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A Randomized Distributed Ellipsoid Algorithm
for Uncertain Feasibility Problems

Mohammadreza Chamanbaz, Giuseppe Notarstefano, and Roland Bouffanais

Abstract— In this paper, we consider a network of processors
aiming at cooperatively solving a convex feasibility problem in
which the constraint set is the intersection of local uncertain
sets, each one known only by one processor. We propose
a randomized, distributed method—using concepts borrowed
from a centralized ellipsoid algorithm—having finite-time con-
vergence and working under asynchronous, time-varying and
directed communication topologies. At every communication
round, each processor maintains a “candidate” ellipsoid for
the global problem and performs two tasks. First, it verifies—
in a probabilistic sense—if the center of the candidate ellipsoid
is robustly feasible for its local set and, if not, constructs a new
ellipsoid with smaller volume. Second, it exchanges its ellipsoid
with neighbors, and then selects the one with smallest volume
among the collected ones. We show that in a finite number
of communication rounds, the processors reach consensus on
a common ellipsoid whose center is—with high confidence—
feasible for the entire set of uncertainty except a subset having
an arbitrary small probability measure. We corroborate the
theoretical results with numerical computations in which the
algorithm is tested on a multi-core platform of processors
communicating asynchronously.

I. INTRODUCTION

Distributed optimization has recently gained significant
attention. In this line of research, networks of processors with
limited computation/communication capabilities are used to
solve “large-scale” optimization problems. There is no cen-
tral node having full knowledge of the entire problem due
to memory, computational power and/or privacy constraints;
each node knows only its own constraint set.

Introducing uncertainty in a distributed optimization
framework adds more complexity to the problem. There
are few papers considering uncertainty in the distributed
optimization framework. In [14], a synchronous distributed
random projection algorithm with almost sure convergence
is proposed for the case where each node knows its local
cost function and (uncertain) constraint. The synchronization
of local update rules relies on a central clock to coordi-
nate the step size selection. To circumvent this limitation,
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the same authors in [15] present an asynchronous random
projection algorithm in which a gossip-based protocol is
used to desynchronize the step size selection. A distributed
method based on the scenario approach [7], [8] is introduced
in [16] in which random samples are extracted form the
uncertain constraint set and a proximal minimization algo-
rithm is used for solving the sampled optimization problem
in a distributed way. The number of samples required to
guarantee robustness can be large if the probabilistic levels
defining robustness of the solution—accuracy and confidence
levels—are stringent, thereby (possibly) leading to a compu-
tationally demanding sampled-optimization problem at each
node. A parallel framework for solving convex optimization
problems with one uncertain constraint via the scenario ap-
proach has been recently proposed in [19]. In this setup, the
sampled-optimization problem is solved by using a primal-
dual subgradient (resp. random projection) algorithm over
undirected (resp. directed) graphs. We remark that in [19],
constraints and cost function of all agents are identical.
In [5], a cutting plane consensus algorithm is introduced
for solving convex optimization problems where constraints
are distributed throughout the network and all processors
have a common cost function. If constraints are uncertain,
a pessimizing oracle is used for solving the problem under
the assumption that constraints are concave with respect to
uncertainty vector, while the uncertain set is convex.

In this paper, we propose an asynchronous distributed
algorithm, based on the centralized ellipsoid method [12],
to solve convex feasibility problems (affected by a possibly
nonlinear uncertain vector) in a multi-agent network. The
centralized algorithm has been discussed in a series of papers
including [2], [13], [18]. Here, we consider a directed and
time-varying communication network in which each node has
an uncertain constraint. The objective of this network system
is to reach a consensus—using purely local computation and
communication steps—on a solution which robustly satisfies
all the constraints scattered across different nodes.

The main ingredients of the proposed algorithm, besides
the ellipsoid method [12], are: a (centralized) sequential
randomized algorithm, [1], [6], [9], [10], and a constraint-
exchange approach for distributed optimization, [17]. The
ellipsoid algorithm is used locally at each node to update
the candidate solution. Specifically, at every iteration of
the algorithm, each node constructs an ellipsoid, which is
guaranteed to contain the globally robust feasible set—a set
being robustly feasible for all constraints. The center of this
ellipsoid is a candidate solution. Feasibility of the candi-
date solution is checked through a randomized algorithm—



performed locally at each node—by extracting a number of
random samples from the set of uncertainty and checking the
feasibility of the constraint for the extracted samples. Then,
each node collects ellipsoids from in-neighbors and selects
the one with smallest-volume. This procedure is performed
until all nodes reach a consensus on a common ellipsoid. We
prove that if the globally robust feasible set has a nonempty
interior, the proposed algorithm converges in finite time to a
solution being robustly feasible—with high confidence—for
the entire set of uncertainty except for a subset having an
arbitrary small probability measure.

The effectiveness of this approach is illustrated by means
of numerical computations on a distributed (convex) posi-
tion estimation problem in wireless sensor networks. The
centralized problem is formulated in [11]. In particular, we
consider a heterogeneous scenario in which (a possibly large)
network of sensors with positioning capability—reporting
sensor position with some uncertainty—run the distributed
algorithm to localize sensors with no positioning capability—
equipped only with radio-frequency transmitters.

The rest of the paper is organized as follows. In Section II,
the distributed robust feasibility problem is formulated. The
distributed randomized algorithm is presented in Section III.
The convergence of the proposed randomized algorithm is
proved in Section IV. Lastly, an example regarding dis-
tributed convex position estimation in a wireless sensor
network is included in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

We consider a network of processors with limited compu-
tation and communication capabilities. Processors commu-
nicate according to a time-varying, directed communication
graph G(t) = {{1, . . . , n}, E(t)}, where t ∈ N is a universal
time and E(t) is the set of communication links at time t.
Specifically, (i, j) ∈ E(t) indicates that i sends information
to j. The time-varying set of incoming (resp. outgoing)
neighbors of node i at time t, Nin(i, t) (resp. Nout(i, t)), is
defined as the set of nodes from (resp. to) which agent i
receives (resp. transmits) information at time t. A directed
static graph is said to be strongly connected if there exists
a directed path (of consecutive edges) between any pair of
nodes in the graph. For time-varying graphs we use the
notion of uniform joint strong connectivity defined next.

Assumption 1 (Uniform joint strong connectivity):
There exists an integer L ≥ 1 such that the graph(
{1, . . . , n},

⋃t+L−1
τ=t E(τ)

)
is strongly connected ∀t ≥ 0.

Processors aim at cooperatively solving the following
robust convex feasibility problem

find θ

subject to: θ ∈
n⋂
i=1

Θi(q), for all q ∈ Q, (1)

where θ ∈ Rd is the vector of decision variables, Q is the
set of uncertainty and Θi(q)

.
= {θ ∈ Rd : fi(θ, q) ≤ 0},

with fi(·, q) : Rd → R, is a constraint set known by agent
i ∈ {1, . . . , n} only. We refer to Θi

.
= {θ ∈ Rd : θ ∈

Θi(q),∀q ∈ Q} as the robust feasible set corresponding
to agent i. Consistently, the set Θ

.
= {θ ∈ Rd : θ ∈⋂n

i=1 Θi(q),∀q ∈ Q} is the globally robust feasible set.
We make the following assumption on the constraint sets.

Assumption 2 (Convexity): For any fixed value of q ∈ Q,
each set Θi(q), i ∈ {1, . . . , n}, is convex.

From the above assumption, it follows immediately that
each robust feasible set Θi as well as the globally robust
feasible set Θ are convex. We remark that, there is no
assumption on how uncertainty enters problem (1) making it
computationally difficult to solve. Since the uncertain set Q is
an uncountable set, (1) is a semi-infinite feasibility problem
involving an infinite number of constraints. Deterministic
methods for solving semi-infinite problems are not tractable
in cases where uncertainty does not have a simple structure
such as affine, multi-affine, or convex. For this reason,
we follow a probabilistic approach in which uncertainty is
considered as a random variable and constraints are enforced
to hold for the entire set of uncertainty except for a subset
having an arbitrary small probability measure.

III. DISTRIBUTED SEQUENTIAL RANDOMIZED
ELLIPSOID ALGORITHM

In this section, we present a distributed, randomized
algorithm for solving—in a probabilistic sense—the robust
convex feasibility problem (1). The proposed Distributed
Sequential Randomized Ellipsoid Algorithm consists of two
main steps: a local “verification and shrinking” step and a
“communication and selection” step. Specifically, each node
has a candidate ellipsoid—containing the globally robust
feasible set Θ—whose center is a candidate solution. In the
“verification and shrinking” step, each node i first verifies
if—with high probability—the candidate solution point be-
longs to its local robust feasible set Θi. If the verification
is not successful, meaning that the candidate solution point
does not belong to Θi, node i runs locally an ellipsoid
algorithm based on [12] to shrink the volume of its candidate
ellipsoid. Next, in the “communication and selection” step,
the node receives ellipsoids from its in-neighbors and selects
the one with smallest volume, including its own one. This
second part is based on the fact that the ellipsoid of each node
contains the globally robust feasible set Θ. The two steps are
repeated until all nodes reach the same ellipsoid and hence
the same solution point with a desired probabilistic properties
in terms of robustness.

More formally, the verification and shrinking step consists
of the following procedures. We suppose that there exists an
“oracle” being able to declare—in a probabilistic sense—if
θi ∈ Θi. Specifically, denote by θi the center of the current
ellipsoid of node i. Checking if θi ∈ Θi, is not computa-
tionally easy in general. Hence, we resort to randomization
and consider a randomized oracle being able to verify—with
high probability—if θi ∈ Θi. To this end, we assume that q
is a random variable and a probability measure P over the



Borel σ-algebra of Q is given. At each iteration, we first
generate a number of independent and identically distributed
(i.i.d) samples from the uncertain set Q according to the
measure P and using a Monte Carlo approach, feasibility
of the candidate solution is examined only at the extracted
samples.

Then, if θi /∈ Θi the oracle generates a “separating
hyperplane” Hi that separates θi from Θi.

Given a θi ∈ Rd and a positive definite matrix Pi ∈ Rd×d,
consider the ellipsoid of node i

Ei(θi, Pi) = {θ ∈ Rd : (θ − θi)TP−1
i (θ − θi) ≤ 1}. (2)

Let qviol be a point for which fi(θi, qviol) > 0 (such a
point is called “violation certificate”), we generate a “deep-
cut” separating hyperplane as in [2], based on a suitable
subgradient gi(θi, qviol) of fi(θ, q) at point (θi, qviol):

Hi = {θ ∈ Rd : gi(θi, qviol)T (θ − θi) + fi(θi, qviol) ≤ 0}.
(3)

Hence, a smaller ellipsoid Ei+ such that Ei ∩ Hi ⊂ Ei+ is
constructed. Define

αi(θi, qviol) =
fi(θi, qviol)√

gi(θi, qviol)TPigi(θi, qviol)
. (4)

The (unique) minimum volume ellipsoid containing the in-
tersection of Ei and Hi can be constructed based on the
following result from [2], which is a direct application of
Theorem 2.1 in [12].

Theorem 1 ([2]): Consider the ellipsoid Ei in (2) and the
hyperplane Hi in (3), the minimum volume ellipsoid

Ei+ = {θ ∈ Rd : (θ − θ+
i )T

(
P+
i

)−1
(θ − θ+

i ) ≤ 1},

containing Ei ∩Hi can be constructed by setting

θ+
i = θi − τ

Pigi√
gTi Pigi

, P+
i = η

(
Pi − σ

Pigig
T
i Pi

gTi Pigi

)
with τ = 1+dαi

d+1 , η = d2

d2−1 (1− α2
i ), σ = 2(1+dαi)

(d+1)(1+αi)
.

Moreover, the volumes of two consecutive ellipsoids satisfy

Vol(Ei+)

Vol(Ei)
= (ηd(1− σ))1/2 ≤ exp

(
− 1

2(d+ 1)
− αi

)
,

where Vol(·) returns the volume of the ellipsoid input.

We define a primitive

Ei+ = ShrinkEllips(Ei, qviol),

which for Ei and qviol constructs Ei+ based on Theorem 1.
Next, in the “communication and selection” step, each

agent updates its ellipsoid according to a deterministic func-
tion acting on the collection of ellipsoids available by the
agent. That is, calling Ej1 , . . . ,Ejp the collected ellipsoids,
agent i computes

Ei+ = SelectMinvol({Ek}k∈{j1,...,jp}),

which uniquely returns a smallest volume ellipsoid among
Ej1 , . . . ,Ejp . That is, we suppose that in case more ellip-
soids with smallest volume are present, the function selects
a unique one.

A pseudocode of our Distributed Randomized Ellipsoid
Algorithm is presented in Algorithm 1. The counters `i and
ki count the number of times verification and local update
through Theorem 1 are performed respectively.

Algorithm 1 Distributed Randomized Ellipsoid Algorithm
Input: fi(θ, q), probabilistic levels εi, δi ∈ (0, 1), ellipsoid
Ei1 ⊃ Θi

Output: Esol
Initialization: Set `i = 1 and ki = 1
Evolution:

(i) Verification and Shrinking:
• If Eit = Eit−1, goto (ii)
• `i = `i + 1
• Extract

M`i ≥
2.3 + 1.1 ln `i + ln 1

δi

ln 1
1−εi

i.i.d samples q`i = {q(1)
`i
, . . . , q

(M`i
)

`i
}

• If fi(θi(t), q
(j)
`i

)≤0, ∀j ∈ {1, . . . ,M`i}, goto (ii);
else
set qviol as first sample for whichfi(θi(t),q

(j)
`i

)>0
• Eit = ShrinkEllips(Eit, qviol)
• Set ki = ki + 1

(ii) Communication and Selection:
• Eit+1 = SelectMinvol({Ejt}j∈Nin(i,t)∪i)
• If Eit+1 has not changed for 2nL+1 times, return

Esol = Eit+1

At this point, it is worth highlighting three main interesting
features of the proposed algorithm. First, the local compu-
tation at each node involves fairly inexpensive steps. As for
verification, even if it may run possibly for a large number
of times, it consists of simple, inexpensive inequality checks.
The volume shrinking involves simple vector and matrix
computations as for Theorem 1, and the selection part con-
sists of just checking the minimum volume among a number
of ellipsoids equal to the in-degree of the node. Second, the
amount of data required to be transmitted between processors
does not depend on the number of agents, but only on the
dimension of the space. In particular, each node needs to only
transmit a d×1 vector θ corresponding to the ellipsoid center
and a d×d symmetric matrix P corresponding to the ellipsoid
shape matrix. Considering the fact that P is a symmetric
matrix, only d+ d(d+1)

2 numbers need to be transmitted. Third
and final, the proposed distributed randomized algorithm is
completely asynchronous. In fact, t is just a universal time
that does not need to be known by the nodes, and the graph
can be time-varying. Thus, if nodes run the computation at
different speeds, this can be modeled by having no incoming
and outcoming edges in that time interval.



IV. ANALYSIS OF THE DISTRIBUTED RANDOMIZED
ELLIPSOID ALGORITHM

We now state a Theorem proving the convergence of Algo-
rithm 1 and quantifying properties of the obtained solution.
That is, we prove that all nodes agree on a solution which is
globally feasible—with high confidence—for the entire set
of uncertainty Q, except a subset having an arbitrary small
probability measure.

Theorem 2 (Algorithm Convergence and Solution Prop-
erties): Suppose a network of N agents as in Section II runs
Algorithm 1, and let Assumptions 1 and 2 hold. Given the
probabilistic levels εi > 0 and δi > 0, i ∈ {1, . . . , n},
let ε =

∑n
i=1 εi and δ =

∑n
i=1 δi. Then, the following

statements hold
(i) (Finite-time unfeasibility detection)

If there exists some agent i for which the cumulative
number, ki, of local updates at time t exceeds

k̄i =

⌈
2(d+ 1) ln

Vol(Ei
1)

Φrd

2αmin
i (d+ 1) + 1

⌉
,

where αmin
i is the minimum1 value of αi—defined in

(4)—Φ is the volume of the d-dimensional unit ball
and dxe denotes the smallest integer greater than or
equal to x. Then, problem (1) is not r-feasible in the
sense that its feasible set Θ does not include a full-
dimensional ball of radius r > 0.

(ii) (Finite-time convergence for strictly feasible problems)
If problem (1) is r-feasible, then ellipsoids of all nodes
will converge to a common ellipsoid in finite time.
That is, there exists T > 0 such that Eit = Esol for all
i ∈ {1, . . . , n} and t > T .

(iii) (Local stopping condition of the distributed algorithm)
If the ellipsoid of agent i has not changed for 2nL+1
communication rounds, then all nodes have a common
ellipsoid Esol.

(iv) (Probabilistic properties of the solution)
Let θsol be the center of Esol, then the following
inequality holds

PM
{
q ∈ QM :

P
{
q ∈ Q : θsol /∈

n⋂
i=1

Θi(q)
}
≤ ε
}
≥ 1− δ

with M being the cardinality of the collection of all
agents’ multisamples.

The proof is omitted for the sake of space and will be
provided in a forthcoming document.

Remark 1 (Extension to Optimization): Extension of Al-
gorithm 1 to optimization problems is not trivial. In a cen-
tralized setup one can use an “objective cut”, which removes
part of the robust feasible set Θ with larger objective value
than the query point. However, in a distributed framework

1As stated in [2][Remark 1], αmin
i can be hard to estimate beforehand,

therefore a running estimate can be used.

agents do not have full knowledge of the (intersection) set
Θ, thus an objective cut cannot be performed locally by the
agents. A naı̈ve way to extend the distributed framework
presented here to solve optimization problems, is to perform
the objective cut only if all nodes have converged to the same
ellipsoid whose center is globally probabilistically feasible.
This ensures that only the part of Θ with larger objective than
the ellipsoids center is removed from the search space. The
drawback of this approach is that all nodes need to converge
in order to perform a new objective cut.

V. APPLICATION EXAMPLE: DISTRIBUTED
LOCALIZATION IN WIRELESS SENSOR NETWORKS

To illustrate the distributed algorithm presented in Section
III, we solve the problem of distributed convex position es-
timation in wireless sensor networks. A centralized solution
to this problem is originally formulated in [11].

Consider a two-dimensional2 space containing m hetero-
geneous wireless sensors which are randomly placed over
a given environment. One can think of a scenario where
all sensors are dropped from the air and scattered about an
unknown area. The sensors are of two classes:

(i) Wireless sensors capable of positioning themselves
up to a given accuracy, i.e., there is uncertainty in
the position reported by this class of sensors. They
are equipped with processors with limited computa-
tion/communication capabilities and play the role of
computational nodes in the distributed optimization
framework. These n sensors can communicate with
each other based on a metric distance. That is, two
sensors which are close enough can establish a bidirec-
tional communication link. Henceforth, these sensors
are called “known sensors”.

(ii) Wireless sensors with no positioning capabilities what-
soever. These m−n sensors are only equipped with a
short-range transmitter having a rotationally symmetric
communication range, periodically transmitting an ID,
specific to each sensor. Henceforth, they are called
“unknown sensors”.

The objective of the network is to “estimate”—in a
distributed fashion—the position of unknown sensors. We
further consider a heterogeneous setup in which some of
the sensors with positioning capabilities are equipped with
laser transceiver providing an estimate of relative angle to
unknown sensors which are within the range of the laser
transceiver. This “angular constraint” can be represented
by the intersection of three half-spaces, two to bound the
angle and one corresponding to the transceiver range as
presented in Fig. 1. Sensors with known position, which
are not equipped with laser transceiver, can place a “radial
constraint” for those unknown sensors that are within the
communication range. If the signal from an unknown sensor
can be sensed by a known sensor, a proximity constraint
exists between them, that is, the unknown sensor is placed in

2Here we consider a two-dimensional space, nevertheless extension to a
three-dimensional space is straightforward.
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Fig. 1. Sensors with known position are computational nodes in the
distributed optimization setup. Their objective is to estimate the position
of unknown sensors by locally applying angular and radial constraints and
exchanging information with their neighbors. The green (shaded) region
represents the feasible set of unknown positions.

a circle with radius r centered at the known sensor’s position
with r being the communication range. This constraint can
be formulated as ‖θi − pj‖2 ≤ r, where θi ∈ R2×1 is
the position of ith unknown sensor and pj ∈ R2×1 is the
position of jth known sensor. Using Schur-complement [4],
the proximity constraint can be expressed in terms of a linear
matrix inequality (LMI), i.e.,

‖θi − pj‖22 ≤ r2 ⇔

F (θi)
.
=

[
rI2 (θi − pj)

(θi − pj)T r

]
≥ 0,

where I2 is the identity matrix of size 2× 2.
In order to solve this problem in a distributed manner,

all unknown positions are collected in θ ∈ R(m−n)×2, i.e.,
θ

.
= [θ1, . . . , θm−n]T—recall that m is the total number

of sensors and n is the number of sensors with known
positions. As shown in Fig. 1, the position of unknown
sensors are often sensed and hence constrained by several
known sensors. This is used to shrink the feasibility set of
unknown positions. We remark that in a distributed setup,
constraints regarding the position of an unknown sensor are
distributed in different computational nodes and there is no
agent having full knowledge of all constraints.

Known sensors are capable of localizing themselves. Nev-
ertheless, their localization is not accurate and there is an
uncertainty associated with the position vector reported by
each node. This uncertainty can be modeled as a norm-
bounded vector

‖pj − p̄j‖2 ≤ ρ, (5)

where p̄j is the nominal position reported by the sensor j,
pj is its actual position and ρ is the radius of the uncertain
set. In other words, the uncertainty is defined by an `2 ball
centered at the nominal point p̄j with radius ρ.

For simulation purposes, we consider a scenario where 30
sensors are placed randomly in a 10×10 square environment
and only 10 of them are capable of positioning themselves up

to a given accuracy. The sensors with known position have
processing and communication capabilities. In particular, two
sensors can establish a two-way communication link if their
distance is less than 3. The communication range of unknown
sensors is also considered to be 3. Among the 10 known
sensors, half of them are able to place angular constraints—
using laser transceiver—on their relative angle to unknown
sensors within the laser range. The angle representing the
accuracy of the laser transceiver—the angle α in Fig. 1—
is 20 degrees. Finally, the uncertainty radius ρ in (5) is
0.05 and the distribution of the uncertainty is selected to
be uniform due to its worst-case nature [3]. We remark that
in the considered scenario, the dimension of the decision
variable θ is 40 and the number of computation nodes n
is 10; there are also 20 uncertain parameters rendering the
problem nontrivial to solve. The design parameters εi and δi,
i = 1, . . . , 10 are selected to be 0.01 and 10−10 respectively,
leading to ε = 0.1 and δ = 10−9. The initial ellipsoid is
selected to be a 40 dimensional ball of radius 10 centered at
the point (5, 5).

We used a workstation with 12 cores and 48 GB RAM
to emulate the distributed framework. Each one of the 10
computational nodes runs Algorithm 1 in an independent
Matlab environment and communication is performed by
sharing files between different Matlab environments. This
accounts for asynchronicity of Algorithm 1. Figure 2 shows
the evolution of ellipsoid volume and the distance of the
ellipsoid center from a probabilistically robust feasible point
(θsol) for all the nodes. As expected, volumes are non-
increasing over time and they all converge to a common
value. The center of each node ellipsoid is its candidate
solution. It can be seen from Fig. 2 that the candidate
solutions of all nodes converge to the same point as well.
The insets in Fig. 2 also show that both the volumes and
centers of the ellipsoids converge in finite time, consistently
with the theoretical result proven in Theorem 2. As a final
remark, it is worth pointing out once again that the horizontal
axis of Fig. 2 represents a universal time which does not need
to be known by the nodes.

VI. CONCLUSION

In this paper, we proposed an asynchronous, randomized
distributed algorithm for solving robust convex feasibility
problems in which the uncertain constraint sets are dis-
tributed in a network of processors communicating accord-
ing to a directed and time-varying graph. The distributed
algorithm, run by the network nodes, relies on the central-
ized ellipsoid algorithm [12]. Each node has a candidate
ellipsoid guaranteed to contain the global robust feasible
set—the set being robustly feasible for all the nodes. Each
node first verifies—in a Monte Carlo setup—if the center
of its ellipsoid is feasible with high probability. If not,
it updates its ellipsoid with a smaller one by using the
ellipsoid algorithm [12]. Next, it collects ellipsoids of all
its neighbors and updates its candidate ellipsoid with the
smallest volume among the collected ones. The two steps
are iteratively performed until all nodes converge to the same
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Fig. 2. Top: Volume of ellipsoids of all the nodes along the evolution of
the distributed algorithm (normalized with volume of the initial ellipsoid).
Bottom: Distance of the center of ellipsoids (candidate solutions) to θsol for
all nodes in the network.

candidate ellipsoid with the desired probabilistic robustness.
We analyzed the finite-time convergence of the proposed
algorithm and showed its performance on a robust position
estimation problem in wireless sensor networks.
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