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Abstract Forecasting and early warning systems are important investments to protect lives, properties,
and livelihood. While early warning systems are frequently used to predict the magnitude, location, and
timing of potentially damaging events, these systems rarely provide impact estimates, such as the expected
amount and distribution of physical damage, human consequences, disruption of services, or financial
loss. Complementing early warning systems with impact forecasts has a twofold advantage: It would provide
decision makers with richer information to take informed decisions about emergency measures and focus
the attention of different disciplines on a common target. This would allow capitalizing on synergies
between different disciplines and boosting the development of multihazard early warning systems. This
review discusses the state of the art in impact forecasting for a wide range of natural hazards. We outline the
added value of impact‐based warnings compared to hazard forecasting for the emergency phase, indicate
challenges and pitfalls, and synthesize the review results across hazard types most relevant for Europe.

Plain Language Summary Forecasting and early warning systems are important investments to
protect lives, properties and livelihood. While such systems are frequently used to predict the magnitude,
location, and timing of potentially damaging events, they rarely provide impact estimates, such as the
expected physical damage, human consequences, disruption of services, or financial loss. Extending hazard
forecast systems to include impact estimates promises many benefits for the emergency phase, for
instance, for organizing evacuations. We review and compare the state of the art of impact forecasting across
a wide range of natural hazards and outline opportunities and key challenges for research and
development of impact forecasting.

1. Introduction

Over the last decade (2010–2019), relevant natural loss events worldwide caused on average economic losses
in excess of USD 187 billion per year (Munich Re, 2019) and displaced an average of 24 million people each
year (United Nations Office for Disaster Risk Reduction [UNDRR], 2019). Among the global risks, extreme
weather events and geophysical phenomena such as damaging earthquakes and tsunamis are perceived as
the top first and third risks in terms of likelihood and as the top third and fifth risks in terms of impact
(World Economic Forum, 2019). Urbanization, population growth, increasing interconnectivity, and
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interdependence of critical infrastructure are expected to further aggravate the risks imposed by natural
hazards (Helbing, 2013; Jongman, 2018; Vousdoukas et al., 2018; Winsemius et al., 2016). Climate change
is also acting as a major driver and amplifier of the losses related to hydrometeorological events
(UNDRR, 2019). Both heat waves and droughts will become more frequent and are expected to persist over
longer time periods under climate change (Perkins et al., 2012; Russo et al., 2015; Samaniego et al., 2018).
Similarly, climate‐driven increases in river, urban, and coastal flooding are a global problem, affecting
mainly developing countries and also industrialized regions (Blöschl et al., 2019; Hallegatte et al., 2013;
Willner et al., 2018).

Forecasting, early warning and the provision of rapid disaster risk information are cornerstones of disaster
risk reduction (UNDRR, 2019). The Sendai Framework for Disaster Risk Reduction, agreed upon at the
Third UNWorld Conference on Disaster Risk Reduction in 2015, calls for a substantial increase in the avail-
ability of multihazard early warning systems and rapid disaster risk information by 2030 (United Nations
International Strategy for Disaster Reduction [UNISDR], 2015b). Forecast and warning have focused on
physical event characteristics, such as magnitude, spatial extent, and duration of the impending event.
Recently, the provision of information on the potential event impacts, such as number and location of
affected people, damage to buildings and infrastructure, or disruption of services, has gained attention.
This requires considering additional information on exposure, that is, people, property, or other elements
present in hazard zones (Pittore et al., 2017; UNISDR, 2009), and on vulnerability, defined as the character-
istics of the exposed communities, systems, or assets that make them susceptible to the damaging effects of a
hazard (UNISDR, 2009). Impact forecasting and warning is an emerging topic in science, for companies
developing forecasting technology, and at the level of institutions responsible for natural hazards manage-
ment (Taylor et al., 2018; Zhang et al., 2019). For instance, the World Meteorological Organization
(WMO) has recently launched a program on multihazard impact‐based forecast and warning services
(WMO, 2015). This program aims to assist WMO members to further develop forecast and warning services
tailored to the needs of users to fully perceive and understand the consequences of severe weather events
and, as a consequence, to undertake appropriate mitigating actions.

In this paper we review the state of the art in forecasting impacts of hazardous events for a wide range of
geophysical and weather‐/climate‐related natural hazards. We define forecasting as the provision of timely
information to improve the management in the emergency phase, that is, shortly before, during and after a
hazardous event. Hence, we do not address medium‐ and long‐term risk assessments that are carried out to
assist decision makers in risk prevention and mitigation activities. We discuss the added value of impact
forecasting (as a basis for impact‐based warnings) compared to hazard forecasting (hazard‐based warning),
indicate challenges and pitfalls, and synthesize the review results across hazard types. Being the first review
of impact forecasting of natural hazards, this paper demonstrates that the state of the art in impact forecast-
ing is very different across hazard types and disciplines. As forecasting science and technology are typically
advanced within specific disciplinary contexts, this comparative review across hazard types aims at transfer-
ring knowledge and harmonizing concepts across discipline borders and bridging gaps between different
scientific communities and between science and practice.

1.1. Hazard Forecasting: Provision of Timely Information on the Physical Event Characteristics

The United Nations terminology on disaster risk reduction (UNISDR, 2009) defines an early warning system
as “the set of capacities needed to generate and disseminate timely and meaningful warning information to
enable individuals, communities and organizations threatened by a hazard to prepare and to act appropriately
and in sufficient time to reduce the possibility of harm or loss.”Monitoring, analysis, and forecasting of hazards
are an essential cornerstone of early warning systems. Hazard forecasts provide information on the physical
event characteristics, such as the location, timing, and magnitude of a potentially damaging event.

We consider events as natural phenomena with a specific magnitude that unfold with a given space‐time
footprint and with the potential for adverse consequences. The event footprint may vary significantly across
hazards. Examples are short‐term, local‐scale events, for example, pluvial floods with event duration and
extent in the order of 1 hr and 1 km, even shorter‐term but large‐scale events, such as earthquakes, and
creeping events, for example, droughts, with duration and extent in the order of months to years and several
hundred to a few thousand kilometers (Figure 1). Accordingly, the possibilities and the challenges for emer-
gency management in response to a forecast vary widely across hazards.
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In addition to the large range of event footprints, lead times of operational warning systems and forecast pos-
sibilities vary strongly between hazard types (exemplified in Figure 2). In the case of earthquakes, for
instance, the prediction of the location, time, and magnitude of an event is not possible prior to its occur-
rence. However, a rapid estimation of event characteristics may be carried out as soon as the event has been
detected. Earthquake early warning (EEW) refers to the prompt detection of a potentially damaging earth-
quake within a few seconds from its actual onset, possibly triggering immediate risk mitigation measures.

Figure 2. The concept of early warning (EW) and its placement in time with respect to the actual occurrence of the
event, exemplified for earthquakes, windstorms, and droughts. In the case of earthquakes, even very short lead times,
up to 60 s after the occurrence of the event (dark flash), still allow to automatically trigger real‐time mitigation measures,
such as emergency braking of high‐speed trains, before the most potentially dangerous earthquake waves reach a
given location (light flash). For earthquakes also Operational Earthquake Forecasting (OEF) is indicated. Windstorms
can be forecasted with lead times from a couple of hours to several days. The lead times of droughts are even longer,
in the range of one to several months.

Figure 1. Space‐timescales of the hazard types covered. These scales are related to the event's spatial extent (or footprint)
and its duration. For earthquakes the spatial scale shown is the range within which severe impacts occur for
significant events. Colors code the maturity of impact forecasting systems from “development in infancy” (red) through
“prototype systems exist” (yellow) to “operational systems implemented” (blue). The assignment to a certain maturity
class is based on our synthesis (section 3.1).
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The lead time of EEW systems is thus in the order of several seconds to several tenths of seconds (Minson
et al., 2018; Nakamura et al., 2011; Satriano et al., 2011; United Nations Environment Programme
[UNEP], 2012). For windstorms, National Hydro‐Meteorological Services (NHMSs) issue forecasts and early
warnings one to several days in advance, providing estimates of the expected wind gust velocities for the
potentially affected locations. Several NHMSs issue weather warnings based on short‐term forecasts with
lead times of less than 48 hr (e.g., meteoalarm.net from EUMETNET, which currently pools the warnings
from 34 European countries; Stepek et al., 2012). Droughts develop much slower compared to earthquakes
and windstorms. Here forecasts and early warning can be issued one to several months prior to the event
(Pozzi et al., 2013; Sheffield et al., 2014). Consequentially, our understanding of forecasting includes pree-
vent predictions, as in the case of windstorms and droughts, to near‐real‐time assessments once an event
has already occurred as in the case of earthquakes.

It is important to consider the uncertainty inherent in a forecast, and it has been argued that probabilistic
forecasts have greater value for decision making than single deterministic forecasts (Fundel et al., 2019;
Joslyn & LeClerc, 2013; Palmer, 2000; Roulston et al., 2006). Probabilistic forecasts potentially provide more
reliable and a greater wealth of forecast information and longer lead time (Boelee et al., 2019; Palmer, 2017)
and can increase trust in forecasts (LeClerc & Joslyn, 2015). Nowadays NHMSs frequently use ensemble pre-
diction systems to consider uncertainty inherent in a forecast. Such ensembles are based on tens of weather
forecasts with different initial conditions and model physics or by pooling the output of several numerical
weather prediction (NWP) models. Ensembles provide not only a general estimate of the uncertainty of fore-
casts but in particular also the probability of occurrence of extreme events. Different indices to summarize
the probability of extreme events are used by weather services for operational warnings. For example, the
extreme forecast index (EFI; Lalaurette, 2003) ranks the departure between the statistical distribution of
an ensemble forecast and the observational event catalog. It ranges from −1 to +1, with 0 and +1 denoting
a standard situation and a record‐breaking high value, respectively. Another index is the shift of tails (SOT)
index, which indicates whether a fraction of the members forecast an extreme event, even if the rest of the
members do not, thus putting even more emphasis on the most extreme events (Zsoter, 2006). In the case of
volcanic eruptions, most forecasts are probabilistic and often combine the analysis of monitoring parameters
with information about past behavior of a volcano by means of statistical tools, such as Bayesian event trees
(Marzocchi et al., 2008; Rouwet et al., 2014; Tonini et al., 2015) or Bayesian Belief Networks (Aspinall &
Woo, 2014). For EEW, probabilistic methodologies have been employed, often based on Bayesian statistics,
to assimilate noisy or partial instrumental observations (Cua & Heaton, 2007; Meier et al., 2015) or to detect
multiple overlapping events (Liu & Yamada, 2014). Probabilistic approaches have been integrated between
2008 and 2016 in the prototyping phase of the EEW system for theWest Coast of the United States. Similar to
numerical weather models, ensemble forecasting for OEF applications is also increasingly considered
(Marzocchi et al., 2014; Shebalin et al., 2014; Van Dinther et al., 2019). Hence, not only event footprints
and lead times vary between hazard types but also forecasting concepts, such as providing probabilistic or
deterministic forecasts.

1.2. Impact Forecasting: Provision of Timely Information on the Socioeconomic
Event Consequences

We use the term impact forecasting as illustrated in Figure 3: Impact forecasting considers information on
the elements at risk, that is, the exposure and their vulnerability, to extend the traditional forecasting
model chain translating the hazard characteristics (intensity, duration, and spatial extent) into impact
statements. According to this definition, forecasting the inundation area due to a tsunami, for example,
belongs to hazard forecasting. It turns into an impact forecast as soon as the information on inundation
areas is combined with exposure and vulnerability information, so that the forecast allows deriving state-
ments about the affected elements and the respective values at risk. Impact forecasts can include direct
and indirect effects that can be described by quantitative physical and socioeconomic indicators, such
as affected critical infrastructure, number and location of damaged buildings, expected number of fatal-
ities and displaced people, and financial loss resulting from direct damage, business interruption, or dis-
ruptions of supply chains.

Particularly for weather hazards, there is a recent development to include general information about
expected adverse consequences and general behavioral recommendations (UNISDR, 2015a). For instance,
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severe weather warnings may include statements such as “Mobile homes will be heavily damaged or
destroyed,” or “Significant damage to roofs, windows and vehicles will occur” (Casteel, 2016). As such
warnings do not consider the specific exposure and vulnerability of the affected locations and are not
based on a hazard‐impact model, we do not include such general impact‐oriented forecasts and warnings
in our review.

The incorporation of exposure and vulnerability information and the link to the hazard information, for
example, through fragility curves, into the forecasting process requires additional efforts, data, and models
(Aznar‐Siguan & Bresch, 2019), hence adding further uncertainty. To be helpful for decision making, impact
forecasting typically depends on detailed knowledge of the local contexts (UNISDR, 2015a). Hence, the per-
spectives of stakeholders and decision makers earn an even more prominent role when moving from hazard
forecasting to impact forecasting. However, impact forecasting is expected to significantly improve the emer-
gency response by providing detailed and comprehensive information about the possible extent of a disaster
either prior to or directly after the event (UNISDR, 2015a). This is perceived as more meaningful than mere
hazard warnings, since it could provide the basis for more informed decisions pertaining to evacuations and
preparedness measures and forward‐looking resource allocation in general (WMO, 2015). As has been
learned from many past events, an accurate and timely hazard forecast alone does not allow for prevention
of major social or economic adverse consequences (WMO, 2015). Impact forecasting is motivated by the
observation that exposed people accept warnings more often, when they are provided with specific informa-
tion about impacts as well as behavioral recommendations on what to do (Weyrich et al., 2018). Hence, more
and more NHMS move toward forecasting and warning services that translate hazard information into sec-
tor‐ and location‐specific impacts, that is, they move from “what the weather will be” to “what the weather
will do” (Campbell et al., 2018).

Figure 3. Definition of impact forecasting used in this review: Impact forecasting extends the traditional hazard forecast
by including information on exposure and/or vulnerability, translating the physical hazard characteristics into
socioeconomic consequences.
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1.3. Hazard Types Considered and Paper Outline

Our review covers the following hazard types (see also Figure 1): windstorms, severe convective storms
(SCSs), droughts and heat waves, floods, coastal storm surges, earthquakes, tsunamis, and volcanic erup-
tions. This selection covers a wide range of geophysical and climate‐related hazards with very different phy-
sical characteristics and possibilities for forecasting and emergency management. These hazards are of high
relevance for Europe and also for many other regions around the world. Whenever possible, the review of
the different hazard types has been based on scientific peer‐reviewed articles. For those hazards and sectors,
where this constraint would exclude a substantial part of the work done, gray literature has also been
considered.

For each hazard type, our review is organized into four sections: (1) hazard forecasting: The state of the art in
forecasting hazard characteristics is briefly summarized, including lead times, forecast variables, and indica-
tors. This is supplemented by summary information on the main methodological approaches, on the status
in terms of operational forecasting and on the benefit of forecasts. (2) Impact forecasting: This section con-
tains an overview on impact models. It evaluates how hazard forecasts are translated into impact forecasts,
including information on the types of impacts that are typically considered and the impact indicators used.
(3) Uncertainties and challenges of impact forecasting: A summary on the issues of validation and forecast
uncertainty is provided. (4) Maturity and added value of impact forecasting: This section summarizes the
state of implementation of impact forecasting and evaluates the evidence on its added benefit compared
to hazard forecasts. Section 3 provides a comparative analysis of impact forecasting across the different
hazard types. It outlines key challenges in the development of impact forecasting.

2. State of the Art of Impact Forecasting
2.1. Extratropical Windstorms

Extratropical windstorms, also called winter storms or intensemidlatitude cyclones, form in association with
the strong temperature gradient between cold air in polar regions and warmer subtropical air. Cyclogenesis
and intensification typically take place along the polar front, which divides these two air masses. The passage
of extratropical storms is associated not only with strong winds and wind gusts (local sudden increases in
wind speed, typically a sharp increase of more than 5 m/s and lasting several seconds) but also with intense
precipitation and potentially storm surges. Hence, such storms are typically compound events, that is, events
for which more than one variable is involved (Zscheischler & Seneviratne, 2017). Western Europe is mostly
affected by windstorms in autumn and winter, which travel eastward along the North Atlantic storm track,
influenced by large‐scale weather patterns and atmospheric currents (Feser et al., 2015; Ulbrich et al., 2009).
Extratropical storms generally last for several days and affect areas, whichmay exceed a thousand kilometers
in length and several hundred kilometers in width (Fink et al., 2009). This affected area is generally denomi-
nated windstorm footprint. Wind impacts encompass direct damage to humans, infrastructure, agriculture
and forestry, transport, and industry due to damaging wind speeds, wind gusts, lightning, hail, and extreme
precipitation. Indirect impacts are flooding and storm surges triggered by the storm. We focus here on wind
impacts, while rainfall and surges are covered in other sections.
2.1.1. Extratropical Windstorms: Hazard Forecasting
Windstorm forecasts focus on the track and intensity of extratropical cyclones on the synoptic scale and on
the associated winds and wind gusts on the mesoscale. They are based on NWP models with grid sizes of
tens of kilometers and lead times of 1–2 weeks down to a few kilometers and 1–2 days, which are comple-
mented with real‐time observations such as satellite and radar imagery. There are well‐established theories
on the physical mechanisms leading to the development and intensification of extratropical cyclones,
including the formation of surface fronts and associated airflows (see Catto, 2016, for a review), and their
tracks and intensity are overall well predicted by NWP models several days in advance (Pantillon
et al., 2017). There are also efforts to develop seasonal forecasts for windstorms (Befort et al., 2019;
Renggli et al., 2011).

Extreme windstorms can be anticipated using EFI (Lalaurette, 2003; Petroliagis & Pinson, 2014) and SOT
(Boisserie et al., 2016) with skill up to 10 days in advance (Pantillon et al., 2017). However, a general issue
when using such indices for forecasting extreme events is to identify an adequate tradeoff between a rate
of detection and false alarms.
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Extratropical storms are operationally forecasted worldwide, for example, using global NWP models from
the European Center for Medium‐Range Forecasts (ECMWF) in Europe and the National Centers for
Environmental Prediction (NCEP) in the United States. In Europe, several National Weather Services
(NWS) provide windstorm warnings based on thresholds of wind speed and wind gusts, but those thresh-
olds differ among the weather services, as do the lead times that range between one and several days
ahead. This calls for a unified European warning system (Stepek et al., 2012). In the United States, the
NWS issues wind warnings for nonconvective storms based on uniform thresholds. As a consequence,
the majority of fatal and injury‐causing events occurs with winds below the high wind warning threshold
(25.9 m/s), while wind warnings are disproportionately issued in areas of complex terrain (Miller et
al., 2016). These examples highlight the need for forecasts based on impact rather than on thresholds
of hazard variables.

For windstorms with hazardous potential, warnings may encompass official announcements and siren sig-
nals, warnings issued via internet, television, and broadcasting and enhanced preparedness for emergency
services and disaster control. These early warnings can thus lead to less fatalities, damage reduction, disaster
mitigation, and better societal preparedness (Bergen & Murphy, 1978; Potter et al., 2018).
2.1.2. Extratropical Windstorms: Impact Forecasting
Several approaches have been developed to estimate the impacts associated with extratropical windstorms
(Klawa & Ulbrich, 2003; Palutikof & Skellern, 1991; Welker et al., 2016). Impact models are typically based
on empirical data. They relate the impact to the peak wind or wind gusts during the passage of a storm but
may include other meteorological factors such as storm duration. These models are commonly applied to
station observations, reanalysis data sets, or climate model data. They are mainly used to quantify the
damage to buildings and other infrastructure like roads, railways and bridges. Klawa and Ulbrich (2003)
introduced the storm severity index (SSI), a popular insurance socioeconomic loss model. It is based on
the cubed wind gusts (V3) to account for the wind's destructive power and uses only values exceeding the
local 98th percentile. This threshold was found to account for the local vulnerability of infrastructure and
buildings to wind gusts. The SSI includes population density as a proxy for insured property and is found
to highly correlate with actual losses from insurance companies. This simple approach was further devel-
oped and successfully applied to reanalyses, global, and regional climate model predictions and projections
(Booth et al., 2015; Donat et al., 2011; Leckebusch et al., 2007; Pinto et al., 2012). Other impact models range
from simple exponential damage functions to the probabilistic approach proposed by Heneka et al. (2006) to
account for the distribution of critical gust speeds among different buildings (Prahl et al., 2015). However,
impact models often do not consider a crucial factor, namely, the possible change in population and insured
values over time. Impact modeling for extratropical cyclones is a rather recent topic, and limited peer
reviewed literature is available.

Although impact models have been widely applied to long data sets for the past and future from reanalysis
and climate model projections, they have rarely been combined with NWP models to create impact fore-
casts. However, a few recent studies have emphasized the potential of this approach. Based on a 20‐year
homogeneous data set of ensemble forecasts, Pantillon et al. (2017) showed that the SSI of severe
European windstorms can be predicted with confidence up to 2–4 days in advance. This lead time may
seem short given that first hints of extreme windstorms can be derived from ensemble forecasts up to
10 days ahead, but it is certainly sufficient to issue warnings and take appropriate response. Pardowitz et
al. (2016) further demonstrated skill in predicting extratropical windstorm losses over Germany at the dis-
trict level for lead times beyond 1 week. This was achieved by using a loss model that required training with
records of local insurance data. Beyond these published studies, several companies in the insurance sector
(e.g., Willis Towers Watson, Aon, Guy Carpenter, AIR, RMS) provide loss estimates of impending or cur-
rent windstorm events as a service for their clients (see Pinto et al., 2019, for an overview). These models
link freely available forecasts from the weather services to in‐house company loss models. The results are
loss estimates and an uncertainty range, which is useful information for the clients for short‐term planning.
Unfortunately, little documentation is publicly available on the details of such models. One exception is the
recent study of Welker et al. (2020) comparing an insurer's proprietary model with the open‐source
CLIMADA (CLIMate ADAptation; Aznar‐Siguan & Bresch, 2019), which combines hazards, exposure,
and vulnerability. This and other open‐source initiatives will be key for the further development of impact
forecasts.
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2.1.3. Extratropical Windstorms: Uncertainties and Pitfalls of Impact Forecasting
Forecasting the impact of extratropical windstorms requires a combination of models for NWP and impact.
Uncertainties and pitfalls are thus inherited from both models. Statistical methods are often applied to
weather and climate model output to correct model deficiencies. For instance, Roberts et al. (2014) used a
statistical model to rescale the intensity of damaging gusts above 20 m/s in windstorm footprints from rea-
nalysis data. This improved the estimated wind impact for the 50 most extreme European windstorms
between 1979 and 2012 according to several loss model metrics. Other approaches targeted at a better esti-
mation of wind gusts via postprocessing, providing a closer agreement with observations (Haas &
Pinto, 2012; Haas et al., 2014). Intense wind gusts are often related to fine‐scale characteristics such as oro-
graphy, convection, and strong pressure gradients. However, even with a state‐of‐the‐art, kilometer‐scale
ensemble prediction system, Pantillon et al. (2018) found that specific windstorms show forecast errors less
than 1 day ahead, which cannot be corrected with statistical methods.

Concerning the uncertainty in impact models, Prahl et al. (2015) compared four windstorm damage func-
tions. They were applied to meteorological observations from stations over Germany and reanalysis model
data and were assessed against insurance loss data from the local to the national level. The authors found
that probabilistic models (e.g., Heneka et al., 2006) provide the most accurate estimates of insurance losses,
whereas the simpler deterministic SSI of Klawa and Ulbrich (2003) performs well for extreme losses.
Similarly, Pardowitz et al. (2016) found best results for forecasting windstorm losses by taking both meteor-
ological and impact model uncertainties into account, the latter arising from the local vulnerability and
exposure that are not known exactly. The meteorological model uncertainty was obtained from an ensemble
forecast postprocessed with statistical methods, while the damage model uncertainty was based on a logistic
regression analysis between gusts and damage records (Pardowitz et al., 2016). Other factors that may play a
role include differences in vulnerability, for example, associated with different construction types, and the
neglect of temporal changes, for instance, due to adaptation measures. Moreover, multiple consecutive
events (cyclone clustering; Pinto et al., 2014) or associated compound events such as flooding and storm
surges may lead to enhanced cumulative losses compared to single windstorm events. These results empha-
size the need to account for uncertainties in both meteorological and damage models. This will be a crucial
requirement for future developments of impact forecasting systems.
2.1.4. Extratropical Windstorms: Maturity and Added Value of Impact Forecasting
Forecasting windstorm impact is still in its infancy and its operational implementation varies between coun-
tries, weather services, and private companies. Since 2011 the U.K. National Severe Weather Warning
Service delivers an impact matrix for weather forecasts (Figure 4; Neal et al., 2014). The matrix combines
the likelihood of a meteorological hazard with its impact, both ranging from very low to high. (The same
or similar matrixes are used for SCS and floods, see sections 2.2 and 2.4) The likelihood is given by a dedi-
cated short‐term ensemble prediction system combined with statistical postprocessing, while the estimated
socioeconomic impact is based on thresholds that vary locally according to the frequency of hazards, the
density of population as well as the season.While the highest warning level (red, “take action”) requires both
high likelihood and high impact, warnings can also result from a combination of low/high likelihood and
high/low impact (Figure 4).

Figure 4. Weather impact matrix and color key for the U.K. National Severe Weather Warning Service (from Neal
et al., 2014). Green signifies weather with no significant impact on peoples' day‐to‐day activities. Yellow signifies “be
aware” and stay up to date with the latest forecast, and amber signifies “be prepared” to take action. Red signals “take
action” to mitigate impacts.
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Companies in the insurance sector provide similar products for their clients, typically with an early estimate
3 days in advance, followed by updates 48 and 24 hr before the event, and a detailed evaluation in the after-
math (A. Giorgiadis, AON IF, personal communication, 2019). These impact estimates and their uncertainty
provide a clear added value to the clients, as they enable them to take measures to minimize potential
impacts of an impending storm, for example, to assign staff or to buy short‐term additional windstorm
damage coverage (Welker et al., 2020). Unfortunately, such information is not widely accessible, which calls
for enhanced communication between public and private research (Pinto et al., 2019). To the authors'
knowledge, there is no published study on the quantitative benefits of windstorm impact forecasts yet.

2.2. SCSs

Thunderstorms are high‐frequent perils that develop in unstable environments with deep‐tropospheric wind
shear and therefore have been documented on every continent except Antarctica. Those storms that produce
hail in excess of 2 cm, damaging winds in excess of 90 km/hr, or a tornado are usually referred to as SCSs;
Doswell, 2007, Bluestein, 2013); other phenomena associated with SCS are heavy rainfall, which may lead
to flooding and lightning. Even though the associated phenomena usually do not occur at the same time
and place, they can be regarded as compound events. Typical time and length scales of these convective phe-
nomena range from seconds to 1 hr and from meters to tens of kilometers, respectively (Markowski &
Richardson, 2010). However, SCSs can also travel for hundreds of kilometers during a period of several
hours. Of all convective phenomena, hail causes by far the largest damage (Kunz & Geissbuehler, 2017),
whereas lightning and flash floods cause the highest number of casualties (EM‐DAT, 2020; Holle, 2008;
Shabou et al., 2017). Affected assets include buildings (mainly hail and wind to roofs and walls; fire from
lightning), vehicles (hail dents, fallen trees, and objects carried by winds), agriculture (hail, wind, and local
flooding from rain), and infrastructures (fallen trees, flooded underpasses, and hail accumulation on roads).
For cars, exposure varies strongly over the day, whereas crop vulnerability depends on the plant growth state
(Bell et al., 2020). Solar panels (photovoltaic or solar thermal), which have been increasingly installed in sev-
eral European countries in recent years, are particularly susceptible to hail (Gupta et al., 2019).
2.2.1. SCSs: Hazard Forecasting
SCS forecasts and warnings are routinely issued by NWS (Rauhala & Schultz, 2009). The forecasts usually
contain the expected convective phenomena including their intensity (e.g., hail size, wind speed, and rain
total), the affected area, and a time frame of occurrence. In several countries, a severe thunderstormwarning
is issued either when an event is less than 24 hr ahead (e.g., in the United Kingdom or Germany) or when the
respective weather event has already been observed (termed as thunderstorm/tornado watch in the United
States). Cascading hazards such as flash floods triggered by convective rainfall are usually not forecasted.

The prediction of SCSs and related phenomena is one of the greatest challenges for NWP. Even during con-
vectively unstable situations the predictability of the location, timing, and intensity of SCSs is usually very
low (Done et al., 2012). Forecast errors are mainly due to uncertainty in the synoptic‐scale setting for convec-
tion development (Doswell & Bosart, 2001), initial conditions uncertainty on small scales (Stensrud, 2001),
and parameter uncertainty in microphysical schemes (Miltenberger et al., 2018; Wellmann et al., 2018).

The forecast lead time ranges from hours to several days, with uncertainty increasing with lead time.
Although NWP models still have low skill in predicting SCSs 1 to 8 days ahead, favorable environments
for SCS can be forecasted via various indices, a method referred to as ingredients‐based forecasting (such
as thermal stability or wind shear; Doswell et al., 1996; Kaltenböck et al., 2009). For lead times of two ormore
days, mostly probabilistic ensemble forecasts providing a range of possible realizations of future weather are
used instead of deterministic models with only one realization (Gensini & Tippett, 2019; Grell &
Dévényi, 2002). These forecasts are not intended for individuals to take immediate action but rather to help
key stakeholders such as emergency management and broadcasting groups to prepare for subsequent and
more accurate predictions. For example, the ECMWF provides the ensemble‐based EFI and in particular
its SOT products that facilitate forecasting SCS outbreaks especially in the medium range beyond day 2
(Tsonevsky et al., 2018).

More recently, improvements in the forecasting of SCSs have been achieved for short‐range prediction
(6–36 hr) of storm‐scale outputs using high‐resolution convection‐permitting models with sophisticated
assimilation schemes for the inclusion of radar and satellite observations (Clark et al., 2016). In addition,
nowcasting tools for very short lead times (0–2 hr), which combine radar and satellite observations with
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rapid‐update cycles of NWPmodel output and statistical tools, have shown reasonable skill for accurate loca-
tion, hazard type/intensity, and timing forecasts (James et al., 2018; Nisi et al., 2014).

Substantial difficulties in analyzing convective environments, constraining theory and models, and evaluat-
ing model output arise from the lack of consistent, homogeneous, and comprehensive observations of con-
vective phenomena. The number of ground weather stations is too small to reliably detect these events.
Hailpad networks, albeit having a very high density, exist only for a few limited regions in Europe and
around the globe (Dessens et al., 2016; Ni et al., 2017; Sánchez et al., 2009). To fill this monitoring gap,
several databases have been installed that pool eyewitness reports from trained storm spotters or from the
public into severe weather archives (e.g., European Severe Weather Database, ESWD; Groenemeijer
et al., 2017). Although reporting is selective and biased toward population density, these databases
provide valuable information about the frequency and intensity of SCS‐related phenomena.
2.2.2. SCSs: Impact Modeling and Forecasting
Because of the large uncertainty inherent in NWP, impacts of SCSs are rarely forecasted. Operational fore-
casts of impacts are mostly generic, both in the description of potential impacts and in the recommended
precautionary measures. Warnings from NWS are usually issued on county level indicated by a color
scheme. A red warning is issued when dangerous weather is expected and urgent actions are needed. In this
case, it is very likely that there will be a risk to life, substantial disruption of mobility and energy supplies,
and widespread damage to property and infrastructure. Similar systems exist from several NWS, such as
Meteo France or the German Weather Service (James et al., 2018). The warnings issued by the U.K. Met
Office are depicted using the same 4 × 4 matrix used for windstorms (Figure 4) based on the combination
of expected impact severity and the likelihood of those impacts (Neal et al., 2014). In Europe, most of the
warnings are summarized by Meteoalarm (www.meteoalarm.eu), an initiative of the European
Meteorological Services Network (EUMETNET).

Only a fewmodels are available that explicitly estimate the impact in terms of damage to buildings, vehicles,
infrastructures, or crops depending on the event intensity (wind speed, hail size, and precipitation totals).
Potential losses have been quantified for single events or scenarios, most of them related to tornadoes in
the United States hitting major cities (Simmons & Sutter, 2011; Wurman et al., 2007) or Europe
(Antonescu et al., 2018). Hail damage is usually parameterized as a function of the kinetic energy of the
hailstones or their expected diameter, which can be roughly estimated from observed radar reflectivity
(Hohl et al., 2002; Puskeiler et al., 2016; Schmidberger, 2017). However, the damage increase in case of
high horizontal wind speeds, affecting also the walls of a building, is usually not factored in (Schuster et
al., 2006). Tornado and straight‐line winds are usually parameterized using maximum 3‐s gust wind
speeds (Holmes, 2015). Local climatic conditions and the time of year are particularly relevant for SCS
impacts, as, for example, trees with their leaves are more susceptible to wind damage compared to
defoliated trees in winter (Neal et al., 2014).

Sophisticated impact models including vulnerability functions and exposure data are traditionally owned by
the insurance industry and are not publicly accessible. The purpose of these models is to assess the damage
in the aftermath of an event or to estimate the risk for a particular insurance portfolio (Schmidberger, 2017).
2.2.3. SCSs: Uncertainties and Challenges of Impact Forecasting
Impact forecasting of SCS, based on coupling of NWP and impact models, is hampered by the large uncer-
tainty in the prediction of the convective phenomena on the one hand and by the need for highly accurate
vulnerability functions and exposure data to model very localized damage. In order to address the first point,
several NWS have made considerable progress in the improvement of SCS predictions mainly by developing
convection‐resolving NWP models (Giorgetta et al., 2018; Hagelin et al., 2017; James et al., 2018), by devel-
oping and implementing sophisticated microphysics schemes, by improving the assimilation of observa-
tional data, and by running ensembles also for short lead times between 1 and 12 hr (Rothfusz
et al., 2018). For example, within the recently launched project SINFONY (Seamless Integrated
Forecasting System; Blahak et al., 2018), the German Weather Service develops a new prediction system
for very short range forecasting based on a combination of nowcasting, considering data from remote sen-
sing instruments and the life cycle of SCSs, and high‐resolution modeling (kilometer‐scale ensembles with
rapid update cycles).

The inadequate monitoring of SCS can partially be remedied by additionally considering data from crowd-
sourcing or civic science contributions. Thanks to the widespread use of digital technologies, such as
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smartphones or self‐regulation techniques implemented inmodern automobiles, this additional information
has a large potential for a significant contribution to better estimate damage from SCSs. Crowdsourced
observations collected and archived through specific platforms such as Weather underground (www.wun-
derground.com), the European Weather Observer App (Groenemeijer et al., 2017) or the MeteoSwiss App
have the potential to overcome the significant underreporting of SCS events (Trefalt et al., 2018). In
Switzerland, for example, about 59,000 hail reports have been collected by users between May 2015 and
October 2018 (Barras et al., 2019). In addition, crowdsourced observations can also be used for NWP via data
assimilation into initial fields (Muller et al., 2015).

Regarding vulnerability functions, institutions like the Insurance Institute for Business & Home Safety
(IBHS) or the Swiss association of cantonal building insurers (VKG) foster research on storm impacts to
building structures and offer certification for individual components. However, such insights tend to focus
on general preventive measures rather than prediction of impacts associated to individual storms. Still, such
information can be used to relate meteorological variables to impacts.

2.2.4. SCSs: Maturity and Added Value of Impact Forecasting
Impact forecasts of SCS will only be of significant benefit when the predictions regarding timing, location,
and intensity of expected SCSs become more accurate. In that sense, nowcasting tools for lead times of up to
2 hr coupled with impact models have a high potential to reliably predict damage from disruptive and life‐
threatening convective events. Besides, near‐real‐time warnings based on observations can be expected to
grow in importance as instantaneous communication including crowdsourced observations become more
and more available. Also, observations of specific radar signatures associated with heavy rainfall, hail
(Nisi et al., 2018; Puskeiler et al., 2016), or tornados in combination with convection‐favoring environment
conditions from NWP can serve as a basis for near‐real‐time impact estimates. Such information can help to
efficiently guide decisions in emergency management, for example, whether and where an evacuation
should be carried out in the event of a severe tornado (Hammer & Schmidlin, 2002; Simmons &
Sutter, 2013).

2.3. Droughts and Heat Waves

Droughts are triggered by persistent negative precipitation anomalies, often coinciding with high tempera-
tures leading to high evaporation that can last for several months or years; various other definitions exist for
different climates and impacts (UN General Secretariat, 1994). Heat waves are associated with periods of
anomalously high temperature, in terms of maximum, minimum, and daily average temperature, or percen-
tiles, ranging from days to months (WMO, 2018). Summer heat waves tend to be colocated with atmospheric
blocking (Brunner et al., 2018; Pfahl &Wernli, 2012) and can be amplified by local processes, for example, a
lack of soil moisture (Miralles et al., 2014; Seneviratne et al., 2010). Both hazards can reach continental scales
of several 1,000 km. Heat and drought can occur as compound events with impacts on agriculture, water and
power supply, human, and ecosystem health (Buttlar et al., 2018).

2.3.1. Droughts and Heat Waves: Hazard Forecasting
Forecasting and early warning systems for droughts and heat waves are based on indicators derived from
meteorological and hydrological observational data (Haylock et al., 2008) or weather/climate model data
(Lavaysse et al., 2018). Common hydrometeorological indicators for droughts are (1) Standardized
Precipitation Index (SPI); (2) Palmer Drought Severity Index (PDSI) based on a soil water balance equation
and incorporating prior (between 9 and 12 months) precipitation moisture supply, runoff, and evaporation;
and (3) Standardized Precipitation Evaporation Index (SPEI) based on precipitation and temperature. The
indicators are computed for different accumulation periods (short: 1–6 months; medium: 9–12 months;
and long: up to 24months) quantifying deficit/surplus with respect to themultiyear average, so that negative
(positive) values indicate dryer (wetter) than average conditions (Pappenberger et al., 2015). Indicator
thresholds are used to define drought severity classes (McKee et al., 1993; Naumann et al., 2015; Vicente‐
Serrano et al., 2010).

For heat waves, most studies use definitions based on temperatures above given percentile values (Fischer &
Schär, 2010) or fixed temperature thresholds. Definitions vary depending on impacts in specific sectors
(Meehl & Tebaldi, 2004; Perkins et al., 2012; Russo et al., 2015). For humanmorbidity and mortality, the stu-
dies use apparent temperature (Mitchell et al., 2016), humidity and nighttime temperatures (WMO, 2018). A
range of combined heat humidity indices for human morbidity have recently been introduced following
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projections of more frequent heat‐humidity extremes (Buzan &Huber, 2020; Di Napoli et al., 2019; Fischer &
Knutti, 2013; Li et al., 2020; Raymond et al., 2020). A global database for comparing different indicators for
heat waves has recently become available (Raei et al., 2018). It is based on reanalysis temperature data that
allows for the extraction of heat wave data and the computation of heat indices in a toolbox for a range of
commonly used heat indices.

There are two main approaches to drought and heat wave forecasting. The first one is based on operational
weather forecast models (e.g., ECMWF in Europe, Lavaysse et al., 2015, 2018). These models solve prognos-
tic dynamical and thermodynamic equations for atmospheric variables like temperature and moisture and
can be coupled with hydrological models solving for soil water content. Based on the model output, the
drought hazard indicators are calculated. The second approach relies on establishing statistical relations
between predictors, for example, the North Atlantic Oscillation index time series, which quantify the main
mode of atmospheric variability in the Northern Hemisphere and the regional probability for drought occur-
rence (Bonaccorso et al., 2015).

There exist a multitude of operational drought forecasting and early warning systems. Pulwarty and
Sivakumar (2014) identify 21 drought early warning systems established across the globe, including North
and South America, Africa, Asia, Australia, and Europe. After the devastating impacts from the 2003
European drought and heat wave, forecasts of both hazards have been implemented in the pan‐European
operational weather forecast systems of ECMWF (Lavaysse et al., 2015, 2018). Drought forecast is implemen-
ted in the European Drought Observatory (EDO) of the Copernicus Emergency Management Service (EMS)
(https://emergency.copernicus.eu/). Forecast systems are also becoming available for irrigation manage-
ment (Ceppi et al., 2014). A particular challenge with forecasting heat waves and droughts is that these
are slow‐onset hazards with a duration of several days to weeks for heat waves or months to years for
droughts. Forecast lead times for droughts can vary widely (1–24 months) depending on the indicator con-
sidered. For heat waves, the times for consecutive days of high temperature anomalies are a few days up to
2 weeks (Lass et al., 2013; Lavaysse et al., 2019).

Drought hazard forecasting can be beneficial with respect to early water allocation in periods of water scar-
city (Ceppi et al., 2014); it can provide meaningful information for agricultural users and particularly to
farmers reducing economic losses due to droughts (Coughlan de Perez et al., 2015; Shafiee‐Jood et al., 2014;
Steinemann, 2006), and it can also allow international agencies and donors to adjust their support programs
early when a strong signals for a likely famine becomes apparent (Pulwarty & Sivakumar, 2014).

2.3.2. Droughts and Heat Waves: Impact Forecasting
Although drought and heat waves exhibit similar meteorological drivers, they are associated with different
impacts: while droughts lead to agricultural yield losses, limitations in water supply, water quality and
hydropower (Ding et al., 2011; Stahl et al., 2016), wildfires and loss of lives (Turco et al., 2018), heat waves
impact human mortality or morbidity (typically cardiovascular or respiratory, Arbuthnott & Hajat, 2017;
de' Donato et al., 2015; Ekamper et al., 2010), work productivity (Ciuha et al., 2019), and agriculture
(Parker et al., 2020; Souri et al., 2020). Droughts often have secondary impacts whereby outputs from one
industry/sector become inputs into other industries/sectors. For example, farmers with crop losses will
reduce their supplies to the downstream industries, such as food processors and ethanol plants, and the
impacts on water supplies may in turn affect tourism and recreation, public utilities, horticulture, and land-
scaping services. During the historic drought in the southeast United States in 2007, many businesses were
forced to close locations, lay off employees, or even file for bankruptcy (Ding et al., 2011).

A prerequisite for impact forecasting is the availability of sufficient impact data. This is particularly challen-
ging in the case of droughts and heat waves where impact data are scarce due to the extended duration of the
events, regionally varying vulnerability as well as the variety of the affected sectors. Droughts impact data
are collected by the European Drought Impact Report Inventory (EDII) as text‐based reports (Stahl
et al., 2016), which state the location and time of occurrence and the type of impact. Heat waves impact data
are sourced by national databases for mortality and morbidity indicators (respiratory hospital admissions,
GP visits; Arbuthnott & Hajat, 2017). The database for mortality due to heat waves in four large European
cities (London, Stockholm, Rome, and Madrid) is hosted by the European Environment Agency.
Databases of more general scope are Eurostat and EM‐DAT (2020), as well as reinsurance companies, the
latter albeit with restricted access.
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The development of impact models relies on finding relationships between the predictors (e.g., SPI for
droughts and temperature anomalies for heat waves) and the impact occurrence and severity. These rela-
tionships are established by either probabilistic methods (e.g., copula functions, Leng & Hall, 2019) or by
functional relationships (damage functions). These damage functions are established via logistic and gener-
alized regression or by fitting a power law or exponential dependence; machine learning methods are also
emerging (Bachmair et al., 2017; Blauhut et al., 2015; Mitchell et al., 2016; Naumann et al., 2015; Turco et
al., 2018). For prognostic models related to human health, the population exposure and vulnerability needs
to be included, for instance, in form of the spatial variation of the ratio of fatalities to exposed population
(Forzieri et al., 2017).

Three approaches for impact forecasting can be distinguished: (1) When the aim is to develop systems that
are able to forecast a specific impact, which is subject to atmospheric variability, droughts and heat waves are
typically included in an implicit way. Often indices for large‐scale circulation patterns, such as the North
Atlantic Oscillation related to temperature and precipitation anomalies over Europe, are used instead
of drought and heat wave indicators (Ceglar et al., 2017; Nobre et al., 2019). (2) When the focus is on sector‐
specific impact forecasts due to a particular hazard (e.g., crop yield loss due to droughts, Leng & Hall, 2019;
humanmortality due to heat waves, Lowe et al., 2016; Mitchell et al., 2016; wildfires due to low precipitation,
Turco et al., 2018), the impact model is often based on output from a climate or weather forecast model and/
or hydrological models for soil water (Ceppi et al., 2014). (3) Further, there are approaches where multiple
impacts (e.g., crop yield, energy, and water supply loss due to droughts) are grouped and represented by one
variable (Bachmair et al., 2016, 2017; Sutanto et al., 2019).

The performance of impact forecasts is assessed through various cross‐validation techniques and Receiver
Operating Characteristics (ROC) curves (Figure 5). The lead times of skilled impact forecasts are a few days
for heat waves and one to several months for droughts and are region and impact dependent.
2.3.3. Droughts and Heat Waves: Uncertainties and Challenges of Impact Forecasting
There is a large variability in the lead time of impact forecasting depending on the region and its vulnerabil-
ity, for instance, in terms of crop species for droughts and population age distribution for heat waves.
For example, agricultural impacts of droughts are best explained by 2‐ to 12‐month anomalies, energy,
and industrial impacts (hydropower and energy cooling water) by 6‐ to 12‐month anomalies, while public
water supply and freshwater ecosystem impacts are explained by a more complex combination of short
(1–3 months) and seasonal (6–12 months) anomalies (Stagge et al., 2015).

A large part of the uncertainty of drought and heat wave impact forecasting have been attributed in the lim-
ited skill of prediction models used to forecast the weather conditions responsible for heat waves and
droughts (Lowe et al., 2016; Moon et al., 2018), rather than the details of the mathematical formulation of

Figure 5. Receiver Operating Characteristics (ROC) curves, quantifying the skill of the impact forecast models. (a) ROC
curve for agricultural drought impact models, with countries shown as uniquely colored curves. Sensitivity, or the
fraction of correctly predicted impacts, is plotted against the specificity (1 minus the “false‐alarm rate”, i.e., the fraction of
correctly identified nonimpact months; Stagge et al., 2015; Figure 2). (b) Mortality for the 2003 heat wave scenario
(Lowe et al., 2016; Figure 4), using a probabilistic mortality model driven by forecast apparent temperature data at lead
times ranging from 1 day to 3 months. The ROC curve for the mortality model driven by observed apparent
temperature data is shown for reference (black curve). The better skill of the latter shows the importance of reliable
heat wave forecasts. For more information, the reader is referred to the source publications.
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impact models applied (Lowe et al., 2016; see also Figure 5b). This points to the importance of a skilled
hazard forecast for a skilled impact forecast. Short‐term deterministic weather predictability is limited to
2–3 weeks (Buizza et al., 2015; Domeisen et al., 2018; Zhang et al., 2019), and hence, we cannot currently
predict the onset, duration, or strength of a heat wave several weeks ahead (Quandt et al., 2017), while
the time needed to prepare for an extreme event is often longer (White et al., 2017). Drought events, on
the other hand, tend to be predicted on timescales of about 1 month in advance in more than half of all cases
(Lavaysse et al., 2018). The lack of a harmonized definition of these hazards and lack of accurate data on the
hazard onset and duration adds another source of uncertainty (Stahl et al., 2016). Further challenges of
impact forecasting are regional variations in vulnerability, such as local population health, and in hydrolo-
gical conditions, and the variety of economic sectors with varying response times (Stagge et al., 2015).
Finally, there are several confounding factors; for example, pollution may be responsible for deaths attribu-
ted to heat waves (Arbuthnott & Hajat, 2017). Further, human management and adaptation measures are
often not included in impact models. For example, the poorer performance of crop models in southwestern
versus eastern European countries used to represent impacts of the 2003 European heat wave and drought
has been attributed to more widespread irrigation in the former (Schewe et al., 2019).
2.3.4. Droughts and Heat Waves: Maturity and Added Value of Impact Forecasting
The drought impact forecasting and early warning systems in Europe can be regarded as immature. To our
knowledge, there is currently no operational system for seasonal drought impact forecasting. There is only
one study published for Europe moving from a drought hazard forecasting to an impact forecasting
approach, to enable authorities anticipating potential drought impacts 2 to 4 months ahead (Sutanto
et al., 2019). The main reason for the lack of more mature systems is the scarcity of impact data in
Europe. The situation is different in the African context where droughts can translate into devastating fam-
ines and loss of lives. In addition, the reliance on water irrigation systems is much lower in Europe as the
crop water use comes quite often from precipitation and irrigation is only applied for specific crops, for
example, vegetables, or in specific regions, for example, the Mediterranean region. In Africa, impact‐based
early warning systems with respect to famines have been installed, for instance, the Famine Early
Warning Systems Network (Funk et al., 2019). The further development of drought and heat wave early
warning systems is motivated by the predicted increase in the frequency and severity of these hazards,
and hence losses, under climate change (Leng & Hall, 2019; Mitchell et al., 2016; Perkins et al., 2012;
Russo et al., 2015; Turco et al., 2018).

A range of early warning systems for heat waves and associated mortality impacts have been established for
Europe (Lowe et al., 2011; Matthies et al., 2008). An early example is the EuroHEAT project of the World
Health Organization (WHO) (2005–2007), providing forecasts of heat wave probabilities with the goal of
improving preparedness and response to heat waves. Bissolli et al. (2016) cite 14 advisories, that is, standar-
dized information products about ongoing, pending or foreseen climate anomalies and their potential nega-
tive impacts, for heat waves and droughts in Europe since 2012. Heat‐health warning systems had been put
in place in 12 European countries by 2005 (Kovats & Kristie, 2006; Lowe et al., 2011). By 2009, 28 heat‐
health warning systems were operational in Europe (Lass et al., 2013), and by 2014, 16 countries had a
clearly defined alert system and a health system preparedness component (Bittner et al., 2014; Lowe
et al., 2016). Current heat‐health warning systems (Lass et al., 2013) commonly contain meteorological
forecasts and an impact model linking heat characteristics to health impacts. They are often embedded
in heat‐health action plans (Matthies et al., 2008) that consider a wide range of stakeholders and
comprehensive mitigation and response plans, including education and awareness, guidance on actions
and governance, communication, evaluation, health surveillance, and advice on longer‐term strategies
(Lass et al., 2013).

The added value of impact forecasting is still hypothetical, as there are only limited experiences and studies
of the actual benefits. Substantial benefits are expected regarding food and water security by applying so‐
called forecast‐based financing mechanisms (Coughlan de Perez et al., 2015). If predefined thresholds about
a severe drought occurrence are passed, funding is disbursed by donors and management procedures are
triggered to proactively mitigate the impacts. For the effective application of such financing mechanisms,
data on potential impacts and strong stakeholder cooperation are needed to understand where the most
severe consequences are to be expected (Bengtson, 2018). First operational methodologies are already avail-
able (German Red Cross, 2018; WFP [World Food Programme], 2019).
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2.4. Floods

Floods are the outcome of various meteorological conditions and hydrological regimes: short‐duration rain-
fall, high‐intensity rainfall, long‐duration rainfall, rain on saturated soils, snowmelt, or a combination of
snowmelt and rainfall are typical triggers for floods (Merz & Blöschl, 2003). Pluvial floods are directly caused
by excessive rainfall usually from local‐scale convective storms. Pluvial floods occur when rainfall pours
excessive amounts of water, which cannot infiltrate in rural areas or which exceeds the capacity of the drai-
nage system in urban areas and consequently remains on the surface forming shallow layers of water (Blanc
et al., 2012). Fluvial floods occur when discharges exceed the conveyance capacity and consequently overtop
the river banks. While fluvial floods occur at spatial scales of around 102 to 105 km2 and temporal scales from
1 day to several weeks, pluvial floods generally occur at smaller spatial and temporal scales. Flash floods are
defined on the basis of the dynamic of the event. Flash floods are characterized by the fast occurrence of
floods with water traveling with high speed. In watersheds of less than 500 km2, flash floods are generally
induced by high‐intensity short‐duration rainstorms, that is, more than 100‐mm rainfall in less than 24 hr
(Gaume et al., 2009).

2.4.1. Floods: Hazard Forecasting
Warning systems commonly depend on real‐time rainfall information, high‐resolution numerical weather
forecasts, and the operation of hydrological model systems (Collier, 2007). Ensemble approaches, both for
rainfall predictions from high‐resolution numerical models and for flow forecasts, have proved advanta-
geous together with adaptive approaches using data assimilation (Collier, 2007; Zappa et al., 2010). Flood
forecasting differs vastly in respect to flood types and from global (Global Flood Awareness System,
GloFAS, Hirpa et al., 2018) to local scales (Acosta‐Coll et al., 2018). For instance, pluvial and flash floods
are caused by local rainfall peaks, whose extreme features develop on space‐time scales below the resolution
of most NWPs. Radar‐derived now‐casting products and radar‐NWP blending have increased the accuracy
and space‐time resolution (i.e., 1–4 km, 5–60 min) at the expense of short forecast horizons of 1–6 hr
(Alfieri et al., 2012). Generally, flood early warning is based on forecasts of precipitation amounts.
However, some operational early warning systems for pluvial and flash floods forecast simplified indexes
based on the concept of extreme conditions. An example is the European Precipitation Index based on
Climatology (EPIC), which is continuously calculated on the basis of probabilistic weather forecasts and is
aggregating forecasted rainfall on hydrological units over a certain duration (Alfieri et al., 2011, 2012).
Warnings for fluvial floods are commonly issued related to certain thresholds in terms of river discharge
or water level. Warning lead times, which depend on forecast horizons, differ between below an hour for
flash floods up to weeks for downstream areas in large river catchments (Collier, 2007; Kreibich, Müller,
et al., 2017). For fluvial floods, thorough model calibration using local data and information as well as skill-
ful forecasters can significantly reduce false alarm rates (Blöschl, 2008).

Official flood warnings have a long history, for example, a first system was established in Germany in 1889
(Deutsch & Pörtge, 2001). Commonly, the meteorological service is responsible for weather monitoring,
forecasting, and warning in collaboration with water authorities responsible for flood forecasting and warn-
ing as well as with civil protection. Forecasting systems for fluvial floods are operational in many countries,
for example, basically in all countries in Europe (Alfieri et al., 2012; Pappenberger et al., 2015; Werner et
al., 2009). In contrast, pluvial flood forecasting is restricted to severe weather warnings on district level
issued by the weather service including information about the expected maximum rainfall intensities for a
maximum lead time of 12 hr in many regions. Pluvial flood early warning systems are implemented, for
instance, for suburbs of the city of Copenhagen, Denmark, in the cities of Nîmes and Marseille, France, or
in Barcelona, Spain (Deshons, 2002; Henonin et al., 2013). These specific urban systems rely on both thresh-
olds of forecasted rainfall as well as inundation depth and area, for example, based on water level sensors,
precalculated scenarios or online 1‐D‐2‐D hydraulic models (Henonin et al., 2013). National alert systems
for pluvial floods with a rather coarse spatial resolution exist in the United Kingdom (i.e., warnings issued
on county level based on national thresholds), where the extreme rainfall alert service was launched in
2009 (Ochoa‐Rodríguez et al., 2018), and in the United States, termed as flash flood guidance system
(Villarini et al., 2010).

Flood forecasting and early warning systems primarily aim to protect human life; however, their potential to
also reduce economic damage has been recognized since decades (Lustig et al., 1988; Molinari et al., 2013).

10.1029/2020RG000704Reviews of Geophysics

MERZ ET AL. 15 of 52



Pappenberger et al. (2015) calculated that each Euro invested in the European Flood Awareness System
(EFAS) pays off 400 times (with considerable uncertainty). Main aspects determining the effectiveness of
early warning systems in reducing losses are the lead time, the flood intensity, dissemination and content
of the warning, and the ability of civil protection and affected parties to undertake emergency measures
effectively (Kreibich, Müller, et al., 2017; Molinari et al., 2013; Morss et al., 2016). In Europe, the communi-
cation of warnings was significantly improved in the 1990s, and recently, significant advances in the exten-
sion of warning lead times have been achieved by using ensemble prediction systems and more closely
integrating weather and flood forecasts (Parker & Priest, 2012). Flood warning response remains to date
as the major challenge for flood warning systems (Parker & Priest, 2012).

2.4.2. Floods: Impact Forecasting
The forecasting of flood impacts is currently an emerging topic on the flood research agenda. It aims to deli-
ver information about the expected consequences of imminent flooding. It uses both qualitative and quan-
titative indicators. One example for qualitative impact forecasting is the flood guidance statement for
emergency response, which is based on a flood risk matrix (Coles et al., 2017). This matrix discerns four cate-
gories of flood severity by combining the potential impact severity and flood likelihood (similar to Figure 4).
Coughlan de Perez et al. (2015) and Sai et al. (2018) follow a similar approach by defining color codes repre-
senting thresholds of flood impacts, which are linked to response actions. Quantitative impact forecasts
include estimates of the number of people affected, economic damage, and infrastructure affected. The level
of detail varies from the number of buildings affected (Bihan et al., 2017) to economic damage for residential
buildings, commerce, agriculture, industry, and transport and infrastructure sectors (Dale et al., 2014;
Dottori et al., 2017; Ritter et al., 2020) and economic damage to individual buildings (Dale et al., 2014;
Fuchs et al., 2017).

The majority of flood impact models focus on direct economic damage mostly to the residential and
commercial sector and also impact models for agriculture and the public sector are available (Gerl
et al., 2016). Approaches to estimate, for instance, damage to critical infrastructure or indirect impacts
barely exist (Bubeck et al., 2019; Koks, 2018; Merz et al., 2010). Quantitative flood impact models estimate
the consequences of flooding usually using information about inundation depth, duration flow velocity, or
other metrics of flood intensity and taking the resistance characteristics of affected elements into account
(Thieken et al., 2005).

The literature describes impact forecasting approaches for near‐real‐time applications, that is, providing
information at the same time as the event is happening (Kim et al., 2011; Kron et al., 2010) and for short‐term
forecasts with lead times of a few hours to 1 day. Examples are found in Bihan et al. (2017) and Ritter
et al. (2020) for flash floods and in Bhola et al. (2018) and Fuchs et al. (2017) for pluvial floods in urban areas.
River flood impact forecasting systems with lead times of several days have been proposed by Dottori
et al. (2017), Bachmann et al. (2016), or Brown et al. (2016). The spatial scales of these systems range from
urban districts (about 100 km2; Cole et al., 2016; Coles et al., 2017; Fuchs et al., 2017), small‐ and med-
ium‐sized catchments with areas of several thousand square kilometers (Bachmann et al., 2016; Bihan
et al., 2017; Nguyen et al., 2015; Ritter et al., 2020) to national and continental applications (Coughlan de
Perez et al., 2015; Dottori et al., 2017).

To forecast inundations and flood impacts, established flood forecasting systems are extended by additional
model components, for instance, depth‐damage curves or probabilistic multivariable vulnerability models
(Dale et al., 2014; Dottori et al., 2017; Fuchs et al., 2017; Kim et al., 2011; Ritter et al., 2020). Some studies
aim to include also effects of dike breaches by implementing probabilistic dike failure models (Bachmann
et al., 2016; Brown et al., 2016; Kron et al., 2010). A key challenge of this approach is to provide timely
and accurate estimations of water levels and inundation areas to determine flood impacts. This is done either
by fast hydrodynamic simulation approaches (Bachmann et al., 2016; Brown et al., 2016; Kron et al., 2010;
Nguyen et al., 2015) or by using precalculated inundation maps, which are then selected to best represent
the forecasted flood situation (Bhola et al., 2018; Dottori et al., 2017; Ritter et al., 2020). An alternative to this
simulation‐based approach consists in defining impact thresholds. These thresholds represent expected
impact severity for given flood intensity levels (e.g., inundation depth) and are combined with warning infor-
mation and recommended mitigation actions (Cole et al., 2016; Coughlan de Perez et al., 2015; Sai
et al., 2018). Alternatively, for thresholds of forecasted precipitation intensity or flood discharge direct rela-
tionships to expected impacts are established. For instance, Bihan et al. (2017) derive a relationship between
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flood discharge and the number of affected houses. Similarly, Dale et al. (2014) propose the use of monetized
impacts for defined river peak discharges or water levels as a basis for emergency management.
2.4.3. Floods: Uncertainties and Challenges of Impact Forecasting
The evaluation and reliability assessment of impact forecasting is complicated due to scarcity of reported
impact data at the local scale (Dottori et al., 2017). Particular challenges arise from complex hydraulic situa-
tions, such as perched riverbeds, and local effects, such as blockages, which are difficult to incorporate in
forecasting systems (Bihan et al., 2017). Kim et al. (2011) report on limitations that involve physical changes
in the river network, such as the formation of debris or ice jams on structures or a breach in a levee. Impact
forecasting faces further challenges related to the definition of relevant impact information because the fore-
casted impacts have to be aligned with the contents and details required by the users of this information
(Dottori et al., 2017). It requires additional data regarding the exposed elements at risk, for example, popula-
tion, critical infrastructure, their vulnerability, and emergency measures taken during the event (Bachmann
et al., 2016; Brown et al., 2016). This database must be continuously updated as the exposed people may be
subject to fluctuations at different timescales. Examples are subdaily variations in terms of commuters or
seasonal fluctuations in terms of holiday guests (Doocy et al., 2013). Further, changes in vulnerability, for
example, due to the implementation of precautionary measures or improved warning systems (Kreibich,
Di Baldassarre, et al., 2017), and changes in flood protection schemes need to be included. Moreover, human
behavior and risk awareness are important influences of flood fatalities. A surprisingly high fraction of fatal-
ities is caused by people walking purposely through the flood waters without rescue or evacuation purpose
(Ashley & Ashley, 2008), and unnecessary risk‐taking behavior contributes significantly to flood deaths
(Jonkman &Kelman, 2005). Quantitative impact estimation has to cope with uncertainties in input informa-
tion from inundation forecasts with weather forecasts in terms of timing, location, and amount of precipita-
tion as the main source of uncertainty for longer lead times. Impact forecasting is subject to additional
uncertainty related to incomplete data and simplified methods to estimate consequences. For instance,
Brown et al. (2016) describe simplified approaches for loss of life calculations, which do not consider inun-
dation dynamics, location or evacuation of people.

The impact forecasting approach based on EFAS so far computes flood hazard and impact maps using only
the median of the ensemble, which ignores less probable but potentially more severe scenarios (Dottori et
al., 2017). Ensemble‐based impact forecasting is possible and will lead to probabilistic impact predictions
that incorporate uncertainties (Brown et al., 2016; Cole et al., 2016; Dale et al., 2014). To achieve minimal
computation times, Brown et al. (2016) utilize only a limited number of ensemble members but still preserve
statistically sound results. The communication of uncertainty of impact forecasting requires special consid-
eration to ensure that the information is understandable and beneficial (Brown et al., 2016).

2.4.4. Floods: Maturity and Added Value of Impact Forecasting
Impact forecasting of floods is a new field with relatively many recent contributions. The developed
approaches range from proof of concepts via prototypes implemented in case study areas to preoperational
systems. In research studies, for instance, newmethodologies were developed for hydrodynamic‐based flood
forecasts that work with precalculated scenarios and database queries to select appropriate flood inundation
maps in real time (Bhola et al., 2018; Fuchs et al., 2017). Prototype systems have been implemented in several
case study areas, for instance, in Germany, France, the Netherlands, or the United States (Bachmann et
al., 2016; Bihan et al., 2017; Kim et al., 2011; Kron et al., 2010). Dottori et al. (2017) present a European‐wide
operational procedure for impact forecasting based on warnings of EFAS.

It might not take much longer until also national and local operational systems will be in place, since the
expected benefits of impact forecasts are manifold. They can support the planning of more demanding mea-
sures, such as monitoring of flood defenses or deployment of emergency services (Dottori et al., 2017). It is
expected that forecasted impact maps, including information about affected population, infrastructures, and
cities, would substantially improve emergency response by, for example, prioritizing evacuation planning
(Bhola et al., 2018; Coles et al., 2017; Dottori et al., 2017). Coupling inundation modeling with network ana-
lysis enables decision makers to identify city districts or single buildings that are most vulnerable to flood
impacts or delayed response by emergency services. This information can support the development of con-
tingency plans (Coles et al., 2017). Additional information on expected impacts can effectively support the
design and adaptation of emergency measures (e.g., location, time, and type) and may enable cost‐benefit
analyses of response measures (Bachmann et al., 2016; Dottori et al., 2017). Other benefits may be that
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decision making can be better informed and improve emergency measures (Dale et al., 2014). Coughlan de
Perez et al. (2015) expect that “tailoring of forecast information to the operational contexts of the humanitar-
ian sector can dramatically increase the uptake of existing forecast products.” They propose a novel forecast‐
based financing system to automatically trigger action. This system matches threshold forecast probabilities
with appropriate actions, directly disbursing the required funding and proposes standard operating proce-
dures that contain the mandate to act. An important component is a designated preparedness fund that is
available for use before a disaster strikes.

2.5. Storm Surges

Storm surges are oscillations of the water level in a coastal or inland water body caused by dynamic wind
pressure and associated with extratropical or tropical cyclones. The spatial and timescales of storm surges
vary considerably (Gönnert et al., 2001). Tropical cyclones are associated with small and intense surges that
have timescales in the order of a few hours and spatial scales in the order of about 50 km. In contrast, extra-
tropical storm surges typically have larger spatial dimensions of up to hundreds of kilometers and longer
timescales in the order of up to about 1 day. They may also propagate away from the storm and proceed,
in form of long waves, along the coast. In the latter case, they are usually referred to as external surges
(Weisse & von Storch, 2010). Because of the higher wind speed in tropical cyclones, tropical surges are
usually much higher than their extratropical counterparts. Extratropical cyclones and the surges caused
by them preferably occur in fall and winter, while tropical cyclones are tightly coupled to warm water and
together with their surges predominantly occur in the late summer season.
2.5.1. Storm Surges: Hazard Forecasting
Forecasting approaches range from empirical approaches to complex numerical models (Kohno et al., 2018;
Swail, 2010). Approaches vary by country, region, and lead time of forecasts. A survey conducted by the
Expert Team on Wind Waves and Storm Surges (ETWS) of the Joint Technical Commission for
Oceanography and Marine Meteorology (JCOMM) in 2010 revealed that approximately 75% of the reported
operational or preoperational applications used two‐dimensional tide surge models (WMO, 2011). To com-
plement numerical products quickly and cost efficiently, empirical approaches are still widely used. For very
long lead times of several days, empirical relations between NWP and expected surge heights may provide
first and early indications of the upcoming event. For very short lead times of less than 24 hr, lagged empiri-
cal relations between observed wind fields or water levels from surrounding tide gauges may provide quick
refinements of the numerical forecasts, in particular in‐between subsequent model runs. Such a scheme is
implemented, for example, in the operational storm surge warning of the federal state of Lower Saxony,
Germany (Kristandt et al., 2014).

Hazard characteristics included in the forecasts vary. Typically, information is provided on intensity, dura-
tion, or how fast critical levels are reached. Usually, the height of the surge or total water levels are fore-
casted. In two‐dimensional models, the latter comprises tides and surges and their nonlinear interaction.
Wave‐related processes such as wave setup may substantially add to extreme coastal water levels but are
so far often ignored in operational procedures (Kohno et al., 2018; Melet et al., 2018). Coupling between
waves and surges is an area of active research (Staneva et al., 2016), and the results are gradually transferred
into operation (Kohno et al., 2018). High surges may coincide with high river discharges or high precipita-
tion and may pose problems for drainage of low‐lying coastal areas (Bormann et al., 2018).

The most significant source of uncertainty in storm surge forecasting is related to the uncertainty in the driv-
ing wind fields (Flowerdew et al., 2009; Resio et al., 2017; WMO, 2011). In a forecast environment, limited
resources and the amount of time available may restrict the production of large ensembles to assess the
uncertainty. Attempts are being made to include probabilistic elements into the forecast under such condi-
tions. For tropical surges, an example is described in Davis et al. (2010). Other sources of uncertainties are
related to the accuracy of the bathymetry and topography used in the surge models, potential effects related
to coupling of waves and surges, or model errors caused by simplified representations of physical processes
within the surge models (e.g., Resio et al., 2017).

Monitoring of storm surges is mainly based on tide gauges. When critical levels are exceeded or are expected
to be exceeded, warnings or advisories may be issued. The products derived from the operational models are
diverse depending on the predictability of the natural system and also with respect to the requirements of the
areas to protect. Among others, they comprise warnings for expected exceedances of storm surge or total
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water level thresholds, expected maximum surge heights and timing of peaks, time‐varying forecasts of
surges or total water levels for specific locations, or time‐dependent maps of surge heights. For extratropical
surges, most of the operational applications are issued with lead times between 36 and 72 hr, although a fore-
cast range as long as 120 hr has been reported (WMO, 2011). Forecasts of surges generated by tropical
cyclones mostly have shorter lead times, usually in the order of 12 hr to a few days (WMO, 2011). Real‐time
storm surge products typically become available less than 48 hr before landfall of a tropical cyclone. For
longer lead times, forecast errors increase rapidly (Davis et al., 2010).

Studies on benefits or cost‐benefit ratios of storm surge forecasts or early warning systems are rare. There
are several reasons. In some countries, such as in Germany, to guarantee safety of people and property at
risk, the law requires issuing storm surge forecasts as an element of the basic services for the public. Some
work exists that analyses cost‐benefit ratios of existing or planned coastal protection measures
(Davlasheridze et al., 2019; Flemming, 1997). For the case of storm surge barriers or barrages that need
to be kept open as much as possible such analyses also include costs of storm surge monitoring and fore-
casts. An example is given in Flemming (1997) who estimated the costs of minor floods in the London area
to be sufficiently high to justify the costs for initial investment, operation and maintenance of the Thames
Barrage including costs for the operation of the storm tide monitoring and forecasting system. A case study
on Cyclone Evan in Samoa (2012) quantified cost and benefits of early warning services for cyclone
hazards and concluded that for every USD invested, there is a return of 6 USD as benefit (Fakhruddin
& Schick, 2019). Such studies, however, do not distinguish between costs and benefits from surge or wind-
storm forecasting.
2.5.2. Storm Surges: Impact Forecasting
Traditionally, coastal flooding and inundation are considered the most obvious impacts of a storm surge
event. However, we use a broader perspective where impact considers the exposure and the expected vulner-
ability of elements at risk (section 1.2). For storm surges, efforts to provide such information are in their
infancy. Walker et al. (2018) aimed at developing a fiscally based scale for tropical cyclone storm surges from
which an impact forecast can be derived based on information available from existing hazard forecasts. The
approach was developed for the U.S. Gulf and East Coasts and basically uses multiple linear regression
between loss per capita and surge height and velocity. Similarly, using artificial neural networks,
Pilkington and Mahmoud (2017) explored the potential to forecast a range of economic damage resulting
from multiple hazards, including storm surges, associated with forecasted tropical cyclone events. When
coastlines are massively protected, such as in The Netherlands or Germany, such approaches become proble-
matic, as damages will be closely linked with the extent and specific characteristics of potential failures.

Emergency managers and decision makers increasingly request inundation maps (WMO, 2011), and there
are substantial efforts to extent forecast schemes to include information on coastal inundation (Dube
et al., 2010). Typically, static inundation maps at different surge or total water levels are produced in advance
using steady state models (Dube et al., 2010). During a storm surge event, these precomputed maps are then
extracted from libraries depending on forecasted surge or total water level heights. A more dynamic
approach is followed by the Copernicus EMS (https://emergency.copernicus.eu/mapping/), where the
boundaries of inundated areas are delineated by means of satellite data. The complexity of such maps varies.
Typically inundation or flood depth is considered but also information on vulnerability may be included
(WMO, 2011). So far, efforts in regions affected by tropical cyclones are most pronounced (Dube et
al., 2010). A similar procedure is intended by the EU Floods Directive (EU, 2007), which recommends inun-
dation maps of the surge protected areas based on probabilities of occurrence or at least extreme events,
which subsequently may also be used for forecasts. In some areas, consideration of compound or cascading
effects of surges, precipitation, and river floods is needed but attempts to do so are still embryonic (https://
www.deltares.nl/app/uploads/2018/10/Efficient-Modeling-of-Compound-Flooding.pdf; last accessed 24
April 2019).

For areas where sandy barriers provide some protection from surges, including morphological processes in
the forecast is essential. The Emilia‐Romagna early warning system, for example, consists of a series of met‐
ocean and morphological models aiming at forecasting storm surge impacts. In this case, two proxies esti-
mating the impact are forecasted: (i) the so‐called safe corridor width, which measures the distance from
the dune foot to the waterline and represents the fraction of the beach that can be used for safe passages;
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and (ii) the so‐called building waterline distance, that similarly measures the amount of dry beach available
between the waterline and beachfront properties (Harley et al., 2016). For areas protected by dikes, a differ-
ent approach is taken. In addition to the hazard forecast, sensor‐based geotextiles aiming at automatic mon-
itoring of the state of the dyke are developed. In combination with the hazard forecast, early warning
systems for critical situations may be derived.

Erosion during storm surge events represents another major impact. Impact models such as XBeach
(Roelvink et al., 2009) exist but heavily depend on high‐resolution local data such as bathymetry or the wave-
field during the storm. In the tidal channels and ebb tidal deltas of the Wadden Sea in the southeastern part
of the North Sea, major morphological changes result from strongly increased near bottom outflow during
storm surge conditions. This is assumed to cause major erosion at groin (Groins are rigid hydraulic struc-
tures usually made of wood, concrete, or stone and built from an ocean shore. Their objective in coastal engi-
neering is to interrupt water flow and to limits the movement of sediments.) heads and other coastal
protection structures. In a demonstration project, erosion and morphological impacts of storm surges were
forecasted (Souza et al., 2014). Time series of wind waves and tide surges from operational forecasts were
used to operationally run a two‐dimensional model for wave propagation, long waves and mean flow, sedi-
ment transport, andmorphological changes on beaches, set up for the Sefton coast in Liverpool Bay. The sys-
tem aimed at forecasting threshold exceedances for storm impacts and the expected extent of dune erosion
with the intention to provide a coastal vulnerability early warning system with 48‐hr lead time (Souza
et al., 2014).
2.5.3. Storm Surges: Uncertainties and Challenges of Impact Forecasting
Key elements of uncertainty are the combined random errors and biases from the NWPs used to drive the
storm surge forecasts. In addition, for the numerical tide surge models, high‐resolution and up to date bathy-
metric data are needed to provide reliable coastal forecasts. Seasonal or longer timescale variability of bathy-
metry may introduce a further level of uncertainty, in particular when impacts such as increased erosion are
considered. In the case of sandy barriers, modeling of erosion and assumptions inherent in the modeling add
a further level of uncertainty. Inundation forecasting is often based on steady state solutions (Dube
et al., 2010), while inundation critically depends on the development of surge heights over time. Moreover,
topographic data accuracy and exact forecast of the location of peak water levels will strongly determine
inundation and flood depth. In case of coastal protection failure, details of the failure will also significantly
affect inundation and impacts.
2.5.4. Storm Surges: Maturity and Added Value of Impact Forecasting
The WMO implemented a coastal inundation forecast demonstration project (CIFDP) aiming at developing
integrated systems for inundation forecasts, which can be used in operational environments (WMO, 2013).
As of April 2018, there were ongoing or planned national subprojects in Bangladesh, Fiji, the Caribbean,
Indonesia, Shanghai, and South Africa.

Early warning systems including both, hydrodynamic hazards andmorphological impacts, recently emerged
in the United States and in Europe (Harley et al., 2016). In Europe, a series of prototypes at nine sites was
developed in the MICORE project (Ciavola et al., 2011).

Impact forecasting in a wider sense as defined in section 1.2 is at its infancy and to our knowledge limited to
general considerations (Pilkington & Mahmoud, 2017; Walker et al., 2018).

The added value of the impact forecasting provided by the Emilia‐Romagna early warning system was
assessed in a hindcast study of the 2012 Halloween storm in northern Italy (Harley et al., 2016). The extent
to which the impact forecasts may have helped to reduce the storm impacts was assessed. The analyses
showed that due to an underprediction of the extreme water levels, only for two of the eight sites in the early
warning system high hazard/impact warnings would have been issued (Harley et al., 2016). Again, this
emphasizes the need for accurate met‐ocean forecasts.

2.6. Earthquakes

Tectonic earthquakes (hereinafter earthquakes) originate from the sudden release of elastic strain energy in
form of a fracture. Part of this energy is released as seismic waves that radiate from the earthquake hypocen-
ter, that is, the point at a given depth under the Earth's surface, where the rupture starts. The ground shaking
caused by the seismic waves reaching the surface may be very violent, resulting in widespread damage to
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buildings and infrastructure and consequent loss of properties and lives. The unfolding of the phenomenon
occurs generally on the scale of seconds, with the rupture during the biggest earthquakes lasting up to several
minutes and may affect an area ranging from tens to thousands of square kilometers. The different waves
generated during the rupture process travel at speeds, typically ranging from 3 to 6 km/s, and are progres-
sively attenuated due to geometrical spreading, energy absorption and scattering. Earthquakes occurring
at convergent tectonic plate boundaries release most seismic energy. Strong earthquakes can also occur
within tectonic plates (intraplate). Although these events are comparably less frequent (around 5%
of the total number of observed events), they can be significantly damaging as they often occur
onshore. Strong earthquakes are often the cause of subperils such as tsunamis and landslides and can trigger
volcanic unrest.
2.6.1. Earthquakes: Hazard Forecasting
Mainshocks are often preceded by foreshocks (although while a seismic sequence is ongoing such a distinc-
tion might not be possible, see, e.g., Gulia & Wiemer, 2019) and often by accelerating seismic activity in the
months to days before they occur (Abercrombie & Mori, 1996; Bouchon et al., 2013). Nevertheless, there is
no evidence of systematic precursors, and for the sake of all practical and operational applications earth-
quakes are modeled as random events whose short‐term forecasting is characterized by very low probabil-
ities, resulting in limited usefulness for decision making (Geller, 1997; Kagan & Knopoff, 1977).
Earthquake forecasting therefore does not aim at the prediction of a given event but rather at the probabil-
istic characterization of the underlying process. This is usually achieved in a statistical framework, with a
strong hypothesis on the substantial stationarity of the process over time windows spanning decades to hun-
dreds of years. On shorter timescales, from days to decades, nonstationary models are considered by so called
OEF systems (Jordan et al., 2011) that integrate short‐term information, such as the evolving seismicity dur-
ing an earthquake sequence.

Europe has pioneered the efforts toward the realization of OEF systems (Zechar et al., 2016). For instance,
Iceland and Switzerland have started exploring the implementation of OEF systems and in Italy, following
the 2009 L'Aquila earthquake, a prototypal system has been developed, providing civil protection authorities
with weekly forecasts in terms of probability of exceedance of givenmagnitudes (for events) or macroseismic
intensities at the national scale (Marzocchi et al., 2014). In New Zealand a hybrid OEF system integrating
short‐ and long‐term models provides both public and governmental agencies with time‐dependent
probabilities during earthquake sequences. In the United States several joint earthquake advisories have
been issued using ad hoc OEF processes (U.S. Geological Survey Staff, 1990), and in California short‐term
earthquake probability forecasts have been provided for several years but discontinued in 2010 (Field
et al., 2016). More recently, the U.S. Geological Survey (USGS) has developed and tested a national capability
for aftershock forecasting after significant earthquakes (Michael et al., 2019).

The assessment and dissemination of authoritative information about time‐dependent earthquake probabil-
ity has multiple benefits. Experimental evidences show that OEF can outperform time‐independent
Poissonian models on short‐term forecasting (Jordan et al., 2014), with a potential for enhancing the earth-
quake preparedness especially during sequences, where the probability for large earthquakes significantly
increases with respect to the seismic background. Although in most cases large events remain unlikely
(rarely exceeding 1% probability per day), several protective and mitigation actions are possible, such as con-
ducting disaster‐response drills, increasing the readiness of emergency personnel or emphasizing prepared-
ness in media communication (Field et al., 2016).

The term EEW refers to the prompt detection of an earthquake within few seconds after its actual onset and
may provide a viable solution for real‐time risk mitigation (Wenzel & Zschau, 2014; Wu et al., 2016). A so‐
called regional EEW approach is based on the early detection of the seismic waves generated by the earth-
quake's rupture process by means of an extended network of seismic sensors located in proximity of the
epicenter. The rapid detection leads to a first estimation of the location and the size of the event. A suitable
alert might then be immediately signaled to the target location (i.e., a specific critical structure or an inhab-
ited place that could be adversely impacted) some time before the incoming seismic waves would strike. The
lead time is the time interval between issuing the warning and the actual occurrence of the strong shaking at
the target location and may range from a few seconds to around 1 min (Minson et al., 2018). Regional EEW
systems have been implemented, either operationally or in the testing phase, in Europe (Italy and Romania),
the United States, Japan, Mexico, Turkey, and Taiwan (Alcik et al., 2009; Allen et al., 2009; Böse et al., 2007;
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Espinosa Aranda et al., 1995; Hoshiba et al., 2008; Hsiao et al., 2009; Satriano et al., 2011; Wu et al., 2013).
Recent studies (Parolai et al., 2017; Pittore et al., 2014) have also highlighted the potential for EEW systems
in economically developing countries.

An operational EEW system can reduce the impact on the population. It can support their rapid response,
taking simple actions that decrease the possibilities to be injured during a seismic event. Automatic actions
might help in stopping industrial facility production, medical operations, and so forth, therefore reducing
the impact of the event.
2.6.2. Earthquakes: Impact Forecasting
Quantitative estimates can be obtained using engineering approaches, which map the estimated distribu-
tion of the ground shaking in terms of macroseismic intensity (MI) or instrumental intensities, such as
peak ground acceleration, into an estimated damage distribution employing asset‐specific fragility and vul-
nerability models (Calvi et al., 2006). Physical damage is usually described in terms of a discrete set of
damage states that span the full range of consequences (Hill & Rossetto, 2008). Physical damage can be
used to estimate the amount of loss, either in terms of replacement cost ratio (e.g., the fraction of replace-
ment cost of a building lost due to the incurred damage to the structure) or affected people (e.g., fatalities,
injuries, and displaced persons), with the latter of major importance in the immediate aftermath of the
event.

While physical damage indicators refer to single structures, systemic impact indicators describe the expected
performance loss of interconnected systems, such as lifelines (transport, power, or communication net-
works) and critical infrastructure (hospitals and airports), also considering possible cascading effects arising
from the functional interdependency among the different components of the networks.

Probabilistic seismic hazard assessment, earthquake operational forecasting, and early warning
approaches can all be complemented by suitable loss modeling components. The concept of
Operational Earthquake Loss Forecast (OELF) has been first proposed in Italy in 2015 and exemplified
with an experimental system, which produces real‐time risk maps in terms of building collapses, dis-
placed residents and fatalities (Iervolino et al., 2015). More recently, an OELF system has been imple-
mented for California, based on the UCERF‐3 (Uniform California Earthquake Rupture Forecast
Version 3), in order to estimate the expected loss in case of scenario earthquakes of different magni-
tudes, also considering the related sequences of aftershocks (Field et al., 2017). This information is
increasingly used to plan medium‐ and long‐term mitigation activities and to raise awareness of the
underlying risk for both practitioners and the public.

In the framework of EEW, near‐real‐time impact estimation can be carried out for an actual (unfolding)
earthquake, in order to complement the alarm with first‐order estimates of the potential consequences of
the incoming groundmotion at the target location. This loss estimate can bemade available before the actual
damaging shaking occurs and used to optimize automatic mitigation. Some of these systems are designed to
rapidly estimate the potential shaking arising from an event at a given location, providing decision makers
with timely access to information related to the potential losses and its distribution (Bindi et al., 2016; Parolai
et al., 2015; Pittore et al., 2014).

Different indicators are used to provide an overview of the expected impact of an earthquake. Physical
impact indicators, which refer to direct consequences on built structures, can be assessed employing differ-
ent, increasingly sophisticated approaches. For instance, the potential for damaging consequences of an
earthquake at a given location may be inferred as first order by the estimated MI. Macroseismic scales, such
as the EMS‐98 scale (Grünthal & European Seismological Commission, 1998), have been derived from
empirical observations of past events and refer to observable consequences on people, buildings, and the nat-
ural environment. They can be determined using empirical models, once the magnitude and the location of
the event is known, estimated from the analysis of real‐time ground motion data, or inferred from social
media and crowd‐sourced observations, for instance, volunteered reports from citizens in the area affected
(Atkinson & Wald, 2007; Bossu et al., 2011).

Other empirical impact indicators are based on systematic analysis of past earthquakes and provide semi-
quantitative assessments that are suited for large‐scale or global applications. Real‐time risk scenarios, based
on the estimated magnitude and location of the event or simply on the measurement of the ground motion
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parameters at a few stations, can be calculated considering the availability of exposure and vulnerability
models in the target area providing quantitative impact estimates. At the global scale, for instance, the
USGS provides rapid postevent impact forecasts in terms of fatalities and economic loss through the
PAGER (https://earthquake.usgs.gov/data/pager) service. A threshold on the combination of these two fac-
tors is used to rank the alert (Wald et al., 2011).

The Global Disaster Alert and Information System (GDACS, http://www.gdacs.org), a joint effort of the
United Nations and the European Commission, provides impact forecasts and alerts based on a combination
of damage proxies, for instance, derived from the estimatedMI, socioeconomic vulnerability and lack of cop-
ing capacity (De Groeve et al., 2006). The latter indicator is based on the Index for Risk Management
(INFORM, http://www.inform-index.org/), an interagency collaboration that proposes several hazard‐
independent analytical products to support international crisis management (Marin‐Ferrer et al., 2017).
Loss models are available for a large set of assets and infrastructure, but they are currently often not included
in operational impact forecasting applications.
2.6.3. Earthquakes: Uncertainties and Challenges of Impact Forecasting
The uncertainty of earthquake impact estimation is mainly driven by (a) uncertainty in the description of the
seismic event, (b) time constraints, particularly in EEW applications, (c) quality and reliability of ground
motion and site amplification models, and (d) quality and reliability of related exposure and vulnerability
models.

The uncertainty in (a) refers to the knowledge of the specific characteristics of the earthquake, includ-
ing, for example, magnitude, epicenter location, and hypocentral depth. The models mentioned in
(c) are used to estimate the ground motion at a given distance from the epicenter considering the
attenuation of the seismic waves along the path and their possible amplification due to local soil con-
ditions. Factors mentioned in (a) and (b) are different for each event and for different locations, depend-
ing, for example, on the network density and geometry, while factors (c) and (d) depend on the
preexisting knowledge about the affected region. The contribution of ground motion models to the
impact uncertainty can be significant (Crowley et al., 2008; Weatherill et al., 2015), while the uncer-
tainty of exposure and vulnerability models has been only partially explored (Bal et al., 2010;
Crowley et al., 2005). Since damaging earthquakes are infrequent in comparison with other natural
hazards, there is a substantial lack of empirical observations for the calibration and testing of vulner-
ability models and even more of the time dependence of physical vulnerability, which might result from
a progressive damage accumulation throughout a seismic sequence. For specific target areas, the avail-
ability of cost‐effective instruments allows the dense recording of shaking, therefore reducing the neces-
sary spatial interpolation in the estimated scenarios and improving the reliability of the estimates.

According to the specific operational environment, the uncertainty in the event description plays a different
role in determining the final uncertainty in the estimates. In EEW applications, for instance, as instrumental
data are progressively recorded the main characteristics of the unfolding earthquake are increasingly con-
strained. In this case the main limitation is the short lead time available to undertake mitigation actions,
and a suitable trade‐off must be sought between the uncertainty of the estimate and its timeliness
(Minson et al., 2019). In the case of rapid response, the time constraint is less tight and there is a higher avail-
ability of direct measurements of ground motion intensity and thus the resulting uncertainty on the fore-
casted impact may be reduced (Stafford, 2012).

Propagating this uncertainty throughout the impact estimation process is burdensome and often results in
impact estimation ranges that may even span several orders of magnitude (Wald et al., 2011). Further, the
overall impact of an earthquake is strongly affected by the social and environmental conditions in
which the event takes place. For instance, the number of casualties may directly depend on the daytime
(e.g., day and night), day of the week or season, but also in a more complex way on the weather conditions,
and (as we all recently discovered) on pandemic outbreaks limiting the capacities of the first responders
(https://www.bbc.com/news/world-latin-america-53160460). It should anyway be considered that in the
first aftermath of the event only first‐order information is necessary to civil protection authorities for better
planning and prioritizing the immediate actions. Nevertheless, the large uncertainty requires effective stra-
tegies for communicating the resulting impact estimates to end‐users in order to optimize the decision‐
making process.
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2.6.4. Earthquakes: Maturity and Added Value of Impact Forecasting
Earthquake impact forecasting has found increasing attention in research in the last decades, mainly sup-
ported by civil engineering applications.However, significant efforts are still needed tomeet the requirements
of the authorities for practical application. A few operational systems have been implemented complement-
ing OEF models, for instance, in Italy. Impact forecasting is also carried out automatically after large earth-
quakes by several software platforms, mostly operating at global scale. Local or national systems directly
operated by civil protection authorities are also present, but rarely described in the scientific literature.

Systematic impact forecast, also for hypothetic scenarios, for instance, in the case of operational fore-
casting, would increase the risk awareness of decision makers and the public. This would foster the
implementation of short‐ and longer‐term prevention measures and the collection of preevent vulner-
ability and postevent damage information to reduce the epistemic uncertainty in the impact estimation.
Herrmann et al. (2016) have shown that combining OELF‐based fatality estimates with cost‐benefit ana-
lysis can lead to reasonable evacuation strategies during a foreshock‐aftershock sequence. Although
OEF and OELF may provide actionable information, the related mitigation actions are constrained by
the intrinsic uncertainty of the forecasts (Field et al., 2016), since the considered event is always hypo-
thetic, and usually associated with a very small probability over the timeframe of interest. The lack of
harmonized short‐term seismic catalogs including small‐magnitude events, and the computational bur-
den of real‐time model updating still hinder large‐scale operational implementations (Eberhard, 2014).
Furthermore, while OEF methodologies and applications are subjected to test and validation
(Marzocchi et al., 2017), to the best of the authors' knowledge, there have not yet been significant
efforts on the validation of the impact forecasting component.

2.7. Tsunamis

Depending on the source origin and magnitude, tsunami impact can range from local to transoceanic,
encompassing thousands of kilometers of shoreline. Correspondingly, tsunami hazards span timescales
from a few minutes to several hours after its origin. While being triggered by various physical phenomena
capable to bring the sea level out of its equilibrium state (Grezio et al., 2017), most tsunamis are caused
by shallow submarine earthquakes deforming the seafloor and thus disturbing the water column above
(Satake, 2002). This fact makes their forecasting similar to that of the earthquake hazard: Whereas it is
not possible to predict the exact location and magnitude of a future event, it is possible to quantify source
characteristics within a few minutes after the triggering earthquake and use this information to evaluate
the tsunami impact before it strikes the coast.

2.7.1. Tsunamis: Hazard Forecasting
There are presently around 20 Tsunami Early Warning Systems (TEWS) worldwide. They aim to fore-
cast the tsunami arrival time as well as its hazard impact, usually given as warning levels. For example,
the U.S. National Tsunami Warning Center has adopted the following classification: “tsunami informa-
tion,” (“no tsunami threat”) “watch,” (“not yet known but stay tuned”) “advisory,” (“strong currents
and waves dangerous to those in or very near water”), or “warning” (“dangerous coastal flooding and
powerful currents”). In case of physics‐based simulation forecasting these levels correspond to wave
height thresholds at a coastline. Based on several decades of tsunami early warning practice, Bernard
and Titov (2015) proposed as real‐time tsunami warning products: (a) tsunami energy, (b) flooding
maps, and (c) induced harbor current maps. Lynett (2016) compared numerical forecasts and showed
that high‐confidence prediction of location‐specific currents with a deterministic approach should not
be possible in many cases due to the turbulent nature of eddies. He proposed to develop probabilistic
approaches for hazard modeling, since tsunami forecasting does currently not include uncertainty
estimates.

Devastating tsunamis can affect both local and distant coasts. Depending on the propagation distance,
operational TEWS can be classified as near or far field. Near‐field or local TEWS (e.g., Japan, Indonesia,
Chile, and Mediterranean) operate with hazard lead times as short as 15–20 min. The corresponding time
left for forecasting is 5–15 min. Far‐field TEWS (e.g., Pacific Tsunami Warning Center, India, Australia)
operate with source zones at much greater distances, often transoceanic with lead time of several hours.
Such TEWS havemuchmore possibilities to retrieve detailed source parameters and provide amore accurate
forecast (see Joseph, 2011, for compilation of modern TEWS).
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TEWS provide forecasts limited to earthquake‐triggered tsunamis. These types allow source event detection
and quantification, which is not, generally, the case for submarine landslides and tsunamigenic mass move-
ment due to volcanic eruptions. A TEWS follows several steps: (a) detect an (earthquake) event, (b) estimate
the source parameters, (c) evaluate the tsunamigenic potential, (d) evaluate the expected tsunami physical
impact, and (e) disseminate warnings. New observations are used to update the forecast. The minimum
parameter set comprises earthquake location and magnitude and can be available within a few minutes.
The simplest forecast is based on a decision matrix assigning a warning level to magnitude and source‐to‐
coast distance. Such a matrix is used by, for instance, the Mediterranean TEWS (NEAM‐TWS) and as initial
warning by the U.S. National TWS. The decision matrix is based on historical experiences. However, due to
the infrequent nature of tsunamis and the fact that it is not possible to establish a common attenuation rela-
tion by source‐to‐target distance (tsunami waves can propagate across large distances without significant
loss of energy, and their attenuation is controlled by source directivity and individual propagation path),
the decision matrix is uncertain.

Modern TEWS derive their forecasts from physics‐based simulation. These models usually solve the
shallow water equations (Satake, 2002) whose parameters are bathymetry and bottom friction (in
near‐coastal areas). TEWS evaluate the initial conditions for tsunami propagation from earthquake para-
meters derived from seismic or Global Navigation Satellite System (GNSS) measurements. Tsunami
wave propagation and coastal physical impact are then simulated in real time or by retrieving precom-
puted scenarios. Forecasts are constantly updated with incoming observations additionally constraining
the source model. These include land‐based (Hoechner et al., 2013; Melgar et al., 2016; Ohta et al.,
2018) and sea‐based observations like tide gauges and deep ocean bottom pressure units (Titov
et al., 2005, and Tang et al., 2009, for DART buoy technology and Tsushima et al., 2009, for cabled sys-
tems). In the classical approach, thousands of propagation models were precomputed for all representa-
tive sources and stored in scenario databases (e.g., Kamigaichi, 2015, for Japan, Steinmetz et al., 2010,
for Indonesia, and Allen & Greenslade, 2016, for Australia). Local solutions may employ very high reso-
lution models providing detailed inundation patterns (Van Veen et al., 2014, for North Sumatra). A
hybrid approach developed by National Oceanic and Atmospheric Administration (NOAA) (Titov
et al., 2005) linearly combines precomputed propagations from unit sources according to their weights
assessed in real time by seismic and deep ocean observations. In the last decade, the increasing avail-
ability of processing power has allowed scenario simulations “on the fly” for arbitrary sources (Wang
et al., 2012; https://www.gempa.de/products/toast; Musa et al., 2018).

After Japan had installed a dense network of bottom pressure cabled systems (Kanazawa, 2013), a new
approach became possible, which avoids source quantification as a prerequisite for propagation simulation.
Instead, wave propagation is modeled in real time driven by data assimilation from offshore cabled bottom
pressure units able to measure the tsunami wave on its way toward the shore (Maeda et al., 2015; Tanioka &
Gusman, 2018; Tsushima et al., 2009).
2.7.2. Tsunamis: Impact Forecasting
In the last two decades significant progress has been made toward tsunami damage assessment. Studies are
focused on impact to buildings and, to a lesser extent, to humans. Despite this progress, real‐time tsunami
impact forecasting is not yet operationally implemented. Most of the studies address the vulnerability com-
ponent of the impact forecasting scheme (see Figure 3) encompassing both methodology and practical tsu-
nami fragility functions. The latter could be derived from field studies in aftermath of past catastrophic
events but also from (numerical) models. For example, Papathoma et al. (2003) and Dall'Osso et al. (2009)
proposed the multiparametric Papathoma Tsunami Vulnerability Assessment method to assess the tsu-
nami vulnerability for buildings. An alternative damage assessment methodology was developed in the
course of the European FP6 SCHEMA Project (Leone et al., 2010; Valencia et al., 2011; see Pagnoni &
Tinti, 2016, for the comparison of the two approaches). Comprehensive reviews of tsunami fragility func-
tions highlighting the current limitations and providing recommendations for model derivation are given
by Tarbotton et al. (2015) and Charvet et al. (2017). Studies by Koshimura et al. (2006, 2009), Suppasri et
al. (2013, 2018), Goda and Abilova (2016), De Risi et al. (2017), and Aranguiz et al. (2018) illustrate other
examples toward fine‐scale quantitative estimation of tsunami damages. Very recently, Petrone et al.
(2020) employed numerical structural modeling to investigate building response to a coupled earthquake
and tsunami loading.
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2.7.3. Tsunamis: Uncertainties and Challenges of Impact Forecasting
A main source of uncertainty for modern TEWS is the fast and accurate finite source quantification and in
particular the earthquake coseismic slip distribution. Further, reliable impact forecasting requires high‐
resolution inundation simulations within a fewminutes. Until very recently, such simulations were not pos-
sible in real time. Precomputed scenarios cannot reach the necessary accuracy in case of near‐field tsunamis
because the tsunami impact is highly dependent on the actual source parameters (e.g., slip distribution),
which are unique for every large earthquake. Another limiting factor is the availability of precise bathymetry
and topography necessary for accurate inundation modeling. Griffin et al. (2015) demonstrated that neither
SRTM (90‐m resolution) nor ASTER (30 m) DEMs possess sufficient accuracy and resolution to be used for
tsunami inundation models. Due to the infrequent nature of damaging tsunamis, damage models can be
only calibrated in affected regions (Aranguiz et al., 2018; Leone et al., 2010; Suppasri et al., 2013, 2018)
and then transferred to other locations (Valencia et al., 2011). This transfer represents another uncertainty
source in operational impact forecasting.

2.7.4. Tsunamis: Maturity and Added Value of Impact Forecasting
Operational tsunami impact forecasting has not been established yet. To our knowledge, only the former
Decision Support System of the German‐Indonesian Tsunami Early Warning System (GITEWS) provided
forecasts on the number of people and critical infrastructure affected (Strunz et al., 2011). This information,
however, was not based on inundation modeling but reflected the aggregated numbers of people and objects
per warning segment, defined typically according to administrative units, under the threat.

The possibility to replicate the damage situation resulting from tsunami inundation has been demonstrated
by Arikawa and Tomito (2016) using very detailed simulations. Srivihok et al. (2014) reported about an
online tool for tsunami inundation simulation and loss estimation. However, in both cases real‐time appli-
cations were not possible.

Recently, due to the growth of computing power, the possibility of real‐time detailed impact forecasting
could be demonstrated. Oishi et al. (2015) were able to compute a tsunami inundation scenario at a 5‐m grid
in less than 1.5 min (75 times faster than real time) for the Sendai region replicating the Tohoku 2011 event.
They also estimated damage probabilities using simulated inundation depth and the fragility curves by
Suppasri et al. (2013). Koshimura et al. (2017) andMusa et al. (2018) discussed the “10‐10‐10 challenge”: tsu-
nami source determination in 10min and tsunami inundationmodeling and impact mapping in 10min with
10‐m grid resolution. Given the maximum flow depth distribution, they are able to estimate in real time the
affected population using census data and to assess the numbers of damaged structures using tsunami
fragility curves. An alternative, two‐step approach proposed by Mulia et al. (2018) does not require high‐
resolution computations to be conducted in real time to provide an instant high‐resolution inundation
model. Here, a precomputed tsunami database is created comprising pairs of low‐ and high‐resolution
images of maximum tsunami elevations and flow depths originating from various hypothetical earthquake
scenarios. Then, in real time, a low‐resolution propagation simulation for the actual event source parameters
is conducted and matched to the database to retrieve the best fitting high‐resolution scenario. The obvious
disadvantage of this approach is that it is still limited to the variety of the precomputed sources. Although
these approaches are promising, there is still a long way of developing and rigorous testing before they
become a backbone for operational tsunami impact forecasting.

2.8. Volcanic Eruptions

Volcanoes are spots on the Earth's surface where molten rock (magma) ascending from depth reaches the
surface through an existing conduit or a newly formed pathway through the crust. Eruptions may occur from
established vents, generally corresponding to the volcano edifice summit, or create a new set of fissures on
the volcano's flanks that develop into cone‐shaped vents during the course of the eruption. Typically, volca-
nic eruptions may last from a few hours to several weeks, although some eruptions do last several years or
even decades. They are usually preceded by a preparatory phase involving the recharge of one or more
magma reservoirs; more rarely magma batches may directly propagate from tens of kilometers depth to
the Earth's surface. Some volcanoes erupt continuously (e.g., several explosions per hour at Stromboli vol-
cano, Italy) or very frequently (several times a year), while the dormant phases between eruptions can be
very long at other volcanoes, up to about 10,000 years. There is a wide variance in eruption styles, from effu-
sive (gentle flow of lavas down the volcano flanks) to highly explosive (e.g., Plinian eruptions involving
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explosive columns that may reach the stratosphere); the resulting threats may last only a few minutes and
affect the immediate vicinity of the vent or have global impact lasting years to decades.

Volcanoes are inherently multihazard environments: multiple phenomena such as lava flows, pyroclastic
flows (avalanches of hot lava fragments and gases due to eruptive column collapse or collapse of lava
domes), lahars (volcanic mudflows, due, e.g., to rain stormsmobilizing loose eruptive products) or landslides
(through the collapse of unstable flanks), tephra (erupted, fragmented lava) fallout, ballistic bombs, emis-
sion of poisonous volcanic gases, creation of new eruptive vents, volcanic earthquakes, wildfires, and tsuna-
mis, for example, due to submarine mass movements, can happen simultaneously or in sequences during an
eruption and lead tomultifaceted damage. Every volcanic area has its own particular mix of hazards and pre-
eruptive behavior. The entrapment of water, ice or snow by lava may increase the likelihood and impact of
explosive eruptions even at predominantly effusive volcanoes, as demonstrated by the Eyjafjallajökull erup-
tion in Iceland in 2010, which caused significant losses for the aviation industry (Cioni et al., 2014).
2.8.1. Volcanic Eruptions: Hazard Forecasting
Continuous geophysical monitoring represents the fundamental tool for eruption forecasting and early
warning (Marzocchi & Bebbington, 2012; Sparks & Aspinall, 2004). Most active volcanoes around the world
are now at least sparsely monitored (Loughlin et al., 2015), and technological progress in remote sensing is
facilitating a push to global coverage. Volcano observatories work with civil protection authorities and local
or national governmental institutions to issue official warnings, with varying degree of overlap in their
respective roles depending on the country and culture (Papale, 2017). Most eruptions are preceded by a
few weeks or months of volcanic unrest, during which the rate of seismicity, crustal deformation and/or
degassing increases. Based on those signals, observatories issue warnings of possible impending eruptions
(or, more rarely, the time to eruption) and retrieve information about the moving materials, the plumbing
system and stress levels. The size and style of an eruption, however, remain very challenging to forecast
(Poland & Anderson, 2020). After the eruption onset, its style, type of product, and mass rate become easier
to observe and hazard propagation models become more reliable, although sudden switches in style are
sometimes observed. Recent approaches incorporate monitoring anomalies and current environmental con-
ditions, for example, wind or topography changes, into short‐term hazard assessments that can be continu-
ously updated throughout an eruption (Selva et al., 2014). Short‐term forecasts are ideally based on a
combination of information from monitoring signals, eruptive history and structure of the volcano, maps
of old deposits, and results of numerical and volcano‐specific conceptual models linking magma ascent rates
to expected monitoring signals. Numerical models for the propagation of different hazards have become
increasingly important in the last decades, since they provide the opportunity to simulate a range of possible
scenarios including those never observed at a volcano. Most of the resulting issued forecasts today are prob-
abilistic, often by means of statistical tools such as Bayesian event trees (Marzocchi et al., 2008; Rouwet et
al., 2014; Selva et al., 2014; Tonini et al., 2015) or Bayesian belief network analysis (Aspinall &
Woo, 2014), which can involve expert judgment (Christophersen et al., 2018). The monitoring of unrest sig-
nals is usually performed by volcano observatories. The work of an observatory and associated scientists
include a variety of assessments and forecasts, such as the following:

1. Assigning an activity level to the volcano (i.e., state of rest, unrest, impending eruption, erupting),
which is publicly declared generally according to color‐coded alert levels (Fearnley, 2013;
Papale, 2017). These feed into procedures defined by decision makers, and further warnings of soci-
etal relevance.

2. In the immediate prerun to an eruption, short‐term forecasting of the time of eruption onset and, if pos-
sible, refining likely location and size of the eruption. Impending eruptions are generally identified based
on an increase in the rate of earthquakes (as already recognized in 1855, e.g., Hoernes, 1893) or swelling
of the ground (e.g., Sturkell et al., 2006; Surono et al., 2012).

3. During an eruption, monitoring and forecasting its likely evolution (e.g., defining a series of scenarios)
and the propagation of hazards (e.g., lava flow propagation), usually based on a combination of expert
judgment and numerical models.

The capabilities of volcano observatories in terms of technical equipment and personnel vary depending on
the volcano's destructive history, its activity level, and the available funds. Especially volcanoes that have
been dormant for a long time, or are located in countries with limited resources, are not always sufficiently
monitored. The systems are, however, usually upgraded once activity levels increase and international
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scientists often come to help during a crisis (Annen & Wagner, 2003). Many active volcanoes have a dedi-
cated observatory staffed by a multidisciplinary team monitoring the volcano through visual observations
and a variety of parameters including seismicity, ground deformation and gas emissions. Such observatories
are responsible for the maintenance of the monitoring system and inform authorities and the population
about the state of the volcano and likely short‐term evolutions. While some automated procedures are in
place (e.g., an alarm in the observatory room once a parameter reaches a certain threshold), the interpreta-
tion and any decisions are made by humans involving individual expertise and experience.

Lead times for volcanic eruptions are highly variable: Some eruptive phenomena occur essentially without
detectable precursors (e.g., the phreatic eruption at Ontake volcano in 2014 (Ogiso et al., 2015) and Wakaari
[White Island] in 2019), while geophysical signals associated with magma chamber pressure buildup preced-
ing big eruptions can last for years. In such long unrest phases, it is, however, impossible to predict the exact
time of eruption onset. More widespread and dense volcanomonitoring networks, progress in hazard assess-
ments, short‐term forecasts, hazard communication, and awareness (Leonard et al., 2014; Lindsay et al., 2010;
Marzocchi & Bebbington, 2012; Poland & Anderson, 2020; Roberts et al., 2011; Solana et al., 2008; Wadge
& Aspinall, 2014) have all immensely reduced the number of fatalities related to volcanic eruptions (e.g.,
Loughlin et al., 2017). Many lives were saved through evacuations before or during the early phases of
eruptions. For example, the population of Plymouth (Montserrat) was successfully evacuated before its
complete destruction through the eruption of Soufrière Hills Volcano (Annen & Wagner, 2003). One
recent example of successful early warning is the 2018 Kilauea eruption (Hawaii), where numerous
eruptive fissures opened on the volcano's flank in inhabited areas. Impacts could be mitigated by various
measures, including evacuation of homes and touristic enterprises and closing the Puna Geothermal
Venture, quenching and capping geothermal wells and removing inflammable gas stored in the lava
pathways.

2.8.2. Volcanic Eruptions: Impact Forecasting
Impact modeling in volcanology is still in its infancy (Wilson et al., 2017). While state‐of‐the‐art hazard pro-
pagation models are generally very sophisticated, the progress of impact modeling is very heterogeneous
across the various volcanic hazards. Impacts are rarely assessed in a comprehensive manner, and there is
large potential for improving vulnerability functions (Douglas, 2007). Thus, impact forecasting is widely
omitted. However, the number of studies on volcanic risk and vulnerability has increased significantly in
the last decade.

A few studies have developed probabilistic approaches for decision making during a volcanic crisis, which
also include different aspects of impact forecasting, such as estimations of fatality outcomes of different erup-
tion scenarios (Baxter al., 2008, for Vesuvius), cost estimations (Sobradelo et al., 2015), or a cost‐benefit ana-
lysis of an evacuation (Marzocchi & Woo, 2007). A typical approach for impact forecasting is to select a few
scenarios deemed likely based on the volcano's eruptive history (in terms of size and expected hazards) and
to evaluate the impact considering the infrastructure and population of threatened areas. The evaluation is
based on vulnerability functions and numerical models for hazard propagation, whereas each hazard
requires its own vulnerability analysis (examples can be found in Jenkins et al., 2014; Martí et al., 2008;
Wilson et al., 2017). The investigated impact types range from damage to buildings or the agricultural sector,
to health issues and fatalities.

Most studies on volcanic impacts have a risk perspective, while operational methods for event forecasting
are rare. Methods vary across different hazardous phenomena. Some studies, however, work toward and
stress the need for multihazard models (e.g., Schmidt et al., 2011). Yu et al. (2016) estimate direct and indir-
ect losses due to different eruption scenarios in South Korea, including damage to the industry sector, health
damages, and cleaning costs for roads. Spence et al. (2005) develop a multihazard impact model, based on
volcanological analyses of the potential hazard combined with engineering analyses of the vulnerability of
four European locations threatened by eruptions using population data and building characteristics. Their
output includes rates of fatalities, seriously injured casualties, and destroyed buildings for a given scenario.
Zuccaro and De Gregorio (2013) present a similar study for Vesuvius, modeling the impact of combined vol-
canic hazards (pyroclastic flows, earthquakes, and tephra fall) during different eruption scenarios on the
built environment in the Naples area, based on stochastic and deterministic modeling, historical reports
and expert elicitation. Scaini, Biass, et al. (2014) develop a GIS‐based damage tool, based on simulations
of different volcanic events, exposure, and vulnerability analysis for the built environment, transportation
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and urban infrastructures. Long‐term, indirect impacts of volcanic eruptions can be significant. McDonald
et al. (2017) present one of the first attempts to quantify the long‐term economic impact of volcanic eruptions
at Mt. Taranaki in New Zealand.

While these studies generally consider multiple types of hazards and/or eruption scenarios, most assess-
ments are limited to individual volcanic hazards. Probably the largest number of vulnerability studies
focus on tephra fallout, in particular the impact of ash fall on buildings and infrastructure but also on
the agricultural sector and industry, as well as related clean‐up costs (Biass et al., 2016; Jenkins et al., 2018;
Prata, 2009; Rapicetta & Zanon, 2009; Scaini, Folch, et al., 2014; Wilson et al., 2012). Since the
Eyjafjallajökull eruption in Iceland caused immense losses for the aviation industry, the effect of ash
on aviation has moved into the research focus especially in Europe (e.g., Alexander, 2013). Studies on
the impact of tephra fallout usually perform some form of vulnerability assessment (e.g., of buildings
or flight paths), and both probabilistic loss models and empirical data are used to build fragility functions.
Several studies have examined the vulnerability of buildings with regard to the impact of a pyroclastic
flow or lahar (Alberico et al., 2002; Dagá et al., 2018; Jenkins et al., 2015; Mead et al., 2017;
Petrazzuoli & Zuccaro, 2004; Spence et al., 2004; Thouret et al., 2013), mostly based on analysis of damage
of past eruptions, although some also include casualty information, physical and/or probabilistic models.
Long‐term loss assessments are developed in Spence et al. (2004) for pyroclastic flows and Mead
et al. (2017) for lahars, based on numerical models, exposure, and vulnerability analyses. Lava flows
are easier to address in terms of operational impact forecasting as propagation rates are generally slow
(lava flow speeds >4 km/hr are rare) and vulnerability is roughly binary (0 or 1, i.e., complete destruction
if a building is inundated by lava), so that hazard maps can be easily convolved with exposure maps into
impact forecasts. State‐of‐the‐art lava flow inundation forecasts are performed by combining lava flow
models with satellite‐based remote sensing data for rapid model validation and calibration of input para-
meters (Cappello et al., 2019).
2.8.3. Volcanic Eruptions: Uncertainties and Challenges of Impact Forecasting
The complexity of volcanic multihazard scenarios and a poor understanding of the far‐reaching societal and
economic implications of eruptions limit current impact models and affect decision making and communi-
cation during crises. An evaluation of success rates of eruption warnings has been carried out for the Alaska
Volcano Observatory, revealing that forecasting of larger eruptions occurring after long repose times at well
monitored volcanoes have high success rates, while forecasting small eruptions after short repose times is
more difficult (Cameron et al., 2018). Some particular challenges are as follows:

1. Eruption forecasting is complicated by the fact that volcanic unrest is not a definite indicator of an immi-
nent eruption. Many unrest phases, especially those longer than about a year, recede without culminat-
ing in an eruption.

2. While forecasting the timing of an impending eruption is often successful, the expected magnitude of an
eruption cannot yet be derived from monitoring parameters (Poland & Anderson, 2020) and is usually
based merely on long‐term magnitude‐frequency distributions (Tonini et al., 2015). Since eruption mag-
nitude is naturally a driving factor behind hazard styles, intensity, and propagation, this significantly lim-
its our capability for operational impact forecasting. The development of new continuous, low‐cost
volcano gravimetry sensors (Middlemiss et al., 2016) may open the possibility to estimate the mass flow
rate of ascending magma and thus to forecast eruption size.

3. Once an eruption has started, forecasting its evolution and involved hazards is challenging. Eruptions
can change their intensity and style; they interact with weather phenomena and a changing topography
and can pause but resume shortly after without warning. Forecasting the end of an eruption is equally
difficult. Many of these questions are very challenging to answer as there is still a divide between phy-
sics‐based models and observations.

4. There are still significant uncertainties related to input parameters for hazard propagation models.
Models to forecast the vent or fissure location are purely data driven in spite of being data poor;
the available physics‐based models are largely untested (Rivalta et al., 2019). Together with the
uncertainty associated with expected mass flow rates, this dominates the uncertainty regarding vol-
canic hazards in many areas (Neri et al., 2015). Moreover, some fundamental parameters, such as
the topography of the volcano or the vent diameter, evolve during eruptions in still poorly under-
stood ways.
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5. Volcanic hazards have a strong multihazard component and cascading effects are possible. These inter-
actions are still poorly understood at the level of physical mechanisms (e.g., Manga & Brodsky, 2006), let
alone with regard to associated impacts.

6. The economic impact of eruptions is still poorly studied. Aside from the comparatively well‐studied effect
of tephra load on roofs, there is a significant lack of data and impact models for different assets with
regard to different volcanic hazards and their mutual interaction.

7. For the same volcanic event at the same volcano, the resulting impact can still be different. For exam-
ple, only one fatality resulted from the paroxysm of Stromboli volcano (Italy) in July 2019. This was
simply due to the timing of the eruption: It occurred in the afternoon, when the crater area is usually
deserted. Just a few hours later, the crater area would have been crowded with tourists and fatality
numbers would have been much higher. Many other factors such as environmental conditions, for
instance, the current wind direction determines the impact of ash fall, the sequence of events, and/
or the combination of different types of hazards, influence the impact of an eruption. Thus, eruption
impact forecasting is very complex and requires the simultaneous analysis of many—in parts intercon-
nected—drivers in real time.

2.8.4. Volcanic Eruptions: Maturity and Added Value of Impact Forecasting
To our knowledge, no operational impact forecasting systems exist to this date. Risk reduction is mainly
achieved by combining operational hazard forecasting with rapid provision of information on how to man-
age the main hazards. For example, during the 2014–2015 eruption at Bardarbunga‐Holuhraun in Iceland,
the authorities distributed leaflets containing a color‐coded table detailing effects, symptoms and actions to
be undertaken to mitigate hazards from SO2 exposure. They were used to interpret regularly issued probabil-
istic maps of SO2 concentration (Barsotti et al., 2020).

Developing methods for operational impact forecasting during an ongoing eruption will be a significant
improvement for crisis management. It can support evacuation measures, decision making and a more rea-
listic and faster adaptation to new situations for authorities and inhabitants. For now, the volcanological
community appears, however, more focused on progressing toward producing multihazard forecasting
and mapping tools (Hayes et al., 2020) rather than toward operational impact forecasting, due to the inher-
ently multihazard nature of volcanic environments.

3. Synthesis Across Hazard Types
3.1. Comparative Analysis

The large number of hazards included in our review allows for the first time comparing how different disci-
plines have treated the emerging field of impact forecasting. Table 1 summarizes selected aspects of impact
forecasting for the different hazards. The range of lead time of hazard and impact forecasts is highly variable
between the hazards, from below 1min in the case of EEW to manymonths for drought or volcanic eruption
forecasts. According to the large variety of the event footprints (Figure 1), there is also a wide variation in the
area for which forecasts are provided, from the local scale in case of pluvial floods to the national and regio-
nal scale for droughts and heat waves. This wide range of lead times and spatial scales pose different chal-
lenges for different forecasting systems.

There is a large range of approaches for impact modeling, not only between different hazard types but also
for a given hazard. The impact of an event depends on a range of factors, such as risk awareness, prepared-
ness, or organizational emergency management, which may, in addition, vary substantially in time
(Kreibich, Di Baldassarre, et al., 2017). Despite these complexities, impact modeling is often carried out in
a simplified way when compared to hazard modeling. This is partially the consequence of the much larger
effort that the natural hazards research community has put into understanding and modeling hazards. For
instance, windstorms are sufficiently monitored by a large number of ground‐based observations in combi-
nation with satellite retrievals, and very sophisticated NWPmodels are operational; damage and vulnerabil-
ity models, however, are typically derived from sparse data and usually consist of simple relationships
between a hazard indicator, for example, wind gust velocity, and a vulnerability estimate, for example, rela-
tive building damage. Given this imbalance, more efforts need to be invested in developing and testing
impact models.
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The important impact types differ between hazards. For instance, crop loss is an important consequence of
droughts but not of earthquakes. Despite such differences, we suggest that the joint development of impact
models will harness synergies. For some hazards, certain methodological aspects seem to be more advanced
fromwhich others could learn. For example, the flood and earthquake research communities have developed
rather sophisticated vulnerability and exposure models including uncertainty bounds for the impact
estimates.

Further, impact models are mostly limited to direct consequences on objects, areas, and people. Models
quantifying systemic impacts, such as the loss of functionality of interconnected networks due to vulnerabil-
ity interdependency, are rarely addressed—to a large extent due to a lack of empirical data.

The reliability of impact forecasting depends on the quality of the hazard forecast and of the impact model-
ing. In general, we expect that the uncertainties stemming from the impact modeling are larger than those of
the hazard forecasting. We base this expectation on the limited availability of impact data, less experience
with impact modeling and the fact that impacts are influenced by a multitude of factors. Some of them
can be well constrained, but others are hard or even impossible to quantify, as human behavior or short‐term
social and economic processes can lead to rapid changes and unpredictable effects. The importance of the
different uncertainty sources should be carefully evaluated, and the lead time and the spatial scales at which
the forecast takes place may also play a significant role. For instance, a river flood forecasting system,
which provides streamflow forecasts, could be complemented by inundation and damage models in order
to inform local emergency management. In this case the consideration of local conditions, such as whether
a certain defense fails or withstands, would be critical for the successful operational application. When fore-
casting impacts over large areas to obtain a large‐scale overview, such local conditions might instead be
neglected.

Although the maturity of impact forecasting varies considerably across hazards (Figure 1), in most cases
impact forecasting is still in its infancy. For river, flash and pluvial floods, prototype systems exist and
operational systems are expected. Operational impact forecasting systems have been identified for heat
waves, droughts (with a focus on famines and loss of life), and earthquakes, that is, for hazards with very
distinct forecasting possibilities and lead times. It is interesting to note that impact forecasting, such as
potential derailment of high‐speed trains, is relatively advanced for earthquakes, although it is not possi-
ble to predict the location, time, and magnitude of an event prior to its occurrence. The progress that has
been achieved in earthquake impact forecasting should motivate other disciplines to invest in a similar
way into this field, as the possibilities for hazard forecasting seem to be brighter compared to
earthquakes.

Across the considered hazards, impact forecasting is generally expected to provide significant benefits for
emergency management, such as identifying most vulnerable areas, prioritizing emergency measures or
organizing evacuation. Unfortunately, we still lack enough robust empirical evidence to validate this
assumption. Beyond the difficulties in quantifying benefits, this is likely the result of the early stage of impact
forecasts. Postevent evaluations should be systematically performed in order to estimate the additional ben-
efits and lessons learned compared to hazard forecasting. First studies indicate, for example, that warnings
based on impact forecasts and containing specific behavioral recommendations are more likely to increase
the awareness about a potentially hazardous event and foster positive behavioral changes (Weyrich
et al., 2018). However, more systematic andmethodologically rigorous research is needed (Zhang et al., 2019)
—and last but not least to collect detailed impact data after every event.

Even though our review paper has not focused on the difference in impact modeling among countries and
continents, we see that impact forecasting of hydrometeorological extremes in the United States has substan-
tially improved in recent years. This process has reached a higher level of maturity and is better connected
with decision makers compared to Europe. The U.S. NWS is well on the way of a transition to providing
impact‐based decision support services to core partners in public safety and national security as part of its
strategic plan for Building aWeather‐Ready Nation (NWS, 2018; Uccellini & Ten Hoeve, 2019). For example,
Lazo et al. (2020) compare the impacts of two similar winter storms in the New York City area before and
after the implementation of impact‐based decision support services and suggest that these services reduce
socioeconomic impacts, for example, improved recovery time in the ground transportation sector, and
reduced duration and number of customers affected by power outages.
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3.2. Key Challenges and Opportunities
3.2.1. Research and Development of Impact Forecasting
Our review identifies several knowledge gaps and opportunities for research and development. Across all
hazards there is a need for improved impact models including the adequate quantification of exposure
and vulnerability. This entails the following:

1. Developing models for all relevant impact types: Impact models are still lacking for important impact
types. For example, many impact models have been developed for buildings, but models for impacts
on critical infrastructure are hardly available.

2. Developing models for all relevant hazardous events: For instance, impacts of volcanic eruptions are
rarely assessed in a comprehensive manner. Many approaches are available for quantifying the impacts
of ash fall, which is much less the case for other consequences of volcanic eruptions.

3. Exploring impact models of different complexity and with different data needs: The majority of
impact modeling approaches is based on simple relationships between a hazard indicator and vulner-
ability, while more sophisticated approaches (e.g., high‐dimensional complex models) are uncom-
mon. More elaborate models could better match the level of sophistication often available for
hazard models. However, the selection of the appropriate approach strongly depends on the forecast-
ing context, and complex impact models require a much higher amount of empirical data to be
calibrated.

4. Developing impact models for compound and cascading hazards: The same object can be affected by dif-
ferent hazards during one event. For instance, the vulnerability of buildings to ash fall from volcanic
eruptions is different from their vulnerability to a lahar. A comprehensive approach would consider all
hazards during such events.

5. Providing comprehensive uncertainty appraisal for impact estimates: Hazard models and forecasts often
provide uncertainty estimates, but impact models are often deterministic.

Impact models are usually derived from postevent damage and loss observations. The rarity of such events
and the difficulties in transferring impact models across regions often impede their development. These
empirical approaches could hence be combined with engineering approaches, such as deriving fragility
curves from experiments with wind tunnels or shaking tables or with models elicited from expert knowledge
via what‐if scenarios.

For impact forecasting systems, human behavior in the emergency phase and the societal context become
highly relevant. Considerable advancement has been made in recent years in better understanding the fac-
tors shaping individual protective behavior, and the high relevance of behavioral aspects on impacts is
increasingly acknowledged (Aerts et al., 2018; Kreibich, Di Baldassarre, et al., 2017). We suggest the
following:

1. Scrutinizing human behavior and the vulnerability context more systematically to better understand
their effects and to realistically represent them in impact forecasts. This requires dedicated efforts to
understand the time variation of vulnerability and to develop impact models that are able to represent
temporal changes.

2. Exploring whether knowledge can be transferred between hazards, as it varies considerably with respect
to the hazards reviewed. While behavioral aspects have been a focus in social science research on earth-
quakes (Becker et al., 2012; Paton et al., 2015) and floods (Bubeck et al., 2013), they are less well scruti-
nized for other hazards.

Developing impact forecasting systems is challenged by data scarcity on exposure, vulnerability and impacts.
We recommend the following:

1. Enhancing and harmonizing the efforts to collect and share impact data of real events: Activities are
needed like the recently started program GRADE (Global Rapid postdisaster Damage Estimation) of
the World Bank (https://www.gfdrr.org/en/publication/methodology-note-global-rapid-post-disaster-
damage-estimation-gradeapproach), where the impact of disasters is estimated within a few days. This
should always include the systematic collection and provision of detailed event data in open access repo-
sitories. Improved data availability would allow to rigorously test impact models—a topic that needs
more attention in the future.
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2. Exploiting recent developments of new data sources: Examples are crowd‐sourced data, for instance,
using Twitter data to enhance data collecting during events or exploiting high‐resolution, open‐access
Voluntary Geo‐Information (VGI) databases as Open Street Map to integrate authoritative exposure
models. This also requires developing sophisticated quality control algorithm (Barras et al., 2019). The
integration of open and free, local yet globally consistent data sets would allow the consistent harmoni-
zation of exposure and vulnerability models across the globe (Eberenz et al., 2020; Melchiorri
et al., 2019).

3. Develop collaborative approaches together with end‐users and decision makers: Many data sets are
sensitive and not freely accessible but essential for certain categories of impact. For instance,
forecasting systemic impacts on lifelines or critical infrastructure requires data about the
interconnections between the individual components. Agreements between infrastructure operators
and developers and operators of forecasting systems should account for data and information
sensitivity.

Hazard forecasting research has typically advanced within different disciplinary boundaries. As exposure
and vulnerability aspects have similarities between hazard types, there is a large potential that developing
impact forecasting systems allows tapping into synergies. Understanding and quantifying the space‐time
dynamics of exposure within an area, for instance, could be carried out more efficiently within a common
framework for a range of different hazard types. Another example are fragility curves for residential build-
ings. Although they vary from hazard to hazard, they often rely on similar characteristics, such as object
height, age, and material. There are, for example, attempts to develop impact models that work in a con-
sistent way across all hazard types, such as CLIMADA (https://wcr.ethz.ch/research/climada.html). The
open source OASIS loss modeling framework (https://www.oasislmf.org) provides a standard in terms
of prescribed file formats to link hazard, exposure and vulnerability information for multihazard risk
assessment using a state‐of‐the‐art kernel for probabilistic impact computations. We recommend harmo-
nizing taxonomic descriptions of exposure and vulnerability across hazard types (Pittore et al., 2017) and
to explore whether synergies can be exploited. Possible examples are to share exposure and vulnerability
databases, to share and compare vulnerability models, and to develop common procedures for testing
impact models.
3.2.2. Integration of Impact Forecasting Systems Into Decision Making and
Emergency Management
Extending hazard forecasting to impact forecasting requires to carefully consider the subsequent opera-
tional decision‐making context, which is typically very different from the scientific context where the data
are collected or produced. Significant differences in terms of roles and responsibilities determine often
divergent perspectives and conflicting interests (Marzocchi et al., 2012). For instance, the constraints of
practical risk management call for timely, actionable information, easily transferable into operational pro-
tocols. On the contrary, the efforts to accommodate uncertainties in the scientific models lead to complex
results, difficult to be assimilated without domain‐specific scientific knowledge. This may shift the
burden of defining thresholds from decision makers to scientists, as observed in volcanology by
Papale (2017), thus further generating potential conflictual situations. To deter this tendency, several
scholars (e.g., Jordan et al., 2014; Papale, 2017) advocated for a clear separation of roles between the peo-
ple involved in hazard and risk assessment, which is mostly a scientific and technical task, and the ones
tasked with risk analysis and management, which entails decision making and the related responsibilities.
Among the duties entailed by risk management there is also the selection of suitable thresholds, upon
which to issue official warnings. However, there are neither such thresholds for impacts (i.e., which
impact should be associated with which alert level?) nor is there robust empirical knowledge about the
benefits of impact forecasts for different users. Moreover, different emergency contexts require different
impact forecasts; hence, impact forecasting tends to be more context‐specific than hazard forecasting.
In some cases, first‐order estimates providing order of magnitude statements might suffice to support res-
cue operations in the very aftermath of the disaster. In other cases, detailed and location‐specific informa-
tion about the expected impacts might be required to trigger specific emergency measures, such as
evacuating a hospital. In any case, the roles of scientists in the operational decision‐making context needs
to be clarified, also considering that different hazard communities have different views on the interface
between science and decision making.
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An important aspect of impact forecasting is the appropriate level of detail and specificity. During the emer-
gency phase, people and emergency managers are required to make rapid decisions, and the right amount of
information will help them to understand the warnings and to make better decisions. Mu et al. (2018) found
that increasing thewarning informationwas usually beneficial and increased the trust in thewarning system.
However, better decisions were not always related to more information. Hence, co‐development of impact‐
based early warning systems are decisive in order to not just understand the needs and requirements of
end‐users but to also test, validate, and evaluate new developments in an operational setting (Gebhardt
et al., 2019).

One example for the required close cooperation between developers and operators of impact forecasts is
the use of deterministic or probabilistic forecasts and the communication of uncertainty. Probabilistic
forecasts are getting widespread in hazard forecasting. Propagating this uncertainty throughout impact
models might result in an overall uncertainty that may even span several orders of magnitude. On the
other side, deterministic forecasts might fail capturing the actual range of consequences and hence be
misleading in a preparedness context. Pros and cons of these approaches should therefore be thoroughly
examined and discussed to determine how such forecasts can be used for decision‐making in different
operational applications.

4. Conclusions

From our review, covering more than 400 papers, we conclude the following:

1. Impact forecasting is an emerging topic across all hazard types reviewed, which is demonstrated by the
recent increase in publications and by specific programs of international organizations such as
the WMO project HIWeather. For most hazard types, impact forecasting is in its infancy, while opera-
tional impact forecasting systems exist for a few hazard types only, for instance, heat waves and
earthquakes.

2. The state of the art in impact forecasting is very different across hazard types. For instance, advanced
systems have been developed for earthquakes, for which no event prediction is possible and the forecast-
ing skill is very low compared with other hazards. For some of the perils, impact forecasting seems
rather straightforward. For example, several impact models are available for windstorms. They could
be combined with hazard forecasts, which have considerable forecast skill for lead times of several days.

3. There is a wide range of impact modeling approaches in terms of process representation and complexity
but often very simple approaches are used. Hazard modeling is more advanced compared to impact
modeling. Enhanced and more systematic efforts are recommended to move impact modeling to a com-
parable level.

4. Impact forecasting needs to consider social systems and the structures that support them. Although this
environment has been largely created and shaped by human intervention, our knowledge of it is sur-
prisingly weak, therefore resulting in highly uncertain impact models. Developing impact forecasting
should therefore be based on the systematic collection and provision of exposure and vulnerability data
andmodels. The collection of spatially explicit, comprehensive postevent impact data should be strongly
encouraged, following standard procedures and data formats. We recommend discussions across disci-
pline borders and hazard types on common standards, indicators, and modeling approaches for impact
assessments.

5. Exposure and vulnerability can be highly dynamic in space and time. Impact forecasting may require
very detailed knowledge about the societal context, such as local risk reduction policies or risk percep-
tion of exposed people. A closer collaboration of natural sciences, engineering, and social sciences is
required to understand the role of the human factor and its influence on the transformation of a hazard
forecast into an impact forecast.

6. Additional complexities arise when transferring traditional hazard forecasts into hazard indicators that
are useful for impact forecasting. For example, river flood impact forecasting requires to transfer a
streamflow forecast for a given river location to inundation areas including all the complexities of flood
defenses or the urban environment. These complexities and those arising from impact modeling can sig-
nificantly complicate the forecasting task. It seems important to weigh in this additional burden against
the expected benefits of impact forecasts.
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7. Quantifying the uncertainties of forecasts is important as it provides an honest and fuller picture for
informed decision making. The state of the art in uncertainty quantification is very different between
hazard and impact modeling. Whereas uncertainties are often provided for hazard modeling, this is
hardly the case for impact modeling. We recommend employing probabilistic approaches also for
impact modeling.

8. The rapid assessment of impacts immediately after an event and the provision of impact estimates
prior to an event have many commonalities but tend to be developed in separate communities. We
recommend a more intensive exchange of knowledge between these two forms of impact forecasting
and ultimately to blur the boundary between the two by rather advocating for a continuous
information flow directed toward decision makers always considering the most up‐to‐date data and
observations available. It is not so much the information flow toward decision makers but rather
the close—and transdisciplinary—interaction of actors along the chain of impact to co‐design
systems fit for purpose.

9. Impact forecasting is expected to offer new possibilities for emergency management and
disaster risk reduction, as it provides richer information to manage crisis situations. This is of great
importance as extreme events are expected to increase in the future due to climate change
and economic and population growth, while simultaneously the complexity of our society, for
example, dependence on critical infrastructure, increases. However, the assumption that
impact forecasting is more effective than hazard forecasting has hardly been tested across various
hazards.

10. Impact forecasting is associated with new challenges for communication and decision making, as
(uncertain) impact information may lead to different responses of warned people. Not only are there
more studies needed to better understand the effect of impact forecasts, but novel approaches to code-
velop and to tailor impact forecasts according to the operational contests.

11. Developing impact forecasting systems for a wide range of hazard types does not only promise societal
benefits but could also be used as a leverage to foster interdisciplinary work between different research
communities and collaboration between research and end‐users.

12. Multihazard impact estimation accounting for compounding and cascading hazards should be
increasingly targeted, acknowledging that extreme events rarely can be ascribed to single hazards,
and that their consequences have to be considered in such extended framework to be descriptive
of the potential impacts. From the impact perspective this also translate in considering nonlinear
damage accumulation and cascading effects related to, for instance, interdependence of critical
infrastructure.

Glossary and Acronyms

Many terms are not unanimously defined across disciplines. We use the following definitions for important
terms in our review.

Term Definition

Early warning system—EWS The set of capacities needed to generate and disseminate timely and meaningful
warning information to enable individuals, communities, and organizations
threatened by a hazard to prepare and to act appropriately and in sufficient time
to reduce the possibility of harm or loss (UNISDR, 2009).

Earthquake early
warning—EEW

The issuing of warnings and/or the implementation of automatic mitigation actions
following the prompt detection and characterization of an earthquake within few
seconds after its actual onset, which may provide a viable solution for real‐time
risk mitigation.

ECMWF European Center for Medium‐Range Forecasts
EFI—extreme forecast index Index to summarize the probability of extreme events used by weather services for

operational warnings based on ensembles. EFI ranks the departure between the
statistical distribution of an ensemble forecast and the model history. It ranges
from −1 to +1, 0 meaning a standard situation and +1 meaning record‐breaking
high values (Lalaurette, 2003).

Exposure People, property, systems, or other elements present in hazard zones that are thereby
subject to potential losses (UNISDR, 2009).

Forecasting Provision of timely information to improve the management in the emergency phase,
that is, shortly before, during and after a potentially damaging event.
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Term Definition

Forecast horizon The forecast horizon is the length of time into the future for which forecasts can be or
are to be prepared.

Hazard A dangerous phenomenon, substance, human activity, or condition that may cause
loss of life, injury, or other health impacts, property damage, loss of livelihoods
and services, social and economic disruption, or environmental damage
(UNISDR, 2009).

Impact Disaster impacts are consequences of extreme events to human lives, buildings,
infrastructure, and natural resources. Direct impacts occur when the element at
risk is within the space‐time footprint of the event. Indirect impacts are
consequences that occur outside the event's geographical footprint or over larger
timescales. Examples of indirect impacts are declines in revenue owing to
supply chain disruption or longer‐term health effects. Tangible impacts can be
easily quantified in monetary terms, such as evacuation costs, while intangible
impacts include, for example, adverse psychological consequences or ecosystem
degradation.

Impact‐oriented warning Warnings include general statements on expected impacts, for example, “Mobile
homes will be heavily damaged or destroyed,” and general advice.

Impact (or impact‐based)
forecast

Forecasts include information on affected elements at risk and, if possible, their
vulnerability. It extends the traditional forecasting model chain by models
translating the hazard characteristics into impact statements.

Lead time The available time to perform emergency actions, that is, the time interval between the
early warning and the actual occurrence of the damaging event or its arrival at a
given target site. Warning lead time depends on the forecast horizon.

NCEP National Centers for Environmental Prediction
Nowcasting Detailed recording of the current weather situation using data from remote sensing

instruments (radar, satellite, and lightning) and interpolation for the next 0 to
2 hr. Modern nowcasting systems include short‐term NWP models from the rapid
update cycle.

NHMS National Hydro‐Meteorological Service
NWP Numerical weather prediction
NWS National Weather Service
Operational Earthquake
Forecasting—OEF

Forecasts include spatially explicit information on the probability of occurrence of
earthquake events exceeding a given magnitude in a given timeframe, based on
the assimilation of recorded short‐term seismic activity into medium‐ and
long‐term hazard models. Can be used to estimate the likelihood of strong events
from observed earthquake swarms, or within a seismic sequence.

Operational Earthquake Loss
Forecasting—OELF

Integrates the OEF with impact estimates. Provides spatially explicit, time‐varying
estimates of the probability of exceeding a specific amount of losses (e.g., fatalities)
in a given timeframe.

PSPI Palmer Standardized Precipitation Index; common drought indicator.
SCS Severe convective storm
Skill of prediction The prediction or forecast skill refers to the relative accuracy of a set of forecasts with

respect to some set of reference forecasts (e.g., climatological mean fields). The
forecast/prediction skill is usually expressed by skill scores, which can
be interpreted as percentage improvement over the reference forecasts (Wilks, 2011).

SOT—shift of tails Index to summarize the probability of extreme events used by weather services for
operational warnings based on ensembles. SOT indicates whether a fraction of the
ensemble members forecast an extreme event, even if the rest of the members do
not (Zsótér, 2006).

SPEI Standardized Precipitation Evaporation Index; common drought indicator.
SPI Standardized Precipitation Index; common drought indicator.
TEWS Tsunami Early Warning System
Vulnerability The characteristics and circumstances of a community, system, or asset that make it

susceptible to the damaging effects of a hazard (UNISDR, 2009).
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