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that the distribution of the gravitino mass and the soft terms is power-law only in KKLT

and perturbatively stabilised vacua which therefore favour high scale supersymmetry. On

the other hand, LVS vacua feature a logarithmic distribution of soft terms and thus a

preference for lower scales of supersymmetry breaking. Whether the landscape of type IIB

flux vacua predicts a logarithmic or power-law distribution of the supersymmetry breaking

scale thus depends on the relative preponderance of LVS and KKLT vacua.
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1 Introduction

For several decades, the idea of supersymmetry has been one of the central ideas in both

phenomenological and formal aspects of high energy physics. From the point of view

of phenomenology, it furnishes an elegant solution to the gauge hierarchy problem and

provides natural dark matter candidates. Furthermore, the theory is supported by several

sets of data via radiative corrections: gauge coupling unification, the value of the top mass,

and the value of the Higgs mass which falls within the window allowed by the Minimal

Supersymmetric Standard Model (MSSM). For a detailed discussion of the recent status of

supersymmetric phenomenology, see [1] and references therein. From a more formal point

of view, supersymmetry plays a key rôle in making string theory a consistent theory of

quantum gravity. (Approximately) supersymmetric string compactifications are typically

stable, as supersymmetry protects solutions from various instabilities. Supersymmetric

partners of the Standard Model (SM) are being actively searched for at the LHC, with null

results thus far. Given this, the time is ripe to rethink the following question: at what

scale should we expect to find supersymmetry?
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It is important to understand if string theory can provide guidance in this regard. The

literature on supersymmetry breaking and its mediation in string theory is vast, much of it

focused on constructions of specific supersymmetry breaking and MSSM-like sectors (see [2–

6] for a review of these and other aspects of string phenomenology). A complementary

line of inquiry, starting with the seminal work [7–18], has been to frame the question in

terms of statistical distributions in the landscape of flux vacua [19]. As described in [10],

this program relies on several features of flux compactifications: they are the most well-

understood string compactifications with moduli stabilisation and broken supersymmetry

and thus provide a fertile arena where quantitative answers may be extracted; there are

many vacua that at least roughly match the SM; the number of vacua is so large that

statistical solutions make sense; and no single vacuum is favoured by the theory. These

studies found a preference for high scale supersymmetry due to a uniform distribution of

the supersymmetry breaking scale [10, 13, 14]. This result has been obtained by taking the

distribution of the relevant F-terms to be as given by the dilaton and complex structure F-

terms, while the Kähler moduli F-terms have been neglected since these fields are stabilised

only beyond tree-level.

The purpose of this paper is to revisit the statistical distribution of the supersymmetry

breaking scale in the type IIB flux landscape, paying particular attention to the stabili-

sation of the Kähler moduli. The motivation for our work comes from the fact that the

dilaton and complex structure F-terms, if non-zero, typically give rise to a runaway for the

Kähler moduli, unless they are tuned to be small as in a recent dS uplifting proposal [20].

This implies that stable vacua where moduli stabilisation is under control require the dila-

ton and complex structure F-terms to be suppressed with respect to the F-terms of the

Kähler moduli. It is therefore the distribution of the F-terms of the Kähler moduli which

determines the statistics of the supersymmetry breaking scale in the landscape.

More precisely, in type IIB flux compactifications the complex structure moduli and

the dilaton are fixed supersymmetrically at semi-classical level by 3-form fluxes [21]. As

we pointed out above, this supersymmetric stabilisation ensures the absence of instabilities

along the Kähler moduli directions which are flat at tree-level due to the well-known ‘no-

scale’ property of the low-energy effective action [22–25]. At this level of approximation,

the cosmological constant vanishes and supersymmetry is broken due to non-zero F-terms

of the Kähler moduli. However, due to the no-scale structure, the scale of the gravitino

mass is unfixed and the soft terms might be zero (as in models where the SM is realised via

D3-branes [26–29]). The inclusion of no-scale breaking effects, which can come from either

perturbative contributions to the Kähler potential or non-perturbative corrections to the

superpotential, is therefore crucial to stabilise the Kähler moduli, to fix the supersymmetry

breaking scale and to determine the soft terms. Kähler moduli stabilisation thus allows

to write the gravitino mass (and consequently the soft terms) in terms of microscopic

parameters like flux quanta or the number of D-branes. In turn, exploiting these relations

and the knowledge of the distribution of these underlying parameters, one can deduce the

distribution of the supersymmetry breaking scale in the landscape.

We will try to perform a systematic study of the interplay between Kähler moduli

stabilisation and the statistics of the supersymmetry breaking scale by considering three
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general scenarios: (i) models with purely non-perturbative stabilisation like in KKLT

vacua [30]; (ii) models where the Kähler moduli are frozen by balancing perturbative

against non-perturbative effects as in the Large Volume Scenario (LVS) [31]; and (iii)

models with purely perturbative stabilisation [32]. We primarily study the distributions

focusing on vacua with zero cosmological constant, and do not explore the joint distribu-

tion of the cosmological and supersymmetry breaking scale in detail (although in the case

of LVS we argue that the distribution of the supersymmetry breaking scale should remain

the same for a wide range of values of the cosmological constant, see below).

Interestingly, we find that KKLT and perturbatively stabilised vacua behave similarly

since in both cases the gravitino mass is governed by flux-dependent parameters (as the

vacuum expectation value of the tree-level superpotential in KKLT models) which are

uniformly distributed. Hence the statistics of supersymmetry breaking obeys a power-

law behaviour implying that in these cases high scale supersymmetry is preferred, unless

tempered by anthropics [33]. Notice that these results match those derived in [10] since

in these cases the F-terms of the Kähler moduli, similarly to the dilaton and complex

structure F-terms, turn out to be uniformly distributed.

The situation in LVS models is instead different. In fact, we find that in this case

the distribution of the supersymmetry breaking scale is exponentially sensitive to the dis-

tribution of the string coupling. Due to the exponential behaviour and the fact that the

string coupling is uniformly distributed as a flux-dependent variable, the distribution of the

soft terms turns out to be only logarithmic. This dependence gives rise to a large number

of vacua with low-energy supersymmetry and reproduces in detail previous expectations

following an intuition based on dynamical supersymmetry breaking [34–37] (although a

significant difference is that [34, 35] found a logarithmic distribution even in the case of

KKLT, which we do not find).1

LVS models are particularly interesting also because they provide examples where a

crucial assumption formulated in [10] can be explicitly shown to hold. This is the assump-

tion that the distribution of the supersymmetry breaking scale is decoupled from the one of

the cosmological constant. This was justified in [10] by relying on the possible existence of

several hidden sector models which contribute to the vacuum energy but not to supersym-

metry breaking. In LVS models the depth of the non-supersymmetric AdS vacuum scales

as VLV S ∼ −m3
3/2Mp, where m3/2 is the gravitino mass and Mp the Planck scale. Hence

any hidden sector responsible for achieving a nearly Minkowski vacuum contributes to the

scalar potential with an F-term that scales as Fhid ∼ m
3/2
3/2M

1/2
p . In turn, in a typical grav-

ity mediation scenario, the contribution to the soft terms from this hidden sector would be

suppressed with respect to the gravitino mass since Msoft ∼ Fhid/Mp ∼ εm3/2 � m3/2 with

ε =
√
m3/2/Mp � 1.2 Note that this implies that the distribution of the supersymmetry

breaking scale is the same for all vacua with cosmological constant in the range ±VLV S.

We have therefore shown that, while two alternative statistics of the supersymme-

try breaking scale have been advanced before in the literature (power-law distributions

1We refer to [38, 39] for other early studies in this general direction.
2An exception to this argument could however come from models where the SM is built via D3-branes

at singularities which are sequestered from the sources of supersymmetry breaking in the bulk [27, 29].
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by assuming democratic distributions of complex structure F-terms and logarithmic dis-

tributions by appealing to dynamical supersymmetry breaking), the different behaviours

are neatly categorized by different stabilisation mechanisms. In order to determine if the

distribution of the supersymmetry breaking scale is power-law or logarithmic, one should

therefore determine the relative preponderance of LVS and KKLT vacua in the type IIB

landscape. Given that LVS models do not rely on any tuning of the tree-level super-

potential, one would naively expect them to arise much more frequently, so favouring a

logarithmic distribution of the soft terms. However, a full understanding of this question

requires detailed (numerical) studies of the distributions of flux vacua which is well beyond

the scope of the present work. For estimates of the number of vacua as a function of the

flux superpotential and the string coupling see [40–44].

We finally point out that the ultimate goal of this line of research is to identify the

mass scale of the supersymmetric particles preferred by the string landscape in order to

find some guidance for low-energy searches of superpartners. In order to achieve this

task, one has not just to understand the distribution of vacua, but has to focus also on

phenomenologically viable vacua. This means that one should impose additional constraints

coming for example from cosmology or from anthropic arguments [33]. For example, in

string compactifications both the moduli masses and the soft terms turn out to be of order

the gravitino mass. Hence the absence of any cosmological moduli problem [45–48], which

requires moduli masses above O(50) TeV, tends to push the soft terms considerably above

the TeV-scale unless the SM sector is sequestered from supersymmetry breaking (as in some

D3-brane models [27, 29].) We leave a detailed study of these additional phenomenological

and cosmological constraints for future work.

This paper is organised as follows. In section 2 we first review previous determinations

of the statistics of the supersymmetry breaking scale neglecting the Kähler moduli. After

explaining why this analysis is incomplete and a more accurate study should take the Kähler

moduli into account, we then provide an overview of the three general classes of Kähler

moduli stabilisation schemes mentioned above: KKLT [30], LVS [31] and perturbative

stabilisation [32]. In section 3 we derive in detail the distribution of the supersymmetry

breaking scale for each of these three scenarios, while in section 4 we discuss the interplay

between our results and previous findings in the literature and the implications of our

distributions for phenomenology. Our conclusions are presented in section 5. Finally

appendix A presents a discussion of the distribution of the string coupling while appendix B

summarises the structure of the soft terms in KKLT and LVS models with an MSSM-like

sector on either D3 or D7-branes.

2 The importance of the Kähler moduli for the SUSY breaking statistics

The statistics of the supersymmetry breaking scale in the landscape has been investigated

mainly in the context of type IIB flux compactifications since this is one of the best examples

where moduli stabilisation can be achieved with control over the effective field theory.

However previous studies focused only on the contribution to supersymmetry breaking

from the axio-dilaton and the complex structure moduli, ignoring the dynamics of the

– 4 –



J
H
E
P
1
0
(
2
0
2
0
)
0
1
5

Kähler moduli [9–14]. In what follows we shall instead point out that the Kähler moduli

play a crucial rôle in determining the correct statistics of the supersymmetry breaking scale

in the landscape.

2.1 SUSY breaking statistics neglecting the Kähler moduli

The starting point of our discussion is type IIB string theory compactified on a Calabi-

Yau X which, together with an appropriate orientifold involution, can lead to an N = 1

supergravity effective action in 4D. One of the nicest features of these compactifications

is that one can turn on RR and NSNS 3-form fluxes F3 and H3 without destroying the

underlying Calabi-Yau structure since the flux backreaction just introduces warping [21].

Moreover, these background 3-form fluxes, which appear in the combination G3 = F3 −
iSH3, can stabilise the axio-dilaton S and all complex structure moduli Uα (with α =

1, . . . , h1,2(X)) by generating the following tree-level superpotential [49]:

Wtree =

∫
X
G3 ∧ Ω(U) , (2.1)

where Ω(Uα) is the holomorphic (3, 0)-form of the Calabi-Yau X that depends on the

U -moduli.

The tree-level Kähler potential which can be obtained from direct dimensional reduc-

tion is instead [50]:

Ktree = −2 lnV − ln
(
S + S̄

)
− ln

(
−i

∫
X

Ω(U) ∧ Ω̄(Ū)

)
, (2.2)

where V is the dimensionless volume of the internal manifold expressed in units of the

string length `s = 2π
√
α′ = M−1

s . The Calabi-Yau volume V is also a function of the real

parts of the Kähler moduli Ti = τi + iθi (with i = 1, . . . , h1,1(X)) where the τi’s control

the size of internal divisors while the θi’s are the axions obtained from the dimensional

reduction of the RR 4-form C4 over the same 4-cycles. For the simplest cases with just a

single Kähler modulus, V = τ3/2.

The scalar potential is obtained by plugging the expressions (2.1) and (2.2) in the gen-

eral expression of the F-term scalar potential in supergravity (setting Mp ≡ 1/
√

8πGN = 1

and neglecting possible contributions coming from D-terms):

VF = eK
(
Kij̄DiWDj̄W − 3|W |2

)
= Kij̄F

iF
j̄ − 3m2

3/2 , (2.3)

where:

F i = eK/2Kij̄Dj̄W and m3/2 = eK/2|W | . (2.4)

Given that the tree-level Kähler potential (2.2) factorises, the F-term scalar potential (2.3)

takes the form (denoting all complex structure and Kähler moduli collectively as U and T

respectively):

Vtree = |FS |2 + |FU |2 + |F T |2 − 3m2
3/2 . (2.5)

Refs. [10, 13, 14] considered situations where supersymmetry is spontaneously broken at

the minima of the scalar potential (2.5) and studied the distribution of the supersymmetry
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breaking scale taking the distribution of the relevant F-terms to be that obtained from the

analysis for the S and U -moduli. The Kähler moduli have been instead neglected since

these moduli are not stabilised by fluxes at tree-level, and so the dynamics that fixes them

beyond the tree-level approximation has been assumed to give rise just to small corrections

to the leading order picture.

Hence the distribution of supersymmetry breaking vacua has been claimed to be

given by [10]:

dN(F, Λ̂) =
∏

d2FS d2FU dΛ̂ ρ(F, Λ̂) , (2.6)

where Λ̂ is the depth of the supersymmetric AdS vacuum, Λ̂ = 3m2
3/2, and the F-terms of

the T -moduli have been ignored. Requiring in addition a vanishing cosmological constant,

one obtains:

dNΛ=0(F ) =
∏

d2FS d2FU dΛ̂ ρ(F, Λ̂) δ
(
|FS |2 + |FU |2 − Λ̂

)
. (2.7)

Ref. [10] makes two claims about the cosmological constant: the first claim is that the

distribution of values of the supersymmetric AdS vacuum Λ̂ = −Λ = eK |W |2 is determined

by the distribution of the tree-level superpotential (2.1) which is uniformly distributed as a

complex variable near zero, and throughout its range is more or less uniform. The second

claim is instead that this distribution is relatively uncorrelated with the supersymmetry

breaking parameters if the hidden sector which breaks supersymmetry is different from the

one which is responsible to obtain a nearly zero cosmological constant.

If one assumes a decoupling of the cosmological constant problem from the question of

supersymmetry breaking, then the density function ρ is in fact independent of Λ̂, leading to:

dNΛ=0(F ) = d2F ρ(F ) , (2.8)

where we have collectively denoted all the F-terms of the axio-dilaton and the complex

structure moduli simply as F . Using the vanishing cosmological constant condition |F |2 =

3m2
3/2 and the fact that d2F ' |F | d|F | ' m3/2 dm3/2, (2.8) reduces to:

dNΛ=0(m3/2) ' ρ(m3/2)m3/2 dm3/2 . (2.9)

Given that the gravitino mass is set by the F-terms of the axion-dilaton and the complex

structure moduli, and FS and FU in type IIB flux vacua turn out to be uniformly dis-

tributed as complex variables, [10] considered ρ(m3/2) as independent on m3/2. In order

to keep this discussion more general in view of our results in the case where the T -moduli

are included, we consider instead:

ρ(m3/2) ∼ mβ
3/2 with β ≥ 0 , (2.10)

which implies:

dNΛ=0(m3/2) ' mβ+1
3/2 dm3/2 with β ≥ 0 , (2.11)

where β = 0 for the case where the dynamics of the Kähler moduli is neglected [10, 13, 14].

Notice that the result with β = 0 would indicate a preference for high scale supersymmetry.
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2.2 SUSY breaking statistics including the Kähler moduli

The importance of the Kähler moduli for the statistics of the supersymmetry breaking

scale in the landscape can be easily understood by noticing that the tree-level superpoten-

tial (2.1) is independent on the T -moduli due to holomorphy combined with the axionic

shift symmetry. Hence the F-terms of the Kähler moduli become F T = eK/2WKT T̄KT̄

and the scalar potential (2.5) can be rewritten as:

Vtree = |FS |2 + |FU |2 +m2
3/2

(
KT̄K

T̄ TKT − 3
)
. (2.12)

A generic property of type IIB vacua which holds for all Calabi-Yau manifolds is the famous

‘no-scale’ relation KT̄K
T̄ TKT = 3 which has been recently shown to be a low-energy

consequence of the axionic shift symmetry combined with approximate higher dimensional

symmetries like scale invariance and supersymmetry [25]. This no-scale property of type

IIB vacua has important consequences which we now briefly discuss:

• At tree-level the scalar potential (2.12) reduces to (where Kcs denotes the Kähler

potential for the U -moduli):

Vtree = |FS |2 + |FU |2 =
eKcs

V2
(
S + S̄

) [|DSW |2 + |DUW |2
]
. (2.13)

This result shows that any vacuum where either DSW 6= 0 or DUW 6= 0 is unstable

since it gives rise to a run-away for the volume mode V at tree-level. One could

envisage a scenario where this run-away is counter-balanced by quantum corrections

but when the perturbative expansion is under control these effects are expected to

be subdominant by consistency. Hence a stable solution requires FS = FU = 0.3

This implies that the statistic of the supersymmetry breaking scale in the landscape

should instead be driven by the F-terms of the Kähler moduli.

• At tree-level, the gravitino mass is set by the F-terms of the T -moduli since the no-

scale relation implies |F T |2 = 3m2
3/2. This is contrast with the case where the Kähler

moduli are ignored and m3/2 is set by the F-terms of S and U -moduli. Thus there is

no reason to expect that coefficient β in the distribution of the gravitino mass (2.10)

should be zero. Moreover, the Kähler moduli are still flat at tree-level, and so any

scale of supersymmetry breaking is equally valid. To set m3/2 and to understand its

distribution one has therefore to study which corrections to the tree-level action can

stabilise the Kähler moduli. We shall show that in a large number of flux vacua (all

the LVS examples) F T is not uniformly distributed, and so β 6= 0.

• The gravitino mass does not necessarily fix the scale of the soft supersymmetry

breaking terms in the visible sector. In fact, in type IIB models an MSSM-like

visible sector can be located on either stacks of D7-branes with non-zero gauge fluxes

or on D3-branes at singularities. The tree-level Kähler potential including D7 and D3

3See however [20] for dS uplifting models where FS and FU are tuned to very small values. These cases

are consistent with our claims since they feature FS ∼ FU � FT .
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matter fields, respectively denoted as φ3 and φ7, is given by (focusing for simplicity

on the case with h1,1(X) = 1) [51]:

Ktree = −3 ln
(
T + T̄ − φ̄3φ3

)
− ln

(
S + S̄ − φ̄7φ7

)
' K0 + K̃3 φ̄3φ3 + K̃7 φ̄7φ7 ,

where K0 denotes the Kähler potential for T and S while K̃3 = 3
(
T + T̄

)−1
and

K̃7 =
(
S + S̄

)−1
. On the other hand the visible sector gauge kinetic functions for

D7s and D3s at tree-level read:

f3 = S and f7 = T . (2.14)

Moreover the general expressions of the soft scalar and gaugino masses in gravity

mediation look like:

m2
0 = m2

3/2 − F
ī
F j∂ī∂j ln K̃ and M1/2 =

1

2 Re(f)
F i∂if . (2.15)

Using FS = 0 and F T = eK/2WKT T̄KT̄ , we then end up with:

D3 : m0 = M1/2 = 0

D7 : m0 = |M1/2| = m3/2 . (2.16)

Hence we can clearly see that the soft terms are set by the gravitino mass only for

D7s, while for D3s they are suppressed with respect to m3/2. We conclude that

the inclusion of perturbative and/or non-perturbative corrections to the 4D effective

action which break the no-scale structure is crucial for two important tasks: (i) to

stabilise the Kähler moduli, which in turn fixes the leading order value of F T and

m3/2; (ii) to generate a subleading shift to the tree-level results for FS and F T which

yield non-zero contributions to m0 and M1/2 for visible sector models on D3-branes.

2.3 Overview of type IIB Kähler moduli stabilisation

After having motivated the importance of Kähler moduli stabilisation for understanding the

correct distribution of the supersymmetry breaking scale in the type IIB flux landscape, we

describe now the main features of three different classes of stabilisation scenarios classified

in terms of perturbative and non-perturbative corrections to the 4D low-energy action.

2.3.1 Purely non-perturbative stabilisation: KKLT

Let us start by reviewing the KKLT [30] stabilisation mechanism and identify the relevant

parameters. The starting point is to introduce 3-form fluxes which stabilise the axio-

dilaton and all complex structure moduli at FS = FU = 0 [21]. The next step is to

allow for effects like gaugino condensation on D7 branes or Euclidean D3 instantons, both

wrapped on internal 4-cycles. Both of these effects lead to non-perturbative corrections to

the superpotential that stabilise the Kähler modulus T = τ + iθ if the vacuum expectation

value of Wtree is tuned to exponentially small values. Thus in KKLT models the Kähler

potential takes the tree-level expression given in (2.2) while the superpotential is:

W = W0 +Ae−aT , (2.17)

– 8 –
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where W0 is the vacuum expectation value of the tree-level superpotential (2.1). Moreover

a = 2π/n with n = 1 for stringy instantons while in the case of more standard field theoretic

non-perturbative effects on stacks of D7-branes n is related to the number of D7-branes

that, together with the orientifold involution, determines the rank of the condensing gauge

group (for example for gaugino condensation in a pure SU(N) super Yang-Mills theory

n = N). The scalar potential is obtained by plugging the expressions (2.2) and (2.17) in

the general expression of the F-term supergravity scalar potential (2.3). After minimising

with respect to the axion θ, one arrives at (with s = Re(S)):

VKKLT =
2e−2aτa2A2

3sV2/3

(
1 +

3

aτ

)
− 2e−aτaAW0

sV4/3
, (2.18)

where V = τ3/2 is the dimensionless CY volume in units of the string length `s = 2π
√
α′ =

M−1
s . Minimising this potential with respect to the volume we get the relation:

ea〈τ〉 =
2Aa〈τ〉

3W0

(
1 +

3

2a〈τ〉

)
' 2Aa〈τ〉

3W0
⇔ 〈τ〉 ' 1

a
| lnW0| , (2.19)

where we took the limit a〈τ〉 � 1 where higher instantons corrections to (2.17) can be

safely ignored and we considered natural values of the prefactor A of the non-perturbative

contribution to W , i.e. A ∼ O(1). Notice that (2.19) leads to two important observations:

1. A minimum at values of 〈τ〉 � 1, where stringy corrections to the effective action

can be neglected, can be obtained only if W0 is tuned to exponentially small values.

Notice that such a tuning guarantees also the consistency of neglecting perturbative

corrections to K (since they give rise to contribution to V which are proportional to

|W0|2).

2. This vacuum preserves supersymmetry since (2.19) implies F T = 0. Hence, as can be

seen from (2.3), the vacuum energy is negative with V = −3m2
3/2 where in this case

m3/2 should just be intended as the parameter defined in (2.4) without any reference

to the gravitino mass.

A Minkowski or slightly dS vacuum can be obtained by adding to the scalar potential the

positive definite contribution coming from D3-branes at the end of a warped throat [30]

(another interesting option relies on α′ corrections to K [52]). As shown in [53], this

requires the addition of a nilpotent superfield in the 4D effective field theory description.

The presence of this nilpotent superfield gives rise to a Minkowski vacuum where the

relation (2.19) gets modified to:

ea〈τ〉 =
2Aa〈τ〉

3W0

(
1 +

5

2a〈τ〉

)
. (2.20)

Interestingly, (2.19) and (2.20) agree at leading order, and so we can safely consider 〈τ〉 '
1
a | lnW0| also at the Minkowski minimum where supersymmetry is broken. In this case the

gravitino mass becomes (where the vacuum expectation value of s sets the string coupling,

i.e. s = g−1
s ):

m3/2 '
√
gs
8π

|W0|
〈V〉

' π g
1/2
s

n3/2

|W0|
| lnW0|3/2

. (2.21)

– 9 –



J
H
E
P
1
0
(
2
0
2
0
)
0
1
5

This equation shows clearly that, being exponentially small, it is W0 that determines the

order of magnitude of m3/2. The soft terms in the KKLT scenario can be generated via

either gravity or anomaly mediation [53, 54] with the MSSM-like visible sector located on

either stacks of D7-branes with non-zero gauge fluxes or on D3-branes at singularities. In

both cases, the overall scale of the soft terms Msoft is of order the gravitino mass up to a

possible 1-loop factor whose presence is model-dependent: Msoft ∼ m3/2.

2.3.2 Perturbative vs. non-perturbative effects: LVS

The starting point of LVS models is the same as in KKLT constructions since at tree-level

the complex structure moduli and the dilaton are stabilised supersymmetrically by non-

zero 3-form fluxes at FU = 0 and FS = 0. At this semi-classical level of approximation,

the Kähler moduli are however flat directions due to the underlying no-scale cancellation

which is inherited from higher-dimensional rescaling symmetries [25].

The simplest LVS model (see [55–58] for more general constructions) features 2 Kähler

moduli and a CY volume of the form V = τ
3/2
b − τ3/2

s where τb is a ‘big’ divisor controlling

the overall volume while τs is a ‘small’ divisor supporting non-perturbative effects, with

τb � τs � 1 [31]. If the leading order α′ correction to the effective action is included, the

Kähler and superpotential of LVS models look like:

K = −2 ln

(
V +

ξ

2

(
S + S̄

2

)3/2)
− ln

(
S + S̄

)
− ln

(
−i
∫
X

Ω(U) ∧ Ω̄(Ū)

)
(2.22)

W = W0 +As e
−asTs , (2.23)

with as = 2π/n as in the KKLT case and ξ ≡ −χ(X)ζ(3)
2(2π)3

where χ(X) is the CY Euler

number and ζ is the Riemann zeta function. Notice that As and ξ are both expected to be

O(1) parameters. After setting S and all the U -moduli at their flux-stabilised values and

fixing the axionic partner of τs at its minimum, the scalar potential (2.3) takes the form:

VLV S =
4

3

a2
sA

2
s
√
τse
−2asτs

sV
− 2asAs|W0|τse−asτs

sV2
+

3
√
sξ|W0|2

8V3
. (2.24)

Minimising the potential we obtain the following conditions on the moduli (with s = g−1
s ):

〈V〉 '
3
√
〈τs〉 |W0|
4asAs

eas〈τs〉 and 〈τs〉 '
1

gs

(
ξ

2

)2/3

. (2.25)

Let us again stress two important points which follow from (2.25):

1. In LVS models, it is the smallness of gs that guarantees that the effective field theory is

under control. In fact, if the string coupling is such that perturbation theory does not

break down, i.e. gs . 0.1, stringy corrections to the 4D action can be safely ignored

since both τb and τs are much larger than the string scale. Hence these models can

exist for natural values of the flux-generated superpotential W0 with W0 ∼ O(1−10).

2. The LVS vacuum is AdS with VLVS ∼ −m3
3/2 and non-supersymmetric with the

largest F-term given by F Tb ∼ τbm3/2. Hence the Goldstino is the fermionic partner

of Tb in the corresponding N = 1 chiral superfield. This is eaten up by the gravitino

which acquires a non-zero mass.
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As in KKLT models, an additional positive definite contribution to the scalar potential has

to be added in order to obtain a Minkowski solution. Several ‘uplifting’ mechanisms have

been proposed and the main ones involve anti-branes [30], T-branes [59], hidden sector

non-perturbative effects [60] or non-zero F-terms of the dilaton and complex structure

moduli [20]. The important observation here is that all these mechanisms modify the

relations in (2.25) only at subleading order. Hence we can consider (2.25) a good analytic

estimate also for the location of the Minkowski minimum. Thus the gravitino mass becomes:

m3/2 '
√
gs
8π

|W0|
〈V〉

' c1
gs
n
e
− c2

gsn , (2.26)

where c1 and c2 are O(1) parameters given by:

c1 =

√
8πAs
3

(
2

ξ

)1/3

and c2 = 2π

(
ξ

2

)2/3

. (2.27)

Contrary to KKLT scenarios where the value of m3/2 was determined by W0, (2.26) shows

clearly that in LVS models the scale of the gravitino mass is set by the string coupling.

Another difference between KKLT and LVS models, is that in LVS constructions the con-

tribution to the soft terms from anomaly mediation is always loop-suppressed with respect

to the contribution from gravity mediation (since similar cancellations in both mediation

mechanisms take place due to the underlying no-scale property of these vacua). Moreover,

in LVS models, the overall scale of the soft terms depends crucially on the fact that the

SM is realised on either D7 or D3-branes [27, 29, 61, 62]:

D7 : Msoft ∼ m3/2 D3 : M1/2 ∼ m2
3/2 and m0 ∼ mp

3/2 , (2.28)

where p can be either p = 2 or p = 3/2 depending on the mechanism considered to obtain

a Minkowski vacuum [29].

2.3.3 Purely perturbative stabilisation: α′ vs. gs effects

Let us now describe Kähler moduli stabilisation based just on perturbative corrections to

the effective action [32]. As shown in [61], when W0 takes natural O(1 − 10) values and

no blow-up modes like the ‘small’ modulus τs of LVS models are present, non-perturbative

effects are subdominant with respect to perturbative corrections in either α′ or gs.

The main perturbative corrections to K which yield non-zero contributions to the

scalar potential are (for an more detailed discussion of these effects see [25, 63]): O(α′3)

corrections at tree-level in gs have been computed and open string 1-loop effects at both

O(α′2) and O(α′4) have also been computed. In the simplest case of a single Kähler

modulus, these corrections to K take the form [64–67]:

Kg0sα
′3 = − ξ

g
3/2
s V

, Kg2sα
′2 = gs

b(U)

V2/3
, Kg2sα

′4 =
c(U)

V4/3
. (2.29)

The parameters b(U) and c(U) are in general unknown functions of the complex structure

moduli (and open string moduli as well) which have been computed explicitly only for
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simple toroidal orientifolds like T6/(Z2×Z2) [66]. They are however expected to beO(1−10)

numbers in absence of fine tuning. Interestingly, the O(g2
sα
′2) corrections to K proportional

to b(U) experience an ‘extended no-scale’ cancellation [68], and so they contribute to the

scalar potential only at O(g4
sα
′4). Hence we can neglect them since for gs . 0.1 they are

subleading with respect to the correction to K proportional to c(U).

After minimising the scalar potential with respect to the axio-dilaton and the complex

structure moduli by solving DSW = DUW = 0, the potential for the Kähler modulus is

given by:

V = gs
|W0|2

V3

(
− 3|ξ|

8g
3/2
s

+
c(U)

V1/3

)
, (2.30)

where we have considered a negative value of the coefficient ξ in order to get a mini-

mum.4 Minimising with respect to V we obtain a non-supersymmetric (since F T 6= 0) AdS

vacuum at:

〈V〉 ' 26 g9/2
s

(
c

|ξ|

)3

. (2.31)

Let us make again two important considerations:

1. The parameter controlling the string loop expansion is gs while the α′ expansion

is controlled by V−1/3. Hence perturbation theory does not break down if gs � 1

and V � 1. The first of these two conditions can be satisfied by an appropriate

choice of 3-form fluxes which stabilise Re(S) = g−1
s . On the other hand, the second

condition, as can be seen in (2.31), requires the parameter c to be tuned such that

c ∼ g
−(3/2+q)
s � 1 with q > 0 (for |ξ| ∼ O(1)). In fact, plugging this relation

in (2.31) one obtains 〈V〉 ' 26 g−3q
s � 1 for gs � 1. Given that c = c(U) is a

function of the complex structure moduli which are fixed in terms of flux quanta,

we expect this tuning to be possible in the string landscape by scanning through

different combinations of flux quanta.

2. The minimum in (2.31) is non-supersymmetric, since F T 6= 0, and AdS since 〈V 〉 '
−0.1 c gs |W0|2 〈V〉−10/3.

The vacuum energy can be set to zero via the same uplifting mechanisms mentioned for

KKLT and LVS models which are expected to yield only subleading corrections to the

location of the minimum in (2.31). Hence the gravitino mass turns out to be:

m3/2 '
√
gs
8π

|W0|
〈V〉

' λ |W0|
g4
s c

3
with λ ∼ O(10−2) . (2.32)

In this case it is the tuned parameter c which controls the order of magnitude of the

gravitino mass. The generation of the soft terms in these models with purely perturbative

stabilisation of the Kähler moduli has not been studied. However we expect them to

have the same behaviour as in (2.28) for LVS models since the contribution from anomaly

4Notice that ξ < 0 would require h1,2 < h1,1 which for h1,1 = 1 would work only for rigid CY manifolds

without complex structure moduli, i.e. for h1,2 = 0. However the potential (2.30) could also describe a more

general situation with h1,1 � 1 where all Kähler moduli scale in the same way, i.e. τi ∼ V2/3 ∀i = 1, . . . , h1,1.
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mediation should feature a leading order cancellation due to the no-scale structure also in

this case where therefore the soft terms are generated from gravity mediation.

3 SUSY breaking statistics with Kähler moduli stabilisation

In section 2 we have first explained why a proper understanding of the statistics of the

supersymmetry breaking scale in the type IIB flux landscape necessarily requires the in-

clusion of the Kähler moduli, and we have then illustrated the key-features of the main

Kähler moduli stabilisation mechanisms based on different combinations of perturbative

and non-perturbative corrections to the 4D effective field theory. In this section we shall

instead determine the actual distribution of the gravitino mass, i.e. the actual value of the

coefficient β in (2.10), for each of these scenarios separately.

3.1 LVS models

Let us start our analysis of the distribution of the gravitino mass by focusing first on LVS

models since they do not require any tuning of the tree-level flux superpotential. In these

scenarios the minimum and m3/2 are given respectively by (2.25) and (2.26). Notice that

m3/2 in (2.26) does not depend on |W0| contrary to the expression (2.21) of the gravitino

mass in KKLT models which is mainly determined by |W0|.
Varying the gravitino mass with respect to the flux-dependent parameter gs and the

integer parameter n which encodes the nature of non-perturbative effects, and working

in the limit asτs � 1 where the instanton expansion is under control, i.e. for c2 � gsn,

we obtain:

dm3/2 =
∂m3/2

∂gs
dgs +

∂m3/2

∂n
dn ' c2

m3/2

(gsn)2
(n dgs + gs dn)

' m3/2

[
ln

(
Mp

m3/2

)]2

(n dgs + gs dn) , (3.1)

where in the last step we have introduced Planck units and we have approximated

m3/2 ∼Mp e
− c2

gsn .

As discussed in appendix A and recently in [69], the distribution of the string coupling

can be considered as approximately uniform,5 implying dgs ' dN . On the other hand,

the distribution of the rank of the condensing gauge group in the string landscape is still

poorly understood.6 Ref. [70] estimated the largest value of n as a function of the total

number of Kähler moduli, counted by the topological number h1,1, but did not study how

the number of vacua varies in terms of n. Moreover the F-theory analysis of [70] is based

on the assumption that the formation of gaugino condensation in the low-energy 4D theory

is not prevented by the appearance of unwanted matter fields.

5In appendix A we numerically study this distribution for rigid Calabi-Yaus while ref. [69] focused on

Calabi-Yaus where a discrete symmetry leaves effectively just 1 complex structure modulus. We both find

a uniform distribution. The analysis for general Calabi-Yaus remains challenging, for this case we provide

arguments based on our results for rigid Calabi-Yaus.
6We are thankful to R. Savelli, R. Valandro and A. Westphal for illuminating discussions on this point.
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In fact, as shown in [71, 72], F-theory sets severe constraints on the form of ‘non-

Higgsable’ gauge groups which guarantee that the low-energy theory features a pure super

Yang-Mills theory undergoing gaugino condensation. Even if simple gauge groups like

SU(2) or SU(3) are allowed, they do not survive in the weak coupling type IIB limit since

they arise only from non-trivial (p, q) 7-branes that do not admit a perturbative description

in terms of D7-branes. The only type IIB case allowed for pure super Yang-Mills is SO(8)

which corresponds to n = 6. This fits with the fact that all explicit type IIB Calabi-Yau

orientifold models which have been constructed so far, feature exactly an SO(8) condensing

gauge group [41, 73–76].

A non-perturbative superpotential can however arise also in a hidden gauge group

with matter fields, even if there are constraints on the numbers of flavours and colours [77].

Chiral matter can always be avoided by turning off all gauge fluxes on D7-branes but

vector-like states are ubiquitous features of type IIB models obtained as the gs → 0 limit

of F-theory constructions. Given that the interplay between vector-like states and the

generation of a non-perturbative superpotential has not been studied in the literature so

far, it is not clear yet if n can only take two values, i.e. n = 1 for ED3s and n = 6 for a pure

SO(8) theory, or an actual n-distribution is indeed present in the string landscape. Even

if we do not have a definite answer to this question at the moment, we can however argue

that, if an actual n-distribution exists, the number of states N is expected to decrease when

n increases since D7-tadpole cancellation is easier to satisfy for smaller values of n. We

shall therefore take a phenomenological approach and assume dN ∼ −n−r dn with r > 0.

Therefore (3.1) reduces to:

dm3/2 ' nm3/2

[
ln

(
Mp

m3/2

)]2
1− c2 n

r−2

ln
(
Mp

m3/2

)
 dN . (3.2)

For 0 < r ≤ 2, the distribution of m3/2 is therefore driven mainly by the distribution of

the string coupling:

dN

dm3/2
' 1

nm3/2

[
ln

(
Mp

m3/2

)]−2

⇒ NLV S(m3/2) ∼ ln

(
m3/2

Mp

)
, (3.3)

where we neglected subleading logarithmic corrections.7 Comparing this results with (2.11),

we realise that in LVS models β = −2, and so we end up with the following the distribution

of the gravitino mass:

ρLV S(m3/2) ∼ 1

nm2
3/2

[
ln

(
Mp

m3/2

)]−2

. (3.4)

On the other hand, for r > 2, the distribution of the number of D7-branes starts to play a

rôle in the distribution of m3/2 when n is large. However, except for different subdominant

logarithmic corrections, the leading order expression for the number of states as a function

7Notice that the result is unchanged if the distribution of the dilaton is taken to be power-law.
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of the gravitino mass would still be given by (3.3). It is reassuring to notice that our result

is independent on the exact form of the unknown n-distribution.8

Notice that the result (3.2) applies also to the distribution of the soft terms. In fact,

as summarised in (2.28) and as reviewed more in detail in appendix B, the gravitino mass

can generically be written in terms of the energy scale associated to the soft terms as

m3/2 ' M
1/p
soft where for D7-branes p = 1, while for D3-branes p = 2 for gaugino masses

and p = 2 or p = 3/2 for scalar masses depending on the ‘uplifting’ mechanism. Thus in

LVS models also the distribution of the soft masses turns out to be logarithmic:

NLV S(Msoft) ∼
1

p
ln

(
Msoft

Mp

)
. (3.5)

This result is particularly important for models where the visible sector is realised on

stacks of D3-branes since in this case the visible sector gauge coupling is set by gs which

is therefore fixed by the phenomenological requirement of reproducing the observed visible

sector gauge coupling. Hence the distribution of m3/2 (or equivalently Msoft) is entirely

determined by the distribution of n. For this scenario, it would be very interesting to know

if a non-perturbative superpotential can indeed be generated also in the presence of vector-

like matter. If this does not turn out to be the case, then the value of the gravitino mass

in LVS models with the visible sector on D3-branes can only take two values (setting the

string coupling of order the GUT coupling gs = αGUT = 1/25, As ∼ O(1− 10) and ξ = 1):

• ED3-instantons : in this case n = 1 and:

m3/2 = gs c1 e
− c2

gs ∼ O(10−26 − 10−27) GeV . (3.6)

• Pure SO(8): in this case n = 6 and:

m3/2 = gs
c1

6
e
− c2

6 gs ∼ O(109 − 1010) GeV . (3.7)

Notice that the ED3-case would be viable only for models where supersymmetry is broken

by brane construction, so that the soft terms are at the string scale which is however around

the TeV-scale. The extremely low value of m3/2 might be helpful to control corrections to

the vacuum energy coming from loops of bulk states [56]. The pure SO(8) case instead

corresponds to a more standard situation where however TeV-scale soft terms could be

achieved only via sequestering effects [27, 29].

3.2 KKLT models

Let us now study the distribution of the gravitino mass in KKLT models where the min-

imum and m3/2 are given respectively by (2.19) and (2.21). Varying the gravitino mass

with respect to the two flux-dependent parameters gs and |W0|, and the integer parameter

n, we obtain:

dm3/2 ' m3/2

(
d|W0|
|W0|

+
1

2

dgs
gs
− 3

2

dn

n

)
, (3.8)

8This is true unless N decreases exponentially when n increases but this behaviour looks very unlikely.
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where we neglected the subleading variation of the logarithm. Following the arguments

given in section 3.1 and in appendix A, we assume a uniform distribution of the string

coupling, i.e. dN ' dgs, and a phenomenological scaling of the distribution of n of the form

dN ' −n−r dn. Moreover the distribution of W0 as a complex variable is also uniform [13],

resulting in dN ' |W0|d|W0|. Thus (3.8) reduces to:

dm3/2 ' m3/2

(
1

|W0|2
+

1

2gs
+

3

2
nr−1

)
dN

'
M2
p

m3/2

[
gs

n3| lnW0|3
+
ε2

2

(
1

gs
+ 3nr−1

)]
dN , (3.9)

where ε ≡ m3/2/Mp. In order to trust the effective field theory description we need to

require ε � 1, which implies that the distribution of the gravitino mass is dominated by

the first term in (3.9), i.e. by the distribution of the flux superpotential:

dN

dm3/2
'
(
n3| lnW0|3

gs

)
m3/2

M2
p

'
m3/2

M2
p

⇒ NKKLT (m3/2) ∼
(
m3/2

Mp

)2

. (3.10)

Comparing this results with (2.11), we realise that in KKLT models β = 0, in agreement

with previous predictions [10]. Thus we end up with the following the distribution of the

gravitino mass:

ρKKLT (m3/2) ∼ 1

M2
p

(
n3| lnW0|3

gs

)
∼ const. (3.11)

As reviewed appendix B, in KKLT models the soft terms are proportional to the gravitino

mass (up to a possible 1-loop suppression factor for visible sector models on D3-branes).

Therefore (3.10) and (3.11) give also the distribution of the soft terms in KKLT models.

3.3 Perturbatively stabilised models

Let us now study the distribution of the gravitino mass in perturbatively stabilised mod-

els where the minimum and m3/2 are given respectively by (2.31) and (2.32). Varying

the gravitino mass with respect to the three flux-dependent parameters gs, |W0| and c,

we obtain:

dm3/2 ' m3/2

(
d|W0|
|W0|

− 4
dgs
gs
− 3

dc

c

)
, (3.12)

As discussed in [13] and in appendix A, both gs and W0 are expected to be uniformly

distributed, and so we take dN ' dgs and dN ' |W0|d|W0|. Moreover, as stressed in

section 2.3.3, the coefficient c is a function of the complex structure moduli which are fixed

in terms of flux quanta, and so it is naturally expected to be of order c ∼ O(1 − 10).

However the minimum in (2.31) lies at V � 1 only if the flux quanta are tuned such that

c ∼ g−(3/2+q)
s � 1 with q > 0. Given that this is a tuned situation, we expect the number

of vacua at c � 1 to be suppressed with respect to the region with c ∼ O(1 − 10). This

behaviour is well described by a distribution of c with a phenomenological scaling of the
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form dN ' −c−k dc with k > 0. Using all these relations, (3.12) becomes:

dm3/2 ' m3/2

(
1

|W0|2
− 4

gs
+ 3 ck−1

)
dN

' m3/2

(
3 ck−1 − 4

gs

)
dN , (3.13)

where we focused on the region with |W0| ∼ O(1−10) and gs . 0.1. Notice that for such a

small value of the string coupling and 0 < k ≤ 1, the second term in (3.13) would dominate

over the first one. However this is a regime where the distribution of the coefficient c would

be almost uniform, and so c would be in the regime c ∼ O(1− 10) where the effective field

theory is not under control. We focus therefore on k > 1 where the distribution of c starts

to deviate from begin uniform, signaling that c is tuned to large values. In this case the

distribution of the gravitino mass is dominated by the first term in (3.13) and becomes:

dN

dm3/2
' 1

m3/2 ck−1
'
(

g4
s

|W0|

) (k−1)
3 1

Mp

(
m3/2

Mp

) (k−4)
3

, (3.14)

which implies:

NPERT (m3/2) ∼
(
m3/2

Mp

) (k−1)
3

. (3.15)

Comparing this results with (2.11), we realise that in perturbatively stabilised models

β = (k − 7)/3. Hence we end up with the following distribution of the gravitino mass:

ρPERT (m3/2) ∼ 1

M2
p

(
m3/2

Mp

) (k−7)
3

. (3.16)

This result is qualitatively similar to the one of KKLT models (which are reproduced exactly

for k = 7), showing that scenarios where the Kähler moduli are stabilised by perturbative

effects favour higher values of the gravitino mass. This behaviour is somewhat expected

since these models, similarly to KKLT, can yield trustable vacua only relying on tuning

the underlying parameters. This tuning, in turn, reflects itself on the preference for larger

values of m3/2. As mentioned in section 2.3.3, in perturbatively stabilised models the soft

terms are expected to be proportional to the gravitino mass, and so (3.15) and (3.16) give

also the distribution of the soft terms in these models.

4 Discussion

In this section we summarise our results and discuss them in the context of the original

results of [9–14], as well as the subsequent results obtained in [34–37].

4.1 Interplay with previous results

Firstly, we have stressed in section 2 that Kähler moduli stabilisation is a critical require-

ment for a proper treatment of the statistics of supersymmetry breaking. The reason is
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that a stable solution requires the F-terms of the axio-dilaton and the complex structure

moduli to be suppressed with respect to the F-terms of the Kähler moduli. The statistics

of supersymmetry breaking is thus entirely driven by the F-terms of the Kähler moduli at

their stabilised values.

As we have shown, the no-scale structure at tree level has important consequences

for the statistics of supersymmetry breaking. It implies that in order to obtain vacua

where the α′ and gs expansions are under control, terms in the effective action which are

part of separate expansions have to be balanced against each other (see [63] for a detailed

discussion of this point). For example, in LVS we find that α′ corrections associated with the

overall volume are balanced against a non-perturbative correction associated with a blow-

up modulus. In KKLT, on the other hand, non-perturbative effects are balanced against

an exponentially small flux superpotential. This implies that the stabilisation mechanism

pushes us to particular regions in moduli space — in LVS the overall volume is large, while

in KKLT |W0| is inevitably small — where the gravitino mass takes specific values.

This has important implications for the statistics of soft terms which in gravity medi-

ation are determined by m3/2. As we have seen in section 3, different stabilisation mecha-

nisms predict different distributions of the gravitino mass (and hence the soft terms) in the

landscape. This is due to the fact that different no-scale breaking effects used to fix the

Kähler moduli lead to a different dependence of m3/2 on the flux-dependent microscopic

parameters W0, gs and c whose distribution (together with the one of n) ultimately governs

the statistics of the soft terms, as is evident from (3.1), (3.8) and (3.13). In particular,

we found that in LVS models the distributions of the gravitino mass and soft terms are

logarithmic, as shown in (3.3) and (3.5). On the other hand, for KKLT and perturbative

stabilisation, the distributions are power-law, as shown in (3.10) and (3.15). The difference

in behaviour comes from the fact that in the LVS case one has from (2.26):

m3/2 ∼Mp e
− 1

gs , (4.1)

which, when combined with the fact that gs is uniformly distributed as shown in ap-

pendix A, yields a logarithmic distribution for m3/2. For KKLT, one has instead

from (2.21):

m3/2 ∼ |W0|Mp , (4.2)

which results in a power-law distribution of the gravitino mass since |W0| is uniformly

distributed. A similar reasoning applies in the case of perturbative stabilisation.

Interestingly, we note that both power-law [10, 13, 14] as well as logarithmic distri-

butions [34–37] have been obtained by different groups in the literature, albeit for reasons

different from the ones we have derived. The power-law distribution of gravitino masses

in (3.10) and (3.15) for KKLT and perturbatively stabilised vacua reproduces the results

of [10, 13, 14] which were based on the assumption of a democratic distribution of com-

plex structure F-terms caused by the uniform distribution of |W0|, as we have reviewed

in section 2.1. In KKLT and perturbatively stabilised vacua, the supersymmetry breaking

scale is instead determined by the F-terms of the Kähler moduli but we obtain the same

behaviour given that in these two Kähler stabilisation schemes they are also governed

– 18 –



J
H
E
P
1
0
(
2
0
2
0
)
0
1
5

dominantly by |W0|. On the other hand, the logarithmic distributions (3.3) and (3.5) of

LVS models reproduce the results of [34–37] whose derivation was based on the general

nature of dynamical supersymmetry breaking: if the scale of supersymmetry breaking is

given by m3/2 ∼ Mp e
−8π2/g2 with a flat distribution in the coupling g2, then m3/2 would

obey a logarithmic distribution. Indeed, this expectation is exactly reproduced by the

expression (4.1) for the gravitino mass in LVS models since in type IIB compactifications

the gauge coupling g of a hidden sector supporting non-perturbative effects which break

supersymmetry dynamically scales as g2 ∼ gs.
Determining which distribution, power-law or logarithmic, is more representative of the

structure of the flux landscape therefore translates into the question of which vacua with

stabilised Kähler moduli arise more frequently. Given that LVS models can be realised

for natural values of the vacuum expectation value of the flux superpotential, |W0| ∼
O(1 − 10), while KKLT models can be constructed only via tuning |W0| to exponentially

small values (similar considerations about tuning of the underlying parameters apply also

to perturbatively stabilised vacua), we tend to conclude that the distribution of the scale

of supersymmetry breaking seems to be logarithmic. However, more detailed studies are

needed in order to find a precise definite answer to this important question (see [40–44] for

initial studies on the determination of the number of vacua as a function of |W0| and gs).

Finally, we would like to make a few comments discussing our results in the context of

the cosmological constant. The explicit analysis carried out in the previous section focused

on solutions with zero cosmological constant and so far we considered the joint distribution

of the supersymmetry breaking scale and the cosmological constant. As we have mentioned

before, soft masses for the SM sector are typically predominantly determined by a small set

of non-vanishing F-terms and D-terms in the theory. On the other hand, the cosmological

constant receives contributions from all F and D-terms, many of which can be sequestered

from the SM sector and make subdominant contributions to supersymmetry breaking. This

has two implications: (i) to compute distributions of the cosmological constant one needs

to have a knowledge of all the uplift contributions, which is generally challenging; and (ii)

since a large number of contributions to the cosmological constant do not affect the soft

masses, one can expect the distribution of the cosmological constant to be independent of

the distribution of the soft masses. LVS models are a neat example where the decoupling

between the statistics of supersymmetry breaking and the cosmological constant emerges

clearly. In fact, combining the expression (2.24) of the scalar potential of LVS models

with the location of the minimum (2.25), it is easy to see that the depth of the non-

supersymmetric AdS vacuum is:

VLV S ∼ −
|W 2

0 |
V2
∼ −m3

3/2Mp . (4.3)

This implies that any hidden sector whose dynamics is responsible for dS uplifting has to

provide a contribution to the scalar potential whose order of magnitude is:

Vup ∼ |Fhid|2 ∼ m3
3/2Mp . (4.4)
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In turn this hidden sector generates a contribution to the soft terms via gravity mediation

which is suppressed with respect to the gravitino mass:

δMsoft ∼
Fhid

Mp
= m3/2

√
m3/2

Mp
� m3/2 . (4.5)

Hence, if the F-terms of other hidden sectors (like for example the F-term of the Kähler

modulus controlling the volume of the 4-cycle wrapped by the SM stack of D7-branes) gen-

erate soft terms of order m3/2, the contribution from Fhid is clearly negligible. Notice that

this implies that the distribution of the supersymmetry breaking scale is the same at least

for all vacua with cosmological constant in the range ±VLV S. Of course, the distribution

could change if we consider vacua with much higher values of the cosmological constant.

4.2 Implications for phenomenology

We now turn to a brief discussion of the implications of our findings for low energy phe-

nomenology. The ATLAS collaboration has provided 95% CL search limits for gluino pair

production within various simplified models using data sets that vary from 36-139 fb−1 at√
s = 13 TeV [78]. The approximate bound from these searches is that mg̃ & 2.2 TeV. The

limits coming from CMS are comparable [79]. Searches for top squark pair production

yield the limit mt̃ & 1 TeV [80, 81].

We have found that the statistics of type IIB flux vacua generally prefers a draw

towards high scale supersymmetry: a mild logarithmic draw in the case of LVS, and a

strong power-law draw in the case of KKLT and perturbatively stabilised vacua. Given

the current limits on gluinos and squarks, can one surmise that it is this statistical draw

that is being played out at experiments?

Of course, the problem with this interpretation is that high scale supersymmetry break-

ing leads to fine-tuning issues for the mass of the Higgs, obviating, at least from the low-

energy perspective, the introduction of supersymmetry as a solution to the gauge hierarchy

problem in the first place. The severity of this issue may be quantified by the choice of

suitable fine-tuning measures. In other words, since stringy naturalness (the bias towards

a property favored by vacuum statistics, in this case, high scale supersymmetry breaking)

leads one to posit heavier superpartners, this tendency should somehow be mitigated by

a fine-tuning penalty as one goes to higher scales. But which fine-tuning measure should

one use, and how much penalty should one impose?

The widely adopted Barbieri-Giudice measure [82] is defined as ∆BG ≡ maxi|
∂ lnm2

Z
∂ ln pi

|
with, for example, ∆BG < 10 corresponding to ∆−1

BG = 10% fine-tuning. The pi are

the fundamental parameters of the theory, while mZ denotes the mass of the Z bo-

son. Taking the parameters to be the various soft terms and µ parameter from the

mSUGRA/CMSSM model and requiring 10% fine-tuning, one obtains upper limits of

mg̃ ∼ 400 GeV [1]. Most other superpartners are also close to the weak scale (defined

as mweak ' mW,Z,h ∼ 100 GeV). It is thus clear from the Barbieri-Giudice measure that

supersymmetry is already very finely tuned from LHC data. From the perspective of the

landscape, one can impose a penalty on ∆BG for vacua with very high scale supersymmetry
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breaking (while also allowing for the fine-tuning indicated by data) but it is not entirely

clear what the penalty should be or how to motivate it.

An alternative approach is to use anthropic arguments to motivate fine-tuning penalties

on vacua with high scale supersymmetry breaking [33, 83, 84].9 The atomic principle [86]

comes closest in relevance in this context. It can be incorporated within the fine-tuning

measure introduced in [87], whose starting point is the expression for the mass of the Z bo-

son in supersymmetry: m2
Z/2 ' −m2

Hu
−µ2−Σu

u(t̃1,2) (for details and exact expressions, we

refer to the original paper and [1]). Here, Σu
u contains the various radiative corrections [88].

The fine-tuning penalty in this case posits that no single contribution in the expression for

mZ can be too much larger than any other. This is quantified by the measure ∆EW which

is the maximum among the quantities on the right hand side divided by the m2
Z/2.

It is now clear how the atomic principle naturally plays into the fine-tuning measure

∆EW . Given that the mass of the Z boson is bounded by the atomic principle, one obtains

an anthropic bound on the scale of the superpartners stemming from their contributions

to the radiative corrections encapsulated in Σu
u. Indeed, requiring that the mass of the Z

boson should not exceed its measured value by a factor of 4 imposes ∆EW . 30, which in

turn translates into upper bounds on superpartner masses entering through the radiative

corrections Σu
u.

One thus has a logarithmic or power-law distribution of vacua biasing towards high su-

persymmetry breaking scales, tempered by a penalty of ∆EW . 30 coming from the atomic

principle. For power-law distributions, this leads to several predictions for superpartner

masses that may be probed at the HL-LHC. For example, the statistical distribution for

gluinos and top squarks are peaked around 4 TeV and 1.5 TeV, respectively. Suggestively,

the Higgs mass appears to be peaked around 125 GeV for power-law distributions. A log-

arithmic distribution from the landscape, on the other hand, would imply that a low scale

of supersymmetry breaking is reasonably probable, perhaps without relying too strongly

on anthropic arguments. The value of the weak scale may simply be a mild accident in

that case. We leave a more detailed treatment of the phenomenology of the logarithmic

case for future work.

5 Conclusions

Understanding the distribution of the supersymmetry breaking scale in string vacua is an

important question which can potentially have deep phenomenological implications. In

this paper, we have revisited this question in the context of IIB flux vacua. In the first

part of the paper, we argued that the details of Kähler moduli stabilisation are absolutely

necessary to study the distribution of the supersymmetry breaking scale. We then went

on to study the distribution of the supersymmetry breaking scale (primarily focusing on

vacua with zero cosmological constant) in three scenarios for Kähler moduli stabilisation:

(i) models with purely non-perturbative stabilisation like in KKLT vacua; (ii) models where

the Kähler moduli are frozen by balancing perturbative against non-perturbative effects

9Indeed, the landscape is already a fertile arena where such arguments have been used in the past, most

famously in the context of the cosmological constant problem [7, 85].
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as in LVS models; and (iii) models with purely perturbative stabilisation. For KKLT and

models with perturbative stabilisation we found a power law distribution, while for LVS we

found a logarithmic distribution. The logarithmic distribution is particularly interesting

as it could well mean that we should remain optimistic about discovering superpartners in

collider experiments.

Let us mention that our results for the distribution of the supersymmetry breaking

scale in the type IIB flux landscape are based on the fact that |W0| and gs are uniformly dis-

tributed.10 While in the literature there is a lot of evidence in favour of this assumption (as

we also have shown for the distribution of the string coupling for rigid Calabi-Yaus), more

detailed numerical studies are needed in order to confirm the validity of this behaviour

for the general case. This investigation is crucial also to determine which distribution,

power-law or logarithmic, is predominant in the flux landscape since the distribution of

the vacuum expectation value of the flux-generated superpotential is a key input for de-

termining the relative preponderance of KKLT and LVS vacua. Furthermore, the results

of [89] imply that knowledge of the distribution of W0 is central to developing a detailed

understanding of the distribution of the cosmological constant.

This work opens up several interesting directions for future research. Firstly, it is

important to carry out a detailed study along the lines of [1] to understand the phe-

nomenological implications of the logarithmic distribution. In order to make contact with

observations it will be crucial to incorporate also bounds arising from the cosmological

context (such as the cosmological moduli problem). Our analysis has focused on a small

(but highly attractive from the point of view of phenomenology) corner of the string land-

scape, i.e type IIB flux compactifications on Calabi-Yau orientifolds. It will be interesting

to carry out an analysis in the same spirit as this paper in other corners of the landscape.11

A related but very challenging question is to investigate if early universe cosmology gives

us a natural measure on the space of solutions in string theory.

Acknowledgments

We would like to thank S. Ashok, H. Baer, R. Savelli, G. Shiu, R. Thangadhurai, R.

Valandro and A. Westphal for useful conversations.

A Distribution of the string coupling

In this appendix we discuss the distribution of gs in type IIB flux compactifications. This

has been studied in [9, 13], and we follow here their analysis to obtain an understanding

of the distribution in the region of our interest, i.e. low values of gs. As in [9, 13], we will

10The result for LVS is unchanged as long as the distribution for gs is a power-law.
11Even within the context of type IIB, it will be interesting to explore the constructions in [90] which

naturally have a high scale of supersymmetry breaking, even if the visible sector phenomenology is not well

developed in this setting. Another aspect of the IIB landscape that we have not explored is the effect of

warped throats. Since warped throats are a generic feature in IIB flux compactifications [21, 91, 92], they

could well have an important effect on the statistics of the scale of supersymmetry breaking.
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carry out a detailed numerical analysis for the simple tractable case of rigid Calabi-Yaus,

and use these results to develop intuition for general Calabi-Yaus.

For rigid Calabi-Yaus, the τ modulus (τ = a + i
gs

, where gs is the dilaton and a its

axionic partner), has a linear superpotential:

W = Aτ +B , (A.1)

the ‘fluxes’ A = a1 + ia2 and B = b1 + ib2 take values in Z + iZ. The tadpole cancellation

condition is:

Im(A∗B) = L ≡ Det(X) = L , (A.2)

where X is the matrix:

X =

(
a1 a2

b1 b2

)
. (A.3)

The form of the tadpole condition in (A.2) makes it manifest that the tadpole cancellation

condition has an SL(2,Z) symmetry, i.e. transformations of the form:

X → X ′ = MX , (A.4)

map solutions to solutions, with M ∈ SL(2,Z). Taking the matrix M to be:

M =

(
p q

r s

)
,

the explicit form of the transformation is given by:(
a′1 a

′
2

b′1 b′2

)
=

(
p q

r s

)
.

(
a1 a2

b1 b2

)
=

(
pa1 + qb1 pa2 + qb2
ra1 + sb1 ra2 + sb2

)
. (A.5)

Now, let us come to the vacua. They are supersymmetric:

DW = 0↔ τ̄ = −B
A

=⇒ τ =
−b1 + ib2
a1 − ia2

. (A.6)

Note that under the above described SL(2,Z) transformation:

τ → τ ′ =
−b′1 + ib′2
a′1 − ia′2

=
sτ − r
−qτ + p

. (A.7)

This is an SL(2,Z) action on τ associated with the matrix Y given by:12

Y =

(
s −r
−q p

)
(A.8)

12The fact that Y is an element of SL(2,Z) follows from the fact that its determinant is the same as the

one of M .
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Therefore, given the SL(2,Z) symmetry of type IIB, the action does not generate physically

distinct solutions.13 In fact, solutions related by this symmetry should be considered

as equivalent.

The above described gauge symmetry is crucial to understand the solution space.

Firstly, we can use the SL(2,Z) symmetry to set a2 = 0. This implies:

τ = − b1
a1

+ i
b2
a1
. (A.9)

Also, the tadpole condition reduces to:

a1b2 = L . (A.10)

Requiring Im(τ) > 0, yields:

b2
a1

> 0 =⇒ b22
a1b2

=⇒ b22
L

=⇒ L > 0 . (A.11)

Thus, we have the condition L = a1b2 with L > 0. Hence, a1 and b2 have to be integers

which divide L with L > 0. To see what values b1 can take, we need to examine the residual

SL(2,Z) invariance. The residual SL(2,Z) transformations correspond to transformations

which maintain the condition a2 = 0, from (A.5) we see that this implies that q = 0. Thus

the SL(2,Z) matrix must take the form: (
1 0

r 1

)
(A.12)

where r is an integer.14 Now the action of an SL(2,Z) matrix of the form (A.12) takes

b1 to:

b1 → ra1 + b1 . (A.13)

This implies that b1 takes the values 0, 1, . . . .|a1 − 1|. In summary, the analysis of [9, 13]

implies that vacua are characterised by:

1. An integer a1 which divides L.

2. For every such integer b1 takes the values 0, 1, . . . .|a1 − 1|.

3. b2 = L
a1

4. The value of τ is given by:

τ = − b1
a1

+ i
b2
a1

(A.14)

13There is another SL(2,Z) symmetry of the equation (A.2). This involves taking X → X.N , where N is

an SL(2,Z) matrix. It is easy to see that such transformations do not correspond to SL(2,Z) transformations

of τ . In this case, ai → alNlk and bj → blNlj . Thus we can start with a point with a1, b1 6= 0 and a2, b2 = 0

(i.e. τ on the real axis) and map it to a point where a1, a2, b1, b2 6= 0. Thus a point on the real line can get

mapped to a point in the interior of the upper half plane. Thus, this does not correspond to an SL(2,Z)

transformation of τ . Hence, this cannot be thought of as a ‘gauge’ transformation.
14Note that

(
1 0
r 1

)
≡

(
−1 0
−r −1

)
hence we do not have to mod out by matrices of the form in the r.h.s. of

the equivalence.
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Figure 1. Values of τ for L = 100.

To get the distribution in the fundamental domain one takes the value of τ obtained

from (A.14) and maps it to the fundamental domain of SL(2,Z). This involves the repeated

action of the generators:

T : τ → τ + 1, S : τ → −1

τ
. (A.15)

The algorithm to bring a general point which is outside the fundamental domain to inside

the fundamental domain is as follows: first, by repeated action of T (or T−1) the point

is brought to the region −1
2 ≤ Re(τ) < 1

2 . If this process also brings the point to inside

the fundamental domain, then the algorithm terminates. Otherwise, one acts with the

generator S. If this does not bring the point inside the fundamental domain one iterates

the process of repeated action of T (or T−1) and a single action of S (if needed) until the

point is mapped to the fundamental domain.

Now, let us come to our discussion of the distribution of gs. Note that the characteri-

sation of inequivalent solutions implies that the values of imaginary part of τ as obtained

in (A.14) are bounded by:
1

L
≤ Im(τ) ≤ L . (A.16)

It is easy to check that this condition is preserved by the algorithm to bring the points

inside the fundamental domain. Thus the lowest value of gs is 1
L . We have carried out

detailed numerical studies to probe the distribution for small values of gs (in the region of

phenomenological interest). First, we present the results of our numerics for L = 100. The

distribution of τ in the fundamental domain is shown in figure 1 and the distribution of gs
is shown in figure 2. The results are consistent with that of [13].

The plot in figure 2 shows that the distribution is roughly uniform for gs > 0.01.
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Figure 2. Distribution of gs for L = 100.

Next we present our results for L = 500. The distribution of the number of vacua as a

function of gs is shown in figure 3 and 4. Again for gs > 0.002, the distribution is uniform.

We studied the cases with L = 150, 400 and obtained similar results. Our results clearly

indicate that for rigid Calabi-Yaus, ρ(gs) is uniform in the region of interest in section 3.

From our numerics, we observe that the basic reason for the uniform distribution is the

following: as L is increased, generically the number of its divisors increases and as a result

the number of points given by (A.14) increases. The first step in the algorithm to bring

the points given by (A.14) to the fundamental domain is to act on them repeatedly by T

(or T−1) so as to bring them to the strip 1
2 ≤ τ < 1

2 . For large L, we find that even just

after this first step the region of phenomenological interest is uniformly populated with the

number of points of the same order as the final answer (i.e the number of points after all

points are brought to the fundamental domain). Note that in (A.14):

Im(τ) =
L

a2
1

,

where a1 divides L. Thus, for the points given by (A.14), the number of points with

Im(τ) > 1 is equal to the number of points with Im(τ) < 1. This is essentially the reason

why after the first step in the algorithm the number of points is of the same order as in

the final answer. For large L, with the increase in the number of divisors, there are more

and more points in the region of interest and the spacing between them becomes uniform.

Now, let us turn to the case of general Calabi-Yaus. The exact characterisation of the

vacua (the analogue of equation (A.14)) is not available, and a complete numerical analysis

remains challenging15 and is beyond the scope of the present work. Here, we will use our

results for the case of rigid Calabi-Yaus to develop intuition for the distribution of gs in case

of general Calabi-Yaus (the basic philosophy shall be the same as that advocated in [7]).

As described in the previous paragraph, the basic reason for the uniform distribution in

the case of rigid Calabi-Yaus is that with increase in L, generically the number of vacua

increases and the solutions are more and more uniformly spaced. This leads to the uniform

15For recent progress in this direction see e.g [43, 44].
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Figure 3. Distribution of gs for L = 500.
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Figure 4. Distribution for small gs with L = 500.

distribution of gs. For general Calabi-Yaus, the value of the dilaton is set by the ratio of flux

quanta associated with the 3-form fluxes H3 and F3. As the number of 3-cycles increases,

one can expect the same phenomenon — the number of vacua increases and the spacing

between the values of the dilaton in these solutions decreases and the distribution function

for the dilaton becomes uniform. Note that we found a uniform distribution in the case of

rigid Calabi-Yaus, where the number of fluxes is only four. For a general Calabi-Yau with

large number of cycles, the solutions are certainly expected to be more uniformly spaced,

corresponding to a uniform distribution of the dilaton.

B Soft terms in LVS and KKLT

In this section we briefly summarise the structure of the soft masses in KKLT and LVS

with matter fields located on D3/D7 branes. The general expressions for the soft masses

are given by:

Ma =
1

2

F i∂ifa
Re(fa)

(B.1)

m2
α = m2

3/2 + V0 − F īF j∂ī∂j ln(K̃α) (B.2)

Aαβγ = F i
(
Ki + ∂i ln(Yαβγ)− ∂i ln(K̃αK̃βK̃γ)

)
, (B.3)

where Yαβγ are the Yukawa couplings, K̃α is the Kähler matter metric and the F-terms are

given by F i = eK/2Kij̄Dj̄W̄ . In the following table we summarise the soft supersymmetry

breaking terms in both KKLT and LVS for matter living on D3 and D7 branes [53].
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D3 KKLT LVS

M1/2
3
2

1
aV2/3m3/2

3
4

ξ

g
3/2
s V

m3/2

m2
0 (1− 3ω)m2

3/2
5
8

ξ

g
3/2
s V

m2
3/2

Aαβγ − (1− s∂s log (Yαβγ)) 3
2

1
aV2/3m3/2 − (1− s∂s log (Yαβγ)) 3

4
ξ

g
3/2
s V

m3/2

D7 KKLT LVS

M1/2
1

aV2/3m3/2 m3/2

m2
α (1− 3ω)m2

3/2
1
3m

2
3/2

Aαβγ − 3
2s∂s log (Yαβγ) 1

aV2/3m3/2 −m3/2

Anomaly KKLT LVS

Ma − g2aba
16π2m3/2 − g2aba

16π2M1/2

m2
i

∑
a
g4aCa(i)ba
(16π2)2 m2

3/2

∑
a
g4aCa(i)ba
(16π2)2 m2

0

Aαβγ Yαβγ
∑
m=α,β,γ

∑
a
Ca(m)
ba

Ma Yαβγ
∑
m=α,β,γ

∑
a
g2aCa(m)

16π2 Aαβγ

Table 1. Soft masses for KKLT/LVS with standard model fields realized on D3/D7 branes. Here

ga is the gauge coupling, the parameter ba is defined as ba = 3TG − TR, with the Casimir invariant

TG in the adjoint representation, the Dynkin index TR and the quadratic Casimir invariants in the

fundamental representation Ca(i). The parameter ω is a function of the coefficients of the Kähler

matter metrics.

In the last table we collect the soft masses that come from anomaly mediation. Note

that anomaly mediation plays no rôle in LVS but is important in KKLT. Let us compute

the variation of the soft masses. In the case of KKLT the variation of the gaugino mass

scales as:

dM1/2 ∼
(
g2
aba

16π2

)2
gs

n3| lnW0|3
M2
p

M1/2
dN , (B.4)

which implies a scaling for the number of states:

NKKLT(M1/2) ∼
(
M1/2

Mp

)2

. (B.5)

This functional dependence holds for all soft masses for D3 and D7 branes. In LVS the

gaugino mass at the minimum of the potential scales as:

M1/2 =
3

4

√
8π

c2
1

|W0|n2
e
− 2c2

gsn . (B.6)

Performing the variation gives us:

dM1/2 ∼ nM1/2 ln

(
Mp

M1/2

)2

dN . (B.7)
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Ignoring subleading logarithmic corrections, this implies a scaling:

NLVS(M1/2) ∼ ln

(
M1/2

Mp

)
, (B.8)

which is again true for all soft masses for D3 and D7 branes. In summary our conclusion

for the distribution of the soft terms in KKLT and LVS vacua is:

NKKLT ∼
(
Msoft

Mp

)2

(B.9)

and:

NLVS ∼ ln

(
Msoft

Mp

)
. (B.10)
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