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Simulating disordered quantum Ising chains via dense and sparse restricted Boltzmann machines
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In recent years, generative artificial neural networks based on restricted Boltzmann machines (RBMs) have
been successfully employed as accurate and flexible variational wave functions for clean quantum many-body
systems. In this article, we explore their use in simulations of disordered quantum Ising chains. The standard
dense RBM with all-to-all interlayer connectivity is not particularly appropriate for large disordered systems,
since in such systems one cannot exploit translational invariance to reduce the amount of parameters to be
optimized. To circumvent this problem, we implement sparse RBMs, whereby the visible spins are connected
only to a subset of local hidden neurons, thus reducing the amount of parameters. We assess the performance
of sparse RBMs as a function of the range of the allowed connections, and we compare it with that of dense
RBMs. Benchmark results are provided for two sign-problem-free Hamiltonians, namely pure and random
quantum Ising chains. The RBM Ansditzes are trained using the unsupervised learning scheme based on projective
quantum Monte Carlo (PQMC) algorithms. We find that the sparse connectivity facilitates the training process
and allows sparse RBMs to outperform their dense counterparts. Furthermore, the use of sparse RBMs as
guiding functions for PQMC simulations allows us to perform PQMC simulations at a reduced computational
cost, avoiding possible biases due to finite random-walker populations. We obtain unbiased predictions for
the ground-state energies and the magnetization profiles with fixed boundary conditions, at the ferromag-
netic quantum critical point. The magnetization profiles agree with the Fisher—de Gennes scaling relation
for conformally invariant systems, including the scaling dimension predicted by the renormalization-group

analysis.
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I. INTRODUCTION

Carleo and Troyer’s 2017 article [1] was the impetus for
a vibrant research activity on the use of artificial neural net-
works as variational Ansdtzes for ground-state wave functions.
Several neural networks have been adopted, but restricted
Boltzmann machines (RBMs) [2—4] have emerged as one of
the most accurate and versatile [5]. Beyond approximating
ground-state wave functions, they have also been used to per-
form quantum state tomography [6,7], to accelerate classical
and quantum Monte Carlo simulations [8,9], to solve classical
combinatorial optimization problems [10], as well as to sim-
ulate excited states [11], open quantum systems [12—15], and
unitary dynamics [1]. Recently, a procedure to use RBMs to
also represent states with non-Abelian symmetries has been
introduced [16]. A plethora of competitive neural-network
models have been investigated, including (possibly among
others) unrestricted Boltzmann machines [17], deep Boltz-
mann machines [18], deep feed-forward neural networks
[11,19-22], convolutional neural networks [23-25], gener-
alized transfer-matrix states [26], neural-network backflow
models [27], and neural Gutzwiller-projected wave functions
[28]. More recently, autoregressive neural networks have also
been employed [29-31]. Very different physical systems have
already been simulated via artificial neural networks. The
first studies addressed unfrustrated spin Hamiltonians [1].
They have been followed by studies on bosonic lattice mod-
els [20,22,23], frustrated spin Hamiltonians [24,25,32,33],
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fermionic lattice models [27], as well as on continuous-
space bosonic [34,35] and fermionic systems [35], partic-
ularly electronic ones [36-39]. Topological states [40-42]
and nuclear systems have been addressed as well [43]. The
investigations mentioned above addressed few-body systems
or clean extended models. To the best of our knowledge,
Hamiltonians with random disorder have not been addressed
so far. In particular, it is still unclear whether neural-network
wave functions can accurately describe the ground state of
disordered quantum many-body systems.

In this article, we explore the use of artificial neural
networks—specifically of RBMs—to simulate the ground
state of one-dimensional disordered quantum spin Hamil-
tonians. Among the three available schemes to train the
RBMs—reinforcement learning [1], supervised learning [44],
and unsupervised-learning [9]—we adopt the latter. In this
scheme, the training of the RBM is performed in combination
with projective quantum Monte Carlo simulations (PQMCs).
On the one hand, this scheme provides one with accurate
RBM approximations for the ground-state wave function. On
the other hand, the use of the optimized RBMs as guiding
functions for successive PQMC simulations [9] allows one to
eliminate the possible bias due to the finite random-walker
population [17,45—47]. Notably, this provides one with un-
biased estimates of ground-state properties, even when the
optimized RBM wave function is not exact.

Standard RBMs are characterized by a dense connectiv-
ity structure, whereby all visible spins are connected to all
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neurons in the (unique) hidden layer. In general, this implies
that the number of parameters to be optimized increases
with the square of the system size. Such a large amount of
parameters often leads to difficulties in the optimization of
variational Ansdtzes for many-body systems, meaning that
the optimization algorithm might fail to identify optimal
parameters. Furthermore, the dense connectivity increases the
computational cost of any RBM-based Monte Carlo simu-
lation, including PQMC simulations guided by RBMs. In
clean systems, translational invariance can be exploited to
reduce the scaling of the number of parameters with the
system size from quadratic to linear [1,48]. Clearly, this is not
possible in disordered systems. In this article, we investigate
the use of sparse RBMs [40,41,49,50] for disordered systems.
Specifically, a notion of spatial distance is embedded in the
connectivity structure, and the visible spins are connected
only to a certain number of nearest-neighbor hidden neurons.
As suggested by studies performed in the field of machine
learning [50,51], one expects the sparse connectivity to allow
the model to learn the dominant correlations at a substantially
reduced computational cost. This should also reduce the risk
of overfitting. Notably, the sparse connectivity reduces the
computational cost of evaluating wave-function ratios, sub-
stantially reducing the computational complexity of varia-
tional and projective quantum Monte Carlo simulations. The
main testbed we consider in this article is the random Ising
chain, beyond the pure ferromagnetic model, which has been
addressed also in previous studies. We analyze the accuracy of
sparse RBMs as a function of the range of the allowed connec-
tions, exploring both short-range and midrange connectivities.
We also compare sparse RBMs with their dense counterparts.
Furthermore, the accuracy of PQMC simulations guided by
optimized sparse RBMs is verified. The observables we ana-
lyze are the ground-state energy and the magnetization profile
in setups with fixed boundary conditions.

Our analysis indicates that the local connectivity facilitates
the training process, allowing sparse RBMs to approximate
the ground state of the one-dimensional random spin model
more accurately than dense RBMs with a comparable number
of variational parameters. The PQMC simulations guided by
optimized sparse RBMs provide unbiased results at a sub-
stantially reduced computational cost compared to the case
of dense guiding functions. In particular, the magnetization
profiles computed by the PQMC algorithm satisfy the Fisher—
de Gennes scaling relation [52]. The scaled profiles agree with
the predictions for conformally invariant systems [53], even
for the (non-conformally-invariant) random model, indicating
that the corrections to the conformal scaling are essentially
negligible, as previously found also in Ref. [54]. The scaling
dimension agrees with the results of the renormalization-
group treatment [55].

The rest of the article is organized as follows: Section II
introduces the model Hamiltonian as well as the dense and
the sparse RBMs. The unsupervised-learning scheme and
the PQMC algorithm are also briefly described. Our results
for ground-state energies and magnetization profiles are re-
ported in Sec. III. They are compared with Jordan-Wigner
predictions and with the Fisher—de Gennes scaling relation,
respectively. Our conclusions and some future perspectives
are given in Sec. IV.

II. MODELS AND METHODS

The models we consider are defined by the following one-
dimensional quantum Ising Hamiltonian:
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o;‘ and o¢ are conventional Pauli matrices at the lattice sites
j=1,...,N.N is the total number of spins, and we consider

periodic boundary conditions, i.e., oy 41 =07, for « = x, z.
The parameters J; > 0 fix the strength of the (ferromagnetic)
interactions between the spins at the sites j and j+ 1. " is
the intensity of the (uniform) transverse magnetic field. In
the following, the eigenstates of the Pauli matrix o} with
eigenvalues x; = %1 are denoted as |x;). The quantum states
of N spins |x) = |x1x2, ..., xy), Withx = (x1, ..., xn), form
the computational basis considered in this article. With |i) we
denote the quantum state corresponding to the wave function
(xly) = ¢ ).

If one chooses uniform couplings J; =J > 0 for all j =
1,..., N, the Hamiltonian (1) describes the pure ferromag-
netic Ising chain. This model undergoes a quantum phase
transition from a paramagnetic phase for I' > J to a fer-
romagnetic phase for I' < J. Beyond the pure model, we
consider random Ising chains with couplings J/; sampled from
a probability distribution P(J;). In general, one can always
perform a gauge transformation in the Hamiltonian (1) such
that all couplings J; except one, at most, are non-negative.
For sufficiently large system sizes, a single negative coupling
does not change the bulk properties of the system. There-
fore, without loss of generality, we may restrict ourselves
to distributions with support on positive couplings. Specifi-
cally, we consider the flat distribution P(J) = 0(J)0(1 — J),
where 6(x) is the unit step function: 6(x) = 1 for x > 0 and
0(x) = 0 otherwise. We consider also the binary distribution
PU)=686J —2)/2+ 8 —1/2)/2, where 5(x) is the Dirac
delta function. In the random Ising chain, the ferromagnetic
quantum phase transition occurs at the critical transverse field
I' = exp(In(J)) [56]; the overline indicates the average over
the chosen probability distribution. In the case of the flat
distribution described above, one obtains I" = 0.367 92, while
for the binary distribution the critical pointis I' = 1.

A. Dense and sparse restricted Boltzmann machines

As first shown in Ref. [1], the ground-state wave function
of a quantum spin Hamiltonian like (1) can be approximated
using Boltzmann machines. Reference [1] addressed pure
quantum spin models via standard dense RBMs. Here we
address also random Ising models, using RBMs with dense
and with sparse connectivities. Boltzmann machines are gen-
erative stochastic neural networks commonly employed for
density estimation, i.e., to infer the probability distribution
underlying a given (typically large) dataset of samples. RBMs
are formed by the visible layer with the N spin variables x, and
by a layer of hidden neurons, which includes N, additional
spin variables h; = 1, withi = 1, ..., N;. The set of hidden
variables will be indicated as h = (hy, .. ., hy,). The probabil-
ity associated with each configuration (x, &) of the two-layer
system is written in the form of the Boltzmann weight P(x, k)
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corresponding to a classical Ising Hamiltonian. RBMs are
characterized by the absence of intralayer visible-visible and
hidden-hidden interactions. In the standard dense RBMs, all
visible spins interact with all hidden spins. The corresponding
coupling parameters are denoted J;;. In the sparse RBMs,
instead, each visible spin j interacts only with a subset of
hidden neurons. This subset is denoted in the following as
N;. The classical Ising Hamiltonian associated with the sparse
RBM reads

HRBM(x, h) = — Z Z J,‘jh,‘x‘j — Zajx.,- — Z b,‘h,‘. (2)

j ieN; j i
The parameters a; and b;, called biases, play the role of local
longitudinal magnetic fields. Together with the couplings J;;,
they define the RBM. The parameters will be collectively
indicated as W = ({/;;}, {a;}, {b;}). The dense RBMs corre-
spond to the choice /\/J ={l,...,Ny} forall j=1,...,N.
In the sparse RBM considered in this article, the size of the
hidden layer matches that of the visible layer, i.e., N = N.
The visible spins are connected only to a number N, < N;, of
nearest-neighbor hidden neurons, corresponding to the set of
hidden-spin indices N; ={j — (N. — 1)//2,...,j— (N. —
1)//2 + N, — 1}, where the symbol // indicates integer divi-
sion. Periodic boundary conditions are applied to the hidden-
neuron indices, analogously to the visible-spin indices. For
dense RBMs, one has N x Nj, interlayer couplings J;;, besides
N + N, biases. For sparse RBMs, the number of interlayer
couplings is N x N, while the number of bias terms remains
N + Nj,.

The connectivity structures corresponding to the two archi-
tectures are visualized in Fig. 1. Notice that the connections
across the periodic boundary are not shown. For compar-
ison, it is also worth mentioning that in the case of the
unrestricted Boltzmann machine considered in Ref. [17], in-
tralayer visible-visible and hidden-hidden direct interactions
are included, but they are limited to the nearest-neighbor
couplings. The corresponding connectivity structure is also
shown in Fig. 1. This structure is analogous to that of the
shadow wave function introduced in Refs. [57,58] to describe
the liquid and solid phases of helium-4.

Sparse RBMs with short-range interlayer connections have
been previously considered also in Ref. [41]. In that reference,
they have been show to be equivalent to a specific type of
entangled plaquette states. Due to the (exponentially) more
favorable scaling of the computation cost, they allow the
use of larger plaquettes. [41]. It has also been shown that
certain topological states, namely the toric code and the one-
dimensional symmetry-protected topological cluster state, ad-
mit an exact representation via RBM with local inter-layer
connections [40]. In practical applications, accurately ap-
proximating the ground-state wave function via dense RBMs
requires a number of hidden units N, 2 N. Thus, the number
of parameters to be optimized scales, to leading order (without
counting the bias terms), at least as N°. In clean periodic sys-
tems, translational invariance can be exploited to reduce this
quadratic scaling to a linear scaling with system size [1,48].
However, this is not possible in disordered models, which are
the main focus of this article. As shown in Sec. III, sparse
RBMs can reach high accuracy already for N, < N, implying
a substantial reduction of the number of parameters to be
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FIG. 1. Representation of the connectivity structures of four
different artificial neural networks. Segments indicate the allowed
interactions. Diagrams (a) and (b) represent examples of the sparse
restricted Boltzmann machine employed in this article, whereby
visible spins interact with a limited number of local hidden neurons;
in the cases visualized here, this number is N. =2 (a) and N, =
3 (b). Diagram (c) represents the standard dense restricted Boltz-
mann machine with all-to-all inter-layer connectivity [1]. Diagram
(d) represents a type of unrestricted Boltzmann machine [17], alias
a shadow wave function [57,58]. This is characterized by interlayer
connections only among spins corresponding to the same index, plus
nearest-neighbor intralayer connections.

optimized. It is worth mentioning that one could implement
sparse RBMs with larger hidden layers N, > N. This would
provide the same flexibility one has with dense RBMs. In
this respect, it is worth recalling that dense RBMs with an
arbitrarily large number of hidden neurons can, in principle,
approximate any binary distribution [59,60]. They share this
propriety with deep neural networks with many hidden lay-
ers. It follows that a sparse RBM with sufficiently large N
and N, must also be a universal approximator. However, in
practice the number of neurons in the unique hidden layer
of an RBM might have to increase exponentially with the
system size [61], making the training process and RBM-based
Monte Carlo simulations computationally impractical. This
highlights the importance of identifying RBM architectures
that reach a sufficient accuracy with a limited number of
parameters.

For the RBM, the probability associated with the visible-
spin configuration x is computed as the marginal distribution
over all possible hidden-spin configurations h:

1
P) =) Pax.h)= -3 expl-Hrpu@. h)]. ()
h h

The normalization factor Z = Zx’h exp [—HgrpMm(x, k)] is
the partition function. The absence of intralayer interac-
tions allows one to analytically trace out the hidden-spin
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configurations, resulting in the (unnormalized) marginal
distribution P(x) o exp (Zi ajx;j)[]; Fi(x), where Fi(x)=
2cosh[b; + > N Jijxjl, and N indicates the set of visible-
spin indices j connected to the hidden neuron i. For the dense
RBM, this set is A; = {1, ..., N} for any i. For the sparse
RBM we implement, one has N; = {i — (N.//2),...,i—
(N://2) + N, — 1}. As proposed in Ref. [1], the function P(x)
can be used to define an (unnormalized) ground-state wave
function, YreMm(x) o< P(x).

In the general case, the RBM parameters W should be
complex-valued in order to describe both amplitude and
phase. Otherwise, one could consider two real-valued RBMs,
one for the amplitude and the other for the phase. In this
article, we consider only models whose ground-state wave
function can be assumed to be real and non-negative in the
chosen computational basis. Therefore, the RBM parameters
can be restricted to real values. The RBM could be trained
via the variational minimization of the energy expectation
value for the state |Ygrpm) [1]. This procedure is analogous
to the reinforcement learning schemes employed in the field
of machine learning, with the (negative) energy expectation
value playing the role of a reward function. In many machine-
learning applications of RBMs, the parameters W are de-
termined instead via unsupervised machine-learning [2]. In
these schemes, the RBM is trained to mimic the unknown
distribution underlying a dataset of stochastic samples, as
mentioned above. To generate the training dataset, we use
PQMC algorithms, as explained in the following.

B. Projective Quantum Monte Carlo simulations

PQMC algorithms are designed to simulate the ground
state of quantum systems by stochastically evolving the
imaginary-time Schrodinger equation. In the practical imple-
mentation, the algorithm efficiency is boosted by introducing
a suitable Ansatz for the ground-state wave function. This is
usually referred to as a guiding function. It is indicated in the
following as ¥ (x). In the PQMC simulation, one allows the
product f(x, ) = ¥ (x, T)¥c(x) to evolve, where ¥ (x, ) is
the time-dependent wave function, according to the modified
imaginary-time Schrédinger equation:

fet+Ar) =) G.x, AT)f(¥, 7). 4)

Here, G(x,x', At) = G(x, ¥/, Ar)fg((:,)), where G(x, x’, A1)

= (x| exp [~ AT(H — Eg¢)]|x’) is the imaginary-time Green’s
function for a time step A7, Er is a reference energy intro-
duced to stabilize the dynamics, and we set 2 = 1 throughout
this article.

The dynamics is simulated by stochastically evolving a
large population of system configurations, usually called ran-
dom walkers. These random walkers are subjected to stochas-
tic configuration updates and to a branching process whereby
they are replicated or annihilated. Specifically, we employ the
continuous-time algorithm of Refs. [17,62,63]. This avoids fi-
nite time-step errors. To sample the configuration updates, one
has to compute the ratio of guiding-function values ff((;)) for

all possible transitions x* — x induced by the Hamiltonian. In
the case of (1), the allowed transitions correspond to the N

possible spin flips. If an RBM wave function is chosen as a
guiding function, i.e., if ¥g(x) = Yrpm(x), the ratio for the
flip of spin j is evaluated as

Ye(x) , Fi(x)
G—/ = exp(—Zijj) l_[ R (5)
Vo) 1 Fan
J
wherex = {x|, ..., —x;-, ..., Xy }. Due to the reduced number

of factors, sparse RBMs with N, < N, lead to a substantial
reduction of the computational cost of evaluating Eq. (5). The
evaluation of wave-function ratios represents the computa-
tional bottleneck of both variational and projective quantum
Monte Carlo simulations. Therefore, by using sparse RBMs
instead of dense RBMs, one obtains a substantial reduction
in the computational complexity. Specifically, one obtains a
speed-up of order N, /N,. It is worth mentioning that for both
dense and sparse RBMs, the computational cost of evaluating
the arguments b; + ) ;5. Jijx; of the cosh function appearing
in F;(x) can be substantially reduced by bookkeeping their val-
ues, updating them only when a visible-spin flip is performed.

To implement the branching process, and for the tuning of
E..¢, we use the textbook recipe of Ref. [64]. The tuning of
E.r is designed to stabilize the average number of random
walkers close to a target value N,,. In the long imaginary-time
limit, the random walkers sample spin configurations with
a probability distribution proportional to f(x,t — oc0) =
Yo (x)Yo(x), where ¥y(x) is the ground-state wave function.
In the large random-walker population limit, N,, — oo, the
above approximate identity becomes exact. Therefore, one
obtains unbiased estimates of the ground-state energy E via
Monte Carlo integration of the following formula:

E — fo(x, T — oo)Eloc(x)
Y flx, T — 00)

(6)

Hy = (x|H|x"). Analogous formulas can be written for other
operators that commute with the Hamiltonian. The forward-
walking technique provides unbiased estimates also for other
operators with a diagonal representation in the chosen compu-
tational basis (see, e.g., Ref. [65]). For finite N,, a systematic
bias might occur [45-47,66—68]. This is known to be the
major deficiency of PQMC algorithms. In fact, if one does not
introduce a guiding function, i.e., if one sets ¥g(x) = 1, the
random-walker population N, required to keep this systematic
bias below a given threshold increases exponentially with the
system size [47]. If Y (x) is a reasonably good approximation
for the ground-state wave function 1(x), the convergence to
the exact Ny, — oo limit is drastically accelerated [17]. This
allows one to reduce the bias to negligible values, thus obtain-
ing unbiased predictions with a computationally affordable
random-walker population. As shown in Ref. [9] and briefly
summarized below, one can use configurations sampled from
PQMC simulations to train RBM wave functions in an un-
supervised learning scheme. The trained RBMs can be used
in turn as a guiding function for a subsequent PQMC run,
eliminating the finite N,, bias. This scheme is briefly described
in Sec. IID.

where the local energy is Ej.(x') = Zx H,
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C. Unsupervised learning for RBMs

In unsupervised learning, the RBM is trained by maxi-
mizing the log-likelihood L(W) =), In P(x;) of a training
set; the index [ labels the instances in the training set. This
is equivalent to the minimization of the Kullback-Leibler
divergence [4]. For two generic distributions p(x) and g(x),
the Kullback-Leibler divergence reads

q®)
px)’

In the case discussed here, g(x) is identified with the distribu-
tion of the random walkers f(x, T — o0) obtained via PQMC
simulations, while p(x) corresponds to the RBM marginal
distribution P(x). The optimization of the RBM parameters
W can be performed using the stochastic gradient ascent
algorithm. One performs many updates of the RBM parame-
ters following the log-likelihood gradient computed on small,
randomly sampled minibatches of training instances. The
gradients are computed via the k-step contrastive divergence
algorithm [69]. This involves k iterations of alternated Gibbs
sampling of hidden and visible variables, starting from the
visible values of the training instances. In this article, the plain
vanilla stochastic gradient ascent algorithm is augmented only
by adding a momentum term proportional to the gradient
computed at the previous update. Also learning-rate annealing
is adopted, as explained below. All details of this algorithm are
described in Ref. [4]. Notice that, for the values of the binary
spin-variables, we follow the physics convention x; = &1
and h; = %1, instead of the convention x; = {0, 1} and #; =
{0, 1}, which is more common in the machine-learning liter-
ature. The modified algorithm corresponding to the physics
notation is provided in Ref. [9]. See also Refs. [7,8]. The
use of sparse RBMs implies simple algorithmic modifica-
tions with respect to the standard dense models. In particu-
lar, one has to compute only N x N, gradients with respect
to the coupling parameters, as opposed to N x N,. Gibbs
sampling is performed with the following binary probability
distributions:

KL(gllp) =) _q(x)In (7

1
—1(X) =
p/’h 1( ) 1+exp(_2216./\/,x/]”_2bl)
and
1
px,-:l(h):

1+ exp(— ZZieJ\fj h,’J,’j — 2aj)

for hidden and visible variables, respectively. Clearly,
Phi=1x) =1 — pp=1(x) and py—_1(h) =1 — py,=1(h).

D. Self-learning PQMC algorithm

Reference [9] presented a self-learning PQMC algorithm
whereby an unsupervised learning scheme is used to train
the RBM. Specifically, the RBM learns the probability dis-
tribution corresponding to a large random-walker population
produced by a PQMC simulation after a long imaginary-time
projection. The self-learning protocol is actually implemented
by performing several consecutive PQMC runs, hereby la-
beled by the index s, for an imaginary-time 7,. Each run
is guided by a different guiding function ¢, (x), and it is

followed by an unsupervised learning stage that provides an
RBM such that Pi(x) o ¥g, (x)¥o(x). The guiding function
for the next PQMC run is v¢,,, (x) = +/Ps(x). For the initial
run, a guiding function based on the square root of an RBM
with random parameters is used. The use of the square root
of the RBM probability distribution implies straightforward
modifications to the formulas for the guiding-function ratios
Eq. (5) and for Ejoc(x). If Ny, and 7, are large enough, and if
the training of the RBM succeeds, one has a fast convergence
Yg, (x) = Yo(x) for s — oo [9]. Even if these assumptions
are not exactly satisfied, this self-learning scheme provides re-
markably accurate approximations for the ground-state wave
function. This accuracy is quantified in Sec. III by comparing
the energy expectation value corresponding to the optimized
RBM guiding function, defined as

W, . |HlYa,..)

E = ,
(V6,5 1V, 00)

()

with the exact ground-state energy. These expectation values
can be determined via standard Monte Carlo integration per-
formed with the single spin-flip METROPOLIS algorithm.

Even more importantly, the RBM guiding function turns
out to be sufficiently accurate to eliminate the possible bias in
the PQMC results due to the finite Ny. This is demonstrated
by the data reported in Sec. III.

E. Simulation details

The results reported in Sec. III are obtained with the
following simulation parameters. The target random-walker
population is Ny, = 10*. The time step is At = 0.04.

The final imaginary time of each PQMC run is 7, = 20.
The training dataset is accumulated by storing N, /20 ran-
domly selected walkers at each imaginary-time step, exclud-
ing the initial time segment of each PQMC run corresponding
to T € [20s, 20s + 8]. The number of PQMC runs ranges from
20 to 50.

In each unsupervised-learning stage, the number of
stochastic gradient ascent steps is Nyeps = 5 X 10*. The mini-
batch size is N, = 20. The learning rate 7 is kept fixed within
each learning stage, but it is annealed stage after stage, follow-
ing the simple empirical protocol n(s) = noc’; the annealing
rate is between ¢ = 0.65 and 0.85, and the learning rate at the
first learning training stage s = 0 is 9 = 0.01. The coefficient
of the momentum term is v = n/10. The one-step contrastive
divergence algorithm, corresponding to k = 1, is found to
suffice. The initial guiding function y;_, (x) is the square root
of an RBM with random couplings sampled from a flat distri-
bution in the range J;; € [—0.025 : 0.025]. For the simulations
performed in the absence of a longitudinal magnetic field at
the boundaries, the bias terms a; and b; are initialized to zero,
and they are not updated during the training processes. This
choice reflects the spin-flip symmetry of the ground state. For
the simulations performed with a nonzero longitudinal field
at the boundaries, the bias terms are initialized to random
values with a flat distribution a;, b; € [0 : 0.05]. They are then
optimized during the training stage.
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FIG. 2. Energy per spin E/N corresponding to two optimized
neural-network Ansdtzes as a function of the number of connected
hidden spins N,.. For the dense RBMs, which are represented by
the empty symbols, N, coincides with the number of hidden spins
Nj,. The full symbols correspond to the sparse RBMs, for which
N, is the number of allowed local connections. The (blue) squares
represent the results for the clean ferromagnetic Ising model, and
they refer to the left vertical axis. The (brown) circles correspond to
one realization of the random Ising model with couplings sampled
from the flat distribution (see text), and they refer to the right vertical
axis. Both models include N = 80 spins and they are simulated
at the coupling strength corresponding to the respective ferromag-
netic quantum critical points. The horizontal lines indicate the exact
ground-state energies computed through the Jordan-Wigner transfor-
mation for N = 80.

III. RESULTS

To analyze the accuracy of the optimized RBM wave func-
tions, we compare the corresponding energy expectation value
(8) with the exact ground-state energy. The comparison is per-
formed for the pure and the random ferromagnetic quantum
Ising chains. In the latter case, the couplings are sampled from
the flat distribution defined at the beginning of Sec. II. The
exact ground-state energies, hereafter denoted with Eyy, are
determined via the Jordan-Wigner transformation. We follow
the formalisms reported in Refs. [70,71] and in Ref. [72] for
the pure and the random models, respectively. The comparison
for the system size N = 80 is shown in Fig. 2. This analysis is
performed at the respective quantum critical points for the two
models (see Sec. II). The motivation is that, in this regime, it is
more challenging to approximate ground-state wave functions
with neural-network Ansditzes [1,17,41,73].

For the pure model, the dense RBM reaches a relative er-
ror eq = (E — Eyw)/|Eyw| ~ 7 x 10~* with Nj, = 80 hidden
neurons. The sparse RBM reaches a similar relative error with
just N. = 15 allowed connections per visible spins, while with
N, = 27 one has e, ~ 4 x 10~*. For the specific realization
of the random chain considered in Fig. 2, the dense RBM
is not particularly accurate, reaching ey ~ 1.3 x 1073 with
Nj, = 160. Training even larger dense RBMs becomes compu-
tationally challenging. Instead, the sparse RBM with N, = 19
provides ey >~ 1.3 x 107, corresponding to an accuracy im-
provement of one order of magnitude. These findings suggest

0.2 1 M sparse N =5
2 I sparse N =9
S N sparse N =13 E=
E,]' 0.15 1 ] dense N =80 3
. — N
< 11N
2
o 0.1 : o
[S) Ryix
=)
2
D 0.05 1
<
&=
0= T3 3 3 3
0 2x10° 4x107 6x10° 8x10°
Crel

FIG. 3. Histogram of the relative errors e,y = (E — Eyw)/|Emw|
of the ground-state energies E corresponding to the optimized RBM
Ansdtzes, with respect to the (exact) Jordan-Wigner result Epy. A
total of 60 realizations of the random couplings are considered. The
transverse field intensity is set at the ferromagnetic quantum critical
point. The full columns correspond to three sparse RBMs different
connection numbers N.. The empty columns correspond to a dense
RBM with N, = 80 hidden neurons. The width of some columns is
reduced for visibility.

that sparse RBMs should be preferred to the standard dense
RBMs since for pure models they achieve comparable accu-
racy at a reduced computational cost and, most importantly,
they outperform dense RBMs for random models. This is due
to the better optimization process that can be attained with a
reduced number of variational parameters.

With disordered systems, it is crucial to verify that high
accuracy can be achieved with any realization of the random
couplings. To verify this, we analyze in Fig. 3 the histogram
of the relative errors for 60 realizations. The four datasets
correspond to three sparse RBMs with different N, and to one
dense RBM with N, = 80. For the sparse RBMs, one observes
a systematic improvement of the accuracy with increasing N,
for both average and maximum errors. For the dense RBM, the
average relative error is e, = 1.4(4) x 1073 (the standard de-
viation is in parentheses), which is comparable to the result for
the sparse RBM with N. =9, namely &, = 1.2(6) x 1073.
This is remarkable, given that the sparse RBM has only a
fraction N,./Nj, of the variational parameters included in the
dense RBM. This confirms that, at least in one dimension,
sparse RBMs are particularly suitable to describe random spin
systems.

One of our main goals is to obtain sufficiently accurate
guiding functions to eliminate the bias in the PQMC simu-
lations due to the finite random-walker population. Figure 4
shows the histogram of the energy predictions from PQMC
simulations guided by the optimized sparse RBMs. These
predictions are computed via Monte Carlo integration of
Eq. (6). Again, 60 realizations of the random Ising chain are
considered, and the analysis is performed at criticality, since
this is the regime where eliminating the bias requires larger
random-walker populations [17,47]. The PQMC results agree
precisely with the Jordan-Wigner predictions, displaying only
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FIG. 4. Histogram of the relative errors e, of the ground-state
energies E predicted by projective quantum Monte Carlo simulations
guided by optimized sparse RBMs. A total of 60 realizations of the
random couplings of the quantum Ising chain are considered. The
system parameters are as in Fig. 3. The three datasets correspond
to different connection numbers N.. The width of some columns is
reduced for visibility.

random fluctuations around e, = 0. These fluctuations are
compatible with the statistical uncertainty of the Monte Carlo
integration (not shown in the figure). As expected, these fluc-
tuations decrease for increasing N,, since the guiding function
becomes more accurate. This reduces the fluctuations in the
local energy Ejo.(x) and, therefore, in the result of the Monte
Carlo integration.

As discussed above, the sparse RBMs allow us to per-
form efficient PQMC simulations of random and, more gen-
erally, of inhomogeneous quantum spin systems. As a fur-
ther showcase, we consider the inhomogeneity due to fixed
boundary conditions. In this setup, the average magnetizations
of the extremal spins are fixed at their maximum values,
Le., m(j) = (Yolo o)/ (Yolo) =1 for j =1 and j=N.
The fixed boundary conditions are conveniently implemented
by applying strong longitudinal magnetic fields on the ex-
tremal spins. Specifically, we add to the Hamiltonian (1)
a border term —A(of + og) with A = 500. Notice that the
fixed boundary conditions break the spin-flip symmetry of
the Hamiltonian. We determine via PQMC simulations the
average magnetization profiles m(j) of the pure ferromagnetic
model and of a random chain with couplings sampled from the
binary distribution defined in Sec. II. The guiding function is
the optimized sparse RBM with N, = 9. The PQMC predic-
tions are compared with the Fisher—de Gennes scaling theory
m(j) = N=Xf(j/N), where x is the scaling dimension of the
magnetization operator and f(j/N) is its scaling function. For
conformally invariant two-dimensional models (that is, 1+1
in the present quantum model), and assuming equal boundary
conditions at the two extremes, as we do here, the scaling
relation can be written as

N AN AN
m(])_A|:;s1n<nﬁ>} , )

2
a
. @ N=122 —— )
1.8% N=82 o - a
N=42 —=—
16 conformal scaling ——
Na)
g
=
z Pure
0 OI.2 OI.4 OI.6 OI.8 1
_]’
241 (b)

N=82 e
conformal scaling ——

Random

FIG. 5. Profile of the rescaled local magnetization N*m(j) as
a function of the rescaled spin index j/ = (j — 1/2)/N, where j =
1,...,N is the site index and N is the system size. m(j) is the
average magnetization at the site j, and x is the scaling dimension
of the magnetization. The different symbols represent the PQMC
predictions for different N. The system has fixed boundary condi-
tions m(1) = m(N) = 1. The transverse field intensity corresponds
to the ferromagnetic quantum critical point. Panel (a) corresponds to
a pure ferromagnetic Ising model. Panel (b) corresponds to a random
Ising chain, with the couplings sampled from a binary distribution
(see the text). The results are averaged over 1200 realizations. The
continuous (black) curves represent fitting functions based on the
Fisher—de Gennes scaling relation for conformally invariant models;
see Eq. (9). The fitted scaling dimensions are consistent with the
expected results, x,, = 1/8 and x,, = (3 — \fS)/4, for the pure and
the random models, respectively (see the text).

where A is a nonuniversal prefactor [53]. More generally,
Eq. (9) represents the first term of a Fourier expansion [54].
In the upper panel of Fig. 5, the PQMC prediction for the pure
model is compared with the conformal-invariance scaling,
considering three different system sizes. The agreement is
very precise already for the intermediate size we consider,
namely N = 82. This indicates that, for comparable or even
larger sizes, possible corrections to the universal scaling due
to finite-size effects are negligible. By using the scaling
dimension x as a fitting parameter on the m(j) data for
N = 122, besides the prefactor A, we obtain x = 0.131(5),
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in agreement with the expected result x = 1/8. The error bar
takes into account the fluctuations observed when removing
up to three extremal points from the fit. The agreement with
the conformal-invariance scaling is expected, since the pure
model is conformally invariant. Instead, the random Ising
chain breaks conformal invariance. However, it was found in
Ref. [54] that the Fourier terms beyond the first one provide
almost negligible contributions. In the lower panel of Fig. 5,
the conformal scaling is compared with the PQMC results
for the random model. To reduce the fluctuations originating
from the large variations of the magnetization profiles for
different realizations of the random couplings, the PQMC
data are averaged over as many as 1200 instances. Only
the system size N = 82 is considered, since this is expected
to suffice to essentially eliminate finite-size corrections, as
demonstrated above for the pure model. We find agreement
with the conformal scaling, thus confirming the finding of
Ref. [54]. By fitting the conformal scaling relations to the
PQMC results, we obtain y = 0.19(1), in agreement with
the renormalization-group prediction for random Ising chains,
x = (3 —+/5)/4 = 0.190 98 [55,74].

IV. CONCLUSIONS

We have investigated the use of artificial neural net-
works to approximate the ground-state wave function of
one-dimensional disordered quantum spin models. Our fo-
cus was on the feasibility of reaching high accuracy and
on the computational efficiency of the neural-network mod-
els. Both issues are substantially more relevant in quantum
many-body physics compared to the typical applications of
neural networks in computer science and in engineering. We
have found that restricted Boltzmann machines with a local
sparse connectivity reach higher accuracy, when trained via
unsupervised learning, compared to the standard dense RBMs
with all-to-all interlayer connectivity. This is a consequential
finding that highlights the crucial role of the connectivity
structure of the neural-network wave functions. The reduced
connectivity of the sparse RBMs we implemented leads to a
linear scaling with system size of the number of optimizable
parameters. This has to be compared to the generally quadratic

scaling of dense RBMs. The sparse connectivity facilitates
the training process, allowing the RBM model to better ap-
proximate the ground state, and it also accelerates the Monte
Carlo simulations of RBMs, since the computational cost
to evaluate wave-function ratios is reduced compared to the
case of dense connectivity. The optimized RBMs can also be
used as guiding functions for projective quantum Monte Carlo
simulations. In particular, we have shown that they allow one
to completely eliminate the bias due to the finite random
walker population in disordered spin systems. This possible
bias is a weakness of the PQMC algorithms [75,76], and
the lack of appropriate guiding functions has so-far limited
the scope of their application in this field. Notably, the sparse
connectivity accelerates also the PQMC simulations.

As a future perspective, sparse RBMs could find use
in studies of combinatorial optimization problems. In that
context, projective quantum Monte Carlo algorithms have
emerged as a stringent benchmark for physical quantum an-
nealers [47,77-79]. However, the lack of guiding functions
appropriate for the typical instances of complex optimization
problems, which can be mapped to spin-glass models, has lim-
ited their success [80]. Further studies should be performed to
test the accuracy of sparse RBMs in more challenging models
than the random Ising chains considered here. A relevant
testbed would be higher-dimensional spin Hamiltonians, pos-
sibly with long-range interactions or frustrated interactions. In
particular, frustration effects have been shown to negatively
affect the generalization properties of dense RBMs [81]. In
this context, it would also be interesting to investigate differ-
ent sparse connectivities inspired by the theory of complex
networks. Interesting candidates are RBMs with scale-free
or small-world topologies [51]. We leave these endeavors to
future studies.
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