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Abstract 

 

        The effects of moisture on the electrical properties of epoxy molding compounds containing high quantities of 

silica filler microparticles have been investigated by means of dielectric spectroscopy, steady-state conductivity and 

pulsed electro-acoustic space charge measurements. It has been shown that the presence of water at the filler/epoxy 

interfacial areas affects the low-frequency dielectric response of the materials and significantly increases their 

electrical conductivity, especially at higher temperatures. In addition, in presence of moisture, space charge 

measurements have shown the accumulation of heterocharges which significantly increase the electric field at the 

electrodes. These aspects are of primary importance, as the electrical properties of the encapsulation materials 

strongly influence the space charge distribution in high voltage devices. 

  
 

1. Introduction 

 

The high demands on weight, cost and size in new 

power electronic applications is leading to the need of 

plastic encapsulation materials with improved physical 

properties. Recently, epoxy-based polymers with a 

large fraction of insulating fillers have been proposed 

to decrease moisture permeability and suppress thermal 

expansion in order to avoid corrosion and exfoliation 

during high-temperature cycles [1]. In addition, the 

electrical conductivity is known to be source of charge 

spreading [2,3]. More specifically, high-voltage lateral 

devices, like, e.g., double-diffused DMOS (LDMOS) 

transistors, are based on the Reduced Surface Field 

(RESURF) principle [4] to significantly improve the 

breakdown voltage. But the performance of this class 

of devices is sensitive to the optimum charge balance 

in the drift region, which is in general at the silicon 

surface, and thus it is strongly impacted by mobile 

charges accumulated in the overlying isolation and 

mold-compound passivation on top [5]. For this 

reason, additional metal and/or poly-silicon field-plates 

and floating-rings are required to stabilize the surface 

electric field [6,7], even if they might limit the 

maximum intrinsic performance of the device. The 

understanding of mobile charge transport at the 

molding compound surface is thus of primary 

importance to improve the power device performance 

and reliability at the design stage. Moreover, lifetime 

tests are usually carried out with humidity as high as 

85% RH. The latter condition would lead eventually to 

instability and failure of the device just due to the 

increased electrical transport of the packaging material. 

In [8], molding compounds with different 

composition were investigated to assess the role of 

insulating fillers on the electrical conductivity, and 

charge spreading in the encapsulation was 

characterized on a dedicated IC test chip. 

Due to the nature of polymers, water absorption is 

expected to occur in humid environments, inducing 

significant changes in the dielectric properties. 

Recently, polymers with nano-size fillers under 

moisture conditions has been investigated [9,10]. As 

nanoparticles have significantly different interface 

features, a specific characterization of micro-filled 

polymers is still needed. 

In this work, the dielectric spectroscopy, DC 

conductivity and space-charge distribution of polymers 

with high filler contents as in commercial products 

have been analyzed under dry and humid conditions. 



 

The reported data give useful information for assessing 

the reliability expectations on such composite systems. 

 

2. Materials and sample characteristics 

 

The encapsulation materials used in this study are 

epoxy-based conventional mold compounds (EMCs) 

employed in semiconductor packaging. The samples 

are 50 mm x 50 mm squares with a thickness h = 0.75 

mm. The EMCs are labelled MC0, MC1 and MC2, and 

contain different fractions of silica micro-fillers. The 

filler content was measured by thermogravimetric 

analysis to determine the weight percentage. MC2 has 

the lowest filler content, while MC1 and MC0 contain 

20 % and 25 % more filler, respectively. 

 

3. Humidity absorption 

 

The moisture absorption of the EMCs has been 

investigated by exposing the samples to humid 

conditions in a climatic chamber (Genviro-060-C) with 

precise control of temperature and relative humidity. 

As a preliminary treatment, the samples have been 

dried at 125 °C for 24 hours and weighted with an 

analytical balance (Sartorius CP 124 S) with an 

accuracy of 0.0001 g to determine their dry weight M0. 

Subsequently, the samples have been placed under 85 

°C / 85% RH and periodically weighted until 

equilibrium was reached following [11]. The relative 

water mass M% is calculated as:  

 

      M% = 100 x (Mt-M0)/M0                                      (1) 

 

where Mt is the weight of a wet specimen at time t. The 

absorption plot in Fig.1 shows curves similar to 

literature data [12,13]. By assuming that the weight 

gain of the EMCs initially follows the single-phase 

Fickian diffusion model, the diffusivity D has been 

calculated from the initial gradient of water uptake 

versus t1/2 [11]: 

 

     D = π (h /4 M∞ )2 (M2-M1)2/(√t2 - √t1)2              (2) 

 

where M∞ is the moisture content at equilibrium, h is 

the thickness of the samples and the last term 

corresponds to the slope of the moisture plot in the 

initial linear portion of the curve. The diffusivity and 

moisture equilibrium content extracted from the 

absorption plots are reported in Table 1. It can be noted 

that the diffusivity ranges between 4.0 x 10-6 mm2/s 

and 5.6 x 10-6 mm2/s and seems to be independent from 

the filler fraction. In contrast, as the quantity of water 

absorbed by a polymeric material is related to the 

availability of free volume within the epoxy networks 

[14,15], significant variations have been measured in 

M∞ for the different EMCs. In Fig. 2, M∞ is plotted as a 

function of the filler fraction. The linear correlation 

between the two quantities is in agreement with similar 

measurements reported in literature [12,13], 

confirming that a large fraction of insulating fillers 

limits the moisture permeability within the epoxy 

matrix. An opposite trend is obtained for 

nanocomposites [9,10]. . In order to optimize the filler 

content, additional experiments, such as long-term 

electro-thermal reliability tests, would be necessary. 
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Fig. 1. Water uptake of the EMCs as functions of the 

square root of time. 

Table 1 

Diffusivity and moisture equilibrium from Eq. 1. 
 
 MC0 MC1 MC2 

 
D [mm2/s] 

 
5.1 x 10-6 4.0 x 10-6 

 
5.4 x 10-6 

M∞ [%] 0.215 0.275 0.440 
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Fig. 2. Equilibrium moisture content at 85 °C/85 % 

RH as a function of the normalized filler content of 

silica with respect to the lowest one. 



 

However, as the minimum water uptake is shown by 

MC0, which would assure the best reliability response 

against corrosion at the IC bond pads [16], the 

following investigations on charge transport effects 

have been carried out on this kind of material  

 

4. Dielectric spectroscopy 

 

 Dielectric analysis (DEA) was carried out on a 

sample of MC0 both in dry and wet (0.21%) 

conditions. Circular gold electrodes with 40 mm 

diameter were sputtered on both sides of the sample 

and the analysis was carried out by using the 

Novocontrol Concept 80 alpha analyser. A small AC 

signal is used (VRMS= 1 V). The permittivity ε’ and loss 

factor ε’’ have been measured for frequencies f from 

10-2 to 106 Hz at 60 °C. In EMCs, the dielectric spectra 

generally show the effect of epoxy/filler interfacial 

polarization (ε’ at low f), the material conductivity (ε’’ 

at low f), and the dipolar relaxation times (ε’’ peaks) 

[2,17]. Moisture influences the dielectric properties of 

EMCs in different ways [9,18]. Water molecules in 

dispersed states can cause a dipolar response, while 

water clusters or droplets may cause interfacial 

polarization. As shown in Fig. 3, the wet sample 

exhibits an increase of both ε’ and ε’’ at low f, while 

no significant differences are observed for f > 1 Hz. 

This suggests that the presence of water mostly 

increases the epoxy/filler interfacial polarization and 

the conductivity without changing the dipolar 

response. 

 

5. DC current measurements 

 

In order to study the relationship between the 

conductivity and the moisture content, the steady-state 

current densities have been measured. To this purpose, 

a current has been induced across the samples by 

applying a DC step voltage and it has been monitored 

with a Keithley-6514 electrometer for 1000 seconds 

into a thermostatic oven. The measurement time is 

long enough to separate polarization effects and carrier 

conduction, but short enough to avoid any significant 

moisture desorption during the measurement. To this 

purpose, the analysis has been limited to a maximum 

temperature of 60 °C, which has been checked to give 

rise to a desorption lower than 15% of the initial water 

content, while a larger reduction is expected to affect 

the validity of the analysis. The conductivity σ has 

been extracted from the steady-state current as: 

 

       σ = I h / (A V)                                                   (3) (1) 

 

where I is the current, V is the applied voltage across 

the sample, h is the thickness of the sample, A is the 

area of the electrodes. All the measurements have been 

obtained by applying a step voltage of 3 kV, 

corresponding to an electric field of about 4 kV/mm 

and the experimental setup allows to measure a 

minimum conductivity about 10-19 S/cm. The analysis 

has been carried out on a sample of MC0 with different 

moisture contents at the temperatures of 25 °C and 60 

°C and the results are reported in Table 2. It can be 

noted that the conductivity increases with the moisture 

content both at 25 °C and 60 °C. This effect is 

particularly enhanced at 60 °C, where the conductivity 

near moisture equilibrium content is about 18 times its 

dry counterpart. These considerations seem to support 

Table 2 

Conductivity measurements of MC0. 

Water content σ at 25 °C [S/cm] σ at 60 °C [S/cm] 

    0 % 7.0 x 10-18 1.4 x 10-17 

≈ 0.1 % 1.9 x 10-17 3.5 x 10-17 

≈ 0.2 % 3.2 x 10-17 2.5 x 10-16 
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Fig. 3. (top) Permittivity and (bottom) loss factor of 

MC0 at 60 °C in (blue) wet and (red) dry conditions. 



 

the comments on the dielectric responses in Section 4 

and are in agreement with the results reported in the 

literature [9,10,19], where the low-frequency 

permittivity increases and the measured higher 

conductivity in wet nanocomposites has been attributed 

to the presence of water at the filler/epoxy interfacial 

areas. Within this framework, it is clear that the filler 

content and its size would affect the way in which 

water molecules are distributed inside the material. 

This, in turn, influences in a non-trivial way the 

conduction mechanisms, and hence the electrical 

properties of the material. A detailed analysis of these 

aspects would require a combination of numerical 

methods and analytical models [8,20]  

In Fig. 4, the conductivities for different humidity 

conditions are reported as functions of the reciprocal 

temperature. It is possible to extract the activation 

energies corresponding to different humidity contents 

by using the formula: 

 

       σ = σ0 exp(-Ea / k T).........................................(4) 

 

where σ0 is the pre-exponential term, Ea is the 

activation energy in eV, k is the Boltzmann constant 

and T is the temperature in Kelvin. It should be noted 

that the activation energy of σ is strongly influenced by 

the water content. In particular, it increases non 

linearly with the water content, passing from 0.19 eV 

to 0.47 eV as the relative water mass increases from 

0.1 % to 0.2 %. This behavior is in contrast with what 

observed in literature for similar materials carried out 

at temperatures higher than the glass-transition one 

[18,21]. In the present work the analysis is carried out 

at temperatures significantly lower than the glass 

transition, which might cause a relevant difference in 

the involved physical effects and in their thermal 

dependencies. 

 

6. Pulsed electro-acoustic analysis 

 

The Pulsed Electro-Acoustic (PEA) analysis method 

is used to measure space charge distributions in solid 

insulating materials, and is based on the acoustic 

propagation through the material [22]. The samples are 

50 mm x 50 mm squares with a thickness h=0.75 mm, 

without metallization. The space charge distribution of 

a sample of MC0 has been measured at 60°C for 7000 

s in presence of a poling field of 20 kV/mm. Again, the 

wet sample refers to a moisture content of about 0.21 

% wt, i.e., close to moisture equilibrium content. Space 

charge profiles at 10 s and 7000 s of polarization on 

dry and wet specimens are shown in Figures 5 and 6, 

respectively. It can be noticed that a significant amount 
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Fig. 5 Space-charge profiles at different times of dry 

MC0 at 60 °C, with a poling field of 20 kV/mm.  
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Fig. 4. Reciprocal temperature dependence of the MC0 

conductivity at different humidity contents. The 

corresponding activation energy, Ea, has been 

extracted with eq. (4) and significantly increases when 

the material is in saturation conditions. 
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Fig. 6. Space charge profiles at different times of wet 

MC0 at 60 °C, with a poling field of 20 kV/mm. 



 

of negative homocharge is accumulated close to the 

cathode of the dry specimen, due to charge injection 

from the electrode, as shown in Fig. 5. In the case of 

the wet specimen, the negative space charge turns into 

heterocharge accumulation close to the anode, as 

shown in Fig. 6. This behaviour could be associated 

with the increased conductivity of the wet specimen, 

which favours the transport of injected charge from the 

cathode to the anode and/or enhances the conductivity 

of ionic species [23]. This heterocharge build-up can 

enhance the local field at the electrode/insulation 

interface (see the increase of the anode peak at 7000 s), 

thus constituting a possible critical issue for the 

electrical insulation [24]. 

 

7. Conclusions 

 

Moisture in highly-filled EMCs causes a 

significant increase in the conductivity, of about a 

factor 18 at 60 °C, with 0.2% water uptake, reached at 

85C/85% in 178 hours. However, a water uptake as 

high as 0.19%, which is expected to increase the 

conductivity of a similar amount, is measured in less 

than 48 hours. Moreover, charge injection is improved 

in the presence of high fields, leading to charge 

spreading. As already observed in previous 

investigations, a modest increase of EMC conductivity 

leads to a significant increase of the surface potential 

on top of active regions of semiconductor devices. 

Thus, it is recommended that the electrical properties 

of EMCs under moisture condition should be evaluated 

to mitigate any unexpected degradation in device 

performance. 
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