extract a unique prescription on how to run these
complex computations, with the difficulty of sampling
dominating the error. In particular, the partial absence of
standard benchmarks does not facilitate comparisons, even if
the community is making progress here (e.g., blind
competitions181). As always, however, collecting statistics can
alleviate the problem of covering the phase space and improve
overall the accuracy of predictions.
5.1.3. Applications Based on Umbrella Sampling and

Potential of Mean force. Absolute binding energies are free
energy differences between the drug-target complex, the
protein, and the ligand, whose computation can rely on a
broad class of approaches. These approaches include methods
based on determining the potential of mean force, as well as
metadynamics, umbrella sampling, or other approaches that
use the concept of a collective variable. Sampling the difference
between the bound and unbound states in real coordinates
instead of alchemical states has the additional and major
advantage of providing kinetic information to supplement the
thermodynamic free energy difference.
In ref 182, the authors propose a general method for

computing equilibrium binding constants using the concept of
potential of mean force (PMF). The method is validated by
computing the binding free energy of the phosphotyrosine
peptide pYEEI to the Src homology 2 domain of human Lck,
for which the experimental binding free energy (ΔGbind = −8
kcal/mol) is known.183 Src domains are highly conserved
domains ∼100-amino-acids-long and found on more than 100
human proteins that, through their high affinity and specificity
with respect to phosphotyrosine residues, play a role in a
number of intracellular signal transduction pathways. Their
regulation by peptides such as pYEEI is of pharmaceutical
interest to treat cancer, asthma, and autoimmune diseases. This
complex is a test case due to the peptide’s flexibility, which
makes sampling by MD challenging, and due to the double
charge of pYEEI, which greatly enhances the peptide’s
solvation energy, complicating the application of the double
annihilation method. To overcome these difficulties, ref 182
adopts a complex combination of restrained simulations and
FEP steps to determine the PMF profile along a reaction
coordinate (see Figure 12), which measures the distance of the
ligand from its binding site on Src homology 2. In particular,
the approach requires first the estimation of the equilibrium
constant Keq, on top of which the standard binding free energy

is computed. The computational result ΔG°bind = −7.9 kcal/
mol is in excellent agreement with the experimental value.
Despite its success, the method is rather complex and requires
a detailed prior analysis of the system properties, preventing
the development of an automatic procedure for applying the
method to large sets of compounds.
To overcome these efficiency problems, De Fabritiis and co-

workers investigated the same SH2 and pYEEI184,185 system
but developed a simpler protocol for computing the standard
binding free energy from the PMF computation. First, they
used steered MD to generate an initial binding path starting (in
reverse) from the bound state. A second bias was applied to
maintain the center of mass of the ligand in a plane going
through the binding site, and a third bias was applied on the
protein to maintain its correct initial orientation, still
preserving the plasticity of the binding pocket. The flexibility
aspect was dealt with by an ensemble average over
independent simulations. A first application of the protocol,185

required 19 μs of aggregate simulation time to obtain a ΔGbind
= −8.5 kcal/mol, less than 1 kcal/mol away from the
experimental value. In ref 185, the authors systematically
optimized all the free parameters of the umbrella sampling
simulations, namely, window width, number of windows,
sampling time, restraints, and force constant of the umbrellas,
reducing the total simulation time to a minimum of 300 ns.
The standard free energy of binding was obtained from the
PMF using the following expression:
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where ΔWR is the PMF free energy difference between the
bound and unbound states, lb = ∫ exp(−WR(z)/(kBT))dz is
the integral of the PMF in the bound state, Au,R = 2πkBT/kxy is
in the area in the plane going through the binding site, V0 is the
standard volume, and ΔGR is the free energy to remove the
planar restraint. The ensemble average over independent and
uncorrelated simulations was crucial to enhancing the
convergence of the result to its final value.
In ref 186, umbrella sampling simulations were used to

rationalize the different level of agonism achieved by a variety
of ligands on NMDA receptors. These are ligand-gated ion
channels converting chemical signals carried by neuro-
transmitters into excitatory electric pulses. Control of this
process by compounds such as D-cycloserine or LYX-13
provides a way to treat neurological disorders. It was observed
that, while a few compounds elicited a maximal response by
the receptors, several other compounds acted as partial
agonists, i.e., cause a lesser degree of activation. The ligand-
binding domain of NMDA can be divided into two lobes with
the binding site situated within the cleft. For similar receptors,
there is a correlation between the degree of cleft closure and
agonism level, but this crystallographic evidence is missing for
NMDA. This observation called for a different and probably
subtler explanation. Using two interlobe distances, the authors
computed free energy surfaces (FES) for different ligands
exploring a neighborhood of the binding site. The curvature of
the FES at the binding site correlated negatively with the
degree of agonism achieved by different ligands. One possible
explanation is that free energy surfaces of low curvature are less
able to restrain the ligand to the binding site, thus allowing
partly open states of the channel. While this subtle aspect of
FES is new, it is not surprising that partial agonism is subtle.

Figure 12. Potential of mean force computed by FEP along the
distance of a peptide ligand from its binding site on the Src homology
2 domain. Reproduced with permission from ref 182. Copyright 2005
National Academy of Sciences, USA.
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Indeed, ref 187 recently reported on how a single bond change
into a ligand can modulate the agonist behavior into the D3
GPCR. These studies confirm the complex nature of agonism/
activation modulation and identify geometric features in the
FES as carrier of the information that fine-tunes this process.
As already stated, information on the thermodynamics and

kinetics of binding can be derived from the PMF connecting
the bound and unbound states of a protein−ligand complex
through a continuous free energy profile. This double
capability was exploited in ref 188 to assess the relative role
of two competing binding sites of adamantane-based inhibitors
in the M2 proton channel of the influenza A virus, whose
correct functioning is required for the virus propagation. In
more detail, the M2 protein of the influenza virus A is a
tetramer embedded into the viral lipid envelope whose
activation leads to the unpacking of the virus genome and
thus to pathogenesis. Adamantane-based ligands are an
important class of M2 inhibitors. Due to acquired resistance
to this class of inhibitors, new drugs are needed. Ref 188
considered the two most paradigmatic adamantane com-
pounds (amantadine and rimantadine) together with the wild
and mutant varieties of the pore, embedded into a model
DPPC lipid bilayer. The goal was to explain their inhibition
mechanism and analyze the acquired resistance. Simulations
were started from experimental structures determined by
NMR, refined by docking, mimicking a surface (S) and a pore
(P) binding pose. PMF computations based on MD
simulations with Gromos force fields show that the pore
binding site is significantly more stable (by about 7 kcal/mol)
than the surface site, as suggested by experiments. However,
reaching the P site requires the overcoming of a barrier of
about 10 kcal/mol, while binding to the S site is barrier-free.

Hence, it can be concluded that the pore binding P is
thermodynamically stable, while the surface binding S is
kinetically favored. Absorption on the lipid surface might be a
preliminary step to binding. To assess the role of the force
field, computations were repeated using the OPLS force field.
The absolute binding free energy of the two sites increased by
nearly 4 kcal/mol, the barrier for the P binding decreased by 2
kcal/mol, but the relative binding energy at the P and S sites
remained nearly unchanged.
In the pharmacology context, umbrella sampling and PMF

computations have also been carried out to characterize the
binding of small-molecule ligands to DNA.189 However, since
this study used primarily metadynamics, its discussion is
deferred to the next section.
There are some very recent applications of umbrella

sampling (US) and PMF computations to determine binding
free energies. One of these contributions is reported in ref 190,
where the authors simulated 20 protein−ligand complexes and
evaluated the ligand-binding affinity as the difference between
the largest and smallest values of the free energy curve. In ref
191, US is used on the acetylcholinesterase (AChE) system
using the same technique as in the previous study to estimate
the binding free energy of about 40 noncongeneric ligands. In
ref 192, in contrast, the extended adaptive biasing force
(eABF) is used to estimate the PMF. Finally in a comparative
analysis193 for host−guest systems, US is systematically
compared to the double decoupling method. The results
show that the two methods are highly correlated, even if they
return slightly different results. This aspect, namely the
consistency of the methods’ results is important for their
systematic use in industry.

Figure 13. Free energy profiles, computed via metadynamics, along the unbinding path for 8 inhibitors of the MAPK p38 kinase protein.200 The s
collective variable measures the advancement of the binding process. The star (*) marks the transition state between bound and unbound.
Reproduced from ref 200. Copyright 2012 American Chemical Society.
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5.1.4. Applications Based on Metadynamics. Another
notable class of protein−ligand binding protocols is based on
metadynamics,72 of which there are many variants.84,194−196

Gervasio and collaborators197 were the first to use well-
tempered metadynamics with the path collective variables of
Branduardi198 (see also ref 199) to compute the binding free
energy of a protein−ligand complex. Given any regular
sequence of configurations joining the bound and unbound
state of a complex, the first of the two collective variables of ref
198 measures the progression along the reaction, while the
second measures the distance of the actual path from the
arbitrary initial path, thus defining a tube from reactants to
product. This last aspect is used to enhance efficiency,
simulating the unbinding process instead of binding, and
limiting the sampling to a tube leading the ligand to the bulk
solvent. The method was applied to investigate the binding
properties of a homologous series of five 2-anilino-4(hetero)
aryl-pyrimidine derivatives to cyclin-dependent kinase, CDK2.
First, a putative binding path was obtained via undocking.
Then, the path was optimized by computing the free energy in
the 2D space of the collective coordinates. The total
computational time for each metadynamics run (one ligand)
was between 40 and 200 ns. During this sampling, several
docking and undocking events were observed, putatively
indicating convergence. To compute the free energy difference,
the authors used the difference in the PMF between the bound
and unbound state. Results for the five ligands displayed a
remarkable agreement with the experimental data. Upon
correcting for the standard state volume, the largest error
was 1.2 kcal/mol. In four of five cases, it was 0.5 kcal/mol at
most. If the sequence of configurations chosen to represent the
unbinding path is far from the optimal sequence, the free
energy profile might deviate from the true one. However, even
in this case, there was no effect on the final ΔΔG measuring
the activation energy required for the ligand unbinding (thus
related to koff). This demonstrated that the combination of
metadynamics and a path collective variable could correctly
capture the state variable property of free energy. A similar
strategy, also requiring path collective variables, was used in ref
19 to investigate the binding mechanism to purine nucleoside
phosphorylase.
The protocol of ref 197, tuned and improved, was used in ref

200 to compute binding free energies for the kinase protein
MAPK p38, which, like other kinases, participates in cellular
signaling processes. Its regulation might have a positive role in
cancer therapies. Ref 200 considered eight inhibitors of MAPK
p38, defined by slight side chain variations of a single basic
scaffold. Once again, the unbinding process (not the binding
process) was simulated. The major improvement was the
development of an unsupervised approach, based on collective
variable and multiple walkers, which could be scaled to
computations involving many ligands, minimizing human
intervention. Automatic procedures were implemented to
analyze the results and, in particular, to identify an approximate
transition state from which a koff parameter could be estimated.
To compute the binding free energy, one first attributes a
range of ligand-binding pocket separations to the bound and
unbound state, respectively. This is easy for the bound state,
since the minimum of the PMF is clearly identified (see Figure
13). It is less easy for the unbound state, since in this case the
PMF has oscillations and fluctuations at long-range too. Then,
the free energy of the two states is determined by averaging

over the two ranges, and ΔG is computed as the difference of
these two values.
On the basis of previous formulas,200 the authors proposed a

free energy correction to account for differences of
concentration in the simulation from the standard concen-
tration C0 = 1 M. However, the uncorrected approximation
already gave a good correlation with experimental values.
The path method is appealing despite the following potential

drawbacks: first, it requires prior knowledge of one binding/
unbinding path. Second, regarding the path collective
variable,198 one must get nearly equidistant frames in the
RMSD space to define the path. This has not been completely
solved automatically (physics-based) or, at least, there is no
widely available solution. These technical aspects might restrict
the use of this valuable approach.
The picture of a binding funnel in phase space driving a

ligand and a protein toward their bound state is a popular
notion in the statistical mechanics of biosystems.201 A reversed
geometrical funnel, broader at the binding site and narrower
toward the solvent, is the defining concept of funnel
metadynamics, a widely used protocol,202 whereby metady-
namics is combined with a funnel-shaped restraint to reduce
the phase space explored by the ligand in the unbound state.
The broad cross-section of the funnel at the binding site is
meant to allow full freedom in the exploration of bound
configurations. The effect of the funnel bias on the free energy
estimation is removed a posteriori through an analytical
correction (see eq 3 in ref 202). The method has been
successfully applied to the benzamidine/trypsin system and the
SC-558/cyclooxygenase system. The first system is a widely
studied model of binding kinetics and thermodynamics,16 and
the second system concerns a protein (cyclooxygenase, COX-
2) involved in inflammation and pain and one of its selective
inhibitors (SC-558).
It is interesting to compare the path-based197,200 and funnel

approaches, since both are built around metadynamics. For the
path-based approach, one must first build an approximate
unbinding/binding path, identified by nearly equidistant
frames,198 and then run metadynamics. Then, the path
approach allows the collective variable (CV) to naturally
emerge from preliminary simulations. Interestingly, these
preliminary simulations may require the definition of CVs,
which appears to be a contradiction. However, the choice of
collective variable for a preliminary binding/unbinding run is
much less critical than the choice of the CVs for the full free
energy calculation.
In the funnel approach, a preliminary unbinding/binding

path is not needed, although one must still define the correct
collective variables. However, the funnel approach can directly
deliver the free energy.
Both path-based and funnel methods are valuable. However,

in our opinion, the path approach is probably superior since it
does not need a finetuned reaction coordinate to start and
requires less supervision and could be automated. Thus, if one
uses a reliable default CV-based method25,203 to generate an
initial unbinding/binding path, then the path approach
becomes extremely appealing. Conversely, if the CVs can be
reasonably identified then the funnel approach is more directly
applicable. For real-world blind drug discovery, we expect the
two-step path-based approach to be more widely applicable. In
particular, it should be possible to combine dynamic docking/
undocking71,203−205 with this path-based approach to obtain
reasonable paths and accurate free energy estimations.
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Recently, the path method has been combined with MSM,
which may represent a further way to provide an initial path,
despite the fact that the number of intermediate configurations
could result in less than those needed for accurate path-based
free energy calculations.206

A somewhat different case of binding is the intercalation of
small-molecule drugs between two base pairs of DNA,
disrupting its replication and causing apoptosis of cells. This
chain of events is behind the action of a few anticancer
drugs.207,208 The thermodynamics and kinetics of the
anticancer drug daunomycin’s intercalation in DNA was
investigated by metadynamics in ref 189. Three independent
collective variables were introduced, describing the distance
and orientation of the daunomycin ligand with respect to its
intercalation site. MD sampling lasted 110 ns. The resulting
free energy landscape shows several minima underlying a
three-step intercalation process, starting with the barrier-free
binding to the minor groove, an activated rotation into an
intermediate site, separated by a small free energy barrier from
the final intercalated pose. The computation of a PMF profile
through umbrella sampling gave similar results. The agreement
between methods is important, and it is a strong assessment of
the reliability of the calculations. Notably, metadynamics has
been run using several collective variables. This is not easily
achievable with umbrella sampling whose complexity scales
poorly with the number of variables. Indeed, in this paper,
umbrella sampling was used considering only one collective
variable. In general, this is the setting where umbrella sampling
simulations are advisible, whereas metadynamics are slightly
less affected by this issue. Nevertheless, to avoid convergence
problems, it is good practice in metadynamics to use no more
than two collective variables. Overall, metadynamics is a very
powerful and recommended technique for protein−ligand
binding studies.
Very recent applications of metadynamics for protein−

ligand binding include a variety of target proteins like
GPCRs,209,210 the lysozyme,211 the human neuroreceptor
M2,212 the kisspeptin receptor,213 the NOP receptor,214

trypsin-benzamidine23 and the vasopressin receptor,215 as
well as model host−guest systems such as β-cyclodextrins.216

5.1.5. Applications Based on Steered MD. This method
(SMD) was used for the first time in the ligand design
context217 to classify a set of flavonoid inhibitors of the β-
hydroxyacyl-ACP dehydratase complex (a two-chain dimer) of
Plasmodium falciparum as active or inactive. To this end,
starting from the experimental structure of the protein, each of
the ligands was positioned in the best binding pose on the
protein found by docking, followed by clustering. The strength
of the protein−ligand interaction was probed by pulling the
ligand out of its binding site by SMD, with a reaction
coordinate given by the distance of the time-dependent center
of mass of the ligand from this same center of mass at time t =
0 in the binding pose. The raw data provided by the simulation
is the histogram of the required pulling force as a function of
the reaction coordinate. Hence, the measure of the binding
strength is a combination of the force intensity and the range
of the corresponding interactions. While the method is not so
quantitative as to provide an accurate scoring of compounds,
the difference in the force versus distance histogram is
sufficient to discriminate active (i.e., strongly bound) from
inactive (i.e., weakly bound or even unbound) compounds.
This provides a better assessment of the compound’s potential
as a drug, fully taking into account the flexibility of the protein

and ligand. The insights from this process led the researchers
to propose a new inhibitor, whose experimental activity
confirmed the computational prediction. The approach is
simple and can be easily automated.
The same method was used in ref 218 to assess the binding

strength of nine ligands, organized into two subgroups, of the
cyclin-dependent kinase-5 (CDK5) enzyme, which promotes
the hyperphosphorylation of the tau protein, and thus could be
a target for drugs to treat Alzheimer’s disease, multiple
sclerosis, Parkinson’s disease, amyotrophic lateral sclerosis, etc.
Kinase proteins are a difficult target for steered MD because of
the simultaneous presence of a solvent-exposed active site and
marked flexibility at the same binding site. Once again, the
method is unable to quantitatively rank compounds of similar
binding affinity, but it was nevertheless able to discriminate
between active and inactive compounds.
The human version of the mouse double minute protein 2

(MDM2) interferes with the tumor suppression activity of the
TP53 protein. It is therefore a suitable target for inhibition in
order to enhance the innate anticancer defense of the
organism. The binding free energy of four such inhibitors of
MDM2 was estimated in ref 219, using a combination of
Brownian dynamics and SMD and using the fluctuation−
dissipation theorem to map the free energy landscape in the
vicinity of the binding site. The collective variable for the SMD
simulation was represented by the parallel displacement of two
selected atoms on the ligand during unbinding. The full
trajectory from bound to unbound was divided into 16
segments and each segment probed in both (unbinding and
binding) directions. If A and B are the end points of each
segment, the free energy variation ΔG(r) at a generic point A
≤ r ≤ B is computed as
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where F/R are forward and reverse pulling simulations,
brackets indicate average, and W is the work on the system.
An excellent agreement between the experimental data and the
computational results was achieved. A corresponding set of
binding free energies was computed by MM-PBSA. A
comparison with experiments and with steered MD demon-
strated the superiority of the latter with respect to MM-PBSA.
MM-PBSA indeed is more advisible for a quick scoring,
whereas repeated steered MD is a more rigorous way to
address the free energy computation problem. Nevertheless,
steered MD is an out-of-equilibrium method, and several
repeated replicas are often needed to converge the free energy.
Other methods such as umbrella sampling and metadynamics
are probably more advisible as there is no strong evidence that
using steered MD is systematically advantageous and
equilibrium methods should be the default choice. Steered
MD could be used for getting an initial path, whereas
metadynamics and umbrella sampling can be used to compute
the free energy along this initial guess.
Recent works have used this technique to study the

following targets: focal adhesion kinase,220 the cancer target
LSD1,221 neuraminidase,222 FK506 binding protein together
with trypsin and cyclin-dependent kinase 2,223 xylose
permease,224 and enzyme 5-enolpyruvylshikimate 3 phosphate
synthase.225

Summarizing this section, absolute binding energy compu-
tations are now computationally feasible, up to the accuracy
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limit of existing force fields, and of finite sampling of the
relevant phase space. As expected, computations are more
reliable for relatively rigid systems, whereas very flexible
systems pose severe sampling problems. Methods like MM-
PBSA are not quantitatively accurate, at least in current
implementations of the method. Double decoupling with
proper restraints, umbrella sampling, and particularly metady-
namics are powerful techniques, being computationally more
expensive but also much more predictive than MM-PBSA.

5.2. Relative Binding Energy Estimation

As emphasized in the previous section 5.1, determining the
absolute binding free energy is the most comprehensive way to
quantify the ability of small-molecule ligands to bind and thus
affect target proteins. Nevertheless, from a practical standpoint,
knowledge of relative binding free energies is already highly
valuable, providing crucial guidance and insight for the lead
discovery and lead optimization stages of drug development.
From the computational point of view, the rationale of

focusing on relative binding free energies is that, as already
explained in the theoretical section, a convenient thermody-
namic cycle can be used. A further opportunity to optimize the
time and accuracy is provided by spanning an extended set of
compounds moving along molecules of maximum (sub)-
structural overlap, minimizing the sensitivity of the overall
picture on the individual steps. This maximum-overlap strategy
is easily integrated into computer approaches to generate new
drug candidates.226 An additional appeal of relative binding
free energies is that several systematic errors could be canceled
in the comparison of different cases, opening the way to
cheaper models, less stringent computational protocols, and
broader searches. The underlying methods are largely those
detailed in section 5.1, which, with the exception of MM-PB/
GBSA, already target free energy differences.
In this respect, free energy perturbation (FEP) and

thermodynamic integration are two powerful techniques
extensively used to compute free energy differences. The
Zwanzig equation is central to FEP.227 In 1985, William
Jorgensen227 was the first to report the mutation of methanol
to ethane. In that paper, Monte Carlo was used for sampling.
Nowadays, molecular dynamics is more often used. Never-
theless, Jorgensen’s paper included the typical issues and
checks that arise when FEP is applied to ligands in a
pharmaceutical context. In particular, convergence checks, the
subdivision of the 0 ≤ λ ≤ 1 interval into windows, and
simulations run in both directions emerged as the main aspects
to carefully monitor when running FEP. This paper used the
TIP4P50 model of water with the OPLS force field
parameters.28

5.2.1. Application of FEP to Directly Compute
Binding Free Energy Differences. The first application of
FEP to compute relative free energies of biomolecules was
reported in 1986 (McCammon228), achieving agreement with
experimental data for the difference in binding free energy of
two benzamidine inhibitors of tripsin and for benzamidine for
native and a mutant trypsin. In 1987, Kollmann and co-
workers152 reported another estimation of the free energy
difference of protein−ligand binding. For the thermolysin
enzyme and a pair of phosphonamidate and phosphonate
inhibitors, they found a difference in binding free energy of
4.21 kcal/mol versus the experimental value of 4.1 kcal/mol. In
addition to the immediate interest of its quantitative
determination of relative binding free energies, this work is

also important because it made available a general-purpose
FEP implementation within the popular Amber package,136

thus greatly promoting the dissemination of FEP within the
computational community. Despite the positive impact of
these pioneering works, FEP did not immediately become an
industry standard in drug discovery, mainly because of its high
computational cost but also because of occasional poor
convergence of FEP, especially with explicit solvent models,
limited accuracy and transferability of force fields, and
incomplete coverage of small-molecule species by widely
available force fields.229−232

The Jorgensen group provided a medicinal chemistry
success story for FEP.233 With the use of the Monte Carlo
FEP algorithm, a 5 μM non-nucleoside inhibitor of HIV
reverse transcriptase (RT) was improved into a highly potent
55 pM drug.233 The FEP/MC stage of the lead optimization
relied on OPLS force fields for the protein and the ligand,
together with TIP4P50 water. In contrast to current practice
with MD, the protein backbone was kept fixed. Protein
flexibility, however, is known to be crucial in several cases, and
the success of the rigid-backbone setup of ref 233 is likely to be
an exception. The comprehensive study included a docking
and scoring stage on a two-million-compound library and was
guided by the X-ray structure determination of a number of
small-molecule crystals and of complexes of RT with analog
compounds. The FEP-driven lead optimization focused
primarily on a single compound and was made easier by the
knowledge that non-nucleotide RT inhibitors bind to an
allosteric pocket ∼10 Å away from the RT active site. The
potency of the lead compound variants was experimentally
measured by the EC50 dose required to protect 50% of infected
cells, represented in this case by MT-2 human T-cells.
More recently, researchers significantly expanded the scope

of FEP/TI calculations, especially for relative binding free
energy studies. First, sampling was improved by fast and
relatively inexpensive GPUs and codes to efficiently exploit
them.234 This currently provides at least 1 order of magnitude
of acceleration with respect to CPU implementations,
measured at equal accuracy and comparable cost. Second,
force fields became more generally applicable, thanks to
(among others) recent versions of CHARMM,32 OPLS,35 and
Amber,30 especially in its GAFF extension,34 covering a wide
variety of organic small molecules. Several works demonstrated
the reliability and efficacy of the approach.235−237 An
optimized version of FEP supplemented by Hamiltonian
replica-exchange and solute tempering (FEP/REST, see
section 4.3) was particularly effective in overcoming quasi-
nonergodocity conditions and the challenge of explicit
solvent.122

The computation of the protein/ligand relative binding free
energies [benzene and p-xylen with the L99A mutant of the T4
lysozyme, as well as two closely related but flexible ligands with
thrombin (Factor IIa)]122 was first applied to compare the
performance of FEP/REST to that of bare FEP, emphasizing
the ability of FEP/REST to overcome free energy barriers, and
to account for sizable structural reorganization in the protein
or ligand. More recently, researchers conducted a retrospective
assessment of FEP/REST for relative binding energy
determination on a set of 200 ligands and 10 targets.121 This
work demonstrated broad applicability to lead optimization. At
the validation/retrospective stage, both ref 122 and ref 121
emphasize the role of improved force fields238 in achieving
high-quality results.
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More specifically, in ref 121, several FEP/RESP computa-
tions were carried out with the Desmond MD engine,239

optimized for GPUs. This Desmond version can perform four
perturbations per day on eight Nvidia GTX-780 GPUs, which
is a great improvement on the CPU-only version.121 An
automated workflow with a graphical user interface simplifies
the definition of the transformations needed. In total, 330
perturbations were performed, many of them covering the
change of up to 10 non-H atoms, with an absolute error of less
than 1.5 kcal/mol in 81.2% of cases. The approach was thus
validated for a real-world hit optimization campaign (see
Figure 14 for selected successes).
The result is remarkable, considering that the inherent

experimental uncertainty can be estimated at 0.4−0.7 kcal/mol
for each transformation.121 Moreover, a much higher
correlation was obtained with FEP compared to the MM-
GB/SA240 and Glide SP241 scoring methods. In the prospective
stage of the same study, FEP/REST was applied to inhibitors
of IRAK4 and TYK2 with remarkably accurate results.
The protocol in ref 121 was not the only attempt to

automate the FEP/TI framework. Christ and Fox from
Boehringer defined an automated TI framework for Amber
11 (an open-source MD code) with significant results.242 The
framework was systematically applied with 92 ligands binding
to five different targets, including six different ligands of the
Mouse Major Urinary Protein and 32 substrate analog PDE5
inhibitors.242 Several other compounds were used, including
bromodomain inhibitors. The automated procedure was
implemented using the OEChem toolkit.243 It takes into
consideration the maximum common substructure of all pairs
of ligands in order to define a maximum spanning tree that
minimizes the total number and the strength of perturbations.
Then, all the topologies are automatically computed and
written to start the simulations. Considering the whole set of

windows, the total simulation time was around 50 ns per
binding free energy comparison. Postprocessing was performed
with TI or with the Bennett acceptance ratio method to
multiple states (MBAR111), with a negligible difference. To
estimate the statistical error bar, computations were replicated
for each ligand-protein pair, starting from different initial
configurations. A nonnegligible difference of the two results
was found, quantifying the dependence of the results on the
choice of starting configuration, thus pointing to insufficient
sampling. Moreover, the authors did not find apparent
correlation between the size of the perturbation and the
statistical error bar, confirming that the separation of the
relevant phase space into nearly disjoint basins is the major
source of error. For PDE5, the second system, the results were
not so encouraging, since a relatively poor correlation was
obtained with respect to experiments. Since the protonation
state of the ligands is not certain from X-ray structures, these
computations were also repeated twice, considering both the
neutral and the protonated state of each compound. Both
series of binding free energy differences displayed a similar
deviation from the experimental values, leaving the determi-
nation of the protonation state unsolved. At any rate, the
inclusion of charged ligands in the computation is an
additional challenge, and it is known that specific counter-
measures need to be taken into account244,245 with charged
moieties.
A very recent contribution to the high-throughput screening

of compounds was reported in ref 246, defining an automated
workflow for systematic relative binding free energy
computations. The protocol, dubbed QligFEP and imple-
mented in an application programming interface, is based on
FEP in its double topology variant. It exploits the open-source
MD engine Q247 and uses the most popular force fields such as
OPLS, CHARMM, and AMBER. The FEP capability is

Figure 14. Structure−activity patterns determined by FEP for ligands of the induced myeloid leukemia cell differentiation protein Mcl-1.
Differences of binding free energies (ΔΔG) between pairs of compounds compare favorably with experimental data. Reproduced with permission
from ref 121. Copyright 2015 American Chemical Society.
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complemented by modules that implement linear interaction
energy (LIE) and empirical valence bond (EVB) schemes. The
strength of QligFEP is its ability to set up series of FEP
computations, using the concept of maximum structural
overlap, and drastically decreasing the need for expert
supervision. Ref 246 is primarily devoted to extensively and
successfully validating QligFEP by comparing it with FEP data
from previous studies. The results reported in the paper
concern simulations with the complex embedded into a finite
droplet of water solvent. Nevertheless, periodic boundary
conditions are implemented in QligFEP.
In ref 248, FEP was used to reanalyze the binding of a series

of amino-adamantane inhibitors to the same M2 (proton
channel) protein of influenza A virus that had been
investigated with PMF computations in ref 188. Exploiting
the relative binding free energy framework, the analysis was
extended from 2 to 11 inhibitors. This study also covered the
determination of the binding mechanism and the analysis of
the different factors (Coulomb, dispersion energy, and
solvation) that decide the pose of each ligand within the M2
pore. As crystal structures were not available, a preliminary
docking phase was carried out. This step is crucial because an
incorrect pose may lead to incorrect results. In general, this
strategy significantly increases the overall uncertainty of
predictions, and it might not be advisible in real-world blind
studies. In this retrospective study, however, the docking plus
FEP approach worked well. To probe the effect of protein
flexibility, two sets of FEP calculations were carried out. In the
first set, the protein backbone was restrained. In the second set,
the backbone was flexible and the protein was embedded in a
DPPC lipid bilayer, providing an idealized model of
biomembrane. Results from the rigid-backbone stage corre-
lated poorly with experimental data, while the second set of
results displayed the usual good correlation of fully fledged
FEP computations. The comparison confirms the important
role of protein flexibility. However, one cannot draw an
unambiguous conclusion because of the lack of information on
how the effect of the backbone restraint was removed from the
results. Detailed analysis of the results shows that the binding
free energy of ligands within the pore reflects the fine balance
of hydrogen bonding, Coulomb, and dispersion forces. An
important if not decisive role is played by the dehydration of
ligands required to enter the pore.
The cyclin-dependent kinase CDK2 had already been

investigated by replica-exchange FEP in ref 197. It was
considered again in ref 249, which used FEP/REST to
compute the relative binding free energy of 10 ligands.
Comparison with the results of plain MD/FEP shows that
FEP/REST greatly improves the sampling of multiple free
energy basins, leading to faster convergence with relatively
short (a few ns) MD runs. A further FEP/REST study using
Desmond (MD-based) and the MCPRO package (MC-based)
again retrospectively analyzed the binding of non-nucleoside
inhibitors of the HIV-1-reverse transcriptase, quantifying the
effect of mutations on relative binding free energies. The
results confirm the ability of FEP/REST to provide valid
indications for lead optimization. Moreover, there is fairly good
agreement between the predictions provided by MD-based and
MC-based FEP/REST implementations, with the computa-
tional cost on GPU hardware being limited to a few hours per
perturbation. Discrepancies between the two implementations,
in particular, were at the acceptable level of 1 kcal/mol in most

cases, despite the use of different force fields and different
accounts of the protein backbone flexibility.
A recurring observation in recent works on free energy

computations is the important role of water molecules. Besides
ref 248, several early studies (see, for instance, refs 250−253)
found that water molecule networks can significantly influence
free energy estimations and so potency predictions. Algorithms
have been implemented to create254 and score255,256 water
networks, and they are extensively used to identify hot spots on
the protein surface that are suitable for hydrophilic and
lipophilic complexation.
Because of the unavoidable incompleteness of sampling, the

water structure created to initialize MD simulations might
affect the estimate of the binding free energy. It is thus
important to match proteins, ligands, and their complexes with
a nearly optimal water network. This is discussed in detail in
ref 257, which used FEP to run an in silico campaign on 17
inhibitors of the p38α MAP kinase. This data set mimics a
typical lead optimization medicinal chemistry scenario, in
which a congeneric series of compounds is analyzed to find the
optimal substituent of a chemical group (here, a benzene ring).
This lead optimization exercise demonstrates the importance
of the initial placement of water molecules around the ligand
for FEP calculations. In all computations, the solute structure
was derived from X-ray diffraction on a lead complex. In a first
attempt, a popular default strategy used by many tools to set
up simulations was used to embed the solute into a finite
droplet of water. This was obtained by replicating a small water
seed into a larger aggregate, removing water molecules whose
distance from any nonhydrogen atom in the solvent was less
than a preassigned cutoff or whose position was outside the
droplet radius. There was no further optimization of the water
placement before the free energy determination. In a second
series of FEP computations, a water droplet of the same radius
was created by a more refined algorithm implemented in the
JAWS software,254 supplementing a slightly more refined initial
placement with a preequilibration step for the solvent only.
Despite a fairly long FEP stage, the estimated relative binding
free energies still reflected the different starting choice. In
particular, the difference between the relative binding free
energies obtained with the optimized water placement and
experiments is much smaller (reduced by half) than the
difference between the data from the first set (simple water
placement) and experiments. Analysis of configurations
showed that part of the advantage is because JAWS can
correctly populate cavities. Residual inaccuracies are attributed
to incomplete sampling of the protein structure, possibly due
to flexibility.
Another broad subject for FEP/TI computations of relative

free energies is the variations on the protein side of the ligand-
protein complex. In particular, not only it is possible to run
FEP/TI computations modifying the ligand, but the same
strategy can be adopted to analyze the effect of variations in
protein residues,258 maintaining or varying the ligand. This is a
way, for instance, to gain insight into the effect of point
mutations on the ligands’ binding, as briefly considered in
previous examples. Considering again the protein side, it is also
important to study the sensitivity of FEP/TI binding free
energies to protein reorganization, which could be due to
induced fit or to conformational selection (see section 5.3).
Below, we analyze two recent papers that address these
important issues.
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One study (see ref 259) considered the adenosinic receptor
GPCR (A2A) by computing the binding energy variation for an
agonist (N-ethylcarboxamide adenosine, NECA) and an
antagonist (the triazolotriazine derivative ZM241383) ligand
while the receptor underwent alanine-scanning, that is,
mutating a sequence of residues to alanine one by one. The
A2A was simulated embedded inside a model POPC
membrane. The computational results along the sequence of
mutations (17 for NECA, 14 for ZM241383) were compared
with saturation assay experiments with a reference radioligand.
In these saturation assay experiments, the experimental binding
affinities along this series were measured based on their ability
to compete with the radioligand, thus obtaining ratios between
the mutated activity and the wild-type. Such an experimental
and computational analysis can support site-directed muta-
genesis or the design of personalized drugs for rare diseases.
The relative binding free energies computed by FEP display a
good agreement between experiments and computations. A
few failures in the case of agonist ligand NECA might be
explained by the only partial activation of the simulated
complex, since the G-protein intracellular component is
missing from the model.
In general, dealing with GPCR is challenging because

minimal changes in the ligand or in the residue side chain may
result in sudden changes of binding affinity, sometimes giving
rise to near-discontinuities (activity cliffs), which are difficult
to capture computationally.187 This scenario might be
complicated further by the active or inactive state of the
GPCR itself. This implies that it is risky to seek correlations
based on FEP/TI calculations on GPCRs, particularly when
the reference experimental values (in this case mutations) are
not obtained under ideal conditions.
Another study (see ref 260) discusses the common challenge

of changes in the protein conformation when it comes to using
FEP to accurately determine the relative binding free energies.
Such changes occur fairly often during the alchemical
transformation of ligands. A suitable test case to investigate
this issue is provided by a mutant of the T4 lysozyme (L99A),
a molecular target that has been extensively characterized by
experiments. The feature of interest is a small apolar binding
site, which can accommodate a variety of neutral ligands.
According to the size of the ligand, the protein binding site
may adopt one of three conformations upon binding: closed,
intermediate, or open. The mutual interconversions of these
conformation are activated processes and occur only rarely. Ref
260 focused on determining the relative binding energies for a
sequence of congeneric ligands, starting from benzene, and

growing a saturated chain on one of its carbons up to
hexylbenzene. The FEP implementation with a standard REST
setup,122 based on relatively short (5 ns) sampling of the λ
windows, achieves only moderate accuracy. This appears to be
due to the difficulty of sampling the three relatively disjoint
conformations. The error in the relative free energies can be as
large as 5 kcal/mol, making the computation unreliable. This is
particularly worrisome, since the size of the structural
rearragement is limited to 3.5 Å at most. To mitigate the
problem, the parallel tempering hot spot, in which temperature
is artificially raised, is enlarged to include a small portion of the
binding site. This quickens the rate of conformational sampling
and improves the situation, without fully solving the problem
of accurate sampling. The simplest and most effective solution
is to increase the sampling time from 5 to 55 ns for each λ
window. This time increase is sufficient to sample a few
changes of configurations, and restores the consistency of the
results.
The analysis carried out in this study suggests that

perturbative methods such as FEP and TI may not be
adequate for big conformational changes but that absolute free
energy methods are more suitable in these cases. A further field
where FEP/TI may not be fully adequate is fragment-based
drug discovery. Here, the large size difference between ligands
and active pockets may hamper a proper convergence of this
kind of simulations and eventually impact free energy
difference predictions. Nevertheless for pure correlative and
relative free energy studies, FEP or TI are probably the best
available approaches.

5.3. Binding and Unbinding Kinetics

In the previous sections, we discussed recent computational
studies of the thermodynamics of protein−ligand binding,
focusing on the determination of absolute and relative binding
free energies. This emphasis reflects the medicinal chemistry
community’s historical interest in the thermodynamic aspects
of the drug-target binding. In recent years, however, the
community has developed a growing awareness of the role of
kinetics, particularly unbinding kinetics,11 in determining the
efficacy of a drug in a clinical trial.261−263 Since this field is
relatively recent, there is less literature relative to thermody-
namic studies. Similarly to the literature on thermodynamics,
the current literature can be divided into two groups (other
classifications are possible264). First, there are studies that
target the absolute estimation of kinetics parameters. Then,
there are works that are more oriented to drug discovery,
where scientists seek linear or ranking correlations between

Figure 15. PP1 and Dasatinib binding poses obtained from μs-long unbiased MD simulations.17 Reproduced with permission from ref 17.
Copyright 2011 American Chemical Society.
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experiments and simulations. These usually involve an entire
series of systems, rather than being restricted to a single drug-
target choice. These two categories have different aims. On the
one hand, obtaining the absolute kinetic constant is difficult
and often time-consuming. On the other hand, ranking and
finding correlations is usually faster and more likely to be used
by industry to prioritize drugs. The first approach is closer to
basic research, while the second approach is closer to
engineering, in that one is seeking a practical solution to the
need of industry to prioritize drugs based on the koff.
5.3.1. Kinetic Properties from Unbiased MD. The first

group of binding-unbinding kinetics studies that we review is
based on unbiased MD. Unbiased MD is expensive but has a
few important advantages. First, it does not require previous
knowledge of binding poses, and it provides an impartial
coverage of hortosteric and allosteric binding sides. Second, in
addition to kinetic coefficients, it provides a detailed
description of reaction pathways and intermediate stages.
The challenge is to extract as much meaningful information as
possible from the overwhelming amount of data provided by
MD trajectories.
A work from the D. E. Shaw group17 is the first recent

milestone in MD-based kinetics in plain MD for protein−
ligand binding. The authors used the Anton machine59 to
observe, for the first time, the cancer drug dasatinib or the
kinase inhibitor PP1 spontaneously bind to the Src kinase. The
simulation is unbiased, and the observation of a few binding
events allows an estimation of the corresponding kinetic rates
(see Figure 15). Moreover, the majority of successful binding
events reproduce the pose observed by X-ray crystallography,
and the progression of the ligand toward the binding pocket
supports the funnel picture of protein binding.
In particular, the authors observe that Dasatinib binds after

2.3 μs in one of four independent simulations (for a total of 35
μs), while the other simulations end with Dasatinib close to
other regions of Src kinase. In contrast, PP1 was observed to
bind after 15.1, 1.9, 0.6 μs (out of seven independent
simulations, for a total of 115 μs). For Dasatinib, the authors
obtained an on-rate coefficient of 4.3 s−1μ M−1, in striking
agreement with the experimentally measured value of 4.3
s−1μM−1 (although with an indefinite error bar, since a single
successful binding was observed). The authors also remark on
the important role of water molecules, consistently finding
crystallographic water molecule positions. Moreover, for PP1
binding, a water shell surrounding the ligand generated an
entrance kinetic barrier. The authors also noted that the
protein ligand binding is a complex and sometimes activated
process, with water molecules playing a major role. Also very
interestingly, it was observed that PP1 is able to dock at
alternative binding pockets, demonstrating that long unbiased
MD runs can detect allosteric sites that are not apparent in
crystallographic structures.
The same group simulated the spontaneous binding of three

antagonists and one agonist ligand to the β1 and β2 adrenergic
receptors (AR), running 82 simulations for a total aggregated
time of 230 μs,18 achieving 21 successful binding events. As for
the previous study, they used unbiased MD. The choice of the
ligands covers compounds used to treat (as antagonist)
hypertension and angina pectoris, as well as (as agonist)
bradycardia and heart block. Since β-AR is an integral
membrane protein, the simulation represented it embedded
into a lipid bilayer. Ligands were placed at least 30 Å from the
orthosteric binding pocket, and their release once bound was

not observed. Simulation results gave an on-rate coefficient of
31 s−1μ M−1 for alprenolol and dihydroalprenolol binding to
β2AR, which is very close to the experimental value. In one
case, the binding free energy estimated by FEP (−13.4 ± 1.6
kcal/mol) was close to the experimental value (−12.2 kcal/
mol). The binding mechanisms for (S)-alprenolol and (S)-
dihydroalprenolol (now both named Alprenolol) were found
to be very similar. Of 12 simulations that gave a bound pose, 6
matched the crystallographic structure, while the others ended
in less energetically favored prebinding poses. In simulations
that gave bound poses, alprenolol almost always followed the
same binding path, with metastable states also being
consistently reproduced. In more detail, the authors identified
a major intermediate step where the ligand spent a significant
amount of time. They named this area of the GPCR the
extracellular vestibule.18 With additional simulations, it was
shown that the first and highest barrier is not from the
vestibule to the binding site but rather from the bulk to the
vestibule. This finding is somewhat surprising since the path
from the vestibule to the binding site involves deformation on
the protein and the squeezing of the ligand through a
constriction. Analysis of simulation trajectories suggests that
the high barrier from the solvent to the vestibule site is
determined by the near-complete desolvation of the ligand and
by the partial desolvation of the binding pocket.
The role of water solvation/desolvation of the ligand and of

the binding pocket was analyzed again by multi-μs plain MD
simulations in ref 265, which discussed the binding and
unbinding kinetics of a host−guest system. While these
systems are not classical protein−ligand binding complexes,
their analysis is of paramount importance as they are simplified
systems in which reproducibility of results is increased due to
their simplicity. As such, these systems are particularly
interesting for discussion and benchmarking. The host system
in this case is a β-cyclodextrin (β-CD), which is a model
system for a binding cavity, whereas the guest is one of seven
small organic molecules, including aspirin (see Figure 16).
In pharmacology, systems of this kind are primarily models.

However, as anticipated, CD are nevertheless of practical
interest in many fields, such as cosmetics, drug delivery,
catalysis, food, and agriculture. Two force fields were used (i.e.,
GAFF and q4MD) to compare their predictions. The binding

Figure 16. Host (β-cyclodestrin)-guest systems studied in ref 265.
Systems of this kind are increasingly used to benchmark free energy
computations since their small size allows exhaustive simulations.
Reproduced from ref 265. Copyright 2018 American Chemical
Society.
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enthalpy and entropy of each complex were directly estimated
from plain MD either as average potential energy or via
configurational integrals. During the simulation of each
complex in ∼1700 water molecules, several binding and
unbinding events were observed, and kinetic parameters were
estimated directly. Then, kon was obtained via the inverse of
the average unbound time multiplied by the solute
concentration, and the koff was the inverse of the average
bound time. A ligand was considered unbound when the
distance with respect to the center of mass of the β-CD was
greater than 7.5 Å. Moreover, to account for fluctuations, a
bond was not considered broken or formed unless the complex
remained dissociated or associated, respectively, for at least 1
ns. To compute the free energy of binding, the authors used
and compared two formulas. The first formula was ΔGo = ΔH
− TΔS (quite unusual for simulations). The second formula
was derived from kinetics according to ΔGo = −RT ln(konC

0/
koff), where C0 is the standard concentration (1 M). An
important result was that the ΔGo computed by the two routes
and with the two force fields in most cases agreed with each
other and with experiments to within 2 kcal/mol. However, the
decomposition of ΔG into its enthalpy and entropy
contributions strongly depended on the force field. To some
extent, this reflects the fact that free energy is a variational
quantity and is thus more stable and easier to compute than
either enthalpy or entropy. Despite the uncertainties, it is
apparent that the entropy gain in releasing water molecules
absorbed on CD is a major driving force for ligand binding.
Interestingly, the estimate of ΔG obtained from kon and koff is
more accurate than the estimate obtained from phase space
averages. To some extent this is not surprising, since the
estimation of thermodynamic properties from kinetics is
considerably simpler numerically than the phase space
approach. Moreover, the logarithmic dependence of ΔG on
the kinetic coefficients moderates their variations and might
help explain the better performance of the kinetic route.
However, it is exceedingly time-consuming in most cases to
observe the many binding/unbinding events required for a
reliable estimate of kon and koff by plain MD. Obtaining kinetics
from thermodynamics is difficult, and obtaining thermody-
namics alone is already challenging. However, whenever
feasible, obtaining thermodynamics from kinetics may be
convenient as kinetics is directly observable by measuring rates
and times.
5.3.2. Unbiased MD and Markov State Models. De

Fabritiis’ group reported a comprehensive study of the
binding-unbinding kinetics of the benzamidine inhibitor of β-
trypsin using unbiased MD, whose results are distilled into a
Markov state model.16 In an impressive campaign, 495
simulations of the trypsin-benzamidine system were run for
100 ns each. The simulation started with the ligand in the
solvent, and spontaneous binding was observed in 187 cases
(37% of all simulations), with the system settling into a
binding pose whose RMSD distance from the experimental
one was less than 2 Å.
Three Markov state models were built from the collected

data. Two were mainly used to summarize data, representing
the system evolution on a 2D projection, or according to a
simple 5-state model. The third MSM was 3D and more
quantitative, obtained by covering a 3D space of collective
variables with a grid of 18 × 18 × 30 bins. Analysis of
eigenvectors and eigenvalues of the transition matrix allowed
researchers to identify stable and metastable states and to

compute their relative free energy. This information, in turn,
provided both kon and koff coefficients in fair (but not
excellent) agreement with experiments. Unbinding was never
observed during unbiased MD runs, but the corresponding koff
rate coefficient is implicitly determined by sum rules and
equilibrium relations built into the MSM. No attempt was
made to improve the model by selected MD runs, launching
swarms of short trajectories probing the transition states
among stable and metastable valleys. In addition to this
quantitative information, the study provides insight into the
binding mechanism. As with the D. E. Shaw group trajectories,
the ligand here probed several regions of the surface. This
again highlights the complex nature of the binding process,
which involves intermediate stations and alternative pockets.
Similarly ref 19 used MD simulations 13-μs-long, coupled to
machine learning (clustering, graphs), to map the complex
binding kinetics of the DADMe-immucillin-H inhibitor
(DADMe) to the human purine nucleoside phosphorylase
(PNP) again underlying the complexity of the phenomenon.
Proteins are dynamical entities on all length scales, up to

whole domain motion, visiting different conformations on the
microseconds time scale. This plasticity aspect of proteins and
the binding of small ligands affect each other. This is because
the spontaneous change of conformation may modify binding
pockets or expose new ones, while binding itself may induce
the protein transition to a new stability basin (induced fit). A
feature that is so similar that it is difficult to distinguish is
conformational selection, in which the change of protein
conformation occurs before the binding of a ligand. These
wide amplitude structural changes are slow, hence they are
challenging to investigate by simulating their effect on binding
kinetics.
Ref 15 successfully investigated the effect of plasticity on the

kinetics of ligand binding. This study again considered the
benzamidine and β-trypsin system, using the same method as
ref 16. Here, an MSM was built based on an even longer (150
μs) MD simulation. The transition matrix was refined by
restarting trajectories connecting undersampled basins. Anal-
ysis of eigenvectors identified a variety of metastability basins,
representing six apo-Tripsin states, seven bound and four
associated conformations. Binding and unbinding was fast,
while the structural interconversions were slow. For instance,
the six apo conformations were visited by the protein on time
scales of tens of microseconds, exposing different binding
pockets on their surface. The different conformations found by
MD-MSM can be recognized in the crystal structure of the
wild and mutated proteins, supporting the validity of the
computational picture.
Induced fit and conformational selection are key issues in

two further studies using MD/MSM to compute kinetic
constants and to characterize the binding mechanism. Ref 91
reports the use of MD with Markov State Modeling to study
the single domain protein par-6 PDZ, carrying the peptide
recognition module PDZ, whose ability to recognize peptides
is allosterically modulated by binding to the Cdc42-GTP
protein. In ref 91, 400 ns-long MD, followed by clustering of
configurations and analysis of transitions, show that this
approach can identify both conformational selection and
induced fit in the system. Conformational selection, in
particular, plays a significant role in the kinetics of par-6
PDZ binding.
The binding of choline to the choline binding protein

(ChoX) was investigated in ref 92. This study used the MD/
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MSM combination supplemented by analysis of fluxes along
each pathway from reactants (choline and ChoX in solution)
to product (the choline/ChoX complex in solution),
accounting for all intermediate states identified by MSM. It
was concluded that conformational selection and induced fit
are in fact idealized extreme models of binding, while real cases
occur by a superposition of both.
5.3.3. Applications based on the Weighted Ensem-

ble. Recent applications of the weighted ensemble method in
biophysics and in pharmacology rely primarily on its WExplore
formulation,94 which runs multiple trajectories in parallel, and
covers the space with a hierarchical and adaptive choice of
bins, consisting of Voronoi polyhedra (see section 3.7.2).
WExplore applications relevant for pharmacology are

exemplified by a recent study of the unbinding of the TPPU
inhibitor from its soluble epoxide hydrolase target,266 which is
a protein involved in the synthesis of cholesterol. It is therefore
of interest for the treatment of hypertension, arteriosclerosis,
and a number of other cardiac and circulatory diseases. TPPU
can bind at several sites buried within the protein, and its
experimental residence time is 11 min, far exceeding the μs−
ms range accessible to several other accelerated methods. It is
crucial here that WE can provide unbiased results on time
scales much longer than those explicitly simulated.
In this work, simulations were started from the binding site

and the target state is the fully solvated ligand. To provide data
to compute rates, trajectories from the initial to the final state
were reinterpreted without further refinement according to a
steady state picture. The mean first passage time was computed
from the flux from the starting to the final bin, according to the
Hill relation (Eq. 18) reported in section 3.7.2. The estimated
residence time of 42 s with a standard error of ∼102 s was
within 1 to 2 orders of magnitude of the experimental value of
11 min = 660 s. Notably, this result was obtained based on an
aggregated time of only 6 μs covered by unbiased MD.
Trajectories were analyzed, revealing a number of features of

the unbinding process, including the precise identification of
the interactions that most affect the unbinding time. The role
of hydrogen bonding, solvation, and desolvation along the
unbinding trajectory and the ligand dynamics in a sort of near-
unbound state were also analyzed.
WExplore’s ability to identify and rate different transition

paths was highlighted by a previous study from the same group
studying the unbinding of benzamidine from its trypsin
target.267 The multitrajectory character of WExplore is a
crucial feature here. In this investigation, ns-scale unbiased MD
runs were used to generate steady state data. These, in turn,
were used to predict an exit time of 180 μs, i.e., within an order
of magnitude of the measured value (1700 μs). Clustering of
configurations and analysis of trajectories revealed the parallel
activity of three exit channels, two of which form through
large-amplitude motions of loop structures of trypsin. One of
these modes was still unknown, since previous simulation
studies had failed to reveal it.
A further relevant study carried out by WExplore concerned

the unbinding of three ligands from the model protein
FK506,22 which is known to bind a large number of drug-
like molecules. The low binding affinity of the ligands results in
short residence times of the order of nanoseconds, but
WExplore also enjoyed an efficiency advantage here with
respect to other methods, besides achieving a remarkable
agreement with the results of plain MD simulations that were
obtained at significantly higher cost. On short time scales, not

having to rely on a Markovian assumption is a critical
advantage of WExplore. The method’s ability to characterize
structural properties of the unbinding pathways was exploited
here to investigate for the first (and probably only) time the
distribution of the ligand exit points and to determine their
spread. The resulting probability distribution was analyzed
with a general statistical tool (von Mises-Fischer model).
As pointed out by the papers reviewed here, the efficiency of

WExplore is achieved by increasing the probability of visiting
high free energy regions of the phase space, such as transition
states. The method requires a number of user-defined
parameters to run the simulations, such as the definition of
bins, the number of trajectories, and the time interval between
two resampling steps. Remarkably, these parameters turn out
to be rather transferable from one system to another, and the
method is one of the most promising choices now available,
especially for long time scales.

5.3.4. Applications Based on Metadynamics (MTD).
Switching to bias-based methods, a metadyamics-based
approach to kinetics was recently proposed21,268 showing
that, if the deposition rate of Gaussian-shaped potentials is
slow enough, then the metadynamics bias does not
significantly affect the transition state, and the kinetics can
be recovered quantitatively. This conclusion is based on the
assumption that the time to cross the barrier from bound to
unbound (or vice versa) is short with respect to the residence
time in the starting and final free energy basins, and a statistical
test is available to verify a posteriori the validity of this
assumption.269 This technique was used to study the
benzamidine inhibitor of trypsin,21 a drug-target model already
investigated several times by computational means. Besides its
testing value, the interest in this system is justified by the fact
that trypsin is a protein that catalyzes the hydrolyzation of
amino acid chains, it is relevant in a number of biotechnology
processes, and it plays a role in the onset of pancreatitis.
Metadynamics with an aggregated MD time of 5 μs activated a
statistically significant number of benzamidine-trypsin unbind-
ing events, giving a prediction of koff = 9.1 ± 2.5 s−1, only in
qualitative agreement with experiments (koff = 600 ± 300 s−1).
Comparison with the results of a Markov state model built
from the same simulation data showed fair agreement,
mutually supporting the validity of both approaches. In this
respect, a few considerations are in order. First, the detailed
knowledge of the transition matrix of MSM is not needed if the
basic kinetic coefficients kon, koff are the only objective.
However, the analysis of the eigenvalues and eigenvectors of
the transition matrix provides a more comprehensive view of
the process. Moreover, building the MSM from the trajectories
generated during the metadynamics runs does not require
further large computations. However, in this case, the view
provided by the MSM stage could be limited by the sampling
restrictions introduced to enhance the efficiency of both
metadynamics and its funnel variant.
A recent refinement of the method introduces an adaptive

rate of Gaussian bias deposition,270 motivated by the
observation that a low deposition rate along the whole process
may result in long simulation times. The adaptive approach
uses a fast deposition rate at the beginning of simulations,
when the system is well within the starting basis. The
deposition rate is decreased later, when the system approaches
the transition state, whose unbiased sampling is crucial for an
accurate estimate of the true transition rate coefficients. As
noted in ref 271, the main limitation of this promising
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approach is the assumption that the unbinding process is just a
two-basin problem. A second drawback, common to other
methods, is the need to define the collective variables.
A recent application of metadynamics in the drug discovery

context is reported in ref 272, where the unbinding process of
Dasatinib from c-Src kinase was investigated (see also section
5.3.1). In this paper, 12 independent metadynamics runs were
conducted, each between 150 and 750 ns long. Each run led to
the unbinding of the ligand, which was not observed in the 35
μs unbiased MD of ref 17. The estimated residence time of 21
s is in excellent agreement with available experimental values.
The collective variables used were: (i) the distance of the
ligand from the binding site and (ii) the solvation state of the
binding pocket. Although the method of infrequent metady-
namics was conceived for kinetics, an approximate but
comprehensive picture of the free energy surface could also
be obtained, revealing six (meta)stable basins, including the
final unbound state. Each of these basins was thoroughly
described from the structural viewpoint. Analysis of
trajectories, for instance, highlighted that a salt bridge and a
water molecule temporarily residing in the binding pocket
played a complementary role in triggering the unbinding
process.
Another work273 investigated the degradation of the

persistent anthropogenic pollutant 1,2,3-trichloropropane
(TCP) due to haloalkane dehalogenase (DhaA) or to a
mutated version (DhaA31). The computational analysis
focused on the unbinding kinetics of the enzymatic product
2,3-dichloropropan-1-ol (DCP) because it has been identified
experimentally as a rate-limiting step, particularly for DhaA31
which exhibits a much improved catalytic rate with respect to
the wild type. The rationale of the study was that, by boosting
the unbinding process, it would be possible to design further
modified DhaA31 variants with fast enzymatic rates that
avoided the bottleneck of the unbinding of DCP, thus resulting
in an even faster degradation of TCP. Despite its
biotechnology and biocatalysis flavor, this paper is interesting
for pharmacology, in that the ligand is left unchanged and the
modification is on the protein side. This paper combined
several computational approaches: adaptive sampling and high-
throughput MD,274 infrequent metadynamics and Markov
state models for kinetics, and funnel metadynamics for the free
energy determination. To use metadynamics, a path collective
variable was introduced according to ref 198. Twenty five
simulations were run to refine the description of kinetics and,
following infrequent metadynamics theory, unbinding times
were debiased and an estimation of the koff was obtained. In
line with experimental knowledge, the release from DhaA was
much faster than in the DhaA31 case. Moreover, hotspots
suitable for DhaA31 modifications were found, suggesting ways
to improve both the unbinding kinetics and the overall rate of
TCP degradation. Somewhat surprisingly, a much cheaper
docking protocol (CaverDock275) gave indications about the
DCP undocking from DhaA31 that were close to those of
MTD. Here too, the results of metadynamics were compared
to those from a Markov state model. In contrast to ref 21, the
absolute koff value obtained here from metadynamics differed
by 2 orders of magnitude from that obtained via MSM. The
relative ranking between DhaA and DhaA31, however, was
retained albeit with different ratios. The disagreement between
the nominally equivalent protocols implementing metadynam-
ics and MSM points to a residual development deficit, meaning
that the results still depend on user choices concerning the

metrics (Markov State Models) and collective variables
(metadynamics).
Notably, the ranking was correct in both cases, highlighting

how relative estimations tend to be easier and more reliable. It
is thus obvious that, in a real-world drug discovery campaign,
there is no need to run very long simulations for absolute
values, when fast and relative estimators are more effective.

5.3.5. Studies Involving Diffusion. Another key aspect
that emerges in the literature on kinetics predictions is the
importance of taking into account not only the late stage of the
binding process, when the encounter complex is already
established, but also the diffusive stage, when the ligand
approaches its target through a random walk. In fully atomistic
unbiased MD, the diffusive stage might take longer than the
actual binding stage, especially if the activation barrier for
entering the binding site is low. The different character and
duration of these stages requires a multiscale approach.
In ref 276, the problem of predicting kon is split into two

steps. The first step applies Brownian dynamics (BD) to
simulate the ligand’s approach to the binding site from 60 Å
away. The second step considers the actual docking and is
simulated by plain MD. BD allows the user to simulate longer
time scales with respect to MD by approximating electrostatic
interactions and using an implicit solvent, represented simply
by a stochastic force. The ligand motion is restricted to roto-
translations, neglecting molecular flexibility. The crucial
matching of the BD trajectory and the plain MD simulation
with explicit solvent occurs at a predefined encounter surface
located 12 Å from the geometric center of the binding site (see
Figure 17).

The advantage of this approach is that the long-range
diffusion part of the ligand-target approach can be properly
taken into account when computing absolute kon values, which
was the main aim of that work. The method was applied to two
inhibitors (oseltamivir and zenamivir) of the influenza H1N1
neuraminidase (see Figure 18).
The computational results, based on a 50 μs trajectory for

oseltamivir, and 37 μs trajectory for zanamivir, agree fairly well
with experimental data on kon.

Figure 17. Example of space decomposition in regions explored by
Brownian dynamics (BD) and MD. The BD region is far from the
protein, where the ligand diffuses nearly freely, subject to only long-
range electrostatic interactions. Dispersion forces and steric
interactions need to be accounted for in the explicit MD region.
Reproduced from ref 276. Copyright 2017 American Chemical
Society.
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One crucial question raised by the paper is how to decide
when a ligand changes from unbound to bound, as required in
the computation of kinetic parameters. Indeed, the simplest
definition of a bound state is when the ligand acquires the
crystal pose to within a preassigned root-mean-square distance.
This, however, requires the detailed experimental knowledge of
the complex structure in the vicinity of the binding pocket.
Moreover, when simulating the binding process, the ligand
often enters the binding site but does not acquire the
experimental bound pose, hovering on an alternative site,
before eventually moving to the final binding pose. Since this
final step might not occur during the simulation time, one is
left to decide whether the final result is due to inaccuracies of
the model or to incomplete sampling. Moreover, it could also
be that the binding pose found by simulation is the most
realistic one in solution, while it differs from the most stable
one in the structure of the complex determined by X-ray
diffraction on the crystal phase at low hydration.
To overcome this problem, a new definition of a bound state

has been introduced,276 based on the residence time of the
ligand. More precisely, a trajectory is considered bound when
the ligand resides for at least 2 μs in the explicit MD region,
i.e., on the bound side of the encounter surface. This point of
view is interesting since it requires only a very approximate
knowledge of the actual binding pose. More importantly, it
implicitly assumes that even alternate poses and encounter
complexes are already inhibiting. While we agree that alternate
poses may be inhibiting and may thus pragmatically match the
bound definition, it is questionable to assert that a ligand is
bound only because it sits within a sphere around the binding
site, especially when it is still at least partially solvated.
Another limitation of the overall approach, as the authors

point out, is that the advantage of the multiscale method is
significant only when the activation barrier for binding is low.
In the opposite case, the time required for moving from the

encounter surface to the bound state far exceeds the duration
of the diffusive stage, and the efficiency gain in using the
multiscale approach cannot be a major one. In all cases, the
explicit and unbiased MD for the final binding stage may reveal
important details on the binding mechanism. In ref 276 for
instance, the explicit MD stage highlighted the role of a salt
bridge in the binding process.
In a related paper,277 Brownian dynamics and MD were

again combined. This time, they were used to parametrize a
milestoning model.278 The test system was again the trypsin-
benzamidine complex. Milestones, in this case, are represented
by concentric spherical surfaces centered on the binding site.
BD and MD together provide an efficient way to estimate the
transition rates across these surfaces, thus easing the required
parametrization of the milestones model. On the basis of only
19 μs of detailed MD simulation, the method determined koff,
kon and consequently the binding energy via the Arrhenius
relation. This performance is about 1 order of magnitude faster
than that of Markov state models of comparable resolution and
accuracy. In our opinion, milestoning is by construction more
efficient than Markov state models, so this result is not
surprising.
This work is also relevant because it introduces a collection

of scripts dubbed SEEKR,279 whose aim is to automate the
preparation and running of simulations and to ease the analysis
of trajectories. The SEEKR tool is open-source and distributed
via github. This tool’s availability greatly enhances the
method’s applicability to other complexes and increases the
reproducibility of results. Interestingly, a few years before this
paper’s publication, a forerunner study280 had already
promoted BD as a suitable tool for studying protein−ligand
binding kinetics, although this early paper targeted encounter
complexes only.
Overall, the SEEKR approach and WExplore267 are very

powerful and should be seriously considered when absolute
kinetics computations are sought.
Another important aspect in kinetics studies is the role of

solvation and desolvation of both the ligand and the binding
pocket, which is highlighted and emphasized by many studies.
The role of solvation and desolvation is often reflected in free
energy barriers that affect kon, koff, which explains why explicit
solvent simulations are strictly required in many cases.
In ref 281, the desolvation (drying) of the binding pocket

before binding is explicitly addressed in a study of Dasatinib
binding to the Src kinase, i.e., the same system investigated in
ref 17. In this study, the authors ran umbrella sampling with
reaction coordinates consisting of (i) the center of mass
distance between ligand and binding pocket and (ii) a smooth
function of the water occupancy of the pocket itself.
Simulations were based on the OPLSA force field28 and the
TIP4P water model.50 As a first step, steered MD for
unbinding was used to obtain an initial trajectory for
subsequent umbrella sampling. This preliminary simulation
was started from the experimental crystal structure and used
the single coordinate corresponding to the center of mass
distance. Overall, the 2D umbrella sampling domain had a total
of 60 windows, which allowed a sufficient sampling at 2 ns per
window to let WHAM correctly reconstruct the free energy
surface. The WaterMap282 analysis tool was also used to
quickly estimate the desolvation barrier due to the presence of
water molecules. The potential of mean force (PMF) obtained
through WHAM clearly showed an entrance barrier for the
ligand with a height of about 3.7 kcal/mol. Attributing this

Figure 18. Neuraminidase electrostatics field lines guide the binding
of oseltamivir (orange) and zanamivir (green). This is a key
phenomenon that rules the kon in protein−ligand binding.
Reproduced from ref 276. Copyright 2017 American Chemical
Society.
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barrier to the pocket desolvation free energy required some
checks. First, the authors computed the PMF using MM-
GBSA. This showed that the entrance barrier was lost when
moving from the explicit to the continuous model, suggesting
that the barrier was due to desolvation. As a semiquantitative
test, the authors also used WaterMap to estimate the
desolvation energy, obtaining good agreement with umbrella
sampling calculations. As a last verification, the PMF was
recomputed by applying a restraint to the binding pocket. The
similarity of the free energy barrier computed with and without
the restraint excluded the possibility that the entrance barrier
was due to the pocket rearrangement. Overall, this paper
quantified and underlined the important role of water during
the binding process, with desolvation of the binding pocket
being a fundamental prerequisite for completion of the binding
process.
In addition to the real molecular complexes considered in

this section, it can also be interesting to study model systems
to obtain an in-depth understanding of the chemical-physics
aspects of binding, albeit in an idealized configuration. One
such example is ref 283, which considers the rate of
hydrophobic association using a spherical concave surface
recess and a spherical model ligand, both hydrophobic, taking
place in explicit TIP4P50 water solvent. Starting from the
results of previous studies, pointing out that solvent
fluctuations create a barrier to hydrophobic association, the
paper analyzes how geometric and energy parameters affect the
association rate, measured by kon. In particular, a more water-
exposed pocket (a larger entrance radius) is shown to create a
higher entrance barrier for binding, whereas a deeper pocket
favors hydrophobic interactions. As expected, the association
rate is greatly increased by increasing the pocket’s hydro-
phobicity, measured by the inverse average number of water
molecules it contains. This effect was quantified in relation to
water fluctuations. Large fluctuations, in particular, point to
dewetting and stronger hydrophobicity. It was also possible to
identify a critical threshold value of the geometric pocket
depth, for which the water fluctuations significantly increased,
thus allowing a simpler replacement of water molecules by the
ligand. It was also noted that, if water fluctuations vanished, the
binding time could diverge to infinity. This conclusion might
seem paradoxical, but it becomes more acceptable when
considering that no (or little) fluctuation corresponds to the
solid phase limit, in which the association process is infinitely
slow.
5.3.6. Ranking Ligands According to koff. The papers

discussed above all aimed to compute absolute kinetic rates.
Other approaches are suitable for relative ranking or correlative
estimates24,25 in order to analyze entire series of ligands. Such
methods can be particularly useful for comparing koff rates that
cannot yet be computed by plain MD and that are also
challenging for accelerated sampling methods.
A recent attempt in this direction25 was based on scaled

MD, uniformly reducing the whole potential energy by a
constant scale factor λ and preventing the protein unfolding by
imposing restraints on the protein backbone except the binding
site. The protocol was tested on the chaperone heat-shock
protein 90 (HSP90), the 78 kDa glucose-regulated protein
(Grp78), and the adenosine A2A receptor (A2A GPCR), all of
great pharmaceutical interest, combined with three corre-
sponding sequences of ligands, each derived from a different
scaffold. This simple scaled MD trick with the scaling factor λ
= 0.4, equivalent to increasing the temperature by a factor λ−1

= 2.5, caused the unbinding of all ligands during times from
nanoseconds to tens of nanoseconds. Each unbinding
simulation was repeated several times, providing an average
over the initial conditions. The ratio of the unbinding times for
a series of congeneric compounds were scaled to a common
baseline by an Arrhenius-like relation.
The unbinding times computed in this way do not reliably

estimate the absolute unbinding time (or, equivalently, koff).
However, it is intuitively acceptable that they could retain the
correct ranking of compounds when the same scaling λ is
applied. The correlation with the experimental ranking would
improve by increasing λ. The results of this study confirmed
the expectation, displaying consistent correlations (from 0.85
to 0.95) with the experimental results. The internal consistency
of the data and their confidence limit is assessed by a statistical
bootstrap analysis. The method, moreover, is trivially parallel,
and does not require the prior definition of a reaction
coordinate. The choice of the binding site that is left free from
restraints is the only aspect that might prevent a completely
automatic application of the method.
The same group challenged the scaled MD protocol against

seven noncongeneric glucokinase activators69 that are being
considered as targets for treating type 2 diabetes mellitus. The
authors investigated the dependence of the ranking on the
choice of the scaling factor λ, showing that λ = 0.5 (already
used in ref 25) was adequate in all the analyzed cases, but a
lower λ = 0.4, giving faster unbinding, was sufficient to rank
congeneric compounds. It was also found that the unbinding
paths could be a source of interesting albeit approximate
information from this kind of simulation. Hence, the results of
this study further validated scaled MD as a tool for ranking
compounds on the basis of their koff value.

284,285

Callegari and colleagues271 devised a conceptually simple
method based on metadynamics to rank ligands according to
their koff. Like other methods, the proposed approach requires
experimental structures for the complex to start the unbinding
simulations. In this study, the method was used to rank 10
arylpyrazole inhibitors of the cyclin-dependent kinase 8
(CDK8) protein. Metadynamics was applied using a complex
choice of seven collective variables. Variations in the
deposition rate of the Gaussian bias of MTD was used to
identify the unbinding event and thus define an unbinding time
tMTD. Needless to say, this time is greatly affected by the MTD
bias. Although the real residence time could be recovered by
elaborating the simulation data, tMTD itself was deemed
sufficient to rank the ten ligands. The reported results were
able to discriminate between ligands with short and long
residence times. The authors claim that their approach’s
positive result was because it included the residence time
estimate of all stages of unbinding, covering not only the
crossing of the highest activated state but also the intermediate
steps.
In ref 24, the authors proposed the τRAMD method,

consisting of an MD steered by a force whose direction is
randomized whenever the ligand displacement over a given
time is less than a threshold. Once again, the protocol is
initialized (in most cases) by the experimental structure of the
crystallized complex, it entails that several simulations started
from different velocity distributions, and the size of the random
force (14 kcal mol−1 Å −1 in this study) is gauged in such a way
as to cause unbinding over the time scale of one to tens of
nanoseconds. The protocol was used to rank 70 drug-like
inhibitors binding to the N-terminal domain of the HSP90α
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protein, already investigated in ref 25. This protein is involved
in the folding of proteins responsible for cell growth and it is
therefore a target for cancer treatment. A total of 40−200
trajectories were simulated for each compound, and the quality
of the statistical distribution of times estimated for each
compound was assessed by the Kolmogorov−Smirnov test.
Prior to the computational study, compounds were synthe-
sized, cocrystallized, and the SPR data collected, obtaining
residence times that spanned a few orders of magnitude. A
comparison of the logarithm of computed and measured
residence times showed a good linear correlation, although, by
necessity and by design, the computational values were much
lower than the experimental ones. Assuming that the linear
correlation can be used to extrapolate the τRAMD values to
the unbiased limit, the average deviation of computed and
measured residence times τ was 2.3τ for all compounds, which
was reduced to 2τ if only congeneric compounds were
considered (see Figure 19). Additionally, the unbinding
trajectories contained useful mechanistic insights. The large
amount of data given by this study provides convincing
evidence that the method can be useful in the computational
ranking of large families of compounds according to koff.
Another study from the same group286 shows how the

COMBINE methodology can be used for koff prediction. The
proposed approach exploits the computed interaction energy
terms between the ligand and the protein. Then, partial least-
squares (PLS) is used to train a linear predictor of koff values,
representing a quantitative structure-kinetic relationship. This
straightforward protocol was applied to HSP90 and HIV-1
protease. For HSP90, 207 Coulombic terms and 207 Lennard-
Jones terms were used, later reduced by filtering to just 12 + 30
as these were the only terms exhibiting statistically significant
differences in the ligand set. For HIV-1 protease, 33
compounds were selected and, upon filtering, 17 + 17 energy
terms were selected for PLS analysis. Good correlations were
obtained for both systems, showing that machine learning
methods (PLS being a simple example) can lead to good
accuracy predictions when trained with clean data. The limit of
this method and of machine learning methods in general is that
they require a good and extensive data set for training. This is
not required for physics-based methods. However, machine

learning methods are vastly more efficient than physics-based
methods. In practice, machine learning methods are preferred
when sufficient experimental data are available, whereas
physics-based approaches are needed when experimental data
are not available.
Along similar lines, a previous work proposed a high-

throughput data-driven approach for binding kinetics pre-
dictions.287 In this study, energy and conformational dynamics
properties were integrated and fed to a multitask random forest
(named multitarget in the paper). The structural dynamics
properties were based on the normal-mode analysis (NMA) of
a coarse-grained model. Energy properties were represented by
the pairwise decomposition of interresidue interaction energies
computed at the atomistic level by the CHARMM27 force
field. The method was applied to 39 inhibitors of the HIV-1
protease. The computations relied on experimental data to
initialize the structure and, when no cocrystal structure was
available, ligands were docked into the receptor. The method
was trained on experimental kon and koff values available for the
39 inhibitors, while method was validated using data on
mutations of the wild-type protein that are responsible for drug
resistance. The prediction task was applied both to kon and koff.
Regression was avoided, and ligands were split into four
classes, identified by a combination of ranges of koff and kon.
This changes the problem from regression to classification,
thus significantly simplifying the task, since classification is
much simpler than regression and provides a coarse-grained
picture. Encouragingly, residues identified as crucial by NMA
were also found to be important in molecular dynamics
simulations. Moreover, electrostatics energy components were
found to be more important in predicting kinetics than full
potential or van der Waals energy terms. The results of the
NMA analysis are intriguing. They suggest that normal modes
of the coarse-grained model already contain predictive kinetic
fingerprints, since they drive the estimation of kon and koff
coefficients. This is interesting and potentially useful, but the
generality of the results needs further validation. The surprising
aspect is that the information entering the NMA is local,
focusing on the bound pose of the complex, while the target
kinetic coefficients are more global properties, affected by
intermediate states and by the whole unbinding path.

Figure 19. Correlation of residence times for a series of ligands to the N-terminal domain of HSP90α experimentally measured and estimated by
τRAMD. Reproduced from ref 24. Copyright 2018 American Chemical Society.
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A recent work also addressed the problem of ranking ligands
based on residence time.288 This approach uses the adiabatic
bias molecular dynamics63 combined with an electrostatics
collective variable to promote the unbinding event.203 The
rationale of this choice is to obtain unbinding events in short
times while still trying not to perturb the system in a vigorous
way: this is why the adiabatic bias protocol was chosen. The
unbinding events are time-averaged and a final ranking based
on the timing is given. This approach was successfully applied
retrospectively to the glucokinase and prospectively to GSK3β.
For GSK3β, the nonnegligible variance of SPR experimental
results meant that the comparison between experiments and
computations was not trivial.288 Finally, the quality of the
obtained unbinding paths made them suitable for further free
energy computations using path-based methods.
To summarize this section, kinetics is at the forefront of

recent computational methods in drug design. Absolute
kinetics estimation methods are already powerful and have
evolved very quickly in recent years. Some of these approaches
have large computational costs, whereas others seem more
affordable. Absolute estimations, particularly of koff, are
challenging and not yet particularly accurate, but the correct
order of magnitude can often be estimated. In contrast, simpler
and powerful relative kinetics methods promise useful ranking
capabilities at a more acceptable price. Methods of this type,
such as scaled MD and τRAMD, have already been used in
drug discovery pipelines and have proven to be reliable and
much faster than the absolute approaches, which are expected
to become more usable in the long term.

6. RECENT MACHINE LEARNING TRENDS

Thanks to growing computational power, physics-based
simulation is becoming a more viable solution to computa-
tional drug discovery, whereas more approximate methods like
docking have dominated until now. In this scenario, machine
learning (ML) is playing an increasingly prominent role.
Machine learning has been used for several years for protein−
ligand binding studies in the form of QSAR289 or clustering/
projection analysis of trajectories.290,291 Today, deep learning
is widely available. The basic concepts of deep learning are not
new and embody the paradigm of learning from data. Well-
designed computer libraries and GPUs have now made deep
learning computationally feasible.
A new wave of neural algorithms is being used to study

protein−ligand binding or even to design ligands, with
examples including generative adversarial networks292 and
variational autoencoders.293 Without seeking to cover the
whole field, we briefly discuss the role of recent machine
learning solutions in protein−ligand binding. We give some
pointers to ML topics such as applications of deep learning to

predict the affinity of protein−ligand binding and a simplified
sampling of the Boltzmann distribution.

6.1. Deep Learning for Affinity Prediction

AtomNet is the first application of modern neural networks
[namely deep and convolutional (CNN)] to the prediction of
bioactivity.294 The authors built a 3D grid of properties,
unfolded the 3D grid into a 1D vector, and applied a CNN to
the resulting grids. They applied this technique to the DUDE
and ChEMBL-20 PMD data set with good results. Interest-
ingly, the network can actually learn the chemistry from basic
grids during the training process. A closely related approach,
KDEEP,

295 was later proposed. This approach uses 3D
convolutional neural networks (see Figure 20).
The main difference between this approach and AtomNet is

that the 3D structure of the input grid is maintained.
Additionally, the input grids embed more physical information
than in AtomNet. The results are competitive with other
scoring methods but are significantly less accurate than FEP
methods.295 These two examples show that deep learning
methods (e.g., convolutional neural networks) have been used
to predict activity with interesting results. Here, however, the
tests are still missing a big data aspect. Indeed, these methods
were tested on relatively small data sets, for which the activity
data are known. So despite their promise, these methods have
not been coupled to a real big data scenario. It is not trivial to
obtain big data regarding the activity of druglike molecules.
This context is very different from images, which is a classical
application of convolutional neural networks. Building a very
large data set of labeled pictures is a feasible task.296 However,
it is very difficult to build a similarly large data set of activity
values for druglike molecules for a drug discovery campaign.
For this reason, we argue that the full potential of deep models
has not yet been exploited in this field.

6.2. Collective Variables and Learning the Boltzmann
Distribution

Deep learning can also be unsupervised. This means that the
value (e.g., activity) to be predicted is not defined a priori.
Various studies297−300 have leveraged autoencoders, with
variants that can automatically learn the important collective
variables of the process at hand.
These results are promising because they address one of the

most compelling problems in free energy computations,
namely, how to identify the slow degrees of freedom that
rule the phenomenon under investigation. Reconnaissance
metadynamics was an ante litteram method in this regard,
although not based on deep learning.301 In spirit, the work in
ref 300 is quite similar to reconnaissance metadynamics,
although metadynamics is not used. If these methods succeed
in automatically finding the correct set of collective variables,
this would be an important step toward automating the

Figure 20. Neural scheme adopted in Kdeep. Reproduced from ref 295. Copyright 2018 American Chemical Society.

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.0c00534
Chem. Rev. XXXX, XXX, XXX−XXX

AH

https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00534?fig=fig20&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00534?fig=fig20&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00534?fig=fig20&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00534?fig=fig20&ref=pdf
pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c00534?ref=pdf


computation of free energy using collective variables, making
these approaches more user-friendly, more systematically
deployable, and less user-dependent.
A recent contribution, not immediately applied to protein

ligand binding, but of undeniable relevance is from Noe ́ and
colleagues.302 In this paper, an architecture analogous to a
variational autoencoder was developed to sample the
Boltzmann distribution in an agile way and may potentially
overcome the rare events problem. In a variational
autoencoder, one defines an input space (the original
coordinates) and a latent space, a low-dimensional space in
which typically a Gaussian distribution maps the original
distribution. This is an inherently generative model, that is, one
can generate a new sample in the latent space and
correspondingly it can be decoded into the original
coordinates. Such an architecture is used in ref 302 to map
the Boltzmann distribution in a latent and much simpler space.
Learning is possible because trainable neural networks rule the
mapping between the target distribution and the latent one by
encoding and decoding the samples. The crucial difference
between a classical machine learning task and this proposal is
that, in the machine learning task, the samples’ generating
distribution is unknown. Here, the generating distribution is
known and available, namely the Boltzmann distribution. Thus,
Boltzmann generators can be trained not only by samples but
also by the direct knowledge of the potential energy function.
Such a network can be trained to mimic the distribution of
complex systems such as a protein in an implicit solvent. It can
deliver quite naturally and efficiently free energy estimates at
various temperatures. This is because the temperature is
directly encoded in the variance of the latent distribution.
Although the practical applicability to the ligand binding
problem is not yet clear, this approach is elegant in that it links
the best of both worlds, creating a kind of gray box modeling as
it combines statistical mechanics (white box modeling) with
deep learning (black box modeling). We expect more of these
connections between machine learning and statistical mechan-
ics303 in the future because, in the end, they both deal with
distribution sampling and mapping problems.

7. PRACTICAL GUIDELINES
As we have discussed in the previous sections, the available
methods each has specific virtues and potential pitfalls. A
requirement common to all the methods discussed is that one
begins from solid structural data. High-resolution crystal and
cocrystal structures are an essential requirement for obtaining
robust results. Without solid structural data, the systematic
application of methods is mostly doomed to failure.
Unfortunately, the user’s method knowledge and the system

dependency still plays a major role in successfully applying the
methods in several cases. The potential of a method to be
engineered in a software, and consequently its automation
level, is thus a significant indicator of a method’s maturity. If a
method requires many human choices that can significantly
change the final outcome then it is simply not mature enough
to be used prospectively and quantitatively in real-world
scenarios. Commercial considerations alone cannot explain
why some methods are not implemented in commercial
software or, if implemented, why they are not used by
computational drug discoverers, particularly those in industry.
Moving from the theory to usable software requires that the
method delivers actionable knowledge for drug discovery and
that the number of free parameters be reduced. From a user

perspective, it is therefore important to differentiate between
methods that do and do not require a collective variable. FEP
and scaled MD, for example, do not require prior knowledge of
a reaction coordinate. This makes them widely usable,
although still challenging in complex scenarios such as
protein−ligand interactions where the phase space is large
and intricate. Of course, in real-world drug discovery projects,
there is often significant prior knowledge of the receptor and
the ligand series. This makes it possible to operatively define
reaction coordinates. But methods that require prior knowl-
edge of a reaction coordinate will likely not become
mainstream in the drug discovery community until a higher
degree of automation is achieved in defining the collective
variables in such a way as prospective applications are feasible.
As a general guideline, we therefore suggest that beginners

first familiarize themselves with methods that do not require
collective variables. Methods that do require collective
variables can be more powerful than relative free energy
(FEP) or approximate methods such as MM-GBSA/PBSA, yet
they require more effort to be applied and understood so
should not be the first methods that one learns in this field.
Despite this didactical premise, we will now offer some rules

of thumb for choosing a specific method for a specific problem.
The first consideration must be the amount of computational
time that one can afford and the level of a priori knowledge of
the system. Evidently, if one has both significant computational
power (and time) and significant a priori knowledge of the
system, then one should immediately consider methods for
estimating absolute quantities, such as umbrella sampling,
metadynamics, and Markov State Models. In time-constrained
situations, more approximate methods such as FEP and scaled
MD are advisible. We would suggest using scoring functions or
MM-GBSA/PBSA only when time/resources are very limited
or when dealing with virtual screening and docking where
several compounds are to be evaluated simultaneously.
We offer the following additional guidelines and caveats

concerning the methods and scenarios discussed in this review.
When an explorative search of the phase space is required and
one has a certain knowledge of the phenomena of interest,
metadynamics is probably the best solution. Metadynamics
automatically and quickly moves in phase space once a
collective variable is defined, and it is not difficult to define
walls to restrain the exploration to an area of interest. By
playing with the hill size, it is also possible to intuitively tune
the method’s accuracy and speed. Metadynamics is probably
the best tool for exploration when a reaction coordinate can be
guessed a priori. The delivery of a free energy estimate can be a
significant bonus in many cases, but this requires a careful
check of convergence to declare a reliable free energy result.
For instance, one reasonable criterion is to check that the free
energy difference or the obtained profile is stable for sufficient
time and to run several replicas of the metadynamics
simulations.
Markov State Models and the weighted ensemble method

can be used for explorative purposes and are less dependent on
collective variables. However, they still require binning or a
metric, which is equivalent to a collective variable. Their
quantitative results do depend on the choice of phase space
partition method. However, the metrics (e.g., RMSD on
conformations) used in WE or MSM are typically quite
obvious, making them more widely applicable for exploration
than metadynamics, which usually requires the definition of a
less generalist collective variable. Considering the theory
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behind the methods, we think that WE is generally better than
MSM and could be used instead of MSM in almost all cases.
However, parallel tempering is probably the method of choice
for pure exploration without the need to define collective
variables. We note again that scaled MD is ultimately the
single-trajectory degenerate version of parallel tempering.
If exploration is not necessary and the reaction coordinate

evolution is well-known, umbrella sampling can be used to
estimate a potential of mean force. Umbrella sampling has
some drawbacks compared to metadynamics. For example, one
must manually select the centers a priori and enforce window
overimposition to ensure proper reconstruction (if WHAM110

is used to reconstruct the profile, other methods are less
dependent112). Umbrella sampling is more amenable for
relatively simple coordinates, such as distances or better
absolute coordinates. Indeed, to rigorously reconstruct the
potential of mean force in umbrella sampling simulations, one
must take into account Jacobian corrections that depend on
collective variables. This is not required for metadynamics.
Steered MD and adiabatic bias molecular dynamics

(ABMD) are excellent for exploring phase space when a target
collective variable value is foreseeable. For instance, if the
unbound state of the ligand is desired starting from the crystral
structure, both steered MD and ABMD are powerful methods.
However, ABMD is preferable because it can still navigate the
phase space but is much gentler than steered MD, thus
providing much more physically plausible trajectories. In
theory, steered MD could be used (several replicas are needed)
to obtain the free energy profile. In our experience, this
nonequilibrium approach is usually less efficient than
metadynamics, so we do not suggest using steered MD in
this way.
Switching to the issue of computing the binding free energy,

the double decoupling method120 is the ideal and rigorous
choice for absolute free energy computations because it does
not involve a collective variable. However, care must be used in
dealing with restraints120 and significant computing time can
be required. The stability of the host is also important for this
method’s success.173

Metadynamics may also be used for computing the absolute
binding free energy. Metadynamics (or umbrella sampling) for
this kind of computation poses some nontrivial problems.
Supposing a time-stable potential of mean force is obtained
from a metadynamics simulation, it is not obvious how to
move from this quantity to the binding free energy. One could
consider the free energy difference between the bound and
unbound states and declare this quantity as the binding free
energy. However, this is not rigorous and will generally not
provide a result that is directly comparable with an experiment.
The rigorous approach is to compute the partition functions
for the unbound and bound states. This requires the PMF to
be partitioned into two regions, unbound and bound. This
partition is potentially ambiguous and can significantly
influence the final result. The final binding energy is thus
influenced not only by a possibly poor convergence but also by
a possibly user-dependent choice of the partition of unbound
and bound states. Nevertheless, one should consider that
different runs of metadynamics could lead to different potential
of mean force curves due to poor convergence, further
complicating the scenario. This poor convergence is often due
to the problem’s inherent complexity and not metadynamics
per se, which has been shown to converge theoretically. It is
still not trivial to use metadynamics to compute the free energy

of binding from a potential of mean force. To be widely
applicable, a sufficiently reliable protocol must still be defined.
Since one must also choose a collective variable, the approach
requires a high number of possibly uncontrollable degrees of
freedom, making it difficult to use. The adaptive biasing force
method shares these practical difficulties.
For relative free energy estimations, we advise using

methods that do not require collective variables. As explained
in the Applications section, FEP and TI are now mature
enough to be systematically applied in drug discovery problems
and are probably now the most physics-based methods used by
industry. The big first limitation of FEP/TI is that the
methodology can have serious convergence problems if the
perturbation is too consistent. A scaffold-hopping perturbation,
for example, can become very complex. The second big
limitation is that additional care is required when the
perturbation involves a net charge change.
To calculate the potential of mean force or free energy

surfaces in general, end-state methods are completely unusable
by definition. Adaptive biasing force and metadynamics are the
best solution for this task. Even if convergence is not reached
due to the problem’s complexity, these methods can provide
important qualitative information such as the ligand inter-
mediate binding stations during the binding/unbinding
process. This information is not yet considered sufficiently
when designing ligands and it is a challenge for drug discovery
endeavors.
For absolute kinetics estimation, MSM and WE are powerful

tools in that they directly estimate rates rather than trying to
directly rebuild the free energy surface. WE is particularly
convenient due to its efficiency and the absence of any
particular hypothesis. Concerning the ranking based on
unbinding kinetics rates, there are methods that are much
easier and faster than WE or MSM, namely scaled MD and τ-
RAMD. Industrial applications of scaled MD already exist.37

The scaled MD algorithm is generally applicable. In addition,
in many cases of interest, kon in a congeneric ligand series is
almost constant and the obtained koff-based ranking will likely
correlate well with KD and thus with the free energy. In other
words, in systems where the entry barrier is often absent (e.g.,
kinases), scaled MD ranking is a good alternative to FEP and,
because scaled MD is not a perturbative method, it does not
have FEP’s limitation of tiny perturbations and charge
variations.

8. CONCLUSIONS AND PERSPECTIVES
In recent years, computational biophysics and biochemistry
have developed remarkable models and simulation algorithms.
Combined with the equally remarkable growth in computer
facilities, these models and algorithms are beginning to impact
drug discovery and development. This impact is likely to grow
for the foreseeable future, with computational methods and
simulation providing an important complement to exper-
imental and clinical approaches in this challenging field.
This review first provided a brief overview of the theoretical

and computational foundations of these developments. The
discussion focused on mechanistic approaches that seek to
reproduce the equilibrium and kinetic properties of bio-
molecules and drug-like compounds at the microscopic scale
and, in most cases, following the real-time dynamics of the
system. In other words, our discussion focused on simulation,
based on atomistic or lightly coarse-grained models. For
simplicity, we limited our discussion to methods that have
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already been used in applications. However, the literature
reports several methods that we believe could be used more
systematically. These include transition path sampling
methods93,101 and confinement methods for free energy
computations.304−307

The second central section of this paper reviewed key
computational studies in drug discovery since 2010, focusing
on physics-based approaches. This section was organized by
method, discussing a few paradigmatic studies and reporting a
short list of the most recent papers.
At present, simulation studies generally aim to predict and

explain how small organic or biological species affect biological
targets such as proteins, nucleic acids, and lipids. Simulation
studies isolate these aspects from the more comprehensive
considerations of systems biology and the clinic. Simulation is
likely to become more complex and inclusive of chemical and
physiological aspects, approaching but not replacing experi-
ments and other theoretical or computer-based methods
operating at higher levels of abstraction. We expect simulation
to continue to provide a detailed high-resolution description of
drug-target properties and phenomena, helping experimen-
talists and clinicians to understand the mechanisms behind the
observed effects and to identify structural improvements for
drugs at the molecular level.
This task is challenging due to the complexity of

biomolecular systems, which is reflected in the difficulty in
sampling their phase space and in the many time scales to be
covered. This review therefore considered enhanced sampling
methods and rare event approaches. Both fields have
experienced rapid development. Just over a decade ago,
many tasks were considered far beyond the reach of simulation.
These tasks include folding a small protein or estimating the
reaction kinetics of ligand-protein complexes. They are now
becoming feasible. Moreover, the discussed algorithms have
played a greater role in these developments than the increased
computational power. This is important because it suggests
that technology issues will not limit the future rate of
development.
Methods for drug discovery must be rigorous, based on

state-of-the-art knowledge, yet still deliver results in a way that
is affordable and fast enough for industrial drug discovery.
These methods often feature relatively short computing times
and a reduced number of degrees of freedom, which are
determined by the user. These aspects are critical for the
systematic real-world application of any algorithm to any
problem. Interestingly, FEP was not feasible for a drug
discovery campaign when it was designed, but today it is a gold
standard. It is likely that, in the next 20 years, this path will be
followed by several methods that currently require a significant
sampling effort. To ensure that these future winners survive the
development stage, the drug discovery community must be
aware of a broad variety of concepts and methods. Needless to
say, improvements in methods and in sampling capability must
go hand in hand with the improved efficiency and reliability of
basic modeling and force fields especially. In general and in the
very long-term, plain MD with a management of the
trajectories (such as the weighted ensemble) could be a highly
promising strategy. This is because it couples unbiased
potentials with proper strategies for sampling rare events.
Adaptivity in the sampling process cannot be overlooked in
practice if one wishes to obtain an efficient sampling
machinery. Another interesting aspect is that it is already
effective to use simulation kinetic methods to rank compounds.

These methods can be used in drug discovery campaigns
today, although broader validation is needed.
Critically, simulation methods are rarely prospective.

Methods are mostly applied retrospectively without further
validation. This situation requires standardized benchmarks,
blind competitions, common force fields, shared code bases,
and data repositories. It is encouraging that some sections of
the community are working hard in this direction.181,308−311

We identify several major challenges for the community and
for the methods in achieving the maturity required for the
systematic application of these approaches in drug discovery.
The first big challenge is cultural and it requires stand-
ardization. The computational drug discovery community that
deals with free energy and kinetics methods cannot seriously
proceed in testing and validating algorithms without a widely
accepted benchmark reference. As anticipated, the situation is
already changing and host−guest systems are very well suited
for this aim. Comparing methods using these systems is
essential to understanding the features of each method in
depth. The community has run algorithms alone on a specific
system without comparison in many cases. There are many
reasons for this, including the difficulty of mastering several
methods, a bias in promoting a specific methodology, and the
ever-present limitations on computational power. That is why
we need more automation in methods, less user intervention,
and more computational power. It is the only way to run
rigorous comparative assessments. This goes back to the
already discussed need for almost black box methods or, at
least, default values for parameters and choices. If this is not
possible, then unbiased comparisons become difficult. This
demonstration of maturity will be challenging for the
community to achieve. One example of the lack of stand-
ardization in this field is that there is still no accepted standard
for naming residues. For example, a double-protonated
histidine can still be named HIS, HIP, and HI+. Although
not practically disabling, this issue should sound the alarm that
standardization is needed at various levels.
The second big challenge is computational power. GPUs

have started a revolution in this field, but we are just at the
beginning. The fact that we can run one simulation does not
mean that we have enough computational power. On the
contrary, to really assess errors and poor convergence, we
should run the same simulation several times and accumulate
statistics. Given the complexity of the Boltzmann distribution
for molecular systems, the available computational power is
not yet sufficient to work as robustly as we would like (in the
time frame we would like). Interestingly, non-Turing classical
attempts are an emerging field per se. Recent results312,313 of
quantum simulations on quantum Turing machines are a
fascinating and promising path, although error management
and scalability in general are nontrivial problems that must still
be addressed.
The third big challenge is force fields. While there are

already excellent force fields (we have cited several of them),
the divergence of results using difference force fields is
troubling. Force fields should ultimately converge to a
common open gold standard. Consortia could be the solution
and we look with extreme optimism to this path.310

Overall, the enhanced sampling community has created
splendid theories in recent years, but it needs to develop the
proper tools, good practices, and language from engineering to
move forward from what are currently somewhat fragmentary
research experiences. This is a huge effort but it is necessary to
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take excellent theory and apply it to real-world problems. This
is not just a matter of implementation. Rather, it may require
that we revisit theoretical aspects that can differ between
simple model systems and complicated target complexes. This
need has already been recognized by a large section of the
community, which is already working to significantly increase
the technological readiness of the available methodologies.
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A.; Walther, J.; Andrio, P.; Goñi, R.; Balaceanu, A.; et al. Parmbsc1: a
Refined Force Field for DNA Simulations. Nat. Methods 2016, 13,
55−58.
(139) Cesari, A.; Bottaro, S.; Lindorff-Larsen, K.; Banas, P.; Sponer,
J.; Bussi, G. Fitting Corrections To An RNA Force Field Using
Experimental Data. J. Chem. Theory Comput. 2019, 15, 3425−3431.
(140) Muhammed, M. T.; Aki-Yalcin, E. Homology Modeling in
Drug Discovery: Overview, Current Applications, and Future
Perspectives. Chem. Biol. Drug Des. 2019, 93, 12−20.
(141) Cappel, D.; Hall, M. L.; Lenselink, E. B.; Beuming, T.; Qi, J.;
Bradner, J.; Sherman, W. Relative Binding Free Energy Calculations
Applied To Protein Homology Models. J. Chem. Inf. Model. 2016, 56,
2388−2400.
(142) Gallicchio, E.; Levy, R. M. In Computational Chemistry
Methods in Structural Biology; Christov, C., Ed.; Advances in Protein
Chemistry and Structural Biology; Academic Press, 2011; Vol. 85; pp
27−80.
(143) Tuffery, P.; Derreumaux, P. Flexibility and Binding Affinity in
Protein-Ligand, Protein-Protein and Multi-Component Protein
Interactions: Limitations of Current Computational Approaches. J.
R. Soc., Interface 2012, 9, 20−33.
(144) Mobley, D. L.; Dill, K. A. Binding of Small-Molecule Ligands
To Proteins:”What You See” Is Not Always ”What You Get. Structure
2009, 17, 489−498.
(145) Wang, C.; Nguyen, P. H.; Pham, K.; Huynh, D.; Le, T.-B. N.;
Wang, H.; Ren, P.; Luo, R. Calculating Protein-Ligand Binding
Affinities With Mmpbsa: Method and Error Analysis. J. Comput.
Chem. 2016, 37, 2436−2446.
(146) Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J. Z.
H.; Hou, T. End-Point Binding Free Energy Calculation with MM/
PBSA and MM/GBSA: Strategies and Applications in Drug Design.
Chem. Rev. 2019, 119, 9478−9508.
(147) Maffucci, I.; Hu, X.; Fumagalli, V.; Contini, A. An Efficient
Implementation of the Nwat-MMGBSA Method to Rescore Docking
Results in Medium-Throughput Virtual Screenings. Front. Chem.2018,
6, DOI: 10.3389/fchem.2018.00043.
(148) Chen, F.; Sun, H.; Wang, J.; Zhu, F.; Liu, H.; Wang, Z.; Lei,
T.; Li, Y.; Hou, T. Assessing the performance of MM/PBSA and
MM/GBSA methods. 8. Predicting binding free energies and poses of
protein-RNA complexes. RNA 2018, 24, 1183−1194.
(149) Pandey, P.; Srivastava, R.; Bandyopadhyay, P. Comparison of
molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA)
and molecular mechanics-three-dimensional reference interaction site
model (MM-3D-RISM) method to calculate the binding free energy
of protein-ligand complexes: Effect of metal ion and advance
statistical test. Chem. Phys. Lett. 2018, 695, 69−78.
(150) Mikulskis, P.; Genheden, S.; Ryde, U. Effect of explicit water
molecules on ligand-binding affinities calculated with the MM/GBSA
approach. J. Mol. Model. 2014, 20, 1−11.
(151) Kuhn, B.; Gerber, P.; Schulz-Gasch, T.; Stahl, M. Validation
and Use of the MM-PBSA Approach for Drug Discovery. J. Med.
Chem. 2005, 48, 4040−4048.
(152) Bash, P.; Singh, U.; Brown, F.; Langridge, R.; Kollman, P.
Calculation of the Relative Change in Binding Free Energy of a
Protein-Inhibitor Complex. Science 1987, 235, 574−576.
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Suitability of Mmgbsa for the Selection of Correct Ligand Binding
Modes From Docking Results. Chem. Biol. Drug Des. 2019, 93, 522−
538.
(163) Zhang, X.; Perez-Sanchez, H.; Lightstone, F. C. A
Comprehensive Docking and MM/GBSA Rescoring Study of Ligand
Recognition Upon Binding Antithrombin. Curr. Top. Med. Chem.
2017, 17, 1631−1639.
(164) Greenidge, P. A.; Lewis, R. A.; Ertl, P. Boosting Pose Ranking
Performance Via Rescoring With MM-GBSA. Chem. Biol. Drug Des.
2016, 88, 317−328.
(165) Shirts, M. R.; Mobley, D. L.; Chodera, J. D. In Chapter 4
Alchemical Free Energy Calculations: Ready for Prime Time?;
Spellmeyer, D., Wheeler, R., Eds.; Annual Reports in Computational
Chemistry; Elsevier, 2007; Vol. 3; pp 41−59.
(166) Boyce, S. E.; Mobley, D. L.; Rocklin, G. J.; Graves, A. P.; Dill,
K. A.; Shoichet, B. K. Predicting Ligand Binding Affinity with
Alchemical Free Energy Methods in a Polar Model Binding Site. J.
Mol. Biol. 2009, 394, 747−763.
(167) Aldeghi, M.; Heifetz, A.; Bodkin, M. J.; Knapp, S.; Biggin, P.
C. Accurate Calculation of the Absolute Free Energy of Binding for
Drug Molecules. Chem. Sci. 2016, 7, 207−218.
(168) Lin, Y.-L.; Meng, Y.; Huang, L.; Roux, B. Computational
Study of Gleevec and G6G Reveals Molecular Determinants of Kinase
Inhibitor Selectivity. J. Am. Chem. Soc. 2014, 136, 14753−14762.
(169) Gapsys, V.; Michielssens, S.; Seeliger, D.; deGroot, B. L.
Accurate and Rigorous Prediction of the Changes in Protein Free
Energies in a Large-Scale Mutation Scan. Angew. Chem., Int. Ed. 2016,
55, 7364−7368.
(170) Aldeghi, M.; Heifetz, A.; Bodkin, M. J.; Knapp, S.; Biggin, P.
C. Predictions of Ligand Selectivity From Absolute Binding Free
Energy Calculations. J. Am. Chem. Soc. 2017, 139, 946−957.
(171) Pires, D. E.; Ascher, D. B. CSM-lig: a Web Server for
Assessing and Comparing Protein-Small Molecule Affinities. Nucleic
Acids Res. 2016, 44, W557−W561.

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.0c00534
Chem. Rev. XXXX, XXX, XXX−XXX

AP

https://dx.doi.org/10.1371/journal.pcbi.1006980
https://dx.doi.org/10.1371/journal.pcbi.1006980
https://dx.doi.org/10.1371/journal.pcbi.1006980
https://dx.doi.org/10.1038/nmeth.3658
https://dx.doi.org/10.1038/nmeth.3658
https://dx.doi.org/10.1021/acs.jctc.9b00206
https://dx.doi.org/10.1021/acs.jctc.9b00206
https://dx.doi.org/10.1111/cbdd.13388
https://dx.doi.org/10.1111/cbdd.13388
https://dx.doi.org/10.1111/cbdd.13388
https://dx.doi.org/10.1021/acs.jcim.6b00362
https://dx.doi.org/10.1021/acs.jcim.6b00362
https://dx.doi.org/10.1098/rsif.2011.0584
https://dx.doi.org/10.1098/rsif.2011.0584
https://dx.doi.org/10.1098/rsif.2011.0584
https://dx.doi.org/10.1016/j.str.2009.02.010
https://dx.doi.org/10.1016/j.str.2009.02.010
https://dx.doi.org/10.1002/jcc.24467
https://dx.doi.org/10.1002/jcc.24467
https://dx.doi.org/10.1021/acs.chemrev.9b00055
https://dx.doi.org/10.1021/acs.chemrev.9b00055
https://dx.doi.org/10.3389/fchem.2018.00043
https://dx.doi.org/10.3389/fchem.2018.00043
https://dx.doi.org/10.3389/fchem.2018.00043
https://dx.doi.org/10.3389/fchem.2018.00043?ref=pdf
https://dx.doi.org/10.1261/rna.065896.118
https://dx.doi.org/10.1261/rna.065896.118
https://dx.doi.org/10.1261/rna.065896.118
https://dx.doi.org/10.1016/j.cplett.2018.01.059
https://dx.doi.org/10.1016/j.cplett.2018.01.059
https://dx.doi.org/10.1016/j.cplett.2018.01.059
https://dx.doi.org/10.1016/j.cplett.2018.01.059
https://dx.doi.org/10.1016/j.cplett.2018.01.059
https://dx.doi.org/10.1016/j.cplett.2018.01.059
https://dx.doi.org/10.1007/s00894-014-2273-x
https://dx.doi.org/10.1007/s00894-014-2273-x
https://dx.doi.org/10.1007/s00894-014-2273-x
https://dx.doi.org/10.1021/jm049081q
https://dx.doi.org/10.1021/jm049081q
https://dx.doi.org/10.1126/science.3810157
https://dx.doi.org/10.1126/science.3810157
https://dx.doi.org/10.1021/jm0608210
https://dx.doi.org/10.1021/jm0608210
https://dx.doi.org/10.1002/jcc.1161
https://dx.doi.org/10.1002/jcc.1161
https://dx.doi.org/10.1002/jcc.1161
https://dx.doi.org/10.1002/jcc.1161
https://dx.doi.org/10.4208/cicp.050711.111111s
https://dx.doi.org/10.4208/cicp.050711.111111s
https://dx.doi.org/10.4208/cicp.050711.111111s
https://dx.doi.org/10.1021/ci100458f
https://dx.doi.org/10.1021/ci100458f
https://dx.doi.org/10.1021/ci100458f
https://dx.doi.org/10.1021/acs.jctc.8b00825
https://dx.doi.org/10.1021/acs.jctc.8b00825
https://dx.doi.org/10.1111/cbdd.12262
https://dx.doi.org/10.1111/cbdd.12262
https://dx.doi.org/10.1111/cbdd.12262
https://dx.doi.org/10.1016/S0022-2836(03)00610-7
https://dx.doi.org/10.1016/S0022-2836(03)00610-7
https://dx.doi.org/10.1016/S0022-2836(03)00610-7
https://dx.doi.org/10.1016/j.ejmech.2015.02.045
https://dx.doi.org/10.1016/j.ejmech.2015.02.045
https://dx.doi.org/10.1073/pnas.1301814110
https://dx.doi.org/10.1073/pnas.1301814110
https://dx.doi.org/10.1111/cbdd.13446
https://dx.doi.org/10.1111/cbdd.13446
https://dx.doi.org/10.2174/1568026616666161117112604
https://dx.doi.org/10.2174/1568026616666161117112604
https://dx.doi.org/10.2174/1568026616666161117112604
https://dx.doi.org/10.1111/cbdd.12763
https://dx.doi.org/10.1111/cbdd.12763
https://dx.doi.org/10.1016/j.jmb.2009.09.049
https://dx.doi.org/10.1016/j.jmb.2009.09.049
https://dx.doi.org/10.1039/C5SC02678D
https://dx.doi.org/10.1039/C5SC02678D
https://dx.doi.org/10.1021/ja504146x
https://dx.doi.org/10.1021/ja504146x
https://dx.doi.org/10.1021/ja504146x
https://dx.doi.org/10.1002/anie.201510054
https://dx.doi.org/10.1002/anie.201510054
https://dx.doi.org/10.1021/jacs.6b11467
https://dx.doi.org/10.1021/jacs.6b11467
https://dx.doi.org/10.1093/nar/gkw390
https://dx.doi.org/10.1093/nar/gkw390
pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c00534?ref=pdf


(172) Aldeghi, M.; Bluck, J. P.; Biggin, P. C. In Computational Drug
Discovery and Design; Gore, M., Jagtap, U. B., Eds.; Springer New
York: New York, NY, 2018; pp 199−232.
(173) Aldeghi, M.; Bodkin, M. J.; Knapp, S.; Biggin, P. C. Statistical
Analysis On the Performance of Molecular Mechanics Poisson-
Boltzmann Surface Area Versus Absolute Binding Free Energy
Calculations: Bromodomains as a Case Study. J. Chem. Inf. Model.
2017, 57, 2203−2221.
(174) Evoli, S.; Mobley, D. L.; Guzzi, R.; Rizzuti, B. Multiple
Binding Modes of Ibuprofen in Human Serum Albumin Identified By
Absolute Binding Free Energy Calculations. Phys. Chem. Chem. Phys.
2016, 18, 32358−32368.
(175) Deng, N.-j.; Zhang, P.; Cieplak, P.; Lai, L. Elucidating the
Energetics of Entropically Driven Protein-Ligand Association:
Calculations of Absolute Binding Free Energy and Entropy. J. Phys.
Chem. B 2011, 115, 11902−11910.
(176) Lawrenz, M.; Baron, R.; Wang, Y.; McCammon, J. A. Effects
of Biomolecular Flexibility On Alchemical Calculations of Absolute
Binding Free Energies. J. Chem. Theory Comput. 2011, 7, 2224−2232.
(177) Sadiq, S. K.; Wright, D. W.; Kenway, O. A.; Coveney, P. V.
Accurate Ensemble Molecular Dynamics Binding Free Energy
Ranking of Multidrug-Resistant Hiv-1 Proteases. J. Chem. Inf. Model.
2010, 50, 890−905.
(178) Lee, T.-S.; Hu, Y.; Sherborne, B.; Guo, Z.; York, D. M.
Toward Fast and Accurate Binding Affinity Prediction With
Pmemdgti: An Efficient Implementation of Gpu-Accelerated
Thermodynamic Integration. J. Chem. Theory Comput. 2017, 13,
3077−3084.
(179) Lai, P.-K.; Kaznessis, Y. N. Free Energy Calculations of
Microcin J25 Variants Binding To the Fhua Receptor. J. Chem. Theory
Comput. 2017, 13, 3413−3423.
(180) Li, Z.; Huang, Y.; Wu, Y.; Chen, J.; Wu, D.; Zhan, C.-G.; Luo,
H.-B. Absolute Binding Free Energy Calculation and Design of a
Subnanomolar Inhibitor of Phosphodiesterase-10. J. Med. Chem.
2019, 62, 2099−2111.
(181) Rizzi, A.; Murkli, S.; McNeill, J. N.; Yao, W.; Sullivan, M.;
Gilson, M. K.; Chiu, M. W.; Isaacs, L.; Gibb, B. C.; Mobley, D. L.;
et al. Overview of the Sampl6 Host−Guest Binding Affinity
Prediction Challenge. J. Comput.-Aided Mol. Des. 2018, 32, 937−963.
(182) Woo, H.-J.; Roux, B. Calculation of Absolute Protein−Ligand
Binding Free Energy from Computer Simulations. Proc. Natl. Acad.
Sci. U. S. A. 2005, 102, 6825−6830.
(183) Cousins-Wasti, R. C.; Ingraham, R. H.; Morelock, M. M.;
Grygon, C. A. Determination of Affinities for Lck Sh2 Binding
Peptides Using a Sensitive Fluorescence Assay: Comparison Between
the Pyeeip and Pyqpqp Consensus Sequences Reveals Context-
Dependent Binding Specificity. Biochemistry 1996, 35, 16746−16752.
(184) Buch, I.; Harvey, M. J.; Giorgino, T.; Anderson, D. P.; De
Fabritiis, G. High-Throughput All-Atom Molecular Dynamics
Simulations Using Distributed Computing. J. Chem. Inf. Model.
2010, 50, 397−403.
(185) Buch, I.; Sadiq, S. K.; De Fabritiis, G. Optimized Potential of
Mean Force Calculations for Standard Binding Free Energies. J. Chem.
Theory Comput. 2011, 7, 1765−1772.
(186) Dai, J.; Zhou, H.-X. Reduced Curvature of Ligand-Binding
Domain Free-Energy Surface Underlies Partial Agonism at NMDA
Receptors. Structure 2015, 23, 228−236.
(187) Ferraro, M.; Decherchi, S.; De Simone, A.; Recanatini, M.;
Cavalli, A.; Bottegoni, G. Multi-target dopamine D3 receptor
modulators: Actionable knowledge for drug design from molecular
dynamics and machine learning. Eur. J. Med. Chem. 2020, 188,
111975.
(188) Gu, R.-X.; Liu, L. A.; Wei, D.-Q.; Du, J.-G.; Liu, L.; Liu, H.
Free Energy Calculations On the Two Drug Binding Sites in the M2
Proton Channel. J. Am. Chem. Soc. 2011, 133, 10817−10825.
(189) Wilhelm, M.; Mukherjee, A.; Bouvier, B.; Zakrzewska, K.;
Hynes, J. T.; Lavery, R. Multistep Drug Intercalation: Molecular
Dynamics and Free Energy Studies of the Binding of Daunomycin to
DNA. J. Am. Chem. Soc. 2012, 134, 8588−8596.

(190) Ngo, S. T.; Vu, K. B.; Bui, L. M.; Vu, V. V. Effective
Estimation of Ligand-Binding Affinity Using Biased Sampling
Method. ACS Omega 2019, 4, 3887−3893.
(191) Lan, N. T.; Vu, K. B.; Ngoc, M. K. D.; Tran, P.-T.; Hiep, D.
M.; Tung, N. T.; Ngo, S. T. Prediction of Ache-Ligand Affinity Using
the Umbrella Sampling Simulation. J. Mol. Graphics Modell. 2019, 93,
107441.
(192) Fu, H.; Cai, W.; Henin, J.; Roux, B.; Chipot, C. New Coarse
Variables for the Accurate Determination of Standard Binding Free
Energies. J. Chem. Theory Comput. 2017, 13, 5173−5178.
(193) Nishikawa, N.; Han, K.; Wu, X.; Tofoleanu, F.; Brooks, B. R.
Comparison of the Umbrella Sampling and the Double Decoupling
Method in Binding Free Energy Predictions for Sampl6 Octa-Acid
Host−Guest Challenges. J. Comput.-Aided Mol. Des. 2018, 32, 1075−
1086.
(194) Bussi, G.; Gervasio, F. L.; Laio, A.; Parrinello, M. Free-Energy
Landscape for Beta Hairpin Folding From Combined Parallel
Tempering and Metadynamics. J. Am. Chem. Soc. 2006, 128,
13435−13441.
(195) Raiteri, P.; Laio, A.; Gervasio, F. L.; Micheletti, C.; Parrinello,
M. Efficient Reconstruction of Complex Free Energy Landscapes By
Multiple Walkers Metadynamics. J. Phys. Chem. B 2006, 110, 3533−
3539.
(196) Pietrucci, F.; Marinelli, F.; Carloni, P.; Laio, A. Substrate
Binding Mechanism of Hiv-1 Protease From Explicit-Solvent
Atomistic Simulations. J. Am. Chem. Soc. 2009, 131, 11811−11818.
(197) Fidelak, J.; Juraszek, J.; Branduardi, D.; Bianciotto, M.;
Gervasio, F. L. Free-Energy-Based Methods for Binding Profile
Determination in a Congeneric Series of CDK2 Inhibitors. J. Phys.
Chem. B 2010, 114, 9516−9524.
(198) Branduardi, D.; Gervasio, F. L.; Parrinello, M. From A To B in
Free Energy Space. J. Chem. Phys. 2007, 126, 054103.
(199) Masetti, M.; Cavalli, A.; Recanatini, M.; Gervasio, F. L.
Exploring Complex Protein-Ligand Recognition Mechanisms With
Coarse Metadynamics. J. Phys. Chem. B 2009, 113, 4807−4816.
(200) Saladino, G.; Gauthier, L.; Bianciotto, M.; Gervasio, F. L.
Assessing the Performance of Metadynamics and Path Variables in
Predicting the Binding Free Energies of P38 Inhibitors. J. Chem.
Theory Comput. 2012, 8, 1165−1170.
(201) Wang, J.; Verkhivker, G. M. Energy Landscape Theory,
Funnels, Specificity, and Optimal Criterion of Biomolecular Binding.
Phys. Rev. Lett. 2003, 90, DOI: 10.1103/PhysRevLett.90.188101.
(202) Limongelli, V.; Bonomi, M.; Parrinello, M. Funnel
Metadynamics as Accurate Binding Free-Energy Method. Proc. Natl.
Acad. Sci. U. S. A. 2013, 110, 6358−6363.
(203) Spitaleri, A.; Decherchi, S.; Cavalli, A.; Rocchia, W. Fast
Dynamic Docking Guided by Adaptive Electrostatic Bias: The Md-
Binding Approach. J. Chem. Theory Comput. 2018, 14, 1727−1736.
(204) De Vivo, M.; Cavalli, A. Recent Advances in Dynamic
Docking for Drug Discovery. Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2017, 7, DOI: 10.1002/wcms.1320.
(205) Gioia, D.; Bertazzo, M.; Recanatini, M.; Masetti, M.; Cavalli,
A. Dynamic Docking: A Paradigm Shift in Computational Drug
Discovery. Molecules 2017, 22, 2029.
(206) Bernetti, M.; Masetti, M.; Recanatini, M.; Amaro, R. E.;
Cavalli, A. An Integrated Markov State Model and Path Metady-
namics Approach To Characterize Drug Binding Processes. J. Chem.
Theory Comput. 2019, 15, 5689−5702.
(207) Weiss, R. B. The anthracyclines: will we ever find a better
doxorubicin? Semin. Oncol. 1992, 19, 670−686.
(208) Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L.
Anthracyclines: Molecular Advances and Pharmacologic Develop-
ments in Antitumor Activity and Cardiotoxicity. Pharmacol. Rev.
2004, 56, 185−229.
(209) Ibrahim, P.; Clark, T. Metadynamics Simulations of Ligand
Binding To Gpcrs. Curr. Opin. Struct. Biol. 2019, 55, 129−137.
(210) Saleh, N.; Ibrahim, P.; Saladino, G.; Gervasio, F. L.; Clark, T.
An Efficient Metadynamics-Based Protocol To Model the Binding

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.0c00534
Chem. Rev. XXXX, XXX, XXX−XXX

AQ

https://dx.doi.org/10.1021/acs.jcim.7b00347
https://dx.doi.org/10.1021/acs.jcim.7b00347
https://dx.doi.org/10.1021/acs.jcim.7b00347
https://dx.doi.org/10.1021/acs.jcim.7b00347
https://dx.doi.org/10.1039/C6CP05680F
https://dx.doi.org/10.1039/C6CP05680F
https://dx.doi.org/10.1039/C6CP05680F
https://dx.doi.org/10.1021/jp204047b
https://dx.doi.org/10.1021/jp204047b
https://dx.doi.org/10.1021/jp204047b
https://dx.doi.org/10.1021/ct200230v
https://dx.doi.org/10.1021/ct200230v
https://dx.doi.org/10.1021/ct200230v
https://dx.doi.org/10.1021/ci100007w
https://dx.doi.org/10.1021/ci100007w
https://dx.doi.org/10.1021/acs.jctc.7b00102
https://dx.doi.org/10.1021/acs.jctc.7b00102
https://dx.doi.org/10.1021/acs.jctc.7b00102
https://dx.doi.org/10.1021/acs.jctc.7b00417
https://dx.doi.org/10.1021/acs.jctc.7b00417
https://dx.doi.org/10.1021/acs.jmedchem.8b01763
https://dx.doi.org/10.1021/acs.jmedchem.8b01763
https://dx.doi.org/10.1007/s10822-018-0170-6
https://dx.doi.org/10.1007/s10822-018-0170-6
https://dx.doi.org/10.1073/pnas.0409005102
https://dx.doi.org/10.1073/pnas.0409005102
https://dx.doi.org/10.1021/bi9620868
https://dx.doi.org/10.1021/bi9620868
https://dx.doi.org/10.1021/bi9620868
https://dx.doi.org/10.1021/bi9620868
https://dx.doi.org/10.1021/ci900455r
https://dx.doi.org/10.1021/ci900455r
https://dx.doi.org/10.1021/ct2000638
https://dx.doi.org/10.1021/ct2000638
https://dx.doi.org/10.1016/j.str.2014.11.012
https://dx.doi.org/10.1016/j.str.2014.11.012
https://dx.doi.org/10.1016/j.str.2014.11.012
https://dx.doi.org/10.1016/j.ejmech.2019.111975
https://dx.doi.org/10.1016/j.ejmech.2019.111975
https://dx.doi.org/10.1016/j.ejmech.2019.111975
https://dx.doi.org/10.1021/ja1114198
https://dx.doi.org/10.1021/ja1114198
https://dx.doi.org/10.1021/ja301649k
https://dx.doi.org/10.1021/ja301649k
https://dx.doi.org/10.1021/ja301649k
https://dx.doi.org/10.1021/acsomega.8b03258
https://dx.doi.org/10.1021/acsomega.8b03258
https://dx.doi.org/10.1021/acsomega.8b03258
https://dx.doi.org/10.1016/j.jmgm.2019.107441
https://dx.doi.org/10.1016/j.jmgm.2019.107441
https://dx.doi.org/10.1021/acs.jctc.7b00791
https://dx.doi.org/10.1021/acs.jctc.7b00791
https://dx.doi.org/10.1021/acs.jctc.7b00791
https://dx.doi.org/10.1007/s10822-018-0166-2
https://dx.doi.org/10.1007/s10822-018-0166-2
https://dx.doi.org/10.1007/s10822-018-0166-2
https://dx.doi.org/10.1021/ja062463w
https://dx.doi.org/10.1021/ja062463w
https://dx.doi.org/10.1021/ja062463w
https://dx.doi.org/10.1021/jp054359r
https://dx.doi.org/10.1021/jp054359r
https://dx.doi.org/10.1021/ja903045y
https://dx.doi.org/10.1021/ja903045y
https://dx.doi.org/10.1021/ja903045y
https://dx.doi.org/10.1021/jp911689r
https://dx.doi.org/10.1021/jp911689r
https://dx.doi.org/10.1063/1.2432340
https://dx.doi.org/10.1063/1.2432340
https://dx.doi.org/10.1021/jp803936q
https://dx.doi.org/10.1021/jp803936q
https://dx.doi.org/10.1021/ct3001377
https://dx.doi.org/10.1021/ct3001377
https://dx.doi.org/10.1103/PhysRevLett.90.188101
https://dx.doi.org/10.1103/PhysRevLett.90.188101
https://dx.doi.org/10.1103/PhysRevLett.90.188101?ref=pdf
https://dx.doi.org/10.1073/pnas.1303186110
https://dx.doi.org/10.1073/pnas.1303186110
https://dx.doi.org/10.1021/acs.jctc.7b01088
https://dx.doi.org/10.1021/acs.jctc.7b01088
https://dx.doi.org/10.1021/acs.jctc.7b01088
https://dx.doi.org/10.1002/wcms.1320
https://dx.doi.org/10.1002/wcms.1320
https://dx.doi.org/10.1002/wcms.1320?ref=pdf
https://dx.doi.org/10.3390/molecules22112029
https://dx.doi.org/10.3390/molecules22112029
https://dx.doi.org/10.1021/acs.jctc.9b00450
https://dx.doi.org/10.1021/acs.jctc.9b00450
https://dx.doi.org/10.1124/pr.56.2.6
https://dx.doi.org/10.1124/pr.56.2.6
https://dx.doi.org/10.1016/j.sbi.2019.04.002
https://dx.doi.org/10.1016/j.sbi.2019.04.002
https://dx.doi.org/10.1021/acs.jcim.6b00772
pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c00534?ref=pdf


Affinity and the Transition State Ensemble of G-Protein-Coupled
Receptor Ligands. J. Chem. Inf. Model. 2017, 57, 1210−1217.
(211) Capelli, R.; Carloni, P.; Parrinello, M. Exhaustive Search of
Ligand Binding Pathways Via Volume-Based Metadynamics. J. Phys.
Chem. Lett. 2019, 10, 3495−3499.
(212) Capelli, R.; Bochicchio, A.; Piccini, G. M.; Casasnovas, R.;
Carloni, P.; Parrinello, M. Chasing the Full Free Energy Landscape of
Neuroreceptor/Ligand Unbinding By Metadynamics Simulations. J.
Chem. Theory Comput. 2019, 15, 3354−3361.
(213) Rather, M. A.; Basha, S. H.; Bhat, I. A.; Sharma, N.;
Nandanpawar, P.; Badhe, M.; P, G.-B.; Chaudhari, A.; Sundaray, J. K.;
Sharma, R. Characterization, Molecular Docking, Dynamics Simu-
lation and Metadynamics of Kisspeptin Receptor With Kisspeptin. Int.
J. Biol. Macromol. 2017, 101, 241−253.
(214) della Longa, S.; Arcovito, A. A Dynamic Picture of the Early
Events in Nociceptin Binding to the Nop Receptor By Metadynamics.
Biophys. J. 2016, 111, 1203−1213.
(215) Saleh, N.; Saladino, G.; Gervasio, F. L.; Haensele, E.; Banting,
L.; Whitley, D. C.; Sopkova de Oliveira Santos, J.; Bureau, R.; Clark,
T. A Three-Site Mechanism for Agonist/Antagonist Selective Binding
To Vasopressin Receptors. Angew. Chem., Int. Ed. 2016, 55, 8008−
8012.
(216) Nutho, B.; Nunthaboot, N.; Wolschann, P.; Kungwan, N.;
Rungrotmongkol, T. Metadynamics Supports Molecular Dynamics
Simulation-Based Binding Affinities of Eucalyptol and Beta-Cyclo-
dextrin Inclusion Complexes. RSC Adv. 2017, 7, 50899−50911.
(217) Colizzi, F.; Perozzo, R.; Scapozza, L.; Recanatini, M.; Cavalli,
A. Single-Molecule Pulling Simulations Can. Discern Active From
Inactive Enzyme Inhibitors. J. Am. Chem. Soc. 2010, 132, 7361−7371.
(218) Patel, J. S.; Berteotti, A.; Ronsisvalle, S.; Rocchia, W.; Cavalli,
A. Steered Molecular Dynamics Simulations for Studying Protein-
Ligand Interaction in Cyclin-Dependent Kinase 5. J. Chem. Inf. Model.
2014, 54, 470−480.
(219) Hu, G.; Xu, S.; Wang, J. Characterizing the Free-Energy
Landscape of Mdm2 Protein-Ligand Interactions By Steered
Molecular Dynamics Simulations. Chem. Biol. Drug Des. 2015, 86,
1351−1359.
(220) Wong, C. F. Steered Molecular Dynamics Simulations for
Uncovering the Molecular Mechanisms of Drug Dissociation and for
Drug Screening: A Test On the Focal Adhesion Kinase. J. Comput.
Chem. 2018, 39, 1307−1318.
(221) Thai, N. Q.; Nguyen, N. Q.; Nguyen, C.; Nguyen, T. Q.; Ho,
K.; Nguyen, T. T.; Li, M. S. Screening Potential Inhibitors for Cancer
Target Lsd1 From Natural Products By Steered Molecular Dynamics.
Mol. Simul. 2018, 44, 335−342.
(222) Tam, N. M.; Nguyen, M. T.; Ngo, S. T. Evaluation of the
Absolute Affinity of Neuraminidase Inhibitor Using Steered
Molecular Dynamics Simulations. J. Mol. Graphics Modell. 2017, 77,
137−142.
(223) Okimoto, N.; Suenaga, A.; Taiji, M. Evaluation of Protein-
Ligand Affinity Prediction Using Steered Molecular Dynamics
Simulations. J. Biomol. Struct. Dyn. 2017, 35, 3221−3231.
(224) Wambo, T. O.; Chen, L. Y.; Phelix, C.; Perry, G. Affinity and
Path of Binding Xylopyranose Unto E. Coli Xylose Permease.
Biochem. Biophys. Res. Commun. 2017, 494, 202−206.
(225) Ferreira, M. F.; Franca, E. F.; Leite, F. L. Unbinding Pathway
Energy of Glyphosate From the Epsps Enzyme Binding Site
Characterized By Steered Molecular Dynamics and Potential of
Mean Force. J. Mol. Graphics Modell. 2017, 72, 43−49.
(226) Christ, C. D.; Zentgraf, M.; Kriegl, J. M. Mining Electronic
Laboratory Notebooks: Analysis, Retrosynthesis, and Reaction Based
Enumeration. J. Chem. Inf. Model. 2012, 52, 1745−1756.
(227) Jorgensen, W. L.; Ravimohan, C. Monte Carlo Simulation of
Differences in Free Energies of Hydration. J. Chem. Phys. 1985, 83,
3050−3054.
(228) Wong, C. F.; McCammon, J. A. Dynamics and Design of
Enzymes and Inhibitors. J. Am. Chem. Soc. 1986, 108, 3830−3832.
(229) Jorgensen, W. L. Efficient Drug Lead Discovery and
Optimization. Acc. Chem. Res. 2009, 42, 724−733.

(230) Jorgensen, W. L. The Many Roles of Computation in Drug
Discovery. Science 2004, 303, 1813−1818.
(231) Gallicchio, E.; Levy, R. M. Advances in All Atom Sampling
Methods for Modeling Protein-Ligand Binding Affinities. Curr. Opin.
Struct. Biol. 2011, 21, 161−166.
(232) Procacci, P. Alchemical Determination of Drug-Receptor
Binding Free Energy: Where We Stand and Where We Could Move
To. J. Mol. Graphics Modell. 2017, 71, 233−241.
(233) Bollini, M.; Domaoal, R. A.; Thakur, V. V.; Gallardo-Macias,
R.; Spasov, K. A.; Anderson, K. S.; Jorgensen, W. L. Computationally-
Guided Optimization of a Docking Hit To Yield Catechol Diethers As
Potent Anti-Hiv Agents. J. Med. Chem. 2011, 54, 8582−8591.
(234) Mermelstein, D. J.; Lin, C.; Nelson, G.; Kretsch, R.;
McCammon, J. A.; Walker, R. C. Fast and Flexible Gpu Accelerated
Binding Free Energy Calculations Within the Amber Molecular
Dynamics Package. J. Comput. Chem. 2018, 39, 1354−1358.
(235) Deng, Y.; Roux, B. Computations of Standard Binding Free
Energies With Molecular Dynamics Simulations. J. Phys. Chem. B
2009, 113, 2234−2246.
(236) Durrant, J. D.; McCammon, J. A. Molecular Dynamics
Simulations and Drug Discovery. BMC Biol. 2011, 9, DOI: 10.1186/
1741-7007-9-71.
(237) Athanasiou, C.; Vasilakaki, S.; Dellis, D.; Cournia, Z. Using
Physics-Based Pose Predictions and Free Energy Perturbation
Calculations to Predict Binding Poses and Relative Binding Affinities
for FXR Ligands in the D3R Grand Challenge 2. J. Comput.-Aided
Mol. Des. 2018, 32, 21−44.
(238) Opls 2.1; Schrodinger, Inc.: New York, 2014.
(239) Bowers, K. J.; Chow, D. E.; Xu, H.; Dror, R. O.; Eastwood, M.
P.; Gregersen, B. A.; Klepeis, J. L.; Kolossvary, I.; Moraes, M. A.;
Sacerdoti, F. D.; et al. Scalable Algorithms for Molecular Dynamics
Simulations On Commodity Clusters. SC ’06: Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, 2006; pp 42−43.
(240) Prime, version 3.8; Schrodinger Inc.: New York, 2014.
(241) Glide, version 6.5; Schrodinger Inc.: New York, 2014.
(242) Christ, C. D.; Fox, T. Accuracy Assessment and Automation
of Free Energy Calculations for Drug Design. J. Chem. Inf. Model.
2014, 54, 108−120.
(243) OEChem., version 1.7.2.4; OpenEye Scientific Software Inc.:
Santa Fe, NM, 2009.
(244) Rocklin, G. J.; Mobley, D. L.; Dill, K. A.; Hünenberger, P. H.
Calculating the Binding Free Energies of Charged Species Based On
Explicit-Solvent Simulations Employing Lattice-Sum Methods: An
Accurate Correction Scheme for Electrostatic Finite-Size Effects. J.
Chem. Phys. 2013, 139, 184103.
(245) de Oliveira, C.; Yu, H. S.; Chen, W.; Abel, R.; Wang, L.
Rigorous Free Energy Perturbation Approach To Estimating Relative
Binding Affinities Between Ligands With Multiple Protonation and
Tautomeric States. J. Chem. Theory Comput. 2019, 15, 424−435.
(246) Jespers, W.; Esguerra, M.; Åqvist, J.; Gutieŕrez-de Terań, H.
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