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TIMAIRIS: Autonomous Blank Feeding
for Packaging Machines

Eurico Pedrosa, Gi Hyun Lim, Filipe Amaral, Artur Pereira,
Bernardo Cunha, José Luís Azevedo, Paulo Dias, Ricardo Dias,
Luís Paulo Reis, Nima Shafii, Andrea Tudico, Claudio Mazzotti,
Marco Carricato, Simone Badini, Dario Rea and Nuno Lau

Abstract Current packaging machine vendors do not provide any automated mech-
anism for blank feeding and the state of the art is to have a human operator dedicated
to feed the blank piles to the packaging machine. This is a tedious, repetitive and

E. Pedrosa · F. Amaral · A. Pereira · B. Cunha · J. L. Azevedo · P. Dias · R. Dias
Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Aveiro,
Portugal
e-mail: efp@ua.pt

F. Amaral
e-mail: f.amaral@ua.pt

A. Pereira
e-mail: artur@ua.pt

B. Cunha
e-mail: mbc@det.ua.pt

J. L. Azevedo
e-mail: jla@ua.pt

P. Dias
e-mail: paulo.dias@ua.pt

R. Dias
e-mail: ricdays@gmail.com

G. H. Lim
School of Computer Science, University of Manchester, Manchester, UK
e-mail: hhmetal@gmail.com

L. P. Reis
University of Porto, Porto, Portugal
e-mail: lpreis@fe.up.pt

N. Shafii
NVIDIA, Munich, Germany
e-mail: nima.shafii@gmail.com

A. Tudico
University of Bologna, Bologna, Italy
e-mail: tudico.andrea@gmail.com



tiring task. This also results in problems with unintentional errors, such as using
the wrong pile of blanks. An alternative solution is the use of a fixed robotic arm
surrounded by a protective cage. However, this solution is restricted to a single pack-
aging machine, a unique type of blank shapes and does not cooperate with humans.
TIMAIRIS is a joint effort between IMAS.p.A., Italy, (IMA) and theUniversidade de
Aveiro, Portugal, (UAVR), promoted by the European Robotics Challenges (EuRoC)
project. Together, we propose a system based on a mobile manipulator for flexible,
autonomous and collaborative blank feeding of packaging machines on industrial
shop floor. The system provides a software architecture that allows a mobile robot to
take high level decisions on how the task should be executed, which can depend on
variables such as the number of packagingmachines to feed and the rate of blank con-
sumption at each one. Through a computer vision system, blanks of different shapes
and sizes are correctly identified for adequate manipulation. The manipulation of the
piles of blanks is performed using a single arm using compliant modes of operation
to increase manipulation safety and robustness. Additionally, it has a safe naviga-
tion system that allows the robot to be integrated in an industrial environment where
humans are present. Finally, it provides an enhanced multimodal interaction between
human and robot that can be adapted to the environment and operator characteristics
to make communication intuitive, redundant and safe.

Keywords Mobile manipulation · Planning · Industrial perception · Logistics

7.1 Introduction

The task of blank feeding a packagingmachine, a known industrial logistics problem,
is nowadays mostly performed by a human operator (see Fig. 7.1). It is a tedious,
repetitive and tiring task for a human where occasional errors are unavoidable. On
an effort to reallocate the human operator to more interesting tasks and decrease
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Fig. 7.1 State-of-the-art in the packaging industry. Blanks are feed manually (left image) or by a
robotic arm in a cage (right image)

production downtimes due to mishandling of blanks, a fixed robotic arm surrounded
by a protective cage was implemented by the industry as an alternative solution for
blank feeding, as shown in Fig. 7.1. However, this solution is bounded to a single
packaging machine, restricted to a unique type of blank shape and it is incapable to
cooperate with humans (i.e. the robot and humans do not share the same physical
space). This lack of flexibility is one of the obstacles that the INDUSTRY4.0 initiative
[1, 2] wants to remove from the industrial shop floor.

Research and implementation of flexible and autonomous solutions for logistic
problems, such as blank feeding, can be accelerated by strengthening collaboration
between the industry and the academia. This was the objective of the European
Robotics Challenges (EuRoC) european project. By proposing a research project
based on a robotic competition, it drives innovation in robotics applied to industrial
manufacturing and logistics problems [3]. In summary, an industrial partner provides
a use case and the academic partner offers a solution. This requires the exchange of
knowledge between the partners to achieve a common goal, an innovative and pro-
ductive solution based on flexible autonomous robots. The competition component
of the project also has an important role; not only it promotes healthy competition
between different partnerships but also offers additional funding for themost promis-
ing solutions. It was in the context of EuRoC that TIMARIS team was created. This
partnership is a joint effort of the Intelligent Robotics and Systems (IRIS) group from
Aveiro University (UAVR) in Portugal and IMA S.p.A. (IMA) from Italy. Together
we proposed to develop a system for flexible, autonomous and collaborative blank
feeding of packaging machines on industrial shop floor.

Our approach meets the requirements of a modern industry by rationalising the
exploitationof rawmaterials, energy and repetitive human labour. The employment of
robotised systems also increases the safety of workers’ activity, since risky tasks can
now be accomplished by automatisedmanipulators. This proposal intends to develop
and transfer technologies from academia to industry to enable industrial robots with
an architecture that allows them to: take high level decisions on how should the task
should be executed (planning, replanning and optimization); integrate the robot in an
industrial environment where humans are also present and moving (safe navigation;
collaboration) [4]; be able to identify, locate and manipulate several types of blanks
in an unstructured environment (computer vision, manipulation); benefit from the



use of an enhanced multimodal human-robot interaction that can be adapted to the
environment and operator characteristics, making it more intuitive, redundant and
safe (communication).

7.2 Use Case Description and Motivation

Even in modern automatic machines, the final-product boxes are provided by the
manual feeding of flat or pre-glued blanks. Loading blanks should be performed by
robotised systems. This implies several advantages: it frees up the operator from the
fixed rhythm, ensures an overall improved machine energy efficiency and leads to a
more sustainable packaging process. Although the use of robots for manufacturing
and logistics is common in the industry for several decades, the environment where
these robots operate is, in general, heavily restricted, as is the case for most appli-
cations of robotic arms in industry, or the robots must follow a predefined set of
paths that severely restrict their use in environments where humans are also moving.
Interaction between the robot and humans is also quite limited and mostly performed
by reprogramming the robot or by simple button-based input tools and LCD screens.

The TIMAIRIS blank feeding system intends to develop and transfer technologies
from academia to industry to enable industrial robots with an architecture that: allows
them to take high level decisions on how should the task be executed (planning,
replanning and optimization); integrates the robot in an industrial environment where
humans are also present andmoving (safe navigation); is able to identify, position and
manipulate several types of blanks in an unstructured environment (computer vision,
manipulation); has an enhanced multimodal interaction between human and robot
that can be adapted to the environment and operator characteristics to make it more
intuitive, redundant and safe (communication). The end-goal of our team, within
the EuRoC project (in which we participated in Challenge 2—Shop floor logistics
and manipulation), was to develop a pilot of the “Autonomous Blank Feeding for
Packaging Machines” task on an industrial shop-floor. But to reach the final goal,
there was a set of preceding use-cases that had to be solved and evaluated as part
of the EuRoC competition workflow. This workflow was an interesting innovation
introduced by the EuRoC project. The use-cases that were developed before the
Field Tests were the Benchmarking, Freestyle and Showcase introduced in the next
sections.

The robotic platform used to address the use-cases, including the Field Tests
“Autonomous Blank Feeding for PackagingMachines”, was provided by the EuRoC
Challenge host (German Aerospace Center: DLR—Deutsches Zentrum für Luft). It
was a KUKA omnirob with a mounted Light-Weight-Robot (LBR) equipped with
a two jaw-gripper and a stereo camera, and a pan-and-tilt unit also equipped with a
stereo camera. Access to the cameras, the LBR and mobile platform was provided
by a Robotic Operating System [5] (ROS) wrapper, hence all developments through
the project were made using the ROS environment. This platform was common to
all teams participating in EuRoC Challenge 2.



7.2.1 Benchmarking

In the Benchmarking use-case, all Challenge 2 participating teams had to solve the
same two tasks defined by the challenge host. The first task was a logistics problem
that required several small load carriers (SLC), which were distributed in the room,
to be placed within a fixed target area. The objective was to recognize the SLCs using
computer vision and use arm manipulation to pick them and place them in the target
area as fast as possible without dropping the production materials inside the SLCs.
The second task was a product pre-assembly problem that required the use of a single
anthropomorphic robotic arm to assemble several bolts with the proper washers and
nuts with the help of a mounting fixture. The objective was to put the washers in the
bolts and screw their nuts as fast as possible. The task of pre-assembling a single
bolt requires several steps: identify the mounting fixture position: recognize the bolt,
grab it and place it in the mounting fixture; identify a washer, grab it and place it in
the nut; and finally find a nut, grab it and screw it in the bolt until the bolt’s top is
not occluded by the nut.

Without neglecting the competition part of this use-case, the Benchmarking was
used by TIMAIRIS to learn on how to use the provided robotic platform and develop
a software architecture to be used through the remaining use-cases, including the
Field Tests. The end result is a skill-based anytime-agent architecture for logistics
and manipulation tasks [6, 7] that was successfully used in all subsequent use-cases.

7.2.2 Freestyle

The Freestyle use-case was intended to develop and demonstrate technologies for
collaborative problem solving between humans and robots using flexible multimodal
communication. Based on the previous objectives, EuRoC teams were free to define
the specification of the Freestyle task based on their expertise and on having in mind
the final objective of their use case. The specification of the Freestyle task was per-
formed in the submitted proposal to be admitted to EuRoC Stage II (benchmarking,
freestyle and showcase). The TIMAIRIS task consisted in assembling a puzzle using
a set of pentominoes pieces (formed by joining 5 cubes, face by face, on a single
level). Assembling is assumed to be done cooperatively by a human and a robot. The
highlights of TIMAIRIS Freestyle use-case are summarized in the following list:

• Perception: fusion of RGB/Depth information is used to detect the pose of colored
and uncolored pentominoes, the pose of the fixture where the puzzle is assembled
and also the puzzle state.

• Navigation/manipulation: planning and execution for safety/compliance in a
human populated set. The robot has to pick pentominoes from the picking sta-
tion, transport them, and deliver them in several different ways to the human,
including placing it in the human hand, or assemble the pentaminoe in its final



position in the puzzle. Movements must be coordinated and safe, as the human
also picks and transports pentominoes and assembles the puzzle.

• Planning and replanning: the proposed game can be very challenging for a human
player. The high computational power of the robot allows the implementation of
effective planning algorithms for solving the puzzle that can be interactively used
to assist the human in finding the puzzle solution.

• Multimodal interaction: having several communication modalities that can be
combined together allows for robot adaptation to different users and environments.
During the free-style the followingmodalitieswere used: gestures; voice; graphical
user interface (images and keyboard/mouse).

The Freestyle use-case was deliberately decided to be significantly different from
the Showcase and Field Tests use-cases, but it demonstrates common functionali-
ties with the showcase and field tests such as perception, navigation/manipulation,
planning, multimodal interaction and cooperation.

7.2.3 Showcase

The Showcase use-case was composed of a simplified version of the complete
autonomous blank feeding problem, that included a prototype of a blank magazine,
the mechanism that feeds the blanks into the packaging machine, and two pallets
filled in with actual blank piles used in production. The task consisted in recognizing
the blank piles on two different pallets, devise a plan for picking them, and transport
and place them in the blank magazine in a smooth way so it does not get jammed.
The workspace is assumed to be shared by humans and the robot. The main issues
addressed by this use-case are the following:

• Perception: Fusion of RGB/Depth information is used to detect the pose of the
pallets, blank piles and also the pose of the blank magazine; multiple laser range-
finders aremerged to detect and track humans in theworkspace. Compliance aplied
to the manipulator movements is used to increase safety and to detect abnormal
situations that result in non valid arm positions and also allowing the trigger of
recovery procedures.

• Navigation/manipulation: Using a single arm, the robot has to pick blank piles
from two pallets that require navigation planning and arm motion planning for
picking andplacing the blankpiles. It should be noted that blankpiles are composed
of several distinct objects and have no obvious grasping position when laying on
top of the pallets. For safety concern, the presence of a human in the vicinities of
the robot triggers a generalized motion stall.

• Planning: Due to the blank piles arrangement on the pallets, there are piles that
need to be picked first or, otherwise, manipulation will not be possible for all
cases. Hence, that requires the generation of a plan establishing the picking order.
Task execution is monitored while being executed and if deviations are detected



recovery plans are triggered. Detection of situations like “need for blanks” from
the magazine is also included.

• Multimodal interaction: Having several communication modalities that can be
combined together allows for robot adaptation to different users and environments.
During the Showcase the followingmodalities were used: gestures; text-to-speech;
visual feedback on a tablet; graphical user interface (images and keyboard/mouse).
Humans near the robot are tracked using laser scanners and, when within the
interaction distance, the pan-tilt camera keeps its attention on the closest human
to recognize possible gesture commands.

The showcase scenario has been considered to solve pending problems for
autonomous packaging. In automatic packaging, blank piles have to be manually
fed by human operators, who may occasionally refrain from collecting blank piles
from more distant pallets.

7.2.4 Field Tests

Since IMA produces and delivers packaging machines for many kinds of products
such as pharmaceuticals, cosmetics, tea, coffee, dairy and food, and those products
continue to rapidly evolve, human operators and autonomous robots are required
to adapt to changing environments in a short period of time. This environment is
less structured and demands higher flexibility than large-scale or mass-production
industries. The Field Tests use-case aimed to demonstrate a solution for the blank
feeding problem in the shop floor environment and using actual functional packag-
ing machines, including sharing the space with human operators. There is a high
motivation for automating labour intensive problems such as loading blanks. This is
an essential operation, but one that involves little added value. The main ideas for
enriching the final task compared with the Showcase (that was a simplified version
from this final use-case) are mainly the following:

• Blank identification and pose estimation: capability for identifying several types
of blanks as well as their orientation within the pallet, which may change from
pile to pile;

• Multiple machine feeding: capability to feed more than one machine with the
appropriate blank type;

• Planning: prediction and intelligent scheduling of blank feeding operations;
• Pile blank grasping: gripperwith capabilities for grasping distinct types of blanks,
the robotic solution also increases the human picking capability by allowing piles
as high as around 15cmandweighting around 6 kg to be pick in a singlemovement;

• Safety management: navigation andmanipulation in an environment that is shared
with human operators;

• Advanced communication/interaction: capability to interact with human oper-
ators through a multimodal interface.



The Field Tests setup required two packaging machines, and a set of pallets with at
least two types of blanks (available at the end user). The position of the pallets and
machines was similar to those found in real deployed shop floors. The orientation
and position of the blanks on the starting pallet may vary according to the printing
layout. Equipment also includes the KUKA platform and a new blank gripper, dif-
ferent from the one used in the Showcase. During these operations, the interaction
between human, machine and robot clearly has to take place in conditions of safety,
considering that the operator’s job is to oversee the functioning of the machine and
to intervene if anything goes wrong. The multimodal and bi-directional interaction
between humans and the robot allowed an effective human machine interface (HMI)
for robot-operator communication. Blanks are supplied on pallets, using flat blanks
that are already creased and die cut. The pallets can be raised from the floor level to
allow the manipulator mounted on the KUKA omniRob to grasp any block of blanks
within the pile.

7.3 Activities and Results

7.3.1 Benchmarking

The goal of our team was to solve the Benchmarking use-case, proposed by EuRoC,
with high precision, accuracy, robustness and as fast as possible. Time is a key factor
while solving the tasks at hand. Not only it is an important evaluation metric, but for
industrial application it is a matter of productivity.

7.3.1.1 Skill-Base Anytime Agent Architecture

The developed software architecture is divided in several functional components, as
shown in Fig. 7.2. ThePerceptionmodules are responsible for collecting sensory data
and process them to extract the relevant information used in high-level modules such
as the Solver. A manipulation/navigation Skill is the capability of doing a particular
action/task, such as, picking and placing an object or moving the manipulator’s end-
effector to a desired pose. Perception modules and Skills obtain and send sensory-
motor data via the Sensor and Effector interfaces, respectively. It is the responsibility
of the Solver to take decisions on how to solve the current task based on the available
sensory information and available Skills. The Action Planner provides a sequence
of skills in order to manipulate the current object of interest. Finally, the Order
Graph represents the objects in the environment and the order in which they are
manipulated. The order is restricted by a directed acyclic graph that represent a
dependency between objects in terms of order of manipulation. For example, leaf
object have to be handled before its parents, a situation that is ubiquitous in assembly
problems (e.g. bolt assembly, puzzle assembly).



Fig. 7.2 Overview of the
skill-based agent architecture
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7.3.1.2 Production Logistics Task

The objective of this task is to find and pick all SLCs present in the room and place
them in the designated area. Their approximate locations are known, i.e. on the table
or in the shelf, but their exact location is not known. To guarantee that all SLCs are
eventually detected the task starts with several search poses that cover the complete
known area. Once a SLC is sighted its pose should be detected. Once the pose is
obtained the agent decides how to pick and where to place it.

The SLC detection has two stages: first, color segmentation is used to candidate
image regions that may contain an SLC; second, a 3D point cloud for each region
is created and matched against a 3D template of the SLC to find its position and
orientation (i.e. its pose). An example of SLC detection is shown in Fig. 7.3. The
color segmentation, in HSV color space, takes advantage of the color homogeneity
of the SLC and good contrast with the environment to reduce the search space. The
output of this segmentation is a set of blobs that represent SLC candidates. However,
blobs must have a minimum area to be valid. Overlapping SLCs in the image is a
possibility, but that is not a concern as disambiguation is deferred to the next stage.

After color segmentation, the resulting blobs are used as masks to generate a
pointcloud for each candidate. Let P be a pointcloud and pi the set of points of P .
To reduce the computational complexity of processing the pointcloud with a high
number of points, P is decimated by applying a voxelization filter. Then, to remove
possible outliers a statistical outlier removal is also used [8]. To handle the existence
of overlapping SLCs, the point cloud is divided into clusters using an Euclidean
clustering method [9]. The cluster with the highest number of points is assigned to



Fig. 7.3 Example detection of two SLCs in a shelf. The left image is what is perceived by the
stereo camera (image plus depth). The right image contains a superimposed 3D model of the SLC
for each detection, including their center (red dot) and possible pick point (green dot)

P and the remaining points are discarded. Due to our agent architecture, discarded
SLCs will be detected in the next cycle. The position of the SLC is approximated
by the pointcloud centroid c given by c = 1

n

∑n
i=1 pi while its orientation is initially

provided by the Principal Components Analysis (PCA) of the projection of P in the
XOY plane [10]. The view of the SLC may provide a partial pointcloud that skews
the centroid from the real center and the orientation of the PCA has an ambiguity of
π radians. Therefore, the final pose of the SLC is calculated by matching P against a
3D template of the SLC that has its centroid in the origin and orientation aligned with
the X axis. Before matching, the pointcloud P is transformed to its origin (i.e. its
inverse pose applied to itself) so the transformation that results from the matching is
the correction of the initial pose calculation. Because the orientation given by PCA is
ambiguous, both orientations are used for matching. The pose with the lowest error
is then selected as the final pose. The algorithm used for matching is the extension
of the scan matching algorithm proposed by Pedrosa et al. [11] to three dimensions.

7.3.1.3 Product Assembly Task

The purpose of this task is to pre-assemble a set of bolts, nuts and washers using a
single anthropomorphic robotic arm mounted on a mobile robot. To help the assem-
bly, two fixtures are provided. The first hold the washers in (almost) upright position
to helpmanipulation. The second has a well with the shape of the bolt’s head, shallow
enough to hold the bolt in place while the nut is being put in place. The bolts and
nuts are in the vicinities of the fixtures (see Fig. 7.4). The approximate location of
the assembly pieces and fixtures are known, but not their exact position.

The TIMAIRIS solution to this problem first moves the robot from the center of
the room (mandatory robot location for starting this task) to a location near the table
where the bolts, nuts, washers and fixtures are. Then, using the camera attached to
the end-effector, the scene is observed from a point of view that provides a complete
view of all necessary elements for the taskwithout further need to change the position
of the mobile platform. By keeping the mobile platform fixed, the relative position of
objects to themanipulator ismaintained andwe can take advantage of this assumption
to reduce the number of observations with the camera.

To execute the task the agent has to detect the bolt, pick it and place it in the bolt
fixture, then detect the washer, pick it and place it in the bolt, and finally it has to



Fig. 7.4 Example of an initial setup for the product assembly task

detect a nut, pick it and screw it in the bolt. To calculate the positions of this objects
we use the pinhole model instead of the pointcloud provided by the stereo camera.
We can follow this strategy because the dimensions of all elements in the task are
known and the distance from the camera to theworking table is known in advance. By
avoiding the creation of depth information we reduce the computational complexity
and speedup the detection operation.

Fixture Detection

The detection of the fixtures, although executed only once, is an important step.
Because the mobile robot has to navigate to the working area at the beginning of the
task localization, some uncertainty in its absolute position is inevitable. However,
the assembly area is well defined, therefore we can use the location of the fixtures to
define the reference frame for the remaining elements. The detection of the fixtures
is performed using color segmentation on the HSV color space. An initial, rough
observation, is performed from the observation point of view. The resulting blobs
are then used to calculate the rotated rectangle that best encloses each individual
blob. The detection from the observation point does not provide enough accuracy
for using the fixtures, therefore, using the information from the rotated rectangles,
we approximate the camera to each fixture and repeat the detection individually for
each fixture. The localization of the fixture that contains the washers is used in the
detection of the washers and the center of the rotated rectangle that derives from the
bolt’s fixture coincides with the screwing well.



Bolt, Nut and Washers Detection

The detection algorithm for the bolts and nuts is the same. From the top view, close
to the image center, these elements share a similar geometry. The detection of a
bolt/nut starts by performing color segmentation (in HSV color space). Only the
resulting blob closer to the image center and in the vicinity of the bolts virtual
line is considered—both nuts and bolts are placed in the neighborhood of a fixed
distance from the fixtures, hence the virtual line. By performing shape analysis we
can obtain the vertices of its convex shape (i.e. ideally an hexagon) and try to find two
consecutive edges that match the hexagonal shape in length and angle (see Fig. 7.5).
These edges are then used to calculate the center of the bolt/nut and its orientation.
The orientation is only needed for the nuts so that they can be picked by their edges.

The described approach assumes that the object to be detected is near the image
center. This is achieved by generating a hint list for bolts and nuts, from the initial
observation view using color segmentation, that provides an approximation of their
position.When it is time to detect a bolt/nut, the hint is used to approximate the camera
to the object of interest. The washer detection uses a different strategy. Instead of
color segmentation an intensity filter is used to obtain the pixels with higher intensity
(see Fig. 7.6). The resulting blobs are validated by their size. The centers of theses
blobs are then used to calculate the position of the washers.

Fig. 7.5 Example of nut and bolt detection. The top image contains the detection of a nut and the
bottom image contains the detection of a bolt. The red dots identify the object center and the shape
vertices

Fig. 7.6 Washer detection in the fixture. The top image is what is perceived by the camera. The
bottom image is the result of the intensity filter



7.3.1.4 Motion and Manipulation

Extracting the information from the environment is only part of the task. Physical
objects have to be moved in order to fulfill the task. Time is a critical metric in indus-
trial applications. During development velocities were kept to a minimum to prevent
possible physical harm and velocities were only increased when the combination of
perception + manipulation proved to be reliable. In the Production Logistics task the
base of the mobile platform was used as a buffer to store SLCs so that the number of
motions of the mobile platform was optimized. In the Product Assembly, manipula-
tion with compliance was fundamental. Using compliance, it was possible to put the
bolt in the screwing fixture without visual confirmation by pushing and rotating the
bolt until it fell inside the fixture well. Additionally, by using compliance, we were
able to produce a soft vibration effect to the bolt while putting the washer in place
that helped with possible stuck situations.

7.3.1.5 Results

The developed software architecture provided a solid base from which different
industrial applications can be developed. Beside the two tasks of the Benchmarking
use-case, all the remaining tasks of the EuRoC project were solved with the proposed
architecture. It provided a high reusability of several components for different appli-
cations, most notably the motion and manipulation Skills. The perception modules
that we developed for the Benchmarking use-case proved to be accurate, precise and
had a high level of repeatability. The Production Logistics task was solved in 3 m:4
s while the Product Assembly task was solved in 6 m:15 s. For both tasks our Team,
TIMAIRIS, obtained the fastest results among all EuRoC Challenge 2 teams with an
advantage of 1 m:58 s in the Logistics task and 8 m:45 s in the Assembly task to the
closest competitor.

7.3.2 Freestyle

The Freestyle use-case was performed using an area of around 16m2 (4m × 4m).
Setup consisted of a picking station, where the pentominoes initially lie, an assem-
bling station, where the puzzle is assembled (the picking and assembling stations
were not simultaneously accessible by the robot from the same spot), a set of 12
pentominoes (one of each different kind), a human player and the KUKA mobile
platform (see Fig. 7.7). A depth sensor (e.g. Kinect) was used to recognize the ges-
ture commands and two external monitors were used to convey feedback to the
human/evaluators. The assembling station included a clearly defined area where the
fixture that defines the position of the puzzle was placed by someone from the EuRoC
C2 host. The picking station also had a clearly defined area in which the pentomi-
noes were placed randomly by someone from the EuRoC C2 host. In those cases



Fig. 7.7 Freestyle environment layout

in which not all pentominoes were used (challenges 2 and 3, see below), half of
the pentominoes were chosen by a host member and the other half by TIMAIRIS
members.

7.3.2.1 Pentominoes Puzzle Assembly

The task of assembling the puzzle is shared by a human operator and the robot. It
is the responsibility of the robot (or robotic agent) to recognize the available pieces,
devise a plan in order to assemble the puzzle and transmit that information to the
operator (if requested). During assembly, the robotmay have to replan, i.e. calculate a
new puzzle solution, due to actions performed by the operator. Any action performed
by the robot is always the result of a request by the operator.

Pentominoes Detection

The detection of the pentominoes is achieved by extracting shape information from
an image combined with depth information (represented as a point cloud). Shape
information is used because the pentominoes do not have unique colors and simpler
approaches such as color segmentation failed to uniquely identify each piece. Thefirst
step of pentominoes detection is to remove from the point cloud the points that belong
to the picking station tabletop. RANSAC is used to detect he tabletop points and all



Fig. 7.8 Example of pentominoes detection with template matching. Each image corresponds to a
detected pentomino that best matches the cluster of projected points

points below the tabletop (plus tolerance) and higher than tabletop plus pentomino
height (plus tolerance) are removed from the pointcloud. The remaining points are
assumed to be part of the top surface of the pentominoes. Those points are projected
to the XY plane and then an Euclidean Clustering is used to extract individual pieces
into clusters. Each of the clusters is then checked against all scaled templates of
pentomino shapes in every rotation. Two metrics are extracted: percentage (%) of
cluster area covered by the pentomino template, and % of template area covered by
the cluster. The templates used for the 2metrics are slightly different. The first metric
uses pentomino templates that are slightly larger than the ideal pentomino template,
so that small deviations of the cluster from the template do not decrease this metric,
The second metric uses templates that are slightly smaller than the ideal template,
to allow small imperfections on the border of the cluster. If the thresholds for both
metrics are surpassed, then the pentomino position and orientation are discovered.
This procedure allowed for a robust perception (e.g. Fig. 7.8).

Planning

Considering the available pentominoes, an assembly plan is computed considering
the constraint that each piece has to be placed on the table and then pushed into its
position. This constraint is what allowed us to also use the robotic arm (not just the
operator) to assemble the puzzle. After each piece is placed in the puzzle the robot
re-evaluates its current plan by comparing the current state of the puzzle with its
internal representation. If both states do not match, it replans the puzzle assembly.
The replanning situation happens when the operator does not follow the assembly
instructions provided by the robot. An example of a plan is depicted in Fig. 7.9.



Fig. 7.9 Example of a puzzle assembly execution plan. Given the available pentominoes the plan
provides the picking order and the push points and direction

7.3.2.2 Human-Robot Interaction Through Gestures

For the Freestyle use-case we introduced a Human-Robot Interaction (HRI) system
to allow a human to communicate with the robotic agent through gestures [12].
This HRI was used to solve the pentominoes assembly in collaboration with the
robot. A gesture language was used instead of speech to allow its usage in noisy
environments, such as industrial shop floors [13]. This language is composed by
eight one-hand gestures that form the base symbols, as shown in Fig. 7.10. Similar to
human language, a limited number of symbols can be used to compose an unlimited
number of sentences. For this use case we defined an interaction graph (see Fig. 7.11)
that generates 24 sentences (or commands) using the available gestures. A sentences
is composed by concatenating the gestures as sentences.

The gesture recognition is achieved with the combination of convolutional neural
networks (CNN) and a contour based hand feature. The HRI system needs to con-
struct a sentence from the continuous gesture recognition results. A confidence-based
method is applied to concatenate a sequence of symbols in a robust manner [14]. An
interval-counter for each gesture is defined on the basis of confidence law of iner-
tia, where a recognized symbol is assumed to persist unless there is a confidence to
believe otherwise. Additionally, applying a spelling correction from the word corpus
[15], the HRI system can infer the complete command set with increased robustness.
A complete description of the gestures representation and recognition can be found
in the work presented by Lim et al. [12].
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Fig. 7.10 The eight one-hand gestures and their corresponding IDs

Fig. 7.11 Interaction graph that defines the communication with the robotic agent. Each leaf in the
interaction graph correspond to an action performed by the robotic agent

7.3.2.3 Scenarios

The Freestyle use-case execution consisted of three different scenarios with increas-
ing complexity. Here is their description:

Scenario 1 The human operator stays seated at the assembly station; he asks the
robot to pick the next pentominoes for a possible solution; the robot gets it from
the picking station; then the robot shows the final position of the pentominoes; the
robot delivers the pentominoes; the humanplaces the pentaminoe in the designated
place; the process is repeated until the puzzle is finished; 12 pentominoes are
available at picking station; the puzzle can consist of 5 or 6 pentominoes;



Scenario 2 The difference here is that the human always asks the robot to pick a
specified pentaminoe; whenever needed, the human can ask the robot for a hint
regarding the next move, which he can choose to follow or not; giving a hint
implies that the robot must perceive the current status of the assembly process
and plan or replan a solution accordingly; the robot can provide the number of
solutions and the complete assembly plan; 8 pentominoes are available at picking
station; puzzle uses 5 of the 8 pentominoes;

Scenario 3 In the last scenario, symmetrical cooperation is introduced. The ini-
tiative regarding the next move is given alternately to the robot and the human.
Considering the characteristics of the task, both the robot and the human may ask
the partner to fetch a pentaminoe or to assemble a given pentominoes in the puzzle;
the robot can provide the number of solutions and the complete assembly plan; 8
pentominoes are available at the picking station; the puzzle to be assembled can
consist of 5 or 6 pentominoes.

Each scenario had several metrics that were used to evaluate our performance as
EuRoC challengers. Those metrics were focused on capabilities such as properly
identifying the pentominoes and recognizing the operator gestures.

7.3.2.4 Results

The final outcome of the Freestyle use-case was a scenario where a human operator
and a mobile robot successfully worked together to assemble a pentomino puzzle,
using only gestures to communicate. During evaluation, most target metrics were
reached (or surpassed) that provided us a second place in the evaluation (out of five).

The challenges provided by this use-case were centred around the development of
pentomino detection, puzzle assembly planning and HRI system. The integration of
these technologies into a working systemwas simplified by our software architecture
due to high reusability of already developed components for theBenchmark use-case.

The Freestyle use-case is significantly different from the showcase and field test
use-cases, but demonstrates common functionalities such as perception, manipula-
tion, planning, multimodal interaction and cooperation. In fact, detecting piles of
blanks, picking, transporting and placing them in the magazine (summary of our
showcase/field tests experiment) is a task that has the same structure as detecting,
picking, transporting and placing pentominoes.

7.3.3 Showcase

The Showcase use-case was performed in an environment that, although not located
in an industrial plant, includes the most important elements of the real environment
where the task was supposed be executed as a final product. It uses real pallets with
real piles of blanks and a prototype of the blank feeding mechanism of a packaging



machine that includes all relevant features for the task to be performed. In the indus-
trial setting, the distance between the blank feeding mechanism and the pallets may
be larger, there may be several packaging machines that need to be fed and several
types of blanks that must be manipulated.

Our team placed a strong effort into reusing the standard KUKA platform as far as
possible without the need of major alterations. However, it was clear from the begin-
ning that a specific gripper was going to be needed. The solution for the showcase
resulted from a trial and error approach emerging from a close cooperation between
both partners (IMA and UAVR) that, through a few production iterations, converged
to the final version of the gripper used for Showcase evaluation. The redesigned
gripper includes only passive parts attached to the original gripper mounted in the
KUKA platform.

7.3.3.1 Pallet and Blank Perception

Precise and robust pose estimation of blank is a necessary requirement to reliably
pick a blank pile from tightly-aligned piles on a pallet (Fig. 7.12). In general all blanks
in a pallet have the same shape and size. However, the printed patterns may vary.
Therefore, the detection and pose estimations of blanks do not rely on conventional
approaches such as color segmentation or local features matching such as SIFT [16].
To detect the blanks we propose a system composed of two modules: detection of a
pallet and blank piles and pose estimation of a blank pile.

Since the exact location and configuration of the pallets are not known in advance,
the mobile robot moves to a workbench in order to detect them. By using the depth
information from the stereo camera installed on the pan-and-tilt unit, the detection
of the pallets consists of three sequential steps: first, a voxel grid filter, based on
the pallet’s height is used to remove irrelevant points; second, the filtered points
are projected on an horizontal plane and then a set of clusters is extracted to define
candidate regions; andfinally, the obtained clusters are compared against 2D template
of a pallet projection to find its position and orientation. This same procedure is used
to estimate of the piles positions by filtering the point cloud on the average height of
the blank piles on the pallet.

Fig. 7.12 Two pallets and blank piles and their detection results. The red lines in center and right
images indicate the pose of pallets, while the green circles indicate the positions of blank piles



(a) original image (b) edge detection with canny

(c) outline detection with a pin filter (d) blank template matching

Fig. 7.13 A sequential result of the pose estimation of a blank pile

Based on the initial estimated position of pallets and blank piles, the camera
attached to the arm gripper is positioned to look vertically at the blank piles and
capture an image (see Fig. 7.13a). Then, an edge detector (i.e. canny) is used to
identify all edges in the images (see Fig. 7.13b). The resulting edges contain not
only the edges from the blank outlines but also lines from inside the blank due to
the printed patterns in the blanks. To reduce the edges that derive from the printing
patterns, a pin filter is applied (see Fig. 7.13c). The kernel of the filter is defined as

KDP = [xi ] =
{

p+h
n , if xi is in the center

h
n , otherwise

p > h × |[x]|,
n =

∑
xi ,

where p and h are the values of pin and head, respectively. The p is larger than the
sum of the heads and n is the normalization factor. In the implementation the pin filter
has a kernel of size 5 × 5 with p = 50 and h = 1. The reasoning is that the edges



of outlines are straight lines and their points have a few number of neighbors while
the printed patterns have many neighbors. Finally, to find the pose of the blank, the
final filtered image is matched against a scaled template of the blank border, starting
by checking the estimated position and then following a spiral path for the next test
positions of the template until the threshold for blank detection are surpassed (see
Fig. 7.13d).

7.3.3.2 Motion Planning and Manipulation

The blank pile to bemanipulated is not a single rigid object, as shown in Fig. 7.14. It is
a stack of card boards that not only bends under its own weight but blanks can easily
break free from the pile due to the fact that blanks have low friction between each
other. Any manipulation procedure of the a blank pile has to be aware of this fact.
After picking, the pile has to be transported to the feeding magazine of the packaging
machine. In the end, the blank pile has to be placed in the feeding magazine avoiding
physical collision with the blanks that are already in place and with the four guiding
rods that prevent blanks from slipping out of the inclined magazine surface.

By using a single arm with a gripper, the “picking” of a pile required, in the
Showcase, three manipulation steps. Depending on the arrangement of the blank pile
on the pallet, the robot needs to drag a blank pile over the edge of the pallet so there
is enough free space for grasping without causing a breakdown or losing any blank.
Then it has to grasp the pile from the edge and finally it has to recondition the pile
for a firm grip. After grasping the blank pile, it is necessary to move the arm to the
transport position, which is inside the mobile platform footprint, while having the
arm in a pose that minimizes the necessary motions to place the blank pile in the
feeding magazine. All manipulations have to be done while maintaining the blank
pile in a pose that prevents it from breaking lose. This is a constraint that has to be
accounted for when planning the motions of the robotic arm. To achieve the best
motion trajectories that respected our constraint, several different motion planner
were tested and benchmarked [17].

Due to the disposition of the blank piles on the pallet, certain piles are blocked
by others and can not be manipulated. Therefore, the order in which the blank piles

Fig. 7.14 Snapshots of bent blank piles



are manipulated has to be planned. The planner considers the available blank piles
on the available pallets and gives preference to the pallet with the lowest number of
piles.

7.3.3.3 Safe Human-Robot Collaboration

Since industrial environments are noisy, verbal communication with human can be
challenging and impracticalwith robots. Thus, gestureswere considered as a practical
alternativemethod of communication. The communicationwith the robot is therefore
through gestures using the HRI system developed for the Freestyle use-case and
reused for Showcase with changes only to interaction graph.

In the Showcase use-case, the human operator is no longer assumed to be confined
to a single location. Now, the mobile platform and the operator can share the same
physical workspace. In fact, it is expected that a human operator may physically
approximate the robot in order to provide commands through gestures. This possible
event raises safety concerns that result in an active and continuous monitorization of
humans. The physical proximity of a human must result in a halt of moving parts of
the mobile platform and, at the same time, it should position the relevant sensors in
order to interpret possible order from the operator [18].

7.3.3.4 Human Detection and Tracking

The vision system integrated in the mobile platform (two stereo camera installed
on the gripper and pan-and-tilt unit) have a limited field of view and shared access
conflicts, i.e. if a camera is used for blank detection it can not be used for human
detection. Therefore, to detect and track humans constantly, two laser range finders
(LRF) were mounted on both sides of the mobile platform to cover all directions with
a reduced area of shadow regions (i.e. areas that are no visible by the sensors). The
multiple single-plane laser scans are merged to generate a virtual laser scan with a
360◦ field of view.

The detection of a human is performed with a machine-learning-trained classifier
that receives the virtual laser scan as input [18]. The positive and negative samples of
laser scan readings of human body patterns were collected and trained with random
forests beforehand [19]. In the tracking procedure, each detected human candidate
in the virtual scan is matched, within a threshold, with the list of already tracked
human. If it does not match, the candidate is added to the tracking list. Finally, all
tracks are updated based on a Kalman filter.

The working environment of the Showcase adds an additional challenge to the
human tracking system. The natural features of the environment, such as from a
workbench, the robotic armor blank piles, create false positives in the human tracking
module. To solve this issue, we introduced a region-based filtering and reasoning
mechanism [18]. Most false positives arise from areas where the humans can not
be physically, so those areas are marked as “black” rectangles and detection inside



that areas are removed from the human detection. Additionally, a “green” rectangle
defines the regions where human detection candidates are considered.

7.3.3.5 Safety Management

Safety is handled using the output of the human tracking module combined with a
set of working regions, which are defined by the region-based filtering and reasoning
mechanism. Two rectangular regions are defined around the mobile platform during
navigation. An inner rectangle (a “red” rectangle) is close to the robot and an outer
rectangle (a “yellow” rectangle) that covers a wider area. During armmanipulation, a
circular region (a “red” circle) is defined around the arm, which radius is determined
by the range of the arm. For the circular region, only the areas of the circle that do
not intersect with the inner rectangle are considered.

Based on the fixed regions defined for human tracking and the dynamic regions
around the mobile platform, the safety handle proceeds as follows. Any human
candidate in the “green” region alone, is considered safe, i.e., the robot operation
does not put any human in a “green” region in danger of physical harm. Therefore, no
safety action is taken. If a human enters a “yellow” region, the navigation is suspended
but the arm keeps doing its current operation. If a human enters a “red” region, then
both themobile platform and the arm are suspended until the human leaves the region
in question. Both “yellow” and “red” regions also trigger HRI systems. HRI will take
control of the pan-and-tilt unit to redirect the stereo camera to the human operator
and awaits for a command every time “yellow” or “red” regions have humans. If the
operator leaves the region of interest then the pan-and-tilt is released.

7.3.3.6 Scenarios

The Showcase use-case execution consisted of three different scenarios with increas-
ing complexity. Here are their description:

Scenario 1 The goal of this challenge was to transport 2 blank piles to the feeding
magazine. The robot had to identify the feeding magazine, the pallet and the piles.

Scenario 2 A second pallet is introduced to the task. The robot has to show that
it selects the pallet with the lowest number of blanks first. Additionally, it has to
switch pallets when needed and navigate accordingly.

Scenario 3 In this challenge the human operator was introduced. Now, the robot
had to demonstrate safety features needed when humans share the robot environ-
ment complemented with human-robot interactions.

For the purpose of evaluation, several metrics had to be defined. Those include
metrics for: perception, where the blanks the pallets and the feeding magazine had to
be correctly detected; manipulation, where the manipulation of the blank piles had
to be done correctly with safety concerns; and interaction, where the robot has to
successfully track any possible human operator and be able to communicate.



7.3.3.7 Results

The final outcome of the Showcase use-case was a scenario where a human operator
and a mobile robot successfully work together to pick and place piles of blanks. All
target metrics were reached with success which provided us the first place in the
evaluation (out of five). The reusability of previously developed technologies is an
important aspect for the success of our solution. This aspect facilitates integration of
different technologies and facilitates the rapid development of new and also flexible
solutions.

The Showcase evaluation was performed in an environment that, although not
located in an industrial plant, includes the most important elements of the real envi-
ronment where the task will be executed as a final product. It uses real pallets with
real piles of blanks and a prototype of the blank feeding mechanism of a packaging
machine that includes all relevant features for the task to be performed. In the indus-
trial setting, the distance between the blank feeding mechanism and the pallets may
be larger, there may be several packaging machines that need to be fed and several
types of blanks that must be manipulated.

7.3.4 Field Tests

The Field Tests use-case is an evolution of the Showcase that takes us closer to
Autonomous Blank Feeding for Packaging Machines in a industrial environment
(Fig. 7.15). TIMAIRISfield tests use-casewas composedof a shopfloor version of the
complete blank feeding problem. It included: twopackagingmachines using different
blanks andwith different feedermechanisms at their blankmagazines; themechanism
that feeds the blanks into the packagingmachine; and three pallets filled inwith 15cm
height blank piles used in production. The task consisted in recognize the blank
piles on the three pallets, devise a plan for picking them considering the packaging
machines blank consumption rates and current blank level at each magazine, and
finally transport and place them in the blank magazines.

7.3.4.1 General Architecture

The Field Tests use-case introduced the online monitoring of the blank feeding level,
which is provided by external components to the mobile platform. Also, there is an
external dashboard that provides relevant information to the operator. The introduc-
tion of these external components expanded our architecture, centered in the mobile
platform, to a factory-wise architecture. The architecture is depicted in Fig. 7.16.

For the Field Tests the robot platform was enhanced to include a new gripper
device that includes a parallel 2-jaw gripper from Zimmer with a higher gripping
force that enables manipulation of 15cm high piles. The new gripper mechanical
fingers allow picking the blank pile from the pallet in the vertical direction. Another



Fig. 7.15 Field Tests environment layout. It includes three pallets and 2 machines with blank
feeders

Fig. 7.16 TIMAIRIS architecture used in the field tests use-case



enhancement was the inclusion in the robot platform of a pile buffer that can be used
to store a pile, while the other is being transported by the gripper, and a rotation
buffer, used to re-grasp the piles in order to be able to place them at the feeders.

The LRFs used for human tracking in the Showcase have also been used in the
Field Tests, as well as the Asus Xtion, that has been used mainly for human-robot
interaction. An onboard PC runs the solver and is connected to ROS communication
network.

IR distance sensors have been added to the feeders of both packaging machines
to measure the blank level. These sensors are managed by a microcontroller board
and connect to the operator dashboard (a laptop PC running ROS) using a CAN bus.
This architecture is prepared for the expansion of the number of packagingmachines.
The safety PC, that runs the safety approach and human tracking procedures, is an
external laptop, that communicates with others through ROS.

7.3.4.2 Perception

Field Tests perception was strongly based on the algorithms developed for the Show-
case. The main changes are in the improvement of some implementations, that
allowed blank detection, for example, to become 10x faster, and in the selection
of the observation points for pallet and magazine detection that had to be adapted to
the new environment (Fig. 7.17a).

By changing the blank detection algorithm, using the same principles, from count-
ing the number matching pixels for each border template position and rotation, to
an approach where this computation is performed using a convolution filter and the
maximum of the filter result defines the best pose, the speed of this detection has
been increased by 10x, without changing the final results (Fig. 7.17b).

Near each blank magazine, an ARUCO marker has been added to measure the
displacement from the robot to themagazine (Fig. 7.17c). This displacement is critical
because themanipulation to place the blank pilemust be very precise to be successful.
ARUCOmarkers have been placed in a position that is mostly horizontal, to increase
the sensitivity of their localization in themost critical angles. The procedure for using
markers to perform this correction has been generalized.

(a) pallet and pile detection (b) blank detection (c) marker detection

Fig. 7.17 Examples of perception in the Field Tests use-case



7.3.4.3 Planning

In the Field Tests use-case, the robot had to feed blanks at 2 packaging machines.
In addition, the blanks shapes for these 2 machines were different and the blank
magazines had different capacities and restrictions for blank loading. In order to get
a general solution which can be adapted to the number of packaging machines and
to their characteristics, the sequence of operations was derived using a PDDL 2.1
planner (named popf) [20] for high-level actions and a low-level planner for choosing
the picking blank pile within the pallets. The high-level actions that were considered
were the following:

• move ?from ?to
• pick ?pile ?waypoint ?gripper
• pick-to-buffer ?pile ?waypoint ?gripper
• place-big ?pile ?waypoint ?gripper
• place-small ?pile ?waypoint ?gripper
• place-from-buffer ?pile ?waypoint ?gripper
• human-disarm ?pile

where big and small designate the 2 types of blanks that were used in the Field
Tests. The parameters of the planning problem are:

• number of packaging machines
• type of blanks for each packaging machine
• initial position of robot and available blank piles
• initial blank level at each blank magazine
• rate of consumption of blanks for each packaging machine
• highest and lowest blank levels that allow inserting a new pile in each magazine
• estimated duration of each high level operation.

The problem of planning is rather complex as the environment is not stationary. The
packaging machines are always working, decreasing the blank level at their maga-
zines, while the robot is in operation. The plan should make sure that all machines
are fed with blanks, considering the restrictions of the blank magazines, without any
of them getting at the lowest level, to ensure continuous operation.

The domain of this problem was modelled using PDDL 2.1 with durative-actions.
To model the non-stationary part of the environment, PDDL functions for the mag-
azine level of each magazine were used. The value of these functions is updated for
every action, according to the action duration. Some step actions had to be inserted
to model periods where the robot must wait without performing any of the high-level
actions. These step actions keep the magazine levels updated.

The planning problem is implemented by a ROS node that implements the service
get_plan. This service reads the magazine levels, detected by the IR sensors at each
magazine, considers the blank piles of each type present at the pallets and generates
the PDDL problem description. Planning is performed using the popf planner from
the ROSPlan framework [21]. The service continues to parse the plan generated by



Fig. 7.18 Snapshot of the the robot following the first step of the execution plan

popf, publishes the plan andmakes it part of the service response. Figure7.18 presents
the robot executing the first action of the plan that is shown in the top of the figure. A
graphical user interface has also been developed that allows continuous monitoring
of the blank levels, a visualization of the current plan, and an offline planning mode
where the plan parameters can be edited interactively, instead of being read from the
environment, and that was used for testing the planner (Fig. 7.19).

Fig. 7.19 Execution dashboard. Its show the state of the feeding magazine level, the current plan
and an execution log. It also allows to set several execution parameters



7.3.4.4 Manipulation and Safety/Interaction

Field Tests manipulation had to be re-engineered from the approach used in the
Showcase due to the different gripper. Additional changes to manipulation are the
actions performed by the robot arm to put the pile in the rotation buffer and pick it
again, as well as the placing of the pile in the transport buffer. Nonetheless, most
manipulation actions are similar to the ones performed in theShowcase, thus reducing
the development time. Example of manipulation action performed in the Field Tests
use-case are shown in Fig. 7.20.

The safety/interaction part of the Field Tests use-case is the same from the Show-
case. The difference is that now multiple humans can be present in the environment.
Now the safety management assumes that the human operator is the one closest to
the pan-and-tilt unit. An example of interaction and human tracking is shown in
Fig. 7.21.

7.3.4.5 Scenarios

TIMAIRIS Field Tests evaluation was structured around 3 different scenarios of
increasing complexity. These scenarios play a similar role as the challenges used for
the freestyle and showcase use-cases.

Fig. 7.20 Example of manipulation actions used in the Field Tests use-case. a Picking with com-
pliance. b Picking of non-rigid objects. c Using the pile buffer. d Smooth placing in the feeding
magazine

(a) gesture recognition (b) human tracking and safety regions

Fig. 7.21 Example of human-robot interaction and human tracking



7.3.4.6 Results

The Field Tests have demonstrated the feasibility of practical use of an intelligent
mobile robot in this scenario, by exploiting the following technologies: skill-based
anytime agent architecture, in which the agent can start execution at any task state;
knowledge-based perception, that enables the robot to both quickly detect the pose of
the pallets and blank magazines using spatial knowledge, and to recognize the pose
of densely and closely lying blank piles; a set of skills and a sophisticated gripper
which enable the robot to grasp and adjust an untied pile of non rigid blanks, move
the arm into a safe navigation posture and to smoothly feed the pile to two differ-
ent complex shaped blank magazines; planning and re-planning, which produces a
sequence of actions for manipulation; rich multimodal interaction which enables the
robot to interact with human collaborators in a noisy environment by encoding a set
of commands with a fixed number of symbols.

The Field Tests workspace mimics the conditions that will be found in a real
scenario. Efficient navigation on reduced spaces, two complete packaging machines
with two different blank feeding devices, including the physical limitations imposed
by themechanical cluttering, non deterministic location of the blank pallets, changing
illumination conditions and the presence and interactionwith human co-workers. The
excellent results obtained during the field tests phase, which did not focus on speed
efficiency, can in fact demonstrate in a clear and provable way that the final prototype
will be able to work under realistic conditions. Note also that the typical feeding rate
of a packaging machine is around 1cm/min for large blanks and 0.8cm/s for small
blanks. In this field test, the robot was able to feed a 15cm pile to the feeder within
a maximum time of 2min. Therefore, with the current solution, not optimized for
speed, the robot would already be able to feed four packaging machines, which
confirms the results provided by the planner.

7.4 Conclusion

IMA’s position of world leadership in the production of packaging machines requires
a constant focus on staying ahead of the curve in terms of technological innovation.
The industrial world is looking more and more at automation as a resource to manu-
facture better products in a cost-efficient way, and this area is of utmost importance
for IMA, too. EuRoC is not the only IMA’s R&D project on robotics and automation;
in fact, automation is one of the two/three most important areas the IMA research
staff is involved in.

The current results of the EuRoC project are in line with those that were stated
at the project submission. The convenience of robotised features reflects into cus-
tomers’,workers’, and sustainability benefits. From the customers’ perspective, robo-
tised systems would make it possible to avoid the use of a human operator dedicated
to blank loading, resulting into cost cutting and efficiency gaining. This also would
give the operator more time for other operations such as quality control, or looking



after more machines. From the workers’ point of view, the adoption of robots to
automate repetitive procedures is more than welcome. Such robotised systems alle-
viate the stress derived from repetitive labour and contribute to build real factories
for humans.

As for sustainability, adopting robotised systems also affects the sustainability of
the entire packaging process. In fact, fewer mistakes in feeding wrong blanks, or
feeding them in the wrong way, results into less waste, fewer machine stoppages,
and a reduced energy consumption—a mandatory requirement for a green factory.

TIMAIRIS is confident that the overall results of the project—and of IMA’s com-
mitment to robotics and automation—will manifest themselves in a stronger lead-
ership position, harder and harder to overcome, and in a wider presence on the
international markets. Moreover, the EuRoC project has given IMA the opportunity
to develop links with research centers with which to find innovative solutions to
automation issues. This type of knowledge will be deepened and used to find inno-
vative solutions to many other problems. IMA and UAVR signed a contract, funded
by IMA, to continue their collaboration during 2018/2019.

It is difficult to imagine the future of industry andmanufacturingwithout amassive
role being played by robotics and automation. IMA is actively working on this topic,
both in the framework of the EuRoC project and in other R&D projects. The results
of this wide range of activities will constitute the backbone of a newway of designing
machines that employ robots and automation in general, the future IMA’s products
will have to be designed around the notion that an increasing number of repetitive
and low-skilled actions will be carried out by machines.

The EuRoC project will bring IMA to develop new products that support and
complement its automaticmachines, aswell as new services associated to cooperative
robotised platforms. Also to be stressed is that the use of this kind of robotised blank
feeding is intended to be included as an option in future packaging machine products
as soon as its robustness reaches the required Technology Readiness Level.

Overall, the EuRoC project had a strong impact both on UAVR and IMA. EuRoC
provided the framework to start the collaboration between these 2 institutions and this
collaboration is active and effective after EuRoC is finished. The complementarity
of UAVR and IMA is well represented in Fig. 7.22.

Some of the strong points in the EuRoC project, from the TIMAIRIS perspective,
are its mandatory cooperation between academia and industry focused on specific
challenging applications; the structure of EuRoC competition (Stages I, II and III),
their respective tasks, the rank based filtering of teams for entering new stages and
the provided funding worked very well to foster a productive environment. The
interaction between TIMAIRIS and Challenge 2 host, and the tools, including ROS
wrapper, eased-up the developments and the exchange of ideas and feedback from
host was always very important; the meetings and workshops that joined all EuRoC
teams, core partners and evaluators was very enriching.

Some points that, from TIMAIRIS perspective, could be improved are: some of
the evaluation models should be thought more carefully, as for example allowing
some metrics to dominate the evaluation in Stage II; midterm evaluation workshop
formatwas not clear (great improvementwas performed for Showcase andFieldTests
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workshops); some deadline dates and penalties for missing them were not clear or
conveyed to the teams with a short notice.

TIMAIRIS would especially like to acknowledge the specification of the succes-
sion of Benchmarking and Freestyle (Stage IIa); Showcase (Stage IIb) and Field
Tests (Stage III) and their competitive/selective nature that provided a very good
ramp up for the development towards a successful solution for the industrial prob-
lem to be solved. The Benchmarking was a very important tool to get to know the
EuRoC Challenge 2 robot platform capabilities, and also its limitations; increase
the mutual knowledge and trust between UAVR and IMA and also between these
2 institutions and Challenge 2 host (DLR). TIMAIRIS Freestyle specification was
provided by TIMAIRIS in its Stage II proposal. This specification was not directly
related to IMA’s industrial problem, but it provided for the development of many
technologies that were used in the next stages. The freestyle objectives were placed
at a very high level, and were very well demonstrated during the evaluation. The
Showcase provided for a first implementation of autonomous blank feeding in a lab
setup. Finally, the Field Tests allowed the development of solutions in an industrial
environment, very close to the final product.

We would like to thank the EuRoC Core partners, and also Challenge 2 host,
for their effort in the EuRoC specification and management and for providing the
framework for a very productive TIMAIRIS research and development work.

Acknowledgements This work was supported by the EuRoC Project under Grant no. 608849 and
by Portuguese National Funds through the FCT—Foundation for Science and Technology, in the
context of the project UID/CEC/00127/2019.



References

1. Hermann, M., Pentek, T., Otto, B.: Design principles for industrie 4.0 scenarios. In: 2016 49th
Hawaii International Conference on System Sciences (HICSS), pp. 3928–3937. IEEE (2016)

2. Bischoff, R., Guhl, T.: The strategic research agenda for robotics in Rurope [industrial activi-
ties]. IEEE Robot. Autom. Mag. 17(1), 15–16 (2010)

3. Siciliano, B., Caccavale, F., Zwicker, E., Achtelik, M., Mansard, N., Borst, C., Achtelik, M.,
Jepsen, N.O., Awad, R., Bischoff, R.: Euroc—the challenge initiative for European robotics.
In: ISR/Robotik 2014; 41st International Symposium on Robotics, pp. 1–7. VDE (2014)

4. Pedrocchi, N., Vicentini, F., Matteo, M., Tosatti, L.M.: Safe human-robot cooperation in an
industrial environment. Int. J. Adv. Robot. Syst. 10(1), 27 (2013)

5. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS:
an open-source robot operating system. In: ICRAWorkshop on Open Source Software, vol. 3,
p. 5. Kobe, Japan (2009)

6. Pedrosa, E., Lau, N., Pereira, A., Cunha, B.: A skill-based architecture for pick and place
manipulation tasks. In: Pereira, F., Machado, P., Costa, E., Cardoso, A. (eds.) Progress in
Artificial Intelligence, pp. 457–468,Coimbra, Portugal, September 2015. Springer International
Publishing

7. Amaral, F., Pedrosa, E., Lim, G.H., Shafii, N., Pereira, A., Azevedo, J.L., Cunha, B., Reis, L.P.,
Badini, S., Lau, N.: Skill-based anytime agent architecture for logistics andmanipulation tasks:
EuRoC Challenge 2, Stage II—Realistic Labs: Benchmarking. In: 2017 IEEE International
Conference on Autonomous Robot Systems and Competitions, ICARSC 2017, pp. 198–203
(2017)

8. Rusu, R.B., Marton, Z.C., Blodow, N., Dolha, M., Beetz, M.: Towards 3D point cloud based
object maps for household environments. Robot. Auton. Syst. 56(11), 927–941 (2008). Seman-
tic Knowledge in Robotics

9. Rusu, R.B.: Semantic 3Dobjectmaps for everydaymanipulation in human living environments.
Ph.D. Thesis, Computer Science department, Technische Universitaet Muenchen, Germany,
October 2009

10. Hamidreza Kasaei, S., Seabra Lopes, L., Tomé, A.M., Oliveira, M.: An orthographic descrip-
tor for 3D object learning and recognition. In: 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 4158–4163 (2016)

11. Pedrosa, E., Pereira,A., Lau,N.:A scanmatching approach to SLAMwith a dynamic likelihood
field. In: 2016 International Conference on Autonomous Robot Systems and Competitions
(ICARSC), pp. 35–40, Portugal, Bragança. IEEE (2016)

12. Lim, G.H., Pedrosa, E., Amaral, F., Lau, N., Pereira, A., Dias, P., Azevedo, J.L., Cunha, B.,
Reis, L.P.: Rich and robust human-robot interaction on gesture recognition for assembly tasks.
In: 2017 IEEE International Conference on Autonomous Robot Systems and Competitions,
ICARSC 2017, pp. 159–164 (2017)

13. Gleeson, B., MacLean, K., Haddadi, A., Croft, E., Alcazar, J.: Gestures for industry: intuitive
human-robot communication from human observation. In: Proceedings of the 8th ACM/IEEE
International Conference on Human-Robot Interaction, pp. 349–356. IEEE Press (2013)

14. Lim, G.H., Suh, I.H.: Robust robot knowledge instantiation for intelligent service robots. Intell.
Serv. Robot. 3(2), 115–123 (2010)

15. Norvig, P.: Natural language corpus data. In: Beautiful Data, pp. 219–242 (2009)
16. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of

the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE
(1999)

17. Tudico, A., Lau, N., Pedrosa, E., Amaral, F., Mazzotti, C., Carricato,M.: Improving and bench-
marking motion planning for a mobile manipulator operating in unstructured environments.
In: Portuguese Conference on Artificial Intelligence, pp. 498–509. Springer (2017)

18. Lim, G.H., Pedrosa, E., Amaral, F., Dias, R., Pereira, A., Lau, N., Azevedo, J., Cunha, B., Reis,
L.P.: Human-robot collaboration and safety management for logistics and manipulation tasks.



In: Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C. (eds.) Advances in Intelligent
Systems and Computing, vol. 694, pp. 15–27. Portugal. Springer International Publishing,
Porto (2017)

19. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
20. Coles, A., Coles, A., Fox, M., Long, D.: Forward-chaining partial-order planning. In: Proceed-

ings of the Twentieth International Conference on International Conference on Automated
Planning and Scheduling, ICAPS’10, pp. 42–49. AAAI Press (2010)

21. Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carreraa, A., Palomeras, N.,
Hurtós, N., Carrerasa, M.: ROSPlan: planning in the robot operating system. In: Proceedings of
the Twenty-Fifth International Conference on International Conference onAutomated Planning
and Scheduling, ICAPS’15, pp. 333–341. AAAI Press (2015)




