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Abstract. The present study investigates the planar Couette flow problem 
for low Reynolds numbers inside a rectangular duct with a morphing cavity 
serving as a vortex formation promoter. A finite element code implemented 
in COMSOL Multiphysics is employed to analyze the effects of the cavity 
aspect ratio and variations of the Reynolds number on formation and 
topology of the vortices within the embedded cavity. The obtained results 
indicate that the cavity height is influential in the number of vortices. It is 
shown by increasing the Reynolds number, a single vortex tends to move 
towards the outlet. In addition, streamlines demonstrate that small vortices 
in vicinity of the cavity corner tend to be enlarged with increase of the 
Reynolds number. The developed numerical model can be extended to the 
flow structure of natural systems such as an embayment subjected to 
parallel-to-shore currents. 

1 INTRODUCTION 

Couette flow in fluid dynamics refers to the flow of a viscous fluid in the space between 
two parallel surfaces, one of which is moving tangentially relatively to the other. The 
configuration generally takes the form of two parallel plates or the gap between two 
concentric cylinders. Couette flow is driven by virtue of viscous drag force acting on the 
fluid, but it may additionally be motivated by an applied pressure gradient in the flow 
direction. The classical Couette flow problem under various conditions has been widely 
investigated [1-6]. 

In literature, several studies have been carried out to analyze the Couette flow problem in 
presence of cavities. However, in these studies far more attention has been devoted to the 
stability analysis of Couette flow [7, 8] and less attempt has been made to analyze the vortex 
formation in the cavity due to Couette flow. Indeed, the phenomenon of vortex formation in 
cavities has many possible applications, particularly in natural and environmental sciences, 
such as the investigation of gyres within open lacustrine embayment [9]. In this context, the 
phenomenon of vortex formation in cavities has been comprehensively investigated, both 
experimentally and numerically [10-15]. For instance, Cheng at al. [14] employed the Lattice 
Boltzmann Method (LBM) to investigate the vortex structure in a rectangular cavity with 
various aspect ratios under different Reynolds number values. The effects of aspect ratio and 
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Reynolds numbers on size, center position and number of vortices were determined together 
with the flow pattern in the cavity. In another study [15], the Kármán vortex street inversion 
in the wake of a square cylinder under magnetic interaction has been studied with particular 
emphasis to the causes of the vortex inversion and to the physical mechanisms. It was 
concluded that the inversion phenomenon may be formed by controlling the relative narrow 
mean flow and the primary vortex with sufficient strength in the downstream. 

Although the comportment of Couette flows in cavities have been widely studied, 
analyses of the vortex formation and topology in cavities due to Couette flow are relatively 
rare in literature. To fill this gap, the present study aims to investigate numerically formation 
and topology of vortices in Couette flow with low Reynolds numbers inside a rectangular 
duct with an embedded cavity. The effects of the cavity aspect ratio, namely ratio of the 
height to length of the cavity, and variations of the Reynolds number on formation and 
topology of the vortices are addressed by means of the finite element simulations.  

 

2 NUMERICAL MODEL 

The geometry under study, illustrated in Fig. 1, is the so-called Couette configuration, i.e. 
two parallel plates, one of which (upper) is moving relatively to the other with uniform 
velocity U0.  In Fig. 1, H represents the channel height while L1 and H1 are the cavity length 
and height, respectively. Furthermore, L0 and L2 are the horizontal dimensions of the channel. 
The duct has a variable cross-section and consists of the inlet, outlet and the cavity serving 
as a vortex promoter. It was assumed that a Newtonian fluid, with constant thermophysical 
properties, flows in the channel under the steady-state condition. The fluid flow is two-
dimensional with the velocity vector  𝑈ሬሬ⃗ ൌ ሺ𝑈,𝑉ሻ. 

 

 

Fig. 1. A sketch of the domain under study. 
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The governing equations, namely the mass and momentum equations, in dimensionless 
form are given by: 
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where the dimensionless variables are: 
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where v in Equation (6) is the kinematic viscosity of the fluid. 
As a boundary condition, the no-slip condition was imposed at walls, i.e. zero velocity at 

the fluid-solid interface. At inlet, the velocity inlet was assumed given by the Couette velocity 
profile, namely u= y, v=0, while the pressure outlet given by p=0 was considered at outlet. 

The variables in Fig. 1 are all dimensionless with respect to H fixed at 1 m. 
To solve the mass and momentum balance equations, a 2D steady-state finite element 

code was developed through COMSOL Multiphysics environment. For each configuration, 
the computational domain was meshed with structured quadrilateral grid. Figure 2 displays 
the mesh employed for the case with H1=0.5 and L1=1.5, as well as details of the cavity 
corner. 

 

 
 

  

Fig. 2. A sample of the mesh employed and details of the cavity corner. 
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The mesh has been constructed under a specific independence procedure. After fixing the 
control quantities, namely uj and pj, defined as the velocity and pressure referred to the j-th 
mesh element, the relative errors are given by: 

 

𝜗 ൌ
ห𝑢௝ାଵ െ 𝑢௝ห

𝑢௝
ൈ 100      (7) 
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where ϑ and φ are the relative error indices referred to the velocity and to pressure, 
respectively. 

Table 1. The grid independence test for Re=500, H1=0.5 and L1=5. 
 

ඵ𝒖 𝒅𝜴 𝝑 ൈ 10-3 ඵ𝒑 𝒅𝜴 𝝋ൈ  10-2 
Number of 
Elements 

7,54649  0,15883   
7,54796 0,1938 0,16284 0,02519  
7,54873 0,1030 0,16423 0,8563  
7,54921 6,304 0,16499 0,4600  
7,54952 4,101 0,16546 0,2896  
7,54963 1,522 0,16565 0,1116  
7,54973 1,270 0,16581 9,773 303800 
7,54981 1,072 0,16595 8,750  

 

Table 2. The grid independence test for Re=500, H1=10 and L1=0.5. 
 

ඵ𝒖 𝒅𝜴 𝝑 ൈ 10-3 ඵ𝒑 𝒅𝜴 𝝋ൈ 10-2 
Number of 
Elements 

7,53912  0,27245   
7,53922 0,1396 0,27221 8,886  
7,53929 9,560 0,27200 7,751  
7,53934 5,650 0,27188 4,368  
7,53936 3,765 0,27178 3,686  
7,53939 2,900 0,27171 2,397  
7,53940 2,180 0,27166 1,862 562600 
7,53941 1,567 0,27162 1,501  

 
For a given Reynolds number Re, several grid independence checks were performed. 

Here, for the sake of brevity two examples are presented in Table 1 and 2. Table 1 shows the 
grid construction procedure and independence test for a case with Re=500, H1=0.5 and L1=5 
and Table 2 reports that for a case with Re=500, H1=10 and L1=0.5. The selected mesh for 
final computations in Table 1 and 2 has 303 800 and 562 600 elements, respectively. 
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3 RESULTS AND DISCUSSION 

The velocity contours at Re= 200 for four different configurations are shown in Fig. 3. 
As expected, the upper part of the channel has the highest velocity, due to tangential 
movement of the surface. The contours show that the fluid velocity in all configurations is a 
decreasing function of the channel height. In addition, figures indicate that the depth of the 
cavity is uninfluential in the fluid velocity distribution within the cavity, except of the very 
first centimeters of the cavity height. For instance, for the case with H1=2 and L1=1.5, the 
dimensionless fluid velocity takes an identical value within the cavity for the H1 values lower 
than -0.5. This trend can also be observed for other configurations. 
 

 

 
 

Fig. 3. Dimensionless velocity contours at Re=200 for different configurations. 
 
Figures 4-7 illustrate the streamlines and the vortex formation for different Reynolds 

numbers under various configurations. In particular, Fig. 4 and 5 refer to the cavity with 
variable length and fixed height while Figs 6 and 7 represent the cavity having fixed length 
and variable height.  

Figure 4 shows that, for a case with H1=0.5 and L1=1.5, the Reynolds number may affect 
the position of the vortex; as the Reynolds number increases, a single vortex tends to move 
its center towards the outlet. Streamlines of the Fig. 5 indicate that for a wide and shallow 
cavity, vortices are mainly formed in vicinity of the cavity corner. Moreover, it is noticeable 
that by increasing the Reynolds number, the length of the vortex increases. 

Figure 6 shows that small vortices adjacent to the cavity corner can be enlarged with 
increase of the Reynolds number. It is evident here again that the center of the vortex tends 
to move towards the channel outlet when the Reynolds number increases. The similar trend 
can be seen in Fig. 7 where the cavity is relatively narrow and deep. Furthermore, the 
streamlines of Fig. 7 imply that the number of vortices depends on the cavity height. 
Nonetheless, the number of vortices is independent of the Reynolds number. 

 
 

H1=0.5, L1=1.5 
H1=0.5, L1=5 

H1=10, L1=1.5 H1=2, L1=1.5 
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           Re=80              Re=200 

 

 
             Re=350              Re=500 

 

Fig. 4. Streamlines and vortex position for H1=0.5 and L1=1.5. 

 

      
    Re=80           Re=200 

 

      
    Re=350           Re=500 

 

Fig. 5. Streamlines and vortex position for H1=0.5 and L1=10. 
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     Re=80            Re=200 

 

      
    Re=350            Re=500 

 

Fig. 6. Streamlines and vortex position for H1=2 and L1=1.5. 

 

    
           Re=80            Re=200 

 

 
      Re=350         Re=500 

 

Fig. 7. Streamlines and vortex position for H1=10 and L1=1.5. 
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In order to analyze the topology of vortices more precisely, positions of the vortex center 
for different values of the Reynolds number are investigated in a single frame. Figures 8 and 
9 illustrate the vortex center for two opposite configurations, namely H1=0.5 m and L1=5 m 
and H1=5 m and L1=0.5 m, for Various Reynolds numbers varying from 80 to 500. 

Figure 8 clearly shows for a rather wide and shallow cavity, with the augmentation of the 
Reynolds number, the vortex positioned close to the inlet section tends to grow and move 
towards the outlet section, until it is affected by the neighbor vortex. On the other hand, Fig. 
9 shows that this effect is minimized for a rather deep and narrow cavity. Moreover, Fig. 9 
represents that the vortex center moves slightly upwards when the Reynolds number 
increases. 

 

 

Fig. 8. The topology of the vortex center, for H1=0.5 and L1=5. 

 

Fig. 9. The topology of the vortex center, for H1=5 and L1=0.5. 
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4 CONCLUSIONS  

The present study has sought to analyze the planar Couette flow in low Reynolds numbers 
applied to a channel with a morphing cavity serving as a vortex formation promoter. By 
employing a finite element code implemented in COMSOL Multiphysics, the effects of the 
aspect ratio of the cavity and the Reynolds number on formation and topology of the vortices 
have been investigated.  

The obtained results have indicated that the cavity height affects the number of vortices. 
It has been shown that as the Reynolds number increases, a single vortex tends to move its 
center towards the outlet. Furthermore, streamlines within the cavity has demonstrated with 
increase of the Reynolds number, small vortices in vicinity of the cavity corner tend to be 
enlarged. 

As a potential direction for future research, the presented numerical model can be 
employed and extended in order to analyze features of the several Couette configuration 
models in natural systems such as an embayment subjected to parallel-to-shore currents. 
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