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Biomaterial scaffolds play crucial role to promote cell proliferation and foster the
regeneration of new tissues. The progress in material science has paved the way
for the generation of ingenious biomaterials. However, these biomaterials require
further optimization to be effectively used in existing clinical treatments. It is crucial to
develop biomaterials which mimics structure that can be actively involved in delivering
signals to cells for the formation of the regenerated tissue. In this research we
nanoengineered a functional scaffold to support the proliferation of myoblast cells.
Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer is chosen
as scaffold material owing to its desirable mechanical and physical properties combined
with good biocompatibility, thus eliciting appropriate host tissue responses. In this
study P(3HB-co-4HB) copolymer was biosynthesized using Cupriavidus malaysiensis
USMAA1020 transformant harboring additional PHA synthase gene, and the viability
of a novel P(3HB-co-4HB) electrospun nanofiber scaffold, surface functionalized with
RGD peptides, was explored. In order to immobilize RGD peptides molecules onto
the P(3HB-co-4HB) nanofibers surface, an aminolysis reaction was performed. The
nanoengineered scaffolds were characterized using SEM, organic elemental analysis
(CHN analysis), FTIR, surface wettability and their in vitro degradation behavior was
evaluated. The cell culture study using H9c2 myoblast cells was conducted to assess
the in vitro cellular response of the engineered scaffold. Our results demonstrated that
nano-P(3HB-co-4HB)-RGD scaffold possessed an average fiber diameter distribution
between 200 and 300 nm, closely biomimicking, from a morphological point of view, the
structural ECM components, thus acting as potential ECM analogs. This study indicates
that the surface conjugation of biomimetic RGD peptide to the nano-P(3HB-co-4HB)
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fibers increased the surface wettability (15 ± 2◦) and enhanced H9c2 myoblast cells
attachment and proliferation. In summary, the study reveals that nano-P(3HB-co-4HB)-
RGD scaffold can be considered a promising candidate to be further explored as cardiac
construct for building cardiac construct.

Keywords: P(3HB-co-4HB) nanofibers, RGD peptides, aminolysis, myoblast cells, electrospinning

INTRODUCTION

Cardiovascular diseases are the leading cause of death all over
the world. Myocardial infarction is commonly caused by the
blockage of the coronary artery that prevents the blood flow. This
eventually leads to a vast loss of cardiomyocytes (Boffito et al.,
2013; Asadpour et al., 2018). The heart has a limited regeneration
capacity (Cui et al., 2018) since the myocardial cells usually fail to
regenerate tissues after myocardial infarction (Niu et al., 2013).
Heart transplantation and use of mechanical assist devices are
the best current therapeutic strategy for myocardial infarction;
however, these are restricted by the lack of donor organs and
complications (Boffito et al., 2013). Thus, significant effort is
being devoted in developing alternative therapeutic approaches
for developing cardiac construct for building cardiac tissues (Kai
et al., 2013; Ravichandran et al., 2013). In this regards, cardiac
tissue engineering was introduced as a prospective method to
repair and regenerate the infarcted cardiac tissues by developing
functional acellular scaffold in vitro.

The selection of a suitable biomaterial is crucial in developing
functional scaffolds which provide the surface architecture
and mechanical support for the proliferation of the cells.
Polyhydroxyalkanoates (PHA) are a family of microbial
polyesters well-known for their good biocompatibility and
tailored absorption rate, making them desirable biomaterial
for tissue engineering (Możejko-Ciesielska and Kiewisz, 2016).
Among PHAs, poly(3-hydroxybutyrate-co-4-hydroxybutyrate)
[P(3HB-co-4HB)] is the most preferred biomaterial as it’s known
to possess supraphysiologic mechanical strength and physical
properties as well as minimal foreign body reaction in vivo
(Sudesh et al., 2000). The control of structural parameters, such
as comonomer unit composition and compositional distribution,
is known to have an effect on the morphology and physical
properties of P(3HB-co-4HB), that can be tailored in order to
have copolymers that can biodegrade in vivo in a predetermined
time and manner (Williams et al., 2013). These findings are
significant in developing P(3HB-co-4HB) as cardiac construct
for building cardiac tissues. However, the surface of P(3HB-co-
4HB) copolymer is hydrophobic. Thus, surface modification
to enhance the surface architecture and surface chemistry is
required to make this scaffold desirable biomaterial.

The surface architecture of scaffolds depends on the type
of biomaterial and the technique employed to fabricate
the scaffolds, and it immensely affects the cell-biomaterial
interaction. Electrospinning is a simple but effective technology
to fabricate nanofibers mimicking the architecture of native
extracellular matrix (ECM) which promote cellular behavior and
enhance the tissue regeneration (Jin et al., 2012; Awad et al.,
2018). Immobilization of biomolecules is a commonly used

procedure to add recognition sites on the surface of scaffolds
to promote cell adhesion (Woeppel et al., 2018). Aminolysis is
a simple chemical modification to introduce amine groups or
other functional groups onto the targeted surface via series of
chemical reactions (Zhu et al., 2013). Previous studies have shown
that biomacromolecule immobilization via aminolysis onto the
P(3HB-co-4HB) films promoted cell growth and enhanced
proliferation (Vigneswari et al., 2016b).

Biomimetic RGD peptides are tri-amino acids (arginine-
glycine-aspartic acid) that play crucial role in regulatory
functions of many biological activities. Biomimetic RGD peptides
are the components of ECM proteins including fibrinogen,
collagen, vitronectin and fibronectin which aid in the cell
adhesion and specific binding to the transmembrane proteins
(Colombo and Bianchi, 2010). Since biomimetic RGD peptides
can stimulate cell activity (Kammerer et al., 2011), their
incorporation onto appropriate biomaterial surface produces
scaffolds that provide significant effects in terms of cell
responses. Studies have shown that PHA scaffolds fused with
biomimetic RGD peptides enhanced cell adhesion and improved
biocompatibility (Dwivedi et al., 2020).

There is large amount of literature on the surface modification
of P(3HB-co-4HB) as cellular scaffolds, however, few studies were
devoted to the post-electrospinning modification techniques in
the context of improving the efficiency of the biomaterials as
acellular scaffold. Our study also aims at fabricating acellular
scaffold which has the advantages over cellular scaffolds in
terms of the off-the-shelf availability for immediate implantation
and limited immune reaction (Domenech et al., 2016). In this
study, the P(3HB-co-4HB) copolymer was biosynthesized using
Cupriavidus malaysiensis USMAA1020 transformant harboring
additional PHA synthase gene. The nano-P(3HB-co-4HB)
scaffold was fabricated using electrospinning technique and post-
electrospinning modification was carried out by conjugating
RGD peptides biomolecules onto the surface of electrospun
scaffolds via aminolysis (Figure 1). The present study was
to determine whether the nano-P(3HB-co-4HB)-RGD scaffold
would accommodate viability, growth and proliferation of H9c2
myoblast cells to be further developed as potential cardiac
construct in the future.

MATERIALS AND METHODS

Materials
RGD peptides (Purity 98.68%) were purchased from GL Biochem
Ltd. (Shanghai, China). Ninhydrin assay and 1,6-hexanediamine
were purchased from Sigma-Aldrich (United States). Acetic acid
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FIGURE 1 | Scheme showing the biosynthesis of bacterial polymer, development of electrospun nano-P(3HB-co-4HB) scaffold, immobilization of biomimetic RGD
peptides post-electrospinning fabrication and as potential future application for building cardiac tissue.

and 2-propanol were purchased from JT Baker (United States).
Glutaraldehyde was purchased from R&M (Malaysia). H9c2
myoblast cell lines [H9c2(2-1)] (ATCC R© CRL-1446TM),
Dulbecco’s Modified Eagle’s Medium (DMEM) (ATCC R© 30-
2002TM), fetal bovine serum (FBS) (ATCC R© 30-2021TM) and
trypsin/EDTA (ATCC R© 30-2101TM) were purchased from ATCC.
CellTiter 96 R© AQueous One Solution Reagent was purchased from
Promega (United States). DMSO was purchased from Invitrogen
(United States). Phosphate buffer solution (PBS) and trypan blue
stain were purchased from Gibco (United States).

Biosynthesis of P(3HB-co-4HB)
The bacteria strain of Cupriavidus malaysiensis USMAA1020
transformant harboring additional PHA synthase gene from
Cupriavidus malaysiensis USMAA2-4, was used to produce
P(3HB-co-4HB) copolymer in a 15 L bioreactor with a total
working volume of 10 L as previously described (Syafiq et al.,
2017). A mixture of carbon precursors (0.75 wt% C) with
both 1,4-butanediol (0.625 wt% C) and 1,6-hexanediol (0.125
wt% C) were used for the biosynthesis of P(3HB-co-4HB). The
biosynthesis was carried out until the measured dry cell weight
achieved the highest constant value during the process which
was at 84 h. The P(3HB-co-4HB) polymer extraction was carried
out as previously described (Amirul et al., 2008). Removal of
endotoxins were done using hydrogen peroxide (Vigneswari
et al., 2015). The gas chromatography (GC) analysis was carried
out to determine the PHA composition and content in the
lyophilized cells based on a study done by Braunegg et al. (1978)
with some modification, using Shimadzu GC-17A (Shimadzu,
Japan) as described by Syafiq et al. (2017).

Fabrication of P(3HB-co-4HB) Nanofibers
The electrospinning process was carried out using a custom-
built Nano Fiber Production System (NEU-202) instrument
as previously described (Vigneswari et al., 2016b). Briefly, the
polymer solution was prepared by solubilizing the polymer at
a concentration of 8 wt%, in a mixture of dimethylformamide
(DMF) and chloroform (ratio 1:4 v/v) which was stirred for 8 h

at room temperature. The polymer solution was loaded in 5 mL
syringes with metal blunt needle of 21 gauge (G) and diameter of
10 mm. The electrospun nanofibers were collected on a collecting
plate positioned at a working distance of 10 cm, perpendicular to
the needle tip, and the deposition was performed by automatically
sequencing the X-axis of the collector at a speed of 10 mm/s
starting from 140 to 165 mm while Y-axis was set at 195 mm.
The polymer solution was extruded using a computer-controlled
syringe pump, with a flow rate of 1.5 mL/h and an electric
potential of 25 kV. The temperature was regulated at 25 ± 2◦C
with relative humidity of 28± 2%.

Immobilization of Biomimetic RGD
Peptide
Immobilization of the RGD peptides onto the nano-P(3HB-
co-4HB) scaffolds was carried out according to previous work
(Vigneswari et al., 2016a). Prior to immobilization, nano-P(3HB-
co-4HB) scaffolds were thoroughly rinsed with deionized water.
Scaffolds were then immersed in 10 wt% 1,6-hexanediamine/2-
propanol solution at 37◦C and allowed to react. The reaction
of 1,6-hexanediamine/2-propanol solution with the scaffolds was
carried out for 10, 20, 30, 40, 50, and 60 min. Then, the
aminolyzed nano-P(3HB-co-4HB) scaffolds were immersed in
1 wt% glutaraldehyde solution at room temperature for 3 h,
followed by rinsing with large amount of deionized water. The
scaffolds were incubated in RGD solution 2% w/v RGD peptides
in 8% v/v acetic acid) at pH 3.4 and at a temperature 2–4◦C for
24 h. Later, the nano-P(3HB-co-4HB)-RGD scaffolds were rinsed
with 1% v/v acetic acid solution, followed by three washes in
deionized water and dried under vacuum before use. Ninhydrin
assay was used to detect the NH2 groups present on the
aminolyzed nano-P(3HB-co-4HB) and nano-P(3HB-co-4HB)-
RGD scaffolds as previously described (Vigneswari et al., 2015).

Uptake Efficiency of Biomimetic RGD
Peptides
The aminolyzed nano-P(3HB-co-4HB) scaffolds were incubated
in 3 mL of RGD solution at various concentrations (0.5, 1.0,

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 October 2020 | Volume 8 | Article 567693

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-567693 October 21, 2020 Time: 20:7 # 4

Vigneswari et al. Surface Functionality of Nano-P(3HB-co-4HB)-RGD Peptides

1.5, 2.0, and 2.5 mg/mL) at 2–4◦C for 24 h. The concentration
of RGD immobilized onto the fabricated scaffold (Cr) was
determined by ninhydrin assay. A standard calibration curve
was established based on the concentration of RGD solution
prior to this. The concentration of RGD in the initial solution
(Ci) was determined based on the calibration curve. The upload
efficiency of RGD peptides on the scaffolds was determined by the
following equation:

Uptake efficiency of RGD peptides =
Cr

Ci
× 100%

Characterization of Nano-
P(3HB-co-4HB)-RGD Scaffolds
The surface morphology of the scaffolds was observed by
scanning electron microscopy (SEM) using FEI Quanta FEG 650.
SEM images were used to analyze the fiber diameter by means
of the Image Analyzer Olympus CellSens Standard Software. The
diameter values of 100 nanofibers, taken in different positions,
were measured to obtain the fiber diameter distribution.

The organic elemental analysis (CHN analysis) was carried
out to determine the carbon (C), hydrogen (H) and nitrogen (N)
content in the scaffolds using the CHNS-O Elemental Analyzer
(Thermo Fisher Scientific, United States) as previously described
(Vigneswari et al., 2015).

The Fourier transform infrared spectroscopy analysis (FTIR)
was recorded with Perkin Elmer Spectrum GX spectrometer. The
spectra of each sample were obtained in the range of 4,000–
500 cm−1 at a resolution of 4 cm−1. The spectral outputs
were recorded in transmittance as a function of wave number
(Salvatore et al., 2018).

The surface wettability of the scaffolds was evaluated using
KSV CAM 101 Series Drop Shape Analysis Contact Angle Meter
(KSV Instruments Limited, United States). The measurements
were repeated three times in different parts of the same scaffold
(Salvatore et al., 2018).

Atomic force microscopy (AFM) was conducted using
Dimension Edge AFM (Bruker, United States). The resonance
frequency was set at 300 kHz. The surface mapping of the
scaffolds was standardized at 5 µm× 5 µm (Basnett et al., 2013).

In vitro Degradation of Scaffolds
The initial dry scaffolds were weighed (Wo) and sterilized under
UV for 1 h on each side. The scaffolds were immersed in PBS (pH
7.4) and then incubated under standard cell culture conditions in
5% CO2 incubator with 95% relative humidity at 37◦C. The PBS
media was changed once a week. After the incubation period of 1,
3, 7, 14, 21, 28, and 35 days, the scaffolds were removed from PBS
and rinsed with a deionized water. The scaffolds were vacuum
dried for 48 h to achieve constant weight. At each incubation
time point, the scaffolds were weighed (Wi) and the percentage of
weight loss (% W) at each incubation time was calculated based
on the equation below (Ajalloueian et al., 2014).

Percentage of weight (%W) = 100%−
Wo −Wi

Wo
×100%

Cell Culture
The H9c2 myoblast cell attachment and proliferation studies
were carried out to assess the in vitro cytotoxicity. The UV
sterilized scaffolds were seeded with 1 × 105 cells/mL in 96-well
cell culture plate and incubated in a 5% CO2 incubator at
37◦C for 4 h. The culture of H9c2 myoblast cells on the tissue
culture polystyrene plates (T) was used as surface (negative)
control. As for in vitro cell proliferation evaluation, the cells
were seeded at 1 × 104 cells/mL and then incubated in the
CO2 incubator at 37◦C for 24 and 96 h. The cells were washed
twice with phosphate buffer solution (PBS). Later, the cells
viability for attachment and proliferation were assayed with
CellTiter 96 R© AQueous One Solution Reagent containing MTS
[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium]/PES (phenazine ethosulfate).
The absorbance was measured at 490 nm using microplate
reader.

Statistical Analysis
All the data were expressed as mean ± standard deviation (s.d.).
The data were analyzed using ANOVA and Tukey’s HSD test
using SPSS 20 software. The significance level to consider result
significant was set at p < 0.05.

RESULTS AND DISCUSSION

Biosynthesis of P(3HB-co-4HB) via Batch
Cultivation
The P(3HB-co-4HB) was biosynthesized using transformant
strain of Cupriavidus malaysiensis USMAA1020. The P(3HB-co-
4HB) content and composition at different time intervals from
24 to 84 h are summarized in Table 1. The results indicate
that the highest 4HB molar fraction of 68.0 ± 1.0 mol% was
obtained at 84 h of incubation. P(3HB-co-4HB) yield increased
to 8.0 ± 0.1 g/L at the end of cultivation. The obtained P(3HB-
co-4HB) content was in the range of 45–69 mol%. As can be
seen, the dry cell weight, P(3HB-co-4HB) content and PHA yield
were considered high due to the synergistic effect of the mixed
4HB precursors of 1,4-butanediol and 1,6-hexanediol cultivation
as previously reported by Huong et al. (2017) and Norhafini
et al. (2017). It is pointed out that P(3HB-co-4HB) with highest
4HB monomer composition is preferred due to the accelerated
biodegradability and cellular compatibility induced by the high
4HB molar fraction (Ying et al., 2008; Aziz et al., 2017).

Fabrication of Nano-P(3HB-co-4HB) and
Immobilization of Biomimetic RGD
Peptides
Electrospinning is a versatile method to fabricate nanofibrous
scaffolds which closely mimic the ECM architecture
(Lakshmanan et al., 2012; Jun et al., 2018). The smooth, uniform
and beadless P(3HB-co-4HB) nanofibers were fabricated after
a careful optimization of the polymer solution concentration
and processing parameters (applied voltage and flow rate).
The final conditions were polymer concentration 8 wt%,
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TABLE 1 | Production of copolymer P(3HB-co-4HB) by Cupriavidus malaysiensis USMAA1020 transformanta.

Time (h) Dry cell weight (g/L) PHA content (wt%)b PHA composition (mol%)b PHA yield (g/L)c Residual biomass (g/L)d

3HB 4HB

24 3.2 ± 0.04e 45.4 ± 0.4e 84.2 ± 0.3e 15.8 ± 0.3e 1.4 ± 0.03e 1.7 ± 0.02e

48 8.2 ± 0.3f 57 ± 1.0f 61.8 ± 0.5f 38.2 ± 0.5f 4.6 ± 0.1f 3.6 ± 0.2f

72 11.5 ± 0.1g 64 ± 2.0g 34.1 ± 0.05g 65.8 ± 0.05g 7.4 ± 0.2g 4.1 ± 0.3g

84 11.6 ± 0.1g 69.4 ± 0.3h 32 ± 1.0h 68 ± 1.0h 8.0 ± 0.1h 3.5 ± 0.1f

aCell pellets were harvested after 84 h of incubation in a 15-L bioreactor at 200 rpm, 1 vvm at 30◦C with an initial pH 7.0. bDetermined from GC analysis. cCalculated
based on dry cell weight x PHA content. dCalculated by subtracting PHA yield from dry cell weight. e−hDifferent superscript within the same column are significantly
different at p < 0.05 level (Tukey’s HSD test). Data show the mean ± standard deviation of triplicates (n = 3).

applied voltage 25 kV and flow rate 1.5 mL/h, in agreement
with those reported by Chai et al. (2020). However, as already
anticipated, these scaffolds lack biological cell recognition
sites which restricts the cell-material interaction limiting
their applications. One of the effective surface modification
strategies is the bioconjugation of biomolecules onto the
scaffold surface which enhances biorecognition and induces cell
attachment as well as cell maturation (Pettikiriarachchi et al.,
2012). The step-by-step immobilization of RGD peptides on
nano-P(3HB-co-4HB) scaffold via aminolysis is schematically
illustrated in Figure 2. The aminolysis of nano-P(3HB-co-4HB)
was conducted using 1,6-hexanediamine in 2-propanol to
introduce amino functionalities which serve as the linker to
immobilize the biomimetic RGD peptide onto the scaffold
surface. The 1,6-hexanediamine molecules enable one amino
group to attack the ester bond of the nano-P(3HB-co-4HB)
scaffold while the other serves as a potential anchoring site
of biomolecules.

In the mechanism of aminolysis reaction, the cleavage of ester
bonds takes place, and one amino group of 1,6-hexanediamine
reacts with one carbonyl group of nano-P(3HB-co-4HB) to
form a covalent amide bond (Zhu et al., 2013). Prior to the
immobilization of RGD peptides, the aminolyzed-nano-P(3HB-
co-4HB) scaffold was treated with glutaraldehyde. A bond of –
N=CH–(CH2)3CHO is formed between the NH2 group of the
aminolyzed scaffold and the aldehyde group of glutaraldehyde.
Basically, glutaraldehyde is used as a coupling agent to covalently
link the RGD peptides at the aminolyzed-nano-P(3HB-co-4HB),
thus immobilizing the RGD peptides onto the scaffold surface
(Vigneswari et al., 2016a).

The RGD peptides content and uptake efficiency of the
immobilized RGD peptides onto the scaffold surface are shown
in Table 2. It was observed that the amount of RGD immobilized
on the scaffold increased as the concentration of RGD increased,
and the highest RGD content (0.6 mg/cm2) was observed when
the concentration of RGD was 2.0 mg/mL. The same behavior
was found for the uptake efficiency of RGD immobilized,
that increased up to 82.8 ± 1.4% with the increase of RGD
concentration from 0.5 to 2.0 mg/mL. It is worth noting
that there was a decrease in RGD content, as well as in
the uptake efficiency of RGD immobilized, beyond the RGD
concentration of 2.0 mg/mL. This result might be attributed
to the limited number of binding sites onto the scaffold
surface. Hence, 2.0 mg/mL was the optimum RGD concentration

used in this study with the highest uptake efficiency of
RGD immobilized onto the nano-P(3HB-co-4HB) scaffold. This
result indicates that RGD peptides can be immobilized onto
surface of biomaterials in different amount (Zheng et al., 2014;
Li et al., 2017).

Characterization of Nano-
P(3HB-co-4HB)-RGD Scaffolds
The P(3HB-co-4HB) copolymer was successfully electrospun
into scaffold with smooth and beadless nanofibers, as shown
in Figure 3. The fiber diameter of the fabricated scaffolds was
measured using image analysis software and the fiber diameter
distribution was obtained (Figure 3). Results showed that the
average fiber diameter of the nano-P(3HB-co-4HB)-RGD scaffold
was in the range 201–300 nm, whereas both nano-P(3HB-
co-4HB) and NH2-nano-P(3HB-co-4HB) scaffolds showed an
higher fiber average diameter, in the range 401–500 nm.
Therefore, the addition of RGD peptides onto the scaffold
decreased the diameter of the nanofibers. This result might be
explained assuming that, due to the intrinsic mechanism of
aminolysis reaction, during the whole functionalization process
erosion of the polyester surface inevitably takes place, thus
reducing fiber diameter (Zhu et al., 2013).

It is worth noting that the average fiber diameter of the
fabricated scaffolds was comparable to that of ECM fibers, that
has been reported to be in the range of 50–500 nm (Barnes
et al., 2007), therefore the nano-P(3HB-co-4HB)-RGD scaffolds
are morphologically biomimetic of ECM and can be considered
as ideal ECM analogs.

As for the CHN analysis, it is used to determine the
percentages of carbon, hydrogen and nitrogen elements present
on the scaffolds. Alternatively, the CHN analysis can be used
to determine if the RGD peptides were immobilized onto the
scaffold. Based on results reported in Table 3, the nano-P(3HB-
co-4HB) scaffold contains both carbon and hydrogen but there
was no nitrogen element present as P(3HB-co-4HB) copolymer
does not naturally contain nitrogen element. The aminolyzed
nano-P(3HB-co-4HB) and nano-P(3HB-co-4HB)-RGD, on the
other hand, show the presence of nitrogen due to the functional
amine groups and RGD peptide respectively. Similarly, study
by Kim et al. (2014) and Bhattacharjee et al. (2015) proved
that aminolyzed polymer scaffold were obtained based on the
presence of nitrogen atoms.
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FIGURE 2 | Schematic diagram of the immobilization reactions of RGD peptides onto nano-P(3HB-co-4HB) scaffold via aminolysis.

TABLE 2 | The uptake efficiency of RGD immobilized onto the scaffolds
determined by ninhydrin test.

Scaffolda RGD content
(mg/cm2)c

Uptake efficiency
of RGD

immobilized on
the scaffold (%)

Nano-P(3HB-co-4HB)b 0d 0d

Nano-P(3HB-co-4HB)/0.5 mg/mL RGD 0.20 ± 0.01e 54.0 ± 2.5e

Nano-P(3HB-co-4HB)/1.0 mg/mL RGD 0.20 ± 0.03e 61.1 ± 2.8f

Nano-P(3HB-co-4HB)/1.5 mg/mL RGD 0.30 ± 0.02f 69.5 ± 0.9g

Nano-P(3HB-co-4HB)/2.0 mg/mL RGD 0.60 ± 0.03g 82.8 ± 1.4h

Nano-P(3HB-co-4HB)/2.5 mg/mL RGD 0.50 ± 0.04h 78.4 ± 0.9h

aSurface area of the fabricated circular scaffold is 12.6 cm2. bP(3HB-co-68 mol%
4HB) was used as a control. cRGD content = amount of RGD in 1 cm2

× 12.6 cm2.
d−h Different superscript within the same column are significantly different at
p < 0.05 level (Tukey’s HSD test). Data show the mean ± standard deviation of
triplicates (n = 3).

FTIR study was also used as an evidential analysis for the
immobilization of RGD peptides on the nano-P(3HB-co-4HB)
scaffold as shown in Figure 4. The FTIR spectrum of nano-
P(3HB-co-4HB) scaffold showed two transmittance bands at
2,965 cm−1 and 2,898 cm−1 which attributed to stretching
vibration of C–H bonds of methyl group (CH3) and methylene
group (CH2) respectively. It also exhibited the intense absorption
band at 1,717 cm−1, corresponding to the ester carbonyl group
(C=O), which is the main functional group of P(3HB-co-4HB)
(Vigneswari et al., 2016a). In the FTIR spectrum of RGD peptides,
a broad band assigned to the N–H stretching was present at
3,292 cm−1, while the characteristic absorption bands at 1,633

and 1,526 cm−1 correspond to the amide I and amide II
respectively. Accordingly, the FTIR spectrum of nano-P(3HB-
co-4HB)-RGD scaffold, shows the relevant bands attributed to
the nano-P(3HB-co-4HB) and to RGD peptides, indicating that
that the RGD peptides were successfully immobilized on the
nano-P(3HB-co-4HB) scaffold.

The water contact angle of the scaffolds was found to decrease
in the order of nano-P(3HB-co-4HB) > NH2-nano-P(3HB-co-
4HB) > nano-P(3HB-co-4HB)-RGD (Table 4). In general, large
contact angles (>90◦) correspond to hydrophobic behavior with
low wettability whereas small contact angles (<90◦) correspond
to high wettability (Kurusu and Demarquette, 2019; Jeznach
et al., 2019). The obtained results indicate that, as expected,
the hydrophilicity increased as the NH2 groups were introduced
onto the scaffold and the incorporation of RGD peptides further
enhanced the wettability of the scaffold. The nano-P(3HB-co-
4HB)-RGD scaffold exhibited the lowest water contact angle of
14.7 ± 1.5◦. This is attributed to the presence, in the RGD
peptides, of hydrophilic groups which includes –NH2 and –
COOH. Similar trend has been reported by Guler et al. (2016).

The surface topography and roughness of the scaffolds were
analyzed using AFM and results are shown in Table 5. The surface
of the nano-P(3HB-co-4HB) showed a smoother surface with
less protuberances whereas nano-P(3HB-co-4HB)-RGD scaffold
has the roughest surface, containing more protuberances as
compared to the other scaffolds. However, the nano-P(3HB-co-
4HB)-RGD and NH2-nano-P(3HB-co-4HB) exhibited relatively
similar average surface roughness of 0.06 ± 0.02 µm and
0.05 ± 0.004 µm respectively, as compared to nano-P(3HB-co-
4HB) scaffold. The increase of roughness in the functionalized
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FIGURE 3 | SEM images and fiber diameter distribution of (A) Nano-P(3HB-co-4HB), (B) NH2-nano-P(3HB-co-4HB), and (C) Nano-P(3HB-co-4HB)-RGD scaffolds.
The magnification of SEM images is 20 kX.

fiber surface is possibly attributed to the chemical reaction
used to introduce both amine groups and RGD peptides
onto the surface (Kim et al., 2014; Bhattacharjee et al., 2015;
Kaerkitcha et al., 2016).

One of the desirable properties of biomaterial is
biodegradability. The in vitro degradation study was performed
by evaluating the percentage of weight of the scaffold at the
end of the degradation as shown in Figure 5. Interestingly,
nano-P(3HB-co-4HB)-RGD scaffold exhibited significantly
lowest degradation as compared to NH2-nano-P(3HB-co-
4HB) scaffolds. The study by Asadpour et al. (2018) indicated
that cardiac graft should be biodegraded over the period of
regeneration of myocardium after myocardial infarction, which
usually takes approximately 6–8 weeks, in order to prevent

the formation of fibrous capsule and severe inflammatory
reactions. Based on the result obtained, nano-P(3HB-co-
4HB)-RGD scaffold showed the lowest degradation rate

TABLE 3 | CHN analysis of the scaffolds.

Scaffold Carbon (%) Hydrogen (%) Nitrogen (%)

Nano-P(3HB-co-4HB) 51.3 ± 1.3a 7.4 ± 1.1a 0a

NH2-nano-P(3HB-co-4HB) 47.7 ± 2.4ab 6.6 ± 0.6a 15.7 ± 2.7b

Nano-P(3HB-co-4HB)-RGD 46.4 ± 1.5b 6.1 ± 0.2a 17.6 ± 0.6b

P(3HB-co-68 mol% 4HB) was used. a,bDifferent superscript within the same
column are significantly different at p < 0.05 level (Tukey’s HSD test). Data shows
the mean ± standard deviation of triplicates (n = 3).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 October 2020 | Volume 8 | Article 567693

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-567693 October 21, 2020 Time: 20:7 # 8

Vigneswari et al. Surface Functionality of Nano-P(3HB-co-4HB)-RGD Peptides

FIGURE 4 | FTIR spectra of (i) Nano-P(3HB-co-4HB), (ii) RGD peptides, (iii) NH2-nano-P(3HB-co-4HB), and (iv) Nano-P(3HB-co-4HB)-RGD. In the FTIR spectra, A
indicates CH3 and CH2 stretching, B indicates C=O stretching, C indicates N–H stretching (broad band), D indicates amide I, E indicates amide II and F indicates
N–H stretching (small and strong intensity band).

with respect to the other scaffolds tested and experienced
a weight loss of about 36% after 35 days. Thus, it can be
postulated that nano-P(3HB-co-4HB)-RGD scaffold can

retain sufficient structural integrity to provide a favorable
environment to support cardiac cell growth for potential cardiac
tissue engineering.
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TABLE 4 | Surface wettability of the fabricated scaffolds.

Scaffold Water contact angle (◦) Image

Nano-P(3HB-co-4HB) 39.3 ± 1.9

NH2-nano-P(3HB-co-4HB) 28.3 ± 2.1

Nano-P(3HB-co-4HB)-RGD 14.7 ± 1.5

Data show the mean ± standard deviation of triplicates (n = 3).

Evaluation of in vitro Attachment and
Proliferation of Myoblast Cells
Figure 6 shows the attachment of H9c2 myoblast cells on the
scaffolds after 4 h of cell seeding. The nano-P(3HB-co-4HB)-
RGD scaffold exhibited significantly highest absorbance value
of cell attachment. Based on the results obtained it can be
deduced that the attachment density of cells seeded on the
TCPS, P(3HB-co-4HB), NH2-P(3HB-co-4HB), and nano-P(3HB-
co-4HB)-RGD. This finding is in line with previous results
demonstrating that the addition of RGD peptide enhances cell
attachment (Zhang et al., 2009).

The proliferation of H9c2 myoblast cells on the scaffolds
for 4-day were shown in Figure 7. The NH2-nano-P(3HB-co-
4HB) scaffold exhibited higher H9c2 myoblast cell proliferation
than the nano-P(3HB-co-4HB) scaffold. It can be deduced that
NH2 groups on the scaffold surface improves cell adhesion
and proliferation as compared to the scaffold surface before
aminolysis reaction (Dallan, 2017).

Meanwhile, the nano-P(3HB-co-4HB)-RGD scaffold
exhibited 2.0 folds and 1.8 folds increase of H9c2 myoblast
cells on day 4 as compared to nano-P(3HB-co-4HB) and
NH2-nano-P(3HB-co-4HB) scaffold respectively. It was noted
that RGD peptide is an essential component of the scaffolds to

TABLE 5 | Surface roughness and topography of the fabricated scaffolds.

Scaffold Surface roughnessa Image

Root mean
square

roughness, Rq

(µm)

Average
roughness, Ra

(µm)

Nano-P(3HB-
co-4HB)

0.03 ± 0.02b 0.02 ± 0.01b

NH2-nano-
P(3HB-co-4HB)

0.07 ± 0.01bc 0.05± 0.004bc

Nano-P(3HB-
co-4HB)-RGD

0.07 ± 0.02c 0.06 ± 0.02c

aCalculated from AFM based on the standard formula integrated in the software.
b,cDifferent superscript within the same column are significantly different at p < 0.05
level (Tukey’s HSD test). Data shows the mean ± standard deviation of triplicates
(n = 3).

improve the cellular attachment and proliferation, particularly
for cardiac cells (Shachar et al., 2011).

Considering the obtained results, the enhancement of the
surface properties after immobilization of RGD peptides onto the
scaffold surface via aminolysis, indicates that RGD peptides is
effective in promoting cell attachment and proliferation.

As discussed above, in this work it was found that the
attachment and proliferation of H9c2 myoblast cells increased
in the order of nano-P(3HB-co-4HB) < NH2-nano-P(3HB-
co-4HB) < nano-P(3HB-co-4HB)-RGD which is opposite to

FIGURE 5 | In vitro degradation of the fabricated scaffold as a function of time. The data show the mean ± standard deviation of triplicates (n = 3).
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FIGURE 6 | Attachment of H9c2 myoblast cells on the scaffolds at 4 h after cell seeding. TCPS plate was used as control. Data show the mean ± standard
deviation of six replicates. Statistically significant difference is indicated with ***p < 0.05 (Tukey’s HSD test) (n = 6).

FIGURE 7 | Proliferation of H9c2 myoblast cells on the scaffolds at day 1 and day 4 after cell seeding. TCPS as a control. The data show the mean ± standard
deviation of six replicates. Mean data accompanied by different letters indicates significant difference within each respective group (Tukey’s HSD test, p < 0.05)
(n = 6).

the fiber diameter trend, which decreased in this order. This
indicated that the nano-P(3HB-co-4HB)-RGD scaffold which
possessed smallest fiber diameter achieved the higher myoblast
cell attachment and proliferation. This could be explained
considering that the nano-P(3HB-co-4HB)-RGD scaffold is
characterized by the smallest fiber diameter range of 200–300 nm

that closely mimics the ECM scale (Wissing et al., 2017).
Moreover, nano-P(3HB-co-4HB)-RGD scaffold exhibited the
smallest water contact angle value that corresponds to the
high hydrophilic surface. Hydrophilic surface directly affects
the cell survival, adhesion and proliferation (Ma et al., 2017).
The presence of RGD peptides shifted the surface properties
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FIGURE 8 | Approaches to cardiac tissue engineering using nano-P(3HB-co-4HB)-RGD scaffold as potential acellular scaffold, toward future animal studies and
human clinical trials.

of the P(3HB-co-4HB) nanofiber scaffold from hydrophobic
to hydrophilic, that gives rises to the higher myoblast cell
attachment and proliferation on the RGD-modified scaffold.

The immobilization of RGD peptides not only enhanced the
hydrophilic surface, but also increased the cell recognition sites
for cell attachment and proliferation. The immobilized RGD
peptides provide an adhesive interface between the scaffold and
cells that promotes the cell-scaffold interactions (Wang et al.,
2013). The conjugation of RGD peptides on the functionalized
surface of nano-P(3HB-co-4HB) scaffold, could be probably
recognized by the cellular integrin as the main binding domain
within ECM proteins, thereby stimulating the cell signals that
improves the myoblast cell attachment and proliferation on the
nano-P(3HB-co-4HB)-RGD scaffold.

Though NH2-nano-P(3HB-co-4HB) and nano-P(3HB-co-
4HB)-RGD scaffold did not show significant difference in the
highest surface roughness but nano-P(3HB-co-4HB)-RGD
scaffold enhanced attachment and proliferation of myoblast
cells. This indicates that conjugation of RGD peptide enhances
cells to anchor, grow, proliferate and allows cells to migrate
and populate (Thuaksuban et al., 2011; Venkatesan et al.,
2014). However, increased cell adhesion and proliferation
would not obtain if unsuitable biomaterial is used despite the
improvement in the surface properties of this biomaterial.
The study by Mu et al. (2015) demonstrated that P(3HB-
co-4HB) was an excellent biomaterial that supported the
engraftment and proliferation of the transplanted cells
in the damaged myocardium for long term periods. The
synergistic impact between P(3HB-co-4HB) nanofibers and RGD
peptides enhanced and improved the cell-scaffold interactions
that resulted in the higher attachment and proliferation of
H9c2 myoblast cells.

The promising results achieved indicate that the nano-
P(3HB-co-4HB)-RGD peptide is a suitable material that will
be envisioned to emerge as potential cardiac construct for
building cardiac tissue in the future and facilitate into clinical
translation (Figure 8).

CONCLUSION

In this study we demonstrated that the fabrication of P(3HB-
co-4HB) nanofiber scaffold through electrospinning, and
the immobilization of RGD peptides onto scaffold surface
through aminolysis, were efficient surface modification
strategies to improve the biomimentic characteristics of
the scaffold. The morphological characterization of the
functionalized scaffolds was performed by means of SEM
and AFM analysis that demonstrated that the nano-P(3HB-
co-4HB)-RGD scaffold possessed fibers with the smallest
average fiber diameter distribution, in the range of ECM
fibers and with higher roughness with respect to non-
functionalized fibers. The chemical analysis, carried out
through CHN and FTIR, confirmed that RGD peptides
were efficiently immobilized and a peptide quantification
was performed. Surface wettability and in vitro degradation
evaluation were conducted to further assess surface
hydrophilicity and degradation rate, that are important
properties in view of in vitro testing. It was shown that RGD
functionalization significantly affects the biocompatibility
of the scaffold and promoted the cell-scaffold interaction.
Nano-P(3HB-co-4HB)-RGD scaffold showed the highest
attachment and proliferation of H9c2 myoblast cells. Hence,
P(3HB-co-4HB)-RGD nanofiber scaffold could be an excellent
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biomaterial to be potentially developed into acellular scaffold
for cardiac construct. Further in vivo studies are needed to
investigate the feasibility and applicability of P(3HB-co-4HB)-
RGD nanofiber scaffold in the biomedical field.
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