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Abstract: Recent progresses in nanotechnology have clearly shown that the incorporation of
nanomaterials within concrete elements leads to a sensible increase in strength and toughness,
especially if used in combination with randomly distributed short fiber reinforcements, as for ultra
high-performance fiber-reinforced concrete (UHPFRC). Current damage models often are not able to
accurately predict the development of diffuse micro/macro-crack patterns which are typical for such
concrete structures. In this work, a diffuse cohesive interface approach is proposed to predict the
structural response of UHPFRC structures enhanced with embedded nanomaterials. According to
this approach, all the internal mesh boundaries are regarded as potential crack segments, modeled
as cohesive interfaces equipped with a mixed-mode traction-separation law suitably calibrated to
account for the toughening effect of nano-reinforcements. The proposed fracture model has been firstly
validated by comparing the failure simulation results of UHPFRC specimens containing different
fractions of graphite nanoplatelets with the available experimental data. Subsequently, such a model,
combined with an embedded truss model to simulate the concrete/steel rebars interaction, has been
used for predicting the load-carrying capacity of steel bar-reinforced UHPFRC elements enhanced
with nanoplatelets. The numerical outcomes have shown the reliability of the proposed model,
also highlighting the role of the nano-reinforcement in the crack width control.

Keywords: ultra high-performance fiber-reinforced concrete (UHPFRC); nanomaterials; diffuse
cohesive interface models; nonlinear finite element analysis; multiple crack propagation

1. Introduction

Nowadays, concrete results in being the most used construction material in building and civil
engineering, due to its durability, affordability, high temperature resistance, and good compressive
strength [1]. Its limitations, such as quasi-brittle behavior and low tensile strength, have motivated
several researchers to invest time and resources in the design and production of new advanced
concretes. In particular, the so-called ultra-high performance concrete (UHPC), characterized by high
cement content, small aggregate size, high binder content (fly ash, silica fume, reactive powder, etc.),
and low water/cement ratio (<0.2), has been developed to achieve enhanced mechanical properties
respect to the ordinary concrete, in terms of both compressive strength (up to 100–200 MPa) and tensile
strength (up to 5–10 MPa) [2–4].
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In general, UHPC exhibits an increasing brittleness with the increase of compressive strength,
but such a brittleness can be properly limited with the inclusion of discontinuous high-strength steel
fibers. This addition is able to enhance both the ductility and the flexural strength of concrete [5–7],
and it leads to the definition of the so-called ultra high-performance fiber-reinforced concrete (UHPFRC).
Depending on the shape and content of embedded fibers, UHPFRC exhibits different mechanical
behaviors. Specifically, by using undeformed or deformed (for instance hooked-end, twisted or
wave-shaped) steel fibers, a strain-softening or strain-hardening behavior can be typically obtained,
respectively [8,9]. Several experimental studies about the effects of both the length and amount of steel
fibers on the global structural response of cementitious matrices have clearly shown that, by increasing
the fiber volume fraction, a sensible performance improvement in terms of both tensile strength
and ductility can be obtained [10–13]. In particular, with the incorporation of 1%, 2%, and 3% of
straight steel fibers in UHPC samples, their flexural strength significantly increases by about 21%, 47%,
and 100%, respectively [14]. In addition, as observed in [15], the UHPC tensile strength results in being
60% higher by using deformed steel fibers compared to straight steel fibers, and the tensile strain
measured at the peak stress is around three times higher.

Despite the excellent mechanical properties offered by UHPFRCs, previous studies indicate that
their flowability is negatively influenced by high values of the fiber content [16,17] and thus, in order
to develop advanced concretes with an improved workability, new kinds of reinforcement, involving
different scales of observation (i.e., nano- and micro-scales) in the same mixture, have been recently
investigated [18–21]. Specifically, it has been demonstrated that the addition of only micro-reinforcement
in UHPFRC results in being scarcely effective in delaying fracture onset and propagation phenomena,
while recent studies in nanotechnology have highlighted the capability of nano-sized reinforcement
to enhance the performances of cement-based materials in terms of both strength and fracture
toughness [22–24] without any substantial reduction in their workability. Currently, several types
of nanomaterials have been used as a reinforcement of the cementitious paste, such as nanosilica,
nanoiron, and, more recently, carbon nanotubes (CNTs) and graphene sheets [25–27]. Among these,
carbon-based nanomaterials, which are available in different shapes (particles, fibers, sheets and
platelets), possess the best mechanical properties in terms of elastic modulus (reaching values of about
1000 GPa) and tensile strength (with values greater than 100–200 GPa) [28–32].

Definitively, the improved flexural and compressive strength and fracture toughness properties of
concrete provided by the nano-sized reinforcement, used in combination with other reinforcement
types, led to the development of a new-generation concrete, consisting of a special UHPFRC enhanced
with nanomaterials. However, despite extensive studies on the influence of nanomaterials on the
mechanical properties of concrete and mortar are available in the literature, only a few experimental
investigations on UHPFRCs enhanced with nanomaterials have been performed. Among these,
some authors showed that, with a 0.3% of graphite nanoplatelets embedded in a UHPFRC element,
an increase of 56% and 187% in the tensile strength and energy absorption capacity can be obtained,
respectively [33]. Other researchers investigated the role of embedded nanomaterials on the bond
behavior between steel fibers and UHPC by means of pull-out tests, showing that a significant increase
in the bond stresses can be achieved with the addition of only the 0.02% of carbon nanotubes [34].
Moreover, some authors identified the optimal amount of combined steel microfibers and carbon
nanofibers embedded in a UHPFRC providing a balanced increase in the flexural and compressive
strengths [35]. Furthermore, a significant increase in the bond between cement matrix and steel
microfibers is obtained in [36], via the incorporation of a small percentage of nanotubes, thus leading
to a higher concrete pull-out strength. Specifically, the above-mentioned enhanced bond strength,
associated with a stronger crack bridging effect in the proximity of the steel fibers, is capable to inhibit
the micro-crack onset and to delay the subsequent fracture propagation processes.

Despite the great number of experimental studies, to the best knowledge of the authors, only a
few works in the literature have been addressed to the investigation of nano-enhanced UHPFRCs
from the computational point of view, essentially due to the severe separation of the spatial scales
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involved in the damage and/or fracture phenomena, resulting in the difficulty of incorporating the
toughening effect of nano-reinforcement in the overall (i.e., macro-scale) constitutive behavior of
concrete (see, for instance, [37]).

More generally speaking, cracking processes in fiber-reinforced concretes (FRCs), mainly without
nano-enhancements, have been simulated in the literature by means of a wide variety of numerical
models and methods, based on either smeared or discrete fracture approaches, in which the improved
ductility provided by the dispersed reinforcement has been accounted for by properly modifying the
softening behavior of the adopted (bulk or interface) constitutive models.

Smeared crack approaches, consisting of smearing any individual crack over a computational
region with degraded material properties, work naturally with the continuum mechanics-based
computational methods, such as the standard displacement-type finite element method, but inevitably
lose the discrete nature of fracture. Among the existing smeared approaches, damage, plasticity,
and combined damage/plasticity models have been successfully applied to FRC materials. These models
usually adopt different regularization techniques able to prevent the well-known ill-posedness of
the associated BVPs, such as those based on strain gradient [38] and micropolar [39] formulations.
In particular, the popular Concrete Damaged Plasticity (CDP) model has been adopted, with or without
ad-hoc modifications in its constitutive formulation, for the failure simulation of UHPFRCs (see, [40,41],
respectively). It is worth noting that most of the available continuum damage models for UHPFRC are
of a phenomenological type, but there exist some sophisticated modeling approaches which consider
UHPFRC as a two-phase composite with different constitutive behaviors of cement matrix and short
fibers, combined together in a single microscopically derived anisotropic damage model for such a
material [42].

Instead of modeling cracks in a smeared manner, discrete fracture approaches possess the
advantage of describing cracks as individual discontinuity surfaces embedded in the computational
domain, thus taking into account, in a detailed way, multiple crack initiation and propagation,
crack coalescence, unilateral contact between crack faces with or without friction, debonding and other
interacting nonlinear micro- or macro-scale phenomena occurring not only in cement conglomerates,
but also in other brittle and ductile reinforced composite materials (see, for instance, [43–46]).

Among the existing discrete fracture approaches, cohesive zone models (CZMs) are the most used
for concrete-like materials, including FRCs. In this context, a variety of cohesive traction-separation
laws have been proposed, able to account for the influence of embedded short fibers on the global
fracture properties (flexural strength, tensile fracture energy, etc.) of the resulting concrete [47–49].
In particular, a simple and practical trilinear softening model for FRCs has been proposed in [48],
based on the separation of related fracture mechanisms into the aggregate bridging zone and the
fiber bridging zone. Most of the existing cohesive zone models for FRCs have been derived in a
phenomenological manner, but, recently, some interesting multiscale fracture approaches have been
proposed, in which the individual nonlinear behaviors of concrete matrix and short fibers, as well as
their mutual interactions involving different length scales, have been accounted for in the interfacial
constitutive modeling of FRCs at the macroscopic scale (see, for instance, [50]).

From the analysis of the current technical literature, it can be observed that the attention is mainly
focused on the numerical simulation of simple laboratory-scale UHPFRC elements without considering
accurately the additional strengthening effect of steel reinforcing bars required for real-life engineering
applications. Indeed, a comprehensive computational framework able to accurately predict all the
potential damage mechanisms in steel bar-reinforced nano-enhanced UHPFRC structures under both
ultimate and service loading conditions seems to still be missing, probably due to the inherent difficulty
of incorporating all the different steel/concrete interactions in the already complex constitutive behavior
of damaged concrete with both micro- and nano-reinforcements.

The present work may be regarded as an attempt to fill this gap, by proposing a novel integrated
numerical model for steel bar-reinforced UHPFRC structures, including those enhanced with the
incorporation of nanomaterials. The two main ingredients of this model, detailed in Section 3, are:
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• a diffuse interface modeling (DIM) approach, based on a cohesive finite element methodology,
introduced by some of the authors in [51] for conventional concrete and here adapted to the case
of nano-enhanced UHPFRC. This approach, whose theoretical background is briefly recalled
in Section 2, considers all the internal mesh boundaries as potential crack segments, modeled
as cohesive interfaces equipped with a suitably calibrated mixed-mode traction-separation law.
The desired feature of this approach consists in the possibility to simulate multiple crack onset and
propagation without requiring externally introduced crack initiation criteria or computationally
costly remeshing operations;

• an embedded truss model (ETM), used in synergy with a special sliding interface model,
already adopted in [52,53] for conventional RC structures and here adapted to capture the
enhanced steel/concrete bond-slip behavior provided by nano-reinforcements embedded in the
UHPFRC mixture.

In the first part of the results (Section 4), the main applications of the proposed fracture approach
to plain nano-enhanced UHPFRC are presented for both validation and parameter calibration purposes.
Suitable comparisons with the available experimental results, involving a four-point bending test
on small-sized UHPFRC beams with different volume fractions of graphite nanoplatelets (GNPs),
are provided to show the accuracy of the proposed diffuse interface approach. Moreover, additional
numerical results on the same test are presented to demonstrate its mesh-independence feature, and,
ultimately, to further demonstrate its reliability for the plain UHPFRC case.

The second part of the numerical outcomes (Section 5) is devoted to the application of the proposed
integrated numerical framework (including the above-mentioned embedded truss model) to the case of
steel bar-reinforced nano-enhanced UHPFRC structures. The main numerical outcomes, here presented
in terms of both global structural response and final crack pattern, show the ability of the proposed
approach to predict the load-carrying capacity of such structures, as well as to highlight the role of the
embedded nano-reinforcement in the crack width control.

2. Diffuse Cohesive Interface Modeling Approach for Nano-Enhanced UHPFRC Structures

In this section, the general theoretical formulation of the diffuse cohesive interface approach
for concrete-like materials is recalled, with reference to the planar elasticity case, and the particular
mixed-mode interface model adopted for nano-enhanced UHPFRC is described.

2.1. General Cohesive Finite Element Formulation

The general theoretical formulation underlying the adopted diffuse cohesive interface approach
for concrete-like materials is presented, following the variational framework described in [51].
This formulation refers to a general two-dimensional fractured body, occupying the region Ω ⊂ R2,
subjected to body forces f in Ω and surface forces t on its Neumann boundary ΓN, and containing
multiple discontinuity lines, which represent potential crack paths whose location is not known a priori.
In this situation, all the internal mesh boundaries may be regarded as interfaces at which displacement
jumps may occur, so that the variational formulation of the resulting equilibrium problem is written
for a spatially discretized and split body.

In detail, the original body Ω is replaced with its planar tessellation Ωh, depicted in Figure 1a,
where initially undamaged cohesive interfaces, collectively denoted as Γh

d, are embedded along its
internal boundaries, coinciding with all the potential crack sites. It follows that the actual crack
pattern turns to be approximated by the subset of damaged cohesive segments, referred to as Γh

c ⊂ Γh
d,

which are characterized by a nonlinear behavior according to a given softening law. The associated
BVP expressed in weak form reads as follows: Find uh

∈ Uh such that:∫
Ωh
\Γh

d

Cε
(
uh

)
· ε

(
vh

)
dΩ +

∫
Γh

d

K(di)uh
· vhdΓ =

∫
Ωh
\Γh

d

f · vhdΩ +

∫
Γh

N

t · vhdΓ ∀vh
∈ Vh (1)
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where uh denotes the (unknown) approximated displacement field, Uh is the set of kinematically
admissible approximated displacement fields, vh is the (arbitrary) virtual displacement field, and Vh is
the set of kinematically admissible variations of the approximated displacement field. In addition,
ε(•) is the usual linear strain operator, and C is the fourth-order elasticity tensor, whereas • = •+ − •−

is the jump operator across the interfaces Γh
d, and K denotes the second-order cohesive constitutive

tensor, here assumed to be function of a finite set of scalar state (damage) variables di, being responsible
for the irreversible behavior of the embedded cohesive interfaces.
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Figure 1. Equilibrium problem for a two-dimensional fractured body: (a) schematic representation of
the spatially discretized body Ωh; (b) representation of the generic cohesive interface Γh

d

If not direct cross-coupling between normal and tangential deformation modes is assumed, K can
be expressed in terms of normal and tangential cohesive stiffness terms, denoted as Kn = Kn(di) and
Ks = Ks(di), respectively:

K = Knn⊗ n + Ks(I− n⊗ n) (2)

where I denotes the second-order identity tensor, and n is the unit normal vector to Γh
d (see Figure 1b).

It follows that the embedded cohesive interfaces (which are of the so-called intrinsic type) behave as
two beds of normal and tangential nonlinear springs, whose initial stiffness terms K0

n = Kn(di = 0)
and K0

s = Ks(di = 0) play the role of penalty parameters (without having a precise physical meaning)
to enforce the inter-element continuity of undamaged interfaces.

It is worth noting that, in concrete-like materials, being characterized by a quasi-brittle structural
response with highly localized damage, only a small percentage of cohesive interfaces are cracked,
whereas the remaining (undamaged) interfaces are worthless. It follows that the artificial compliance
introduced by the elastic branch of these unnecessary interfaces negatively affects the mechanical
response of the ideally uncracked body by seriously reducing its overall material stiffness. Such a
compliance could be reduced by adopting sufficiently high interface stiffness parameters, and by
considering, at the same time, some theoretical upper bounds for these parameters related to the need
of avoiding any ill-conditioning of the tangent stiffness matrices in static analyses, as is well known in
the literature [54–56].

In the present work, the normal and tangential stiffness parameters are assumed to be equal, and
computed according to the following relation:

K0
n = K0

s = K0 = κ
E

Lmesh
(3)

where E denotes the Young’s modulus of the bulk material, Lmesh is the average mesh size, and κ is a
dimensionless stiffness parameter, imposed to be much greater than one to avoid any sensible artificial
stiffness reduction. In particular, κ is set equal to 200 in this work. This value is coherent with what is
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suggested in the recent literature [52,57], and perfectly in line with an imposed reduction in the overall
stiffness of about 1%, according to the micromechanical approach proposed by some of the authors to
obtain invisible cohesive interfaces [51].

2.2. Traction–Separation Law for Nano-Enhanced UHPFRC Structures

In this section, the adopted traction–separation law (TSL) for nano-enhanced UHPFRC is presented.
This is a trilinear softening model able to capture the tensile failure of fiber-reinforced concretes, initially
proposed in [48] for functionally graded FRC and here adapted to the specific case of UHPFRC with
embedded nanomaterials. In particular, all the microscopic fracture mechanisms of FRCs are taken
into account, including cement paste micro-cracking, matrix/aggregate debonding, and fiber pull-out.

The adopted model also considers, in addition to the fracture resistance offered by the aggregate
interlocking, the additional toughening effect of embedded discrete fibers, which is associated with
a sensible enlargement of the fracture process zone size in (nano-enhanced) UHPFRC with respect
to (nano-enhanced) UHPC without reinforcement. The first two linear descending branches of the
adopted trilinear softening model for nano-enhanced UHPFRC are associated with the initial and total
fracture energies of nano-enhanced UHPC, respectively, whereas the last descending slope is related to
the additional energy required to debond and pull-out the fibers from the cement paste, corresponding
to the difference between the total fracture energy of nano-enhanced UHPFRC and the total fracture
energy of nano-enhanced UHPC, as shown in Figure 2.
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Figure 2. Traction–separation law for nano-enhanced UHPFRC with a trilinear softening model,
and microscopic fracture mechanisms corresponding to each linear descending branch.

The numerical calibration of this softening model requires the determination of the following six
fracture parameters: tensile strength ft, initial fracture energy G f

UHPC and total fracture energy GF
UHPC of

the plain (nano-enhanced) UHPC, critical crack tip opening displacement CTODc, total fracture energy
GF

UHPFRC of (nano-enhanced) UHPFRC, and final crack opening width wf. The first four parameters
refer to the bilinear softening model of the plain (nano-enhanced) UHPC, whereas the two latter ones
define the last descending branch of nano-enhanced UHPFRC.
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The horizontal axis intercepts of the first and second softening slopes are expressed as:

w1 =
2G f

UHPC

ft
(4)

and

w2 =

2GF
UHPC
ft
−CTODc

1− CTODc ft
2G f

UHPC

(5)

respectively, where the expression for w2 is derived assuming that the kink point between the first and
second descending branches of the TSL is characterized by a crack opening width w (i.e., its abscissa
in Figure 2) coinciding with the CTODc, supposed to be a known material property (for additional
details about the derivation of Equation (5), please see [58] and references cited therein). Finally, wf is
estimated as Lf/4, Lf being the fiber length. Such a value corresponds to the estimated pull-out length
for randomly distributed short fibers (see [48] for additional details), assumed to be insensitive to
the amount of embedded nanomaterials, as clearly visible in Figure 2. This is realistic, since the scale
involved in the final stage of pull-out is much greater than the nanoscale, affecting only the early stage
of pull-out.

The associated complete mixed-mode intrinsic-type interface constitutive behavior, including the
damage irreversibility and the frictionless unilateral contact conditions, reads as:

tn =

K0wn wn < 0
t(wmax)

wmax
wn wn ≥ 0

, ts =
t(wmax)

wmax
ws (6)

where wn and ws denote the normal and tangential components of the displacement jump vector, the
initial stiffness K0 is used to enforce in an approximated manner the non-interpenetration condition in
compression (i.e., for wn < 0), and the function t(wmax) represents the TSL shown in Figure 2, t being
the effective traction and wmax the maximum value of the effective displacement jump w attained over
the entire deformation history.

In this work, the same traction–separation law has been applied to both normal and nano-enhanced
UHPFRC (with special reference to UHPFRC with different contents of embedded graphite
nanoplatelets). The effect of diffuse nano-reinforcement on the nonlinear softening response of
the conglomerate consists of a sensible increase of both tensile strength ft and fracture energies G f

UHPC,
GF

UHPC and GF
UHPFRC, as shown in Figure 2, due to the improved bond within the cement paste as well

as at the cement paste/aggregate and cement paste/fiber interfaces. As a particular case, the resulting
softening curve of normal UHPFRC (i.e., without nano-enhancement) is the lowest limit curve of
the family depicted in the same Figure 2. Moreover, the final crack opening width wf is assumed to
be insensitive to the incorporation of nanoplatelets within the concrete matrix and the fiber/matrix
bond-slip behavior occurring at higher spatial scales, which are not interacting with the nanoscale level.

Finally, it is worth noting that the above-described interface model is not suitable for hooked fibers
and/or high fiber volume fractions, which are usually associated with a strain hardening behavior in
the post-cracking stage, even accompanied with a secondary peak in the global traction–separation
response [49,50,59]. However, such a behavior is not considered here, being outside of the scopes of
the present work, but could be the object of future investigations involving a wider class of UHPFRCs.

3. An Integrated Numerical Model for UHPFRC Structures Enhanced with Nanomaterials

This section is devoted to the presentation of the newly proposed numerical framework for the
failure analysis of nano-enhanced UHPFRC structures, as well as of the related computational details.
Such a framework is adapted from another integrated numerical model, previously introduced in [53]
for conventional RC structures, to the case of steel bar-reinforced nano-enhanced UHPFRC structures.
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This numerical model is composed of two distinct submodels: (a) a diffuse interface model (DIM)
for the simulation of multiple cracking within the concrete phase, introduced in [51]; and (b) an
embedded truss model (ETM) able to simulate the yielding behavior of steel reinforcing bars, as well
as their interaction with the surrounding concrete layer, by virtue of a suitably calibrated bond–slip
interface model. The synergistic combination of these two submodels allows the potential damage
mechanisms in steel bar-reinforced nano-enhanced UHPFRC elements to be accurately predicted,
including flexural/shear cracking and steel/concrete bond failure.

In particular, the adopted model is able to correctly simulate the so-called tension stiffening
effect, which is related to the capability of sound concrete to sustain tensile stresses between adjacent
primary cracks. To this end, the steel/concrete interface model plays a fundamental role in predicting
the structural behavior of steel-bar reinforced UHPFRC members in their cracked stage, since the
steel/concrete slip behavior strongly influences the distribution of bond stresses along the reinforcement
bars, and, ultimately, both crack width and crack spacing values.

According to the adopted ETM, the reinforcing bars are modeled as elastic-plastic truss elements,
which are connected to the concrete elements via special zero-thickness interface elements equipped
with a bond-slip constitutive behavior, able to capture the steel/concrete interactions (see Figure 3a).
The bond stress–slip relation proposed in [60] is adopted, which is a modification of that proposed by
CEB-FIP Model Code 2010 [61], obtained by assuming, for (nano-enhanced) UHPFRC, τb,max = 3.9

√
fc

(fc being its mean compressive strength), s1 = 0.1 mm and s2 = 0.6 mm. The remaining parameters are
taken from the original Model Code formula; thus, τb,f = 0.4τb,max and s3 = 10 mm, coinciding with the
distance between ribs. The interface behavior is completed by assuming a perfect steel/concrete bond
in the normal direction, so that only the interfacial slip is regarded as an active degree of freedom.
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Figure 3. Representation of the steel/concrete interface model: (a) bond stress–slip constitutive behavior
taken from CEB-FIP Model Code for Concrete Structures 2010 [61]; (b) schematic of embedded truss
elements and zero-thickness steel/concrete bond elements.

It is worth noting that the influence of nano-reinforcement on the adopted bond-slip relation for
nano-enhanced UHPFRCs is implicitly taken into account by assigning a variation to fc depending on
the content of the embedded nanomaterials, which corresponds to a modification of the maximum
steel/concrete bond stress. In more detail, according to the adopted model, an increase in the content
of embedded nanomaterials, and thus in the compressive strength of the resulting conglomerate,
is associated with an increase in the bond strength with the interacting steel bars. In the present work,
different mean compressive strength values for different nano-enhanced UHPC mixtures have been
directly taken from the literature, as will be explained in Section 5.1.
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A fundamental aspect of the adopted ETM relies on the possibility for any crack propagating
towards the reinforcing bars to cross the steel layer, as depicted in Figure 3b, thus avoiding artificial
propagation constraints or, even worse, crack arrests, related to the 2D representation of the model.
According to this model, the crack width at each steel node is computed as the sum of the two
independent slip values related to the adjacent steel/concrete interface elements.

The proposed integrated numerical framework for the failure analysis of UHPFRC structures
(with or without nano-enhancement) has been implemented within the commercial finite element
environment COMSOL Multiphysics [62], chosen for its advanced scripting capabilities, including the
possibility to easily develop and apply user-defined cohesive interface elements.

4. Numerical Application to Plain Nano-Enhanced UHPFRC

In this section, the main numerical results obtained via the adopted diffuse cohesive interface
model for plain nano-enhanced UHPFRC are presented, with reference to a simulated flexural test
which involves structural elements containing different volume fractions of graphite nanoplatelets
(GNPs). The proposed numerical applications have the twofold role of calibrating the inelastic
parameters of embedded interfaces and of assessing the numerical accuracy of the adopted fracture
model, via suitable comparisons with available experimental results, shown in Section 4.1. Furthermore,
in Section 4.2, additional numerical computations are presented, aimed at demonstrating the mesh size
independency of the predicted nonlinear structural response.

4.1. Model Calibration and Comparison with Experiments

The present numerical simulations involve small-sized UHPFRC beam specimens subjected to a
four-point bending test, analyzed in [33] from an experimental point of view, whose geometry and
boundary conditions are depicted in Figure 4.
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Figure 4. UHPFRC beam geometry and boundary conditions of the four-point bending test.

The geometric parameters of the cross section are b = 76 mm and h = 76 mm, whereas the
total length and the span length of the beam are equal to L = 305 mm and l = 203 mm, respectively.
Three mixtures of UHPFRC, containing 0.5% by volume of straight steel fibers with length Lf = 13 mm
and diameter D = 2 mm, have been used for the specimens considered in the next simulations:
one mixture without nano-enhancement, which is taken as the control one and named as UHPFRC,
and two mixtures containing 0.05% and 0.1% of GNP reinforcements, referred to as UHPFRC GNP
0.05% and UHPFRC GNP 0.1%, respectively. Both physical and mechanical properties of the GNP and
steel fiber reinforcement are reported in Table 1.

The elastic bulk material parameters have been set as equal for all the three concrete mixtures,
being assumed to be almost independent of GNP embedding at lower volume fractions. In particular,
the adopted Young’s modulus is E = 40 GPa, taken from the uniaxial tensile test results reported in [33],
whereas the Poisson’s ratio is ν = 0.2, as usually assumed for uncracked normal concretes. The adopted
values of the inelastic constitutive parameters introduced in Section 2.2 are shown in Table 2 for all
the considered mixtures. The tensile strength values ft are directly taken from the uniaxial tensile test
responses reported in [33], whereas the fracture energies G f

UHPC, GF
UHPC, and GF

UHPFRC as well as the
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CTODc values are obtained by means of a fitting procedure of the experimental load–displacement
curves obtained for the four-point bending test analyzed in [33] and reported in Figure 5 for comparison
purposes. As constraints introduced to simplify the calibration procedure, the CTODc is assumed to be
constant for all the mixtures, and the fracture energy values are adjusted to enforce a linear variation
with the nanoplatelet content. The constant value for the CTODc is not intended as an exact value
(which should coincide with the real crack tip opening displacement at the original crack tip of the
specimen using the measured ultimate load level for each GNP content), but rather can be regarded
as an average with respect to the considered range of variation for the GNP content. As expected,
the estimated fracture energies G f

UHPC, GF
UHPC, and GF

UHPFRC increase for increasing values of the
nanoplatelet volume fraction (at least within the considered range of variations). It is worth noting that
these fracture energy values are intended not to be valid in general, but rather as reasonable estimates,
providing enough accurate predictions for the investigated cases.

Table 1. Mechanical and physical properties of the GNP and steel fiber reinforcement (taken from [33]).

Specific Gravity
[g/cm3]

Elastic Modulus
[GPa]

Tensile Strength
[MPa] Dimensions

GNP 1.95 1000 5000
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ft [MPa] Gf
UHPC

[N/m]
GF

UHPC
[N/m]

GF
UHPFRC
[N/m]

CTODc
[mm]

wf
[mm]

UHPFRC 5.71 1 40 350 1800 0.005 3.25
UHPFRC GNP 0.05% 6.14 1 50 375 2800 0.005 3.25
UHPFRC GNP 0.1% 6.81 1 60 400 3800 0.005 3.25

1 Values taken from the uniaxial tensile test reported in [33].

To reduce the computational effort of the numerical analyses, the cohesive interface elements
have been inserted only within the rectangular area highlighted in Figure 4, which is dominated
by a combined tension–shear stress state. Here, a suitably refined triangular tessellation has been
generated by using an isotropic Delaunay algorithm and imposing a maximum element size of 4 mm,
which corresponds to an average length of interface elements of about 2.93 mm. The resulting mesh
is composed of 3890 three-node bulk elements and 5903 four-node zero-thickness interface elements.
The subsequent numerical computations have been conducted under quasi-static loading conditions
via a displacement-controlled path-following scheme, by adopting a constant vertical displacement
increment of 5 × 10−3 mm for the extrados point of the mid-span section. Moreover, all the numerical
simulations have been performed under a plane stress assumption.

The structural responses numerically derived for the different UHPFRC mixtures, depicted in
Figure 5a, have been compared with the experimental results reported in [1]. The load versus mid-span
deflection curves, obtained by exploiting the diffuse cohesive interface modeling approach presented
in Section 2, can be schematized with three clearly detectable branches for each concrete mixture:
the first one corresponds to the elastic regime in which the load level increases almost linearly up to
the nucleation of the main crack, occurring at the mid-span section due to the symmetric geometry and
boundary conditions. After the peak load, which is associated with the early stage of crack propagation,
a fast crack growth characterizes the second branch of the numerically derived curve, along which the
load level decrease until the main crack arrest occurs, due to the steel fiber bridging effect. Then, in the
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final part of the softening branch, owing to the activation of the fiber pull-put forces, the load level
does not drop to zero but remains at (slowly decreasing) residual values.
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Figure 5. Global structural response for the three considered UHPFRC mixtures: (a) comparison
between numerical and experimental results in terms of load versus mid-span deflection curves;
(b) deformed configurations (magnified by a scale factor of 25), horizontal stress maps and main crack
paths at a beam deflection of 0.2 mm.

It is worth noting that the adopted diffuse cohesive methodology allows both nucleation and
propagation of the main crack to be naturally predicted, as shown in Figure 5b, without assuming the
preexistence of weak zones or requiring the introduction of an initial stress-free crack. The potential
drawback of this methodology consists of the resulting mesh-dependency of the predicted crack path,
which will be explicitly investigated in more detail by a suitable sensitivity analysis, presented in the
following Section 4.2.

The good agreement between the experimental and numerical loading curves for each investigated
UHPFRC mixture underlines that the adopted traction–separation law, if suitably calibrated in terms
of inelastic cohesive parameters, is reliable for determining the structural behavior of both normal
and nano-enhanced UHPFRC elements with lower nanoparticle contents (up to 0.1% by volume).
The percentage errors on the predicted load peak with respect to the experimental values are fully
acceptable from an engineering point of view, being of 3.62%, 3.58%, and 4.51%, for the three mixtures
UHPFRC, UHPFRC GNP 0.05%, and UHPFRC GNP 0.1%, respectively. Moreover, a slight local
divergence between numerical and experimental results can be observed in the softening branch of the
curves referring to the case of UHPFRC without nano-reinforcement, probably due to the occurrence
of an unstable structural response in the experimental test, being associated with the appearance of
dynamic effects (totally neglected in the numerical simulations), characterized by very high speeds of
the main crack propagation.

The numerical outcomes clearly demonstrate the ability of the proposed diffuse cohesive model
for UHPFRC in capturing the effectiveness of the embedded reinforcement in the form of graphite
nanoplatelets on the mechanical performances of small-scale structural elements, in terms of cracking
resistance and fracture toughness. As a matter of fact, as known from the experiments and confirmed
by numerical results, an increase in the GNP fraction leads to an increase of both the peak load and the
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energy absorption capacity, due to the increase in the bond strength between cement paste and steel
fibers and between cement paste and fine aggregates, guaranteed by the additional work-of-fracture
provided by embedded nanoplatelets. On the other hand, as illustrated in Figure 5b, in the presence of
nano-enhancements, significant beneficial effects can be observed in terms of more controlled crack
patterns, associated with an increased apparent ductility in the post-peak stage. Indeed, the inclusion
of graphite nanoplatelets in the concrete matrix inhibits the nucleation of micro-cracks, reducing at the
same time the (macroscopic) crack width. In particular, percentage reductions in the main crack width
of about 4% and 8% are obtained for UHPFRC GNP 0.05% and 0.1% cases, respectively, both compared
to the control UHPFRC mixture (without nano-reinforcement).

4.2. Mesh Size Sensitivity Analysis

With the purpose of investigating the mesh influence on the fracture behavior predicted by the
diffuse interface model, a sensitivity analysis is performed by varying the mesh size, with reference to
the already examined control UHPFRC specimen (i.e., without nano-enhancement). Both the elastic
and inelastic properties of cohesive interfaces are those reported in Table 2 for the first UHPFRC
mixture, and the geometry and loading conditions are those considered in the previously simulated test.
Four Delaunay meshes have been built considering different refinements within the region susceptible
to damage detected in the previous section, obtained by dividing in half the maximum element size
from 16 to 2 mm. The resulting meshes, numbered from 1 (the coarsest mesh) to 4 (the finest mesh),
are characterized by an average element size of about 11.9, 5.95, 2.93, and 1.45 mm, corresponding to a
number of interface elements of 372, 1454, 5903, and 23,463, respectively.

The numerical analyses show that the global structural response in terms of load versus mid-span
deflection curve, depicted in Figure 6a, is almost independent of the mesh size. Some convergence
troubles, especially on the peak load, have been observed by the simulation performed with the Mesh 1,
probably due to the fact that the adopted discretization is not sufficiently refined to evaluate in an
accurate manner the stress gradients within the fracture process zone as well as along the uncracked
ligament ahead of the (moving) crack tip. On the contrary, the other three meshes provide almost
coincident numerical results in terms of global structural response. In particular, the percentage error
on the peak load with respect to the finest mesh case (i.e., Mesh 4), computed as:

eP,i =

∣∣∣Pmax
i − Pmax

4

∣∣∣
Pmax

4
× 100 i = 2, 3 (7)

for each investigated mesh (excluding Mesh 1), presents a maximum value of about 0.71%, which
corresponds to Mesh 2. This further outcome confirms the desired mesh-independency property of the
adopted diffuse cohesive model.

Finally, an investigation on the mesh sensitivity of the numerically predicted main crack path
is illustrated in Figure 6b. As excepted, owing to the randomness of the generated meshes, a loss of
convergence is experienced in terms of predicted crack path. In particular, the casual distribution
of the cohesive interface elements at the lower side of the beam inevitably leads to different crack
onset locations and, as a consequence, to different crack propagation path segments for the different
tessellations, being forced to lie along different mesh boundaries.

Nevertheless, despite the above-mentioned local deviations, the predicted main crack at the end
of simulation has been found to be almost insensitive to the mesh in a global sense, being always
directed along nearly vertical directions and comprised within the constant bending moment region,
with an average trajectory located in the proximity of the mid-span section (coinciding with the
theoretically predicted crack path due to the initial symmetry conditions existing in the test setup).
Such an alleviated mesh dependency behavior is essentially found by virtue of the adoption of a
Delaunay triangulation, which preserves the isotropic nature of fracture processes in concrete-like
materials, without introducing any preferential crack path directions with no physical meaning.
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Figure 6. Global structural response of the control UHPFRC beam for different mesh sizes: (a) load
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The above results can be regarded as a further validation step of the diffuse interface model
proposed in [51] and, more generally, confirm the reliability of the adopted numerical framework to
predict the overall structural response of UHPFRC structures.

5. Numerical Application to Steel Bar-Reinforced Nano-Enhanced UHPFRC

In this section, the load-carrying capacity of steel bar-reinforced UHPFRC elements enhanced
with graphite nanoplatelets (GNPs) has been investigated by means of the numerical model described
in Section 3. Such a model is given by the combination of a diffuse interface model (DIM) and an
embedded truss model (ETM), able to capture the diffuse damage processes which are typical of
UHPFRC structures, and to simulate the steel/concrete interactions, respectively.

The subsequent numerical analyses have been performed to evaluate the structural response of
the same steel bar-reinforced UHPFRC beam configuration with and without GNP reinforcements.
The related results in terms of global load-deflection curves, horizontal stress maps, and tensile stress
trends along the lower reinforcement bars are reported in Section 5.2.

5.1. Geometric and Material Properties

The numerical application of the proposed integrated framework for steel bar-reinforced UHPFRC
consists of the simulation of four-point bending tests performed on different medium-sized steel
bar-reinforced beams made with the UHPFRC mixtures already adopted in Section 4, characterized
by the same steel fiber content and geometry, and three different pieces of GNP content (0%, 0.05%,
and 0.1%). The related geometric configuration, loading conditions, and constraints, shown in Figure 7,
are taken from the experimental tests performed on normal RC beams found in [63], and already
considered by some of the authors as reference data for the numerical simulation of concrete cover
separation in RC structures [52]. Figure 7 also shows all the dimensions of both longitudinal bars and
stirrups. It is worth noting that no stirrups are present in the beam region comprised between the two
applied concentrated loads, being characterized by the absence of average shear stresses.
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bending test (all dimensions are expressed in mm).

The main mechanical parameters of both UHPFRC and steel materials are listed in Table 3.
In particular, the UHPFRC elastic properties are the same as those considered in Section 4.1, whereas
the UHPFRC compressive strength, required for the computation of the maximum concrete/steel shear
stress according to the bond-slip model described in Section 3, is directly taken from [33].

Table 3. Main mechanical properties of UHPFRC and steel materials.

Young’s Modulus
[GPa]

Poisson’s Ratio
[-]

Yield Strength
[MPa]

Tangent Modulus
[GPa]

Compressive Strength
[MPa]

Steel 200 0.3 460 2.0 -
UHPRFC 40 0.2 - - 174

UHPRFC GNP 0.05% 40 0.2 - - 176
UHPRFC GNP 0.1% 40 0.2 - - 178

The computational mesh, consisting of 17,346 triangular elements with a maximum element size of
10 mm, has been generated by using a Delaunay triangulation algorithm to avoid any preferential crack
path direction. As shown in Figure 7, to preserve a significant computational efficiency, the extension of
the cohesive insertion zone has been limited to the region comprised between the supports, being the
only one susceptible to being cracked due to the presence of completely free boundary conditions
outside of this region. Moreover, the embedded cohesive elements lying along the steel reinforcements
are excluded from the numerical model. This latter expedient has been adopted to prevent the onset of
fractures along preferential paths identified by the horizontal and vertical straight lines coinciding
with the longitudinal bars and stirrups, respectively. The inelastic cohesive parameters required by the
adopted interface constitutive law are the same as those used in the previous numerical application
and listed in Table 2, being already calibrated in Section 4.1 for the considered UHPFRC mixtures.

Finally, all the steel reinforcements (i.e., both longitudinal bars and stirrups) are modeled as
one-dimensional two-node elastic-plastic truss elements connected to concrete elements via special
zero-thickness four-node bond elements, according to the embedded truss model sketched in Figure 3b.
The following numerical simulations have been performed under plane stress and quasi-static
assumptions, adopting a displacement-control solution scheme with constant increments of the
mid-span deflection equal to 5 × 10−2 mm.

5.2. Numerical Results and Discussion

This section is devoted to the presentation and subsequent discussion of the numerically predicted
structural response of the considered steel bar-reinforced GNP-enhanced UHPFRC beams. Such a
response in terms of total load versus mid-span deflection curves is reported in Figure 8 for all the
three concrete mixtures. The total load is measured as the sum of applied concentrated forces on the
upper side of the beams.

For comparison purposes, this figure also shows the experimental results reported in [63],
represented as scattered points, together with the related numerical results obtained for a normal
concrete (i.e., without steel fibers), represented by a dotted line. The latter results have been derived by
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performing an additional simulation introduced only for verification purposes. To this end, the trilinear
softening model discussed in Section 2.2 has been adapted to normal concrete, neglecting the third
descending branch of Figure 2 and assuming the following concrete properties, coherent with the
well-known softening model proposed by Petersson [64]: Young’s modulus E = 31 GPa, Poisson’s
ratio ν = 0.2, tensile strength ft = 2.1 MPa, initial fracture energy Gf = 75 N/m, total fracture energy
GF = 125 N/m, and critical crack tip opening displacement CTODc = 0.048 mm. The excellent agreement
between the experimental and numerical results further confirms the reliability of the proposed
numerical framework for the failure prediction of both RC and FRC structural elements.
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beams enhanced with different content of GNPs (0%, 0.05%, and 0.1%).

As expected, the loading curves referring to steel bar-reinforced UHPFRC beams (with and
without GNP enhancement) show greater load-carrying capacities with respect to the conventional RC
beam, with increasing strength values for increasing contents of embedded graphite nanoplatelets
(from 0% to 0.1%).

In particular, the typical trilinear behavior of steel bar-reinforced structural elements has been
observed for all the analyzed cases. The first slope change coincides with the occurrence of early
nonlinear phenomena, consisting of coalescence of concrete microcracks and subsequent macrocrack
nucleation. After this, the second linear branch with reduced stiffness initiates after the crack saturation
state is reached, being associated with multiple macrocrack propagation toward the upper side of the
RC beam. Finally, the second slope change corresponds to the initiation of the yielding phase for lower
steel rebars, after which a slight hardening is kept without the occurrence of any collapse until the end
of simulation, stopped as the deflection reaches a prescribed value of 15 mm.

The numerical results clearly show that the combination of micro- and nano-reinforcements (in the
form of steel fibers and graphite platelets, respectively) significantly improves the flexural behavior of
UHPFRC beams, in terms of ultimate load and energy absorption. In particular, increments of 11% and
20% in the absorbed energy (computed as the area under each load-displacement curve reported in
Figure 8), as well as increments of 4.8% and 11% in the first yielding load level, with respect to the
UHPFRC case, are reached with contents of nano-reinforcement equal to 0.05% and 0.1%, respectively.
Such an increased strength at both peak and post-peak stages is essentially due to the concurrence of
two phenomena. The first one consists of a stronger crack bridging effect of steel microfibers promoted
by the high reactivity of embedded interacting nanomaterials, which allows macrocrack propagation to
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be retarded, thus leading ultimately to a stronger bond between steel reinforcing bars and surrounding
concrete (see, for instance, [65] and references cited therein). The second one is the additional crack
bridging effect at the nanoscopic scale within the cement paste, responsible for an increase in the tensile
strength of UHPFRC material.

Both phenomena, considered individually and/or in synergy, contribute to amplifying the
significance of the well-known tension stiffening effect characterizing the interaction between steel
reinforcing bars and surrounding concrete layers.

The role of GNPs on the tension stiffening effect can be better highlighted by analyzing the
numerically predicted cracking patterns clearly visible in the deformed configurations reported in
Figure 9, as obtained for the three investigated concrete mixtures at the same load level of 65 kN
(corresponding to the first yielding of tensile reinforcing bars of the UHPFRC beam without GNPs).
It is worth noting that, owing to the higher fracture toughening effect provided by the embedded
nano-reinforcement, a significant reduction in the crack pattern development for the concrete mixture
with the highest GNP volume fraction is experienced, compared to the other cases.
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Figure 9. Deformed configurations (magnified by a multiplicative factor equal to 15) and stress maps
for the three simulated steel bar-reinforced GNP-enhanced UHFRC beams at a load level of 65 kN.

The analysis of crack patterns has been more deeply investigated by computing the crack spacing,
average crack width, and beam deflection for different contents of GNP reinforcement, as reported
in Table 4. It can be noted that the embedding of GNPs in the concrete mixture provides a sensible
decrease in all the considered quantities.

Table 4. Average crack width, crack spacing, and beam deflection of the simulated beams at a load
level of 65 kN.

Average Crack Width [mm] Crack Spacing [mm] Beam Deflection [mm]

UHPFRC 0.093 91 3.80
UHPFRC GNP 0.05% 0.080 84 3.30
UHPFRC GNP 0.1% 0.064 84 2.75



Nanomaterials 2020, 10, 1792 17 of 23

Specifically, by restricting the cracking analysis within the constant bending moment region,
the average crack width values of 0.079 mm and 0.063 mm can be measured for the cases with
GNP addition of 0.05% and 0.1%, respectively, corresponding to crack width reductions of 14%
and 31%, respectively, compared to the case of UHPFRC without nano-enhancement (exhibiting an
average crack width of 0.093 mm). In addition, the crack spacing for the three different mixtures
has been measured at the same fixed load level of 65 kN, obtaining a mean value of 91 mm for
the case without nano-enhancement and of 84 mm for both the nano-enhanced mixtures. A crack
spacing reduction of 7.32% has been achieved with the introduction of nano-enhancement, while a
non-relevant crack spacing reduction is observed for a GNP volume fraction equal to 0.1%, due to
the fact that, for the analyzed configuration, such content of nano-reinforcement is associated with a
diffuse micro-cracking within the concrete teeth between existing macro-cracks, without leading to
the onset of new macro-cracks. Moreover, compared to the case without nano-enhancement, a beam
deflection reduction equal to 13.2% and 27.7% has been achieved for the cases with GNP addition of
0.05% and 0.1%, respectively, highlighting an improvement of the overall mechanical performances in
terms of increasing bending stiffness as the nano-reinforcement content increases.

With the aim to investigate the cracking phenomenon under service conditions, in Figure 10,
the deformed beam configurations for the three investigated concrete mixtures have been reported at a
load level of 45 kN, corresponding to the early stage of crack propagation at the bottom of the beams.
Moreover, the average crack width, crack spacing and beam deflection at the same load level have
been reported in Table 5.
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Table 5. Average crack width, crack spacing, and deflection of the simulated beams at a load level of
45 kN.

Average Crack Width [mm] Crack Spacing [mm] Beam Deflection [mm]

UHPFRC 0.027 100 1.20
UHPFRC GNP 0.05% 0.019 100 1.00
UHPFRC GNP 0.1% 0.012 100 0.85

In Figure 10, it can be seen that the cracking patterns are not completely developed, compared
to those obtained at a load level of 65 kN, the further cracks being visible in Figure 9 in an incipient
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propagation stage at service conditions. More specifically, the crack spacing at service conditions,
as reported in Table 5, is not influenced by the presence of nano-reinforcements, resulting in being
equal to 100 mm for all the investigated mixtures. Contrary to what happens for the crack spacing,
the average crack width is strongly influenced by the nano-reinforcement, which results in being
equal to 0.019 mm and 0.012 mm for the cases with GNP addition of 0.05% and 0.1%, respectively,
corresponding to a crack width reduction, compared to the case without nano-reinforcement, equal to
30.1% and 55.7%, respectively. The obtained crack width reduction at service condition reached by the
addition of GNP results in being almost doubled compared to the one reached at a load level equal to
65 kN, highlighting a better fracture toughening effect provided by nano-reinforcements at service
conditions. In addition, in Table 5, the beam deflection at service conditions has been also reported
for the three investigated mixtures, highlighting a beam deflection reduction equal to 16.7% and
29.2% for the cases with GNP addition of 0.05% and 0.1%, respectively, compared to the case without
nano-enhancement. As a consequence, not relevant changes in the beam deflection reduction have
been observed compared to those evaluated at a load level equal to 65 kN, and, generally speaking,
also at service conditions, the bending stiffness increases as the nano-reinforcement content increases.

The numerically predicted crack width and crack spacing reductions for GNP-enhanced concrete
highlights the reliability of the proposed numerical framework for UHPFRCs in capturing the additional
crack bridging effect provided by nanoparticles inserted into the concrete mixture, and, ultimately,
its beneficial influence on the ductility properties of structural elements, being intimately related to
their macro-cracking behavior.

Furthermore, in Figure 11, the axial stress distribution along the tensile reinforcement bars of
the three simulated UHPFRC beams has been reported for the same load level (65 kN). The reported
trends, characterized by lower values of the average rebar stress (and strain) for higher values of
the GNP content, confirm the increase in the tension stiffening effect for increasing fractions of
nano-reinforcement (at least within the considered range of variation). In particular, the reductions in
the (global) maximum stress associated with 0.05% and 0.1% of GNPs with respect to the UHPFRC
without nano-enhancement are of about 11% and 23%, respectively.Nanomaterials 2020, 10, x FOR PEER REVIEW 19 of 24 
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Finally, the reported oscillating behavior of such stresses, with local maxima in proximity of fully
developed cracks and local minima between two contiguous cracks, demonstrates the capability of the
adopted embedded truss model as well as of the proposed steel/UHPFRC bond-slip model to correctly
capture the stress transfer between steel and concrete phases, which is of fundamental importance for
the accurate numerical simulation of tension stiffening phenomena.

All of the obtained numerical results confirm the reliability of the proposed integrated numerical
framework for the failure analysis of steel bar-reinforced nano-enhanced UHPFRC structures, but a
complete validation of the present model is out of the scope of the present work, due to the limited
amount of experimental data available in the literature, to the best knowledge of the authors. A more
rigorous calibration of this model could be the object of future investigations, which could also be
addressed for the development of a more general validation procedure, eventually involving additional
experimental research activity on nano-enhanced UHPFRC structural elements.

6. Conclusions

In this work, an integrated numerical model relying on a diffuse cohesive interface approach is
developed for tracing the structural response of steel bar-reinforced UHPFRC structures enhanced
with nanomaterials. The main advantages of this model can be synthetized in the following points:

• possibility to accurately predict multiple crack initiation and propagation phenomena within a
rather standard and readily implementable displacement-type finite element setting;

• capability to preserve the discrete nature of fracture processes, and, therefore, to capture the real
complex crack patterns, in terms of both crack spacing and crack widths, whose knowledge is
of fundamental importance for the safety and serviceability assessment of UHPFRC structures,
as well as for their fiber content optimization within the design process.

In the first part of this work, a diffuse interface model for the failure analysis of UHPFRC has
been applied to investigate the role of the content of embedded graphite nanoplatelets (GNPs) on its
load-carrying capacity at both peak and post-peak stages, with reference to simply supported beams
subjected to a four-point bending test. All the numerical outcomes have been validated by performing
suitable comparisons with the available experimental results. A good accordance between numerical
and experimental loading curves has been found, with a mean absolute percentage error on the peak
load of only about 4%, by virtue of a proper calibration of the inelastic parameters of the embedded
cohesive interfaces. Moreover, additional computations have been performed to investigate the mesh
dependency effects on the global structural response and crack pattern. The related results have shown
that, despite the (local) mesh-dependency of the numerically predicted crack paths, which is related
to the unavoidable randomness in the mesh generation procedures, the (global) load–displacement
curves are substantially independent of the adopted discretization.

In the second part, the proposed integrated numerical model for UHPFRC, which incorporates
the adopted diffuse interface model, has been applied to investigate the effect of nano-enhancement
in steel bar-reinforced UHPFRC structures. To this end, a simulated four-point bending test on
three medium-sized beams with different volume fractions of GNPs is considered. The numerical
outcomes have demonstrated the reliability and the accuracy of the proposed model in predicting
both the strengthening and toughening effects of embedded nanomaterials, in terms of global
load–deflection responses and associated crack patterns. In particular, increases in the first yielding
load level and absorbed energy up to 11% and 20%, respectively, are numerically predicted for
hybrid micro/nano-reinforcements with the highest considered GNP content (i.e., 0.1% by volume).
Furthermore, the role of nanomaterials on the tension stiffening effect has been demonstrated,
by analyzing both final crack patterns and associated stress distribution maps. From the numerical
analyses, the addition of 0.05% and 0.1% of GNPs has led to crack width reductions of 14% and 31%,
respectively, as well as to maximum axial stress reductions along steel rebars of about 11% and 23%,
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respectively, thus confirming the increased ductility of the enhanced UHPFRC, at least for small volume
contents of nano-reinforcement.

As a possible future perspective of this research, the proposed numerical framework for the
failure analysis of nano-enhanced UHPFRC structures could be incorporated within a more general
and cost-effective computational strategy involving (eventually adaptive) multiscale methodologies
similar to those already proposed by some of the authors for lightweight aggregate concretes [66],
fiber- and particle-reinforced composite materials [67–69], and regular masonry structures [70]. Such an
envisaged computational strategy could be used to find the optimal combination of micro- and
nano-reinforcement to achieve a precise crack control, with the final aim of developing new highly
durable UHPFRC mixtures with tailored properties, such as high fracture toughness and reduced
permeability to water and aggressive chemicals.
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