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Calculation of nuclear charge radii with a trained feed-forward neural network
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A feed-forward neural network model is trained to calculate the nuclear charge radii. The model is trained with
the input data set of proton and neutron number Z, N , the electric quadrupole transition strength B(E2) from the
first excited 2+ state to the ground state, together with the symmetry energy. The model reproduces well not
only the isotope dependence of charge radii, but also the kinks of charge radii at the neutron magic numbers
N = 82 for Sn and Sm isotopes, and also N = 126 for Pb isotopes. The important role of the B(E2) value is
pointed out to reproduce the kink of the isotope dependence of charge radii in these nuclei. Moreover, with the
inclusion of the symmetry energy term in the inputs, the charge radii of Ca isotopes are well reproduced. This
result suggests a new correlation between the symmetry energy and charge radii of Ca isotopes. The Skyrme
Hartree-Fock-Bogoliubov calculation is performed to confirm the existence of this correlation in a microscopic
model.
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I. INTRODUCTION

Theoretical and experimental studies of the isotopic
changes of ground- and low-lying-state properties have been
studied intensively to elucidate the evolution of shell structure,
shape coexistence phenomena, and shape transitions, over the
years [1–4]. In particular, charge radii, and electromagnetic
moments are very sensitive quantities to extract precise infor-
mation of the nuclear structure, such as deformation change
and the shell evolution along the isotopic or isotonic chains
[2,5–13], and to study the neutron skin thickness [14]. Dif-
ferent types of experimental data have been used to obtain
nuclear radii: muonic-atom spectra and electron scattering
experiments, as well as isotope shifts to determine relative
radii of neighboring nuclei [15]. An extensive compilation
of the nuclear electromagnetic moments can be found in
Ref. [16], and references therein. In these researches, the
isotope dependence of charge radii of Ca isotopes shows a par-
ticularly unique feature, which raises a challenging quest for
the nuclear theory to understand the structure of these isotopes
[13,17]. The behavior of charge radii around the shell closures
has been frequently studied in heavy isotopes. Many isotopes
show obvious kinks at the shell closures, namely, a sudden
change of the slope of charge radii for the isotopic chain at the
magic number. In particular, the kink around N = 28 [11,18],
N = 82 [12], and N = 126 [19,20] were extensively studied.

There are two groups of models for evaluation of charge
radius: microscopic and phenomenological ones. Shell model
and ab initio models provide reasonable predictions of the
charge radii in light and medium mass nuclei with realis-
tic two-body and three-body interactions [21]. The energy

density functional (EDF) such as the Hartree-Fock (HF) and
HF-Bardeen-Cooper-Schriffer (BCS) (or Bogoliubov) models
[22–26] as well as the relativistic mean field models (RMF)
[27–29] provide global quantitative descriptions for the charge
radii in a wide region of mass table. However it is still not
quite successful for EDF to fix optimum interactions or to
choose appropriate functional forms of EDF in order to pro-
vide precise prediction for the charge radii systematically.
Phenomenological models such as the “liquid-drop” model
(LDM) [30] and Garvey-Kelson relation [31] as well as their
developed versions [32–36], in which the isospin dependence,
shell effects, and odd-even staggering are included, are also
introduced to study the isotope dependence of charge radius.
These phenomenological models work well on the global pre-
diction of the charge radii, but it might be difficult for these
models to reveal all the important physical quantities in the
fitting, and to grasp microscopic origins of the model.

Machine learning (ML) is one of the most popular algo-
rithms in dealing with complex systems due to its powerful
and convenient inference abilities. Neural network, an algo-
rithm of machine learning, has been widely used in different
fields such as artificial intelligence (AI), medical treatment,
and physics of complex systems. There are many successful
applications of machine learning in nuclear physics, for ex-
amples, predictions of the nuclear mass [37–39], charge radii
[40–42], dripline locations [43,44], β-decay half-lives T1/2

[45], the fission product yields [46], and the isotopic cross
sections in proton induced spallation reactions [47]. Very re-
cently, a multilayer neural network was applied to predict the
ground-state and excited energies with high accuracy [48]. In
the above works, ML was applied to improve the accuracy of
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FIG. 1. The framework of FNN, which consists of an input layer,
hidden layers, and output layer. The network maps the inputs xi to the
corresponding charge radii yi = f (θ, xi ) via the weights and biases
as well as the activation functions in each layer. See text for details.

calculated results based on the EDF. In this work, we try to
train a description of the nuclear charge radii based directly
on some experimental or quasiexperimental data, such as the
mass number dependence, shell effects, and deformation. We
are desperately interested in finding any other physical quan-
tities which are correlated to the charge radii. The special
attention will be payed to the cases of Ca isotopes.

To this end, we employ a standard fully connected feed-
forward neural network (FNN), which can build a complex
mapping between the input space and output space through
multiple compounding of simple nonlinear functions. The
framework of the FNN is introduced in Sec. II. The data
preprocessing is shown in Sec. III. The results are shown in
Sec. IV. Section V is devoted to the summary.

II. NEURAL NETWORK

The framework of FNN is shown in Fig. 1, which is a
multilayer neural network consisting of an input layer, hidden
layers, and output layer. The structure of the neural network is
labeled as [N1, N2, . . ., Nn], where Ni stand for neuron num-
bers of ith layer, and i = 1 and n represent the input and output
layers, respectively. In the present work, N1 = 3, and Nn = 1.
For the hidden layer, the outputs h(θi, x) are calculated by a
formula

h(θi, x) = tanh(0.01w(i)h(θi−1, x) + 0.01b(i) ), (1)

which is an Ni × 1 matrix, and the activation functions of
hidden layers are taken to be the hyperbolic tangent, tanh. As
the starting point, the outputs h(θ1, x) of the input layer are
actually the input data x. Finally the corresponding output is
given by

f (θ, x) = w(n)h(θn−1, x) + b(n), (2)

where θ = {w(1), b(1), . . . ,w(n), b(n)} are the network param-
eters trained by a selected optimizing algorithm. The number

of network parameters is determined by a formula

Np =
n−1∑
i=1

Ni × Ni+1 +
n∑

i=2
Ni. (3)

In the training procedure, we use the mean squared error
(MSE) as the loss function,

Loss(y, f (θ, x)) = 1

NS

NS∑
i=1

(
yexp

i − f (θ, xi )
)2

(4)

which is used to quantify the difference between model pre-
dictions f and experimental values yexp. Here, NS is the size of
the training set. The learning process is to minimize the loss
function via a proper optimization method. We use RMSProp
method [49] in this work to obtain the optimal parameters
w(i) and b(i), respectively, for i = 1, 2, . . . , n in the network.
RMSProp is a popular alternative to stochastic gradient de-
scent (SGD), which is one of the most widely used training
algorithms.

In the present work, the deformation and shell effects on
the charge radius are included by the excitation energy of the
first 2+ state, E2+

1
. We adopt as the data set all the nuclei for

which both the experimental values of E2+
1

and charge radii
are available. The total data set is 347 nuclei. Since the data
set is not big enough, we have to choose a small network
structure [3,40,1], which includes 44 neurons, and involves
201 parameters.

In the training procedure, the training sets are chosen ten
times randomly, which are equivalent to ten models for the
description of the charge radii. In this way, we will be able to
choose the appropriate model. When training a model with a
given training set, the network parameters are initialized ran-
domly to produce the output. Since the output of the network
are related to the initialization, we repeat this process 50 times
for each model and average the output results. Then, the mean
value is taken as the result of the model. We found that the
mean value converges to a certain MSE value after a repeat of
30 times.

III. DATA PREPROCESSING

Since the performance of the network depends tightly on
the form of the inputs, the data preprocessing is essential to
arrange the raw inputs. As was pointed out in Refs. [50,51],
there are correlations between the nuclear charge radii and
the excitation energies of the first excited 2+ states, E2+

1
, we

choose the energies E2+
1

as a raw input. To modulate the irreg-
ularity due to the large difference in the energies E2+

1
between

the magic nuclei and its neighboring ones, we smooth the
mass number dependence of energies E2+

1
by the Lorentzian

function,

E2+
1

(X0) = �/2

π

∑
X

E2+
1

(X )

d2
X0,X

+ (�/2)2
, (5)

where X = (N, Z ), and the sum of X runs over all adopted
nuclei, whose E2+

1
values are measured. Here, the expansion

width � is set at 7.0 for the best fitting, and dX0,X has the form

dX0,X =
√

(Z − Z0)2 + (N − N0)2. (6)
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TABLE I. Values of the parameters in Eqs. (8) and (10).

a1 a2 a3 b1 b2 b3 α β1 β2

25.0 0.1 0.05 1.5 −0.1 1.4 −0.5 1.3 4.0

Because B(E2) and E2+
1

are empirically correlated by
Grodzin’s formula [52],

E2+
1
B(E2) = 2.57 × Z2A−2/3, (7)

we actually take into account the calculated B(E2) by Eq. (7)
in the ML study. That means, the dynamical deformation
effect is included in the present study through B(E2) values.

In addition, in order to consider the effect of symmetry
energy, we introduce a factor A(δS ) which is related to the
symmetry energy part in the Bethe-Weizsäcker mass formula
[53,54],

A(δS ) = b1exp
(
b2Zβ1δ

β2
S

) + b3 (8)

and

δS = (N − Z )2

A
. (9)

Furthermore, the B(E2) and A(δS ) are arranged as a input
data in the form

g(B(E2), δS ) = a1ln(a2A−1/3B(E2)A(Z, δS )) × (a3Z )α.

(10)
The optimized values of the parameters in Eqs. (8) and (10) by
the trainings are listed in Table I. Thus, the inputs for trainings
are Z , N , and g(B(E2), δS ), and the corresponding output is
rch.

IV. RESULTS

In the present ML study, all the charge radii of Ca, Sm,
and Pb isotopes are put in the testing set in order to check the
prediction power of models. In the calculations, the inputs are
prepared both with and without the symmetry energy input.
That is, the factor A is evaluated by Eq. (8) or set at the
value 1.0 for all the processes, respectively. The best models
with smallest root mean square deviation (RMSD) values are
selected from each ten models with and without the symmetry
energy input, after trained with different training sets. The
RMSD values of the two best models are listed in Table II.
We should notice that the RMSD value with the symmetry
energy effect δS is a lightly larger than that without the δS term.
However we find the substantial improvement of prediction in
Ca isotopes with δS in the testing set as will be seen below.

TABLE II. Minimum RMSD values for the training set and test-
ing set of the models trained with or without symmetry energy. The
values are given in unit of fm.

model training set testing set

with δS 0.0286 0.0280
no δS 0.0266 0.0231

FIG. 2. The results of charge radii of Sn, Sm, and Pb isotopes
calculated by the best model trained with and without taking the
symmetry energy input into account. In the figure, the ML results
obtained with and without the symmetry energy input are labeled
by the red star lines and green diamond lines, respectively. The
experimental data are taken from Refs. [12,15,55], which are labeled
by the filled black circle lines. See the text for more details.

The results of charge radii of Sn, Sm, and Pb isotopes
are shown in Fig. 2. In the figure, the ML results obtained
with and without the symmetry energy input are labeled by
the red star lines and green diamond lines, respectively. The
experimental data are taken from Refs. [12,15,55], which are
labeled by the filled circle. Panels (a) and (b) show the charge
radii of Sn and Sm isotopes, respectively. Both cases with and
without the symmetry energy input, the results produce kinks
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FIG. 3. The same as Fig. 2, but for Ca isotopes. (a) The results of
the ten models trained without the symmetry energy. (b) The results
of ten models trained with the symmetry energy. (c) The best mod-
els with the lowest RMSD trained with and without the symmetry
energy. The experimental data are taken from Refs. [11,15]. See the
text for more details.

properly at N = 82. In panel (c), the charge radii of the Pb
isotopic chain are shown. The kink at N = 126 is reproduced
by the two different models. The nuclei shown in the figure
are neutron rich, and the variation of factor δS is small, not
so different for each isotope as is given by Eq. (9). Accord-
ingly, the models trained with or without taking the symmetry
energy input produce similar results. The reproduction of the
kinks at N = 82 and 126 indicates that the shell structure
and dynamical quadrupole deformation are treated properly
by the present data processing, and the models work well in
the heavy nuclei.

The charge radii of Ca isotopes are shown in Fig. 3. Ex-
perimental data are taken from Refs. [11,15], which show a

FIG. 4. Charge radii calculated by the Skyrme-HFB with the
SAMi-J families and SAMi parameter sets. The diamonds, the
squares, the triangles, and the stars stand for the results of SAMi-
J27, SAMi-J28, SAMi-J31, and SAMi, respectively, while the filled
circles give the experimental values.

strong kink structure at N = 28, and have a peak between two
closed shells at N = 20 and 28, and then increase rapidly after
N = 28. As shown in panel (a), the ten models with random
data sets trained without the symmetry energy input give
charge radii either linear or parabolic dependences with an
increasing of neutron number. All results are not qualitatively
consistent with the experimental data. When the symmetry
energy input is included, as shown in panel (b), the results of
ten models are improved systematically and produce not only
the kink at N = 28, but also the peak at N = 24, consistent
with the trend of the experimental data. The best results with
the lowest RMSD values for the two kinds of models with and
without symmetry energy input are shown in panel (c). This
figure indicates that the symmetry energy input is critical for
the qualitative and quantitative description of the Ca isotopes.

To confirm the conjecture derived by the present ML study,
we calculate further the correlation between the symmetry
energy and the charge radii in a microscopic model. The
Hartree-Fock-Bogoliubov (HFB) calculations [56] are per-
formed with modern Skyrme interactions. The energy density
functional per nucleon can be expanded up to the second order
of the isovector index I = (ρn − ρp)/ρ as

ε(ρn, ρp) = ε(ρ, I = 0) + S(ρ)I2, (11)

where S(ρ) is the symmetry energy, which is important for the
studies on the properties of finite nuclei and nuclear matter
[57–60]. The symmetry energy S(ρ) in Eq. (11) is further
expanded around the saturation density as

S(ρ) = J (ρ0) + L(ρ0)
ρ − ρ0

3ρ0
+ Ksym(ρ0)

(
ρ − ρ0

3ρ0

)2

. (12)

We calculate the charge radii of Ca isotopes by the HFB
model with theSAMi-J family [61], which has different be-
havior for the symmetry energy in the nuclear matter. The
SAMi-J family was obtained following the fitting protocol of
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TABLE III. Nuclear matter properties of SAMi and SAMi-J family.

Parameter K∞ (MeV) J (MeV) L (MeV) Ksym (MeV) m∗/m

SAMi 245.0 28.16 43.68 −119.94 0.675
SAMi-J27 245.0 27.00 30.00 −158.04 0.675
SAMi-J28 245.0 28.00 39.74 −133.15 0.675
SAMi-J31 245.0 31.00 74.37 −37.35 0.675

SAMi under the constrained conditions; the incompressibility
K∞ and the effective mass m∗/m are fixed (K∞ = 245 MeV,
m∗/m = 0.675), and then the symmetry energy at saturation
density (J) is varied from 27 to 31 MeV (SAMi-J27∼SAMi-
J31) [61,62]. Figure 4 shows the Skyrme-HFB results with the
SAMi-J family; SAMi-J family with J = 27, 28, and 31 MeV,
and SAMi with J = 28.16 MeV. The nuclear matter properties
of these parameter sets are listed in Table III. The figure shows
a close correlation between J and the calculated charge radii,
even other physical quantities L and Ksym are different; the
charge radii are almost the same for SAMi and SAMi-J28,
whose J values are J = 28.16 and 28 MeV [63], respectively,
and the charge radii decrease as the J values increase. These
results indicate that the symmetry energy term J plays a more
important role than the terms L or Ksym in the calculations
of charge radii. Though the absolute magnitude is somewhat
different compared with the experiments in Fig. 4, the HFB
calculations show an intimate correlation between the sym-
metry energy J term and the charge radii in Ca isotopes, and
confirm the conclusion of ML calculations.

A new shell structure at N = 34 in Ca isotopes was sug-
gested by the experiments at RIKEN [64–66], which is an
interesting and challenging problem for the ML study. How-
ever, since the experimental information of E2+

1
in 56Ca is not

reported at present, we cannot apply the present ML model to
study the shell structure at N = 34. This problem remains for
a future study.

V. SUMMARY

A multilayer feed-forward neural network model (ML-
FNN) is applied to train a model for the description of the

charge radii. The model is trained with the input data set
of proton number Z , neutron number N , the E2+

1
, and the

symmetry energy. The model reproduces well not only the
slope of isotopic dependence, but also the kink of charge radii
at the magic numbers N = 82 and 126. Especially, the inclu-
sion of the symmetry energy input makes the model better
to reproduce qualitatively and quantitatively the charge radii
of Ca isotopes. The microscopic Skyrme-HFB calculations
show that the symmetry energy term in the energy density,
particularly, the J term affects the isotope dependence of
charge radii of Ca isotopes. The present ML research and the
microscopic calculation show the new correlation between the
symmetry energy and charge radii in Ca isotopes. Whereas
the ML shows that the symmetry energy input has the re-
markable effects on both the quantitative agreement of charge
radii and the kink structure at N = 28 of Ca isotopes, the
HFB calculations indicate that the symmetry energy has a
significant effect on the absolute magnitude of charge radii,
but the kink structure at N = 28 is not well reproduced. The
physical implication of the present successful ML study is still
an open question, and needs to be studied in the future.
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