
10 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Investigation on the effectiveness of mid-infrared spectroscopy to predict detailed mineral composition of
bulk milk / Malacarne, Massimo; VISENTIN, GIULIO; Summer, Andrea; Cassandro, Martino; Penasa, Mauro;
Bolzoni, Giuseppe; Zanardi, Giorgio; De Marchi, Massimo. - In: JOURNAL OF DAIRY RESEARCH. - ISSN 1469-
7629. - STAMPA. - 85:1(2018), pp. 83-86. [10.1017/S0022029917000826]

Published Version:

Investigation on the effectiveness of mid-infrared spectroscopy to predict detailed mineral composition of bulk
milk

This version is available at: https://hdl.handle.net/11585/776582 since: 2020-10-29

Published:
DOI: http://doi.org/10.1017/S0022029917000826

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

https://hdl.handle.net/11585/776582
http://doi.org/10.1017/S0022029917000826


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

THE POTENTIAL OF MID-INFRARED SPECTROSCOPY TO PREDICT DETAILED MINERAL 
COMPOSITION OF BULK MILK 

MASSIMO MALACARNE, GIULIO VISENTIN, ANDREA SUMMER, MARTINO 
CASSANDRO, MAURO PENASA, GIUSEPPE BOLZONI, GIORGIO ZANARDI, MASSIMO 
DE MARCHI  

The final published version is available online at: 

 https://doi.org/10.1017/S0022029917000826 

 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the 
publishing policy. For all terms of use and more information see the publisher's website.   

 



1 
 

The potential of mid-infrared spectroscopy to predict detailed mineral composition of bulk 1 

milk 2 

 3 

Massimo Malacarne1, Giulio Visentin2*, Andrea Summer1, Martino Cassandro2, Mauro Penasa2, 4 

Giuseppe Bolzoni3, Giorgio Zanardi3 and Massimo De Marchi2 5 

 6 

1 Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy 7 

2 Department of Agronomy, Food, Natural resources, Animals and Environment, University of 8 

Padova, Viale dell’Università 16, 35020 Legnaro (PD), Italy 9 

3 Centro Referenza Nazionale Qualità Latte Bovino, IZSLER, Via Bianchi 9, 25124 Brescia, Italy 10 

 11 

Heading title: Detailed milk mineral composition by MIRS  12 

 13 

* For correspondence; e-mail: giulio.visentin@phd.unipd.it   14 



2 
 

Summary 15 

This Research Communication investigated the potential of mid-infrared spectroscopy to predict 16 

detailed mineral composition of bovine milk. A total of 153 bulk milk samples were analysed for 17 

contents of Ca, Cl, Cu, Fe, K, Mg, Na, P and Zn. Also, soluble and colloidal fractions of Ca, Mg 18 

and P were quantified. For each milk sample the mid-infrared spectrum was captured and stored. 19 

Prediction models were developed using partial least squares regression and the accuracy of 20 

prediction was evaluated using both cross- and external validation. The proportion of variance 21 

explained by the prediction models in cross-validation ranged from 34% (Na) to 77% (total P), and 22 

it ranged from 13% (soluble Mg) to 54% (Cl-) in external validation. The ratio of the standard 23 

deviation of each trait to the standard error of prediction in external validation, which is an indicator 24 

of the practical utility of the prediction model, was low and never greater than 2. Results 25 

demonstrated the limited usefulness of mid-infrared spectroscopy to predict detailed mineral 26 

composition of bulk milk, especially of less represented minerals.  27 

Keywords: Fourier transform infrared spectrometry, milk mineral, human health, dairy processing. 28 

 29 

Despite being the constituents of milk present in the lowest amount (about 0·9 g/100g), minerals are 30 

important from the nutritional point of view and they play a key role in milk stability and 31 

coagulation. The main milk minerals, according to their content, are K, Ca, P, Cl-, Na and Mg. 32 

Other minerals, such as Fe, Zn and Cu, are present in traces. Some of them (Na, K and Cl-) are in 33 

the soluble phase of milk and contribute, together with lactose, to maintain the osmotic pressure of 34 

milk constant (Holt, 2011). Ca, P and Mg are in equilibrium between the soluble and colloidal 35 

phases of milk, where they interact with the casein (CN) fractions to form the CN micelles. 36 

Interactions among micelles are prevented by a protruding, negatively charged, layer of k-CN on 37 

their surface. The inner side of micelles is stabilized by secondary interactions among highly 38 

phosphorylated CN (αS1-, αS2-, β-CN), Ca and colloidal calcium phosphate (CCP).  39 
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The essential step in all cheese-makings technologies is coagulation. Favorable rennet 40 

coagulation properties (i.e. short rennet coagulation time and strong curd firming capacity) are 41 

associated with greater cheese yield, and originate curd and cheese with optimal rheological 42 

properties (Aleandri et al. 1989). The positive association of (detailed) minerals content and 43 

distribution with rennet coagulation properties of milk was reported by Malacarne et al. (2014). 44 

Few reports have investigated the potential of mid infrared spectroscopy (MIRS) to predict milk 45 

mineral composition (Soyeurt et al. 2009; Toffanin et al. 2015; Visentin et al. 2016) and no studies 46 

have investigated the potential of MIRS to predict detailed mineral composition. To date, the 47 

methods to assess milk minerals are time consuming and expensive. Thus, it would be useful to 48 

point out a practical, fast and reliable method, such as MIRS, for the routine analysis of a large 49 

number of samples. The aim of the present study was to develop MIRS models for the prediction of 50 

detailed mineral composition of bovine milk.  51 

 52 

Materials and methods 53 

Milk samples  54 

One hundred fifty-three bulk milk samples collected from June to November 2014 in Italian 55 

Holstein Friesian herds located in north of Italy were available for the analysis. Each sample 56 

(without preservative) was collected from the herd tank at the end of the morning milking and 57 

transported to the milk laboratory of the Istituto Zooprofilattico Sperimentale della Lombardia e 58 

dell’Emilia Romagna (Brescia, Italy) for MIRS spectra analysis using Milkoscan FT6000 (Foss 59 

Electric, Hillerød, Denmark). An aliquot of sample was cooled to 4°C, delivered the next morning 60 

to the laboratory of the Department of Veterinary Science of the University of Parma (Parma, Italy) 61 

and analysed the same day for chemical composition using standard methods.  62 

 63 

Milk analyses 64 
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Fat was determined by infrared analysis with Milko-Scan 134 A/B (Foss Electric, Hillerød, 65 

Denmark). Total nitrogen (TN) in milk and non-CN nitrogen (NCN) in pH 4·6 acid whey, were 66 

assessed by the Kjeldahl method. From these nitrogen fractions, CP (TN × 6·38), CN nitrogen 67 

(CNT = TN − NCN) and CN (CNT × 6·38) were calculated. Dry matter was determined on 10 g 68 

milk in a drying oven at 102°C. Ash content was determined using the gravimetric method after 69 

calcination of the milk sample in a muffle furnace at 530°C. Total contents of Ca, Mg, Na, K, Fe, 70 

Zn and Cu, and soluble contents of Ca and Mg were assessed in milk and in ultrafiltrate whey, 71 

respectively, by atomic absorption spectroscopy (Perkin-Elmer 1100 B, Waltham, MA, USA) 72 

according to De Man (1962). Total P and soluble P were assessed in milk, in skimmed milk 73 

ultrafiltrate (cut off 30 000 Da) and in milk after treatment with trichloroacetic acid (120 g/l) with 74 

the colorimetric method proposed by Allen (1940). Colloidal contents of Ca, P and Mg were 75 

calculated as the difference between their total and soluble content. Ultrafiltration was carried out in 76 

a stirred ultrafiltration cell (Model 8200, Millipore Corporation, Bedford, MA, USA), at room 77 

temperature. Polyethersulfone ultrafiltration membranes (nominal molecular weight limit 30 000 78 

Da) were purchased from Millipore (Millipore Corporation, Bedford, MA, USA). Chloride was 79 

measured by titration with AgNO3 using the volumetric method of Charpentier-Volhard (Savini, 80 

1946).  81 

 82 

Statistical analysis 83 

All studied traits were normally distributed. Observations were defined as outliers if they deviated 84 

more than 3 standard deviations (SD) from the mean of each mineral. Spectral data expressed in 85 

transmittance were converted to absorbance as log10(1/transmittance). Spectral regions between 86 

1700 and 1580 cm-1, and between 3660 and 2990 cm-1 were discarded prior to the development of 87 

prediction models because of low signal-to-noise ratio. Partial least squares regression was 88 

performed using SAS software (SAS Institute Inc., Cary, NC, USA) to generate the prediction 89 

models, which included the vector of each individual milk mineral as dependent variable, and the 90 
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matrix of the edited spectra as predictor. To develop and validate the prediction models, the dataset 91 

was sorted by the dependent variable and divided in two different sets, namely the calibration set 92 

(75% of the observations) and the validation dataset (25% of the observations). The former was 93 

used to develop the prediction models, and the latter to externally validate and evaluate the 94 

predictive ability of the models. This process was repeated 4 times for each trait. In each iteration, 95 

one-at-a-time cross-validation was performed in the calibration dataset. Regardless the iteration, the 96 

mean and SD of each mineral were similar in both calibration and validation sets. The optimal 97 

number of models factors (#PC) was defined as the lowest number of #PC to achieve the lowest 98 

root mean predicted residual sum of squares. Goodness-of-fit statistics were the coefficient of 99 

determination in cross-validation (R2
C), the standard error of prediction in cross-validation (SEPC), 100 

the coefficient of determination in external validation (R2
V), the standard error of prediction in 101 

external validation (SEPV), and the ratio of prediction to deviation (RPD), calculated as the ratio of 102 

the SD of the trait to the SEPV. In external validation, reference values were linearly regressed on 103 

the respective predicted values to calculate the linear regression coefficient (slope) and a t-test was 104 

carried out to evaluate if the slope differed significantly from 1. Bias was calculated as the average 105 

difference between the reference values and the respective predicted values, and a t-test was carried 106 

out to evaluate if the bias was significantly different from 0. 107 

 108 

Results and discussion 109 

Crude composition (Table 1) was typical for bulk milk collected from Italian Holstein Friesian 110 

cattle herds in Italy (Malacarne et al. 2014). The colloidal fractions of Ca and P were 73% and 55% 111 

of their total content, respectively. About 60% of colloidal P was in the form of CCP (inorganic-P), 112 

and the remaining in phosphorylated CN residues. The contents and distribution of the macro-113 

elements were comparable with those reported by Malacarne et al. (2014). Also the contents of Cu 114 

and Zn were within the ranges typical of cow’s milk, whereas Fe content was above the upper limit 115 

reported by Hermansen et al. (2005). 116 
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According to fitting statistics (Table 2), the most and less accurate prediction models in cross-117 

validation and external validation were for total P (R2
C of 0·77 and SEPC of 1·49 mg/100g) and Na 118 

(R2
C of 0·34 and SEPC of 4·73 mg/100g), and soluble Mg (R2

V of 0·13 and SEPV of 0·41 mg/100g) 119 

and Cl- (R2
V of 0·54 and SEPV of 3·44 mg/100g), respectively. In external validation, irrespective 120 

of the trait, the average bias of prediction did not differ (P > 0·05) from zero. In all instances, the 121 

slope of the predicted minerals linearly regressed on the respective measured minerals differed from 122 

unity (P < 0·05). The RPD values varied between 1·02 (soluble Mg prediction model) and 1·42 (Cl- 123 

prediction model). The feasibility of MIRS to predict innovative characteristics has been 124 

investigated in detail for several milk quality traits (De Marchi et al. 2014). Although the prediction 125 

of milk minerals, including Ca, K, Mg, Na and P using MIRS has been previously reported by 126 

Soyeurt et al. (2009), Toffanin et al. (2015), and Visentin et al. (2016), to our knowledge no other 127 

studies have attempted to assess the predictive ability of MIRS for detailed mineral composition. 128 

Nevertheless, the R2
C of prediction models for Ca, K, Mg, Na and P was generally poorer than 129 

findings retrieved from the literature (Soyeurt et al. 2009; Toffanin et al. 2015; Visentin et al. 130 

2016); one of the possible reasons to explain these unsatisfactory predictions is probably related to 131 

the type of milk available for the present study, i.e., bulk instead of individual cow milk. Moreover, 132 

the low content of Zn, Fe and Cu could represent an important challenge, if not a limit, for a quick 133 

and at-line monitoring using infrared technologies at both the research and commercial levels, as 134 

highlighted by the poor accuracy of prediction of these minerals in external validation. 135 

In conclusion, findings of the present research highlighted that mid-infrared spectroscopy is not 136 

able to predict detailed mineral composition of bulk milk with sufficient accuracy, especially for 137 

minerals that are present in low content. 138 

 139 

References 140 

Aleandri R, Schneider JC, & Buttazzoni LG 1989 Evaluation of milk for cheese production 141 

based on milk characteristics and Formagraph measures. Journal of Dairy Science 72 1967-1975 142 



7 
 

Allen R 1940 The estimation of phosphorus. Biochemical Journal 34 858–865 143 

De Man JM 1962 Measurement of the partition of some milk constituents between the dissolved 144 

and colloidal phases. Journal of Dairy Research 29 279–283 145 

De Marchi M, Toffanin V, Cassandro M & Penasa M 2014 Invited review: Mid-infrared 146 

spectroscopy as a phenotyping tool for milk traits. Journal of Dairy Science 97 1171-1186 147 

Hermansen JE, Badsberg JH, Kristensen T & Gundersen V 2005 Major and trace elements in 148 

organically or conventionally produced milk. Journal of Dairy Research 72 362-368 149 

Holt C 2011 Interaction with casein. In: Fuquay, J., Fox, P., Roginski, H. (Eds.), Encyclopedia of 150 

Dairy Sciences. second ed. Academic Press, San Diego, pp. 917–924 151 

Malacarne M, Franceschi P, Formaggioni P, Sandri S, Mariani P & Summer A 2014 Influence 152 

of micellar calcium and phosphorus on rennet coagulation properties of cows milk. Journal of 153 

Dairy Research 81 129–136 154 

Savini E 1946 Analysis of Milk and Dairy Products. Milano: Hoepli 155 

Soyeurt H, Bruwier D, Romnee J-M, Gengler N, Bertozzi C, Veselko D & Dardenne P 2009 156 

Potential estimation of major mineral contents in cow milk using mid-infrared spectrometry. 157 

Journal of Dairy Science 92 2444-2454 158 

Toffanin V, De Marchi M, Lopez-Villalobos N & Cassandro M 2015 Effectiveness of mid-159 

infrared spectroscopy for prediction of the contents of calcium and phosphorus, and titratable 160 

acidity of milk and their relationship with milk quality and coagulation properties. International 161 

Dairy Journal 41 68-73 162 

Visentin G, Penasa M, Gottardo P, Cassandro M & De Marchi M 2016 Predictive ability of 163 

mid-infrared spectroscopy for major mineral composition and coagulation traits of bovine milk by 164 

using the uninformative variable selection algorithm. Journal of Dairy Science 99 8137-8145 165 



8 
 

Table 1. Descriptive statistics of milk quality traits and detailed mineral composition after edits 166 

Trait N Mean SD CV Minimum Maximum 

Dry matter, g/100g 148 12·83 0·37 0·03 11·64 14·22 

Fat, g/100g 149 3·93 0·23 0·06 3·24 4·48 

Ash, g/100g 148 0·73 0·02 0·03 0·68 0·79 

Crude protein, g/100g 149 3·29 0·12 0·04 2·89 3·62 

Casein, g/100g 149 2·53 0·10 0·04 2·22 2·77 

Crude whey protein, g/100g 148 0·76 0·04 0·05 0·66 0·89 

Casein number, % 148 76·78 0·89 0·01 74·13 78·70 

Total Ca, mg/100g 147 114·69 3·26 0·03 109·37 123·72 

Soluble Ca, mg/100g 149 31·14 3·01 0·10 23·93 38·14 

Colloidal Ca, mg/100g 149 83·57 4·68 0·06 73·20 96·05 

Chloride (Cl-), mg/100g 149 93·60 4·80 0·05 79·88 107·94 

Cu, mg/kg 149 0·15 0·06 0·40 0·06 0·37 

Fe, mg/kg 138 1·35 0·52 0·39 0·05 2·85 

K, mg/100g 149 147·56 9·30 0·06 121·08 182·14 

Total Mg, mg/100g 148 10·10 0·47 0·05 8·55 11·52 

Soluble Mg, mg/100g 147 7·46 0·40 0·05 6·40 8·41 

Na, mg/100g 149 50·37 5·83 0·12 37·37 69·24 

Total P, mg/100g 149 90·52 3·09 0·03 82·54 97·14 

Soluble P, mg/100g 149 39·01 3·70 0·09 28·63 51·99 

Colloidal P, mg/100g 144 49·46 3·44 0·07 41·32 57·52 

Zn, mg/kg 148 5·76 0·63 0·11 4·35 7·54 

CV, coefficient of variation 167 

  168 
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Table 2. Fitting statistics for detailed mineral composition prediction models using external 169 

validation procedures 170 

#PC = number of model factors; SEPC = standard error of prediction in cross-validation; R2
C = 171 

coefficient of determination in cross-validation; Slope = linear regression coefficient of reference 172 

values on predicted values; Bias = average difference between the reference values and the 173 

respective predicted values; SEPV = standard error of prediction in external validation; R2
V = 174 

coefficient of determination in external validation; RPD = ratio of prediction to deviation, 175 

calculated as the ratio of the SD of the trait to the SEPV.. 176 

Trait #PC SEPC R2
C Slope (SE) Bias SEPV R2

V RPD 

Total Ca, mg/100g 10 2·32 0·49 0·36 (0·11) -0·01 2·96 0·25 1·12 

Soluble Ca, mg/100g 8 2·05 0·54 0·43 (0·10) 0·05 2·48 0·35 1·24 

Colloidal Ca, mg/100g 9 2·97 0·60 0·48 (0·11) -0·22 3·84 0·37 1·24 

Chloride (Cl-), mg/100g 13 2·49 0·73 0·62 (0·10) 0·10 3·44 0·54 1·42 

Cu, mg/kg 9 0·04 0·58 0·47 (0·10) 0·01 0·05 0·40 1·27 

Fe, mg/kg 9 0·40 0·40 0·26 (0·11) 0·01 0·51 0·15 1·04 

K, mg/100g 10 6·05 0·58 0·43 (0·10) -0·07 7·85 0·34 1·21 

Total Mg, mg/100g 5 0·38 0·37 0·30 (0·08) 0·03 0·41 0·26 1·18 

Soluble Mg, mg/100g 8 0·31 0·38 0·25 (0·11) -0·02 0·41 0·13 1·02 

Na, mg/100g 6 4·73 0·34 0·27 (0·08) -0·05 5·16 0·25 1·15 

Total P, mg/100g 15 1·49 0·77 0·69 (0·11) -0·26 2·24 0·53 1·41 

Soluble P, mg/100g 11 2·24 0·63 0·45 (0·10) 0·12 3·12 0·34 1·20 

Colloidal P, mg/100g 15 1·75 0·73 0·52 (0·12) -0·09 2·87 0·35 1·27 

Zn, mg/kg 6 0·51 0·35 0·25 (0·09) 0·01 0·58 0·20 1·11 


