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Abstract: The purpose of this work is to study the motion of a non-Newtonian fluid in a rock
fracture, generated by a constant pressure gradient to which a pulsating component is superposed.
The momentum equation is faced analytically by adopting a logarithmic constitutive law; the velocity
is expressed as a power series of the amplitude of the pulsating component, up to the second order,
easily usable for numerical calculations. The results obtained are compared with those provided in
the past by the authors, using a three-parameter Williamson model. The comparison highlights that
the value of the mean flow rate in a period differs by less than 10% even if the velocity profiles look
quite different.
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1. Introduction

It is well known that the fluid flow within a geological formation takes place mainly through
fractures that are often connected to each other to constitute a network. The study of motion through
fractures affects many industrial activities, such as exploitation of a basin, oil and gas extraction,
contaminant pollution control and hydraulic fracturing. In enhanced oil recovery operations, polymer
solutions that exhibit a non-Newtonian shear-thinning behavior are injected [1].

A literature overview shows that when an oilfield is flooded with a non-Newtonian fluid, the
mobility ratio between the displaced fluid and the displacing fluid becomes favorable with respect to
flooding with water. Oil displacement tests indicate that water-soluble polymer added to the injection
water can recover additional oil from an oilfield. The polymers often used are polyacrylamide or
polysaccharide; these substances provide the highest viscosity for an assigned concentration.

The description of the flow in a single fracture has been addressed both analytically and
experimentally. With an analytical approach to the problem, and schematizing the rheological behavior
of the fluid with a Newtonian one, the cubic law expresses the hydraulic transmissivity as a function of
the average fracture opening, assuming that the rough walls can be schematized with two smooth
parallel plates [2]. However, the roughness of natural rock fractures, the variability of the aperture, and
the presence of obstructions, complicate the process that deviates from a Poiseuille flow; in [3], the flow
tortuosity and the aperture variation are considered to modify the cubic law to simulate numerically the
flow. The experimental work [4] investigates the influence of geometric characteristics of deformable
rough fractures, and the relationships between the hydraulic gradient and the flow rate. Despite
the importance of the effects of roughness in fracture flow—as emphasized in the reference work of
Zimmerman and Bodvarsson [5]—the roughness is neglected in the present paper because, for an
analytical analysis, the complexity generated by the rheological constitutive law of a non-Newtonian
fluid and by the unsteady flow suggests adopting a simplified geometry to solve the problem.
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Tsang [6] and Neuzil [7] show that the scheme of plane motion gives reliable results if the normal
stress is less than ~10 MPa, and if the aperture variation along the flow path is not large.

The plane unsteady flow of a non-Newtonian fluid has been faced by many authors even recently,
either for numerical calculation purposes or analytically. Particularly, the motion generated superposing
to a constant pressure gradient a small periodical variation has acquired technical and practical uses,
because it allows the growth of the mean discharge with a limited increase of power. The non-linearity
of the constitutive equation of pseudoplastic fluids makes the variation of the rate of flow during the
phase of increase of the pressure gradient exceed the decrease occurring when it falls.

In this paper, the forcing action is given by a constant pressure gradient and a small periodic
variation superposed to it.

In the first part, the phenomenon is studied, adopting a constitutive equation given by a logarithmic
law (L), which can be considered as a simplified Prandl–Eyring model, and represents, with good
approximation, the behavior of pseudoplastic materials (particularly of polymer solution and powder
suspensions in Newtonian fluids), in a wide range of shear stress and shear rate. The results will be
compared to those obtained by the authors using a Williamson model (W), proposed in [8] for the same
fluid and the same geometry [9].

The momentum equation is solved using a perturbation method, assuming the amplitude of
the pulsatile component of the pressure gradient as a parameter. It is a method widely used to
obtain approximated solutions to engineering problems, even if the convergence of the solution is not
normally demonstrable.

In particular, the second-order term of the velocity field that gives origin to a variation of the mean
discharge will be determined; it will always result positive, thus justifying analytically the intuitive
fact that the mean flow rate in a period increases.

2. Problem statement

The plane laminar flow of an incompressible non-Newtonian fluid, in a layer of thickness 2δ,
as shown in Figure 1, is considered, under the action of a small periodic pressure gradient superimposed
on a constant one. A sensitivity analysis to test the influence of the roughness would require solving the
problem numerically and making a comparison of the results. However, this goes beyond the purpose
of this paper, which aims to compare the results provided by using the same fluid with two different
models to approximate the experimental points representing the relationship between shear-stress
and shear-rate.

Water 2020, 12, x FOR PEER REVIEW 2 of 10 

 

law of a non-Newtonian fluid and by the unsteady flow suggests adopting a simplified geometry to 

solve the problem.  

Tsang [6] and Neuzil [7] show that the scheme of plane motion gives reliable results if the normal 

stress is less than ~10 MPa, and if the aperture variation along the flow path is not large.  

The plane unsteady flow of a non-Newtonian fluid has been faced by many authors even 

recently, either for numerical calculation purposes or analytically. Particularly, the motion generated 

superposing to a constant pressure gradient a small periodical variation has acquired technical and 

practical uses, because it allows the growth of the mean discharge with a limited increase of power. 

The non-linearity of the constitutive equation of pseudoplastic fluids makes the variation of the rate 

of flow during the phase of increase of the pressure gradient exceed the decrease occurring when it 

falls.  

In this paper, the forcing action is given by a constant pressure gradient and a small periodic 

variation superposed to it.  

In the first part, the phenomenon is studied, adopting a constitutive equation given by a 

logarithmic law (L), which can be considered as a simplified Prandl–Eyring model, and represents, 

with good approximation, the behavior of pseudoplastic materials (particularly of polymer solution 

and powder suspensions in Newtonian fluids), in a wide range of shear stress and shear rate. The 

results will be compared to those obtained by the authors using a Williamson model (W), proposed 

in [8] for the same fluid and the same geometry [9].  

The momentum equation is solved using a perturbation method, assuming the amplitude of the 

pulsatile component of the pressure gradient as a parameter. It is a method widely used to obtain 

approximated solutions to engineering problems, even if the convergence of the solution is not 

normally demonstrable.  

In particular, the second-order term of the velocity field that gives origin to a variation of the 

mean discharge will be determined; it will always result positive, thus justifying analytically the 

intuitive fact that the mean flow rate in a period increases. 

2. Problem statement 

The plane laminar flow of an incompressible non-Newtonian fluid, in a layer of thickness 2𝛿, as 

shown in Figure 1, is considered, under the action of a small periodic pressure gradient superimposed 

on a constant one. A sensitivity analysis to test the influence of the roughness would require solving 

the problem numerically and making a comparison of the results. However, this goes beyond the 

purpose of this paper, which aims to compare the results provided by using the same fluid with two 

different models to approximate the experimental points representing the relationship between 

shear-stress and shear-rate. 

 

Figure 1. Schematic representation of the geometry. 

The velocity is supposed to have the 𝑥 direction; taking into account the continuity equation, 

the equation of motion can be written as 

𝑥 

Z 

𝛿 

-𝛿 

Figure 1. Schematic representation of the geometry.

The velocity is supposed to have the x direction; taking into account the continuity equation, the
equation of motion can be written as

−
∂p
∂x

+
∂τ
∂Z

= ρ
∂u
∂T

(1)

where Z is normal to the layer, T is the time, p the pressure, ρ the fluid density, τ the shear stress and u
the velocity.
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The fluid considered is a pseudoplastic one, and a simple two-parameter model based on a
logarithmic law, which is similar to the Prandtl–Eyring model τ = τ0sinh−1(λγ), can be used:

τ = τ0 ln
(
1 + λ

∣∣∣γ∣∣∣)sign(γ) (2)

where γ is the shear rate ∂u/∂Z, and τ0 and λ are two rheological parameters.
The flow is symmetric with respect to the x axis, and thus the problem is studied only in the

region −δ ≤ Z ≤ 0 where γ ≥ 0, and thus

τ = τ0 ln(1 + λγ) (3)

The imposed pressure gradient is

−
∂p
∂x

= P0(1 + ε cosωT) (4)

P0 is the constant pressure gradient, ε is the amplitude of the periodic perturbation and ω its pulsation.
Equation (1) becomes

P0(1 + ε cosωT) +
∂τ
∂Z

= ρ
∂u
∂T

(5)

Introducing the following dimensionless quantities z = Z/δ, t = T/λ, Ω = ωλ, v = uλ/δ,
τ = τλ2/

(
ρδ2

)
, µ = τ0λ2/

(
ρδ2

)
, p0 = P0λ2/(ρδ), Equation (5) becomes

p0(1 + ε cos Ωt) + µ
∂
∂z

[
ln

(
1 +

∂v
∂z

)]
=
∂v
∂t

(6)

Supposing ε� 1, the velocity is expanded as a power series in ε

v(z, t) = v0(z) + εv1(z, t) + ε2v2(z, t) + O
(
ε3

)
(7)

and thus

1 +
∂v
∂z

= 1 +
dv0

dz
+ ε

∂v1

∂z
+ ε2 ∂v2

∂z
+ O

(
ε3

)
(8)

Putting

w0 = 1 +
dv0

dz
(9)

Equation (8) becomes

1 +
∂v
∂z

= w0

[
1 +

ε
w0

∂v1

∂z
+
ε2

w0

∂v2

∂z
+ O

(
ε3

)]
(10)

Taking the logarithm of the two terms and developing the second member in power series, we obtain:

ln
(
1 +

∂v
∂z

)
= ln w0 +

ε
w0

∂v1

∂z
+
ε2

w0

∂v2

∂z
−
ε2

2w2
0

(
∂v1

∂z

)2

+ O
(
ε3

)
(11)

Substituting Equation (11) in (6)

p0(1 + ε cos Ωt) + µ
∂
∂z

ln w0 +
ε

w0

∂v1

∂z
+
ε2

w0

∂v2

∂z
−

1
2w0

(
∂v1

∂z

)2
 = ε

∂v1

∂t
+ ε2 ∂v2

∂t
(12)

Equating the coefficients of the same order in ε, three equations follow:

p0 + µ
d
dz

ln
(
1 +

dv0

dz

)
= 0 (13)
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p0 cos Ωt + µ
∂
∂z

(
1

w0

∂v1

∂z

)
=
∂v1

∂t
(14)

µ
∂
∂z

 1
w0

∂v2

∂z
−

1
2w2

0

(
∂v1

∂z

)2 = ∂v2

∂t
(15)

The velocity v0, v1 and v2 must satisfy the boundary conditions vk(−1) = 0 and ∂vk
∂z

∣∣∣∣
z=0

= 0, where
k = 0, 1, 2.

2.1. The Steady Component

Equation (13) has the solution

v0(z) = −
exp(−αz)

α
− z + C (16)

where α = p0/µ. It must be v0(−1) = 0 and thus C =
exp(α)
α − 1 and

v0(z) =
exp(α) − exp(−αz)

α
− (1 + z) (17)

which gives a steady rate of flow

Q0 = 2

0∫
−1

v0(z)dz = 2
(

1 + (α− 1) exp(α)
α2 −

1
2

)
(18)

2.2. The First-Order Approximation

Writing the solution of Equation (14) in the form

v1(z, t) = Re[w1(z) exp(iΩt)] (19)

Equation (14) becomes

p0 + µ
d
dz

(
1

w0

dw1

dz

)
= iΩw1 (20)

which has the particular integral w10 = −i p0
Ω ; the solution of Equation (20) can be written as w1 =

w10 + W1, where W1 is the solution of the homogeneous equation

µ
d
dz

(
1

w0

dW1

dz

)
− iΩW1 = 0 (21)

Putting ξ = k exp(−αz/2), where k = 2
√
µΩ/p0 and recalling that

w0 = 1 +
∂v0

∂z
= exp(−αz) = ξ2

p2
0

4Ωµ
(22)

Equation (21) can be recast in the form

ξ
d2W1

dξ2 −
dW1

dξ
− iξW1 = 0 (23)

which admits the solution [10]

W1(ξ) = ξ
{
A[ber1(ξ) + ibei1(ξ)] + B[ker1(ξ) + ikei1(ξ)]

}
(24)
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where ber1, bei1, ker1 and kei1 are the well-known Kelvin function of order 1, A = a1 + ia2 and
B = b1 + ib2 are suitable constants to be calculated, imposing the boundary conditions v1(z = −1) =

v1[ξ = k exp(α/2)] = 0 and ∂v1
∂z

∣∣∣∣
z=0

= −αξ2
∂v1
∂ξ

∣∣∣∣
ξ=k

= 0, i.e., ∂v1
∂ξ

∣∣∣∣
ξ=k

= 0. The solution of Equation (20)

is thus
w1(ξ) = w10 + W1(ξ) = −i

p0

Ω
+ ξ[U1(ξ) + iU2(ξ)] (25)

where
U1(ξ) = a1ber1(ξ) − a2bei1(ξ) + b1 ker1(ξ) − b2kei1(ξ) (26)

and
U2(ξ) = a1bei1(ξ) + a2ber1(ξ) + b1 kei1(ξ) + b2ker1(ξ) (27)

The solution of the first-order approximation becomes

v1(ξ, t) = Re[w1(ξ) exp(iΩt)] = ξU1(ξ) cos Ωt +
[p0

Ω
− ξU2(ξ)

]
sin Ωt (28)

2.3. Second-Order Approximation

Equation (15) contains the term(
∂v1

∂z

)2

=

{
∂
∂z

Re[w1(z) exp(iΩt)]
}2

=

{
Re

[
dw1

dz
exp(iΩt)

]}2

(29)

Recalling that for every complex number ζ it results [Re(ζ)]2 = 1
2

[
Re

(
ζ2

)
+ |ζ|2

]
, and observing that

dw1
dz = dW1

dz , Equation (29) gives(
∂v1

∂z

)2

=
1
2

Re

(dW1

dz

)2

exp(2iΩt)

+ ∣∣∣∣∣dW1

dz

∣∣∣∣∣2
 (30)

Searching a solution of Equation (30) in the form

v2(z, t) = v20(z) + Re[w2(z) exp(2iΩt)] (31)

allows to write Equation (15) as follows

µ d
dz

{
1

w0

dv20
dz + 1

w0
Re

[ dw2
dz exp(2iΩt)

]
−

1
4w2

0
Re

[( dW1
dz

)2
exp(2iΩt)

]
−

1
4w2

0

∣∣∣∣ dW1
dz

∣∣∣∣2}
= 2iΩRe[w2 exp(2iΩt)]

(32)

The steady component v20 satisfies the equation

µ
d
dz

 1
w0

dv20

dz
−

1
4w2

0

∣∣∣∣∣dW1

dz

∣∣∣∣∣2
 = 0 (33)

and the oscillating one w2 satisfies the equation

µ
d
dz

 1
w0

dw2

dz
−

1
4w2

0

(
dW1

dz

)2
 = 2iΩw2 (34)

Only the steady component v20 will be examined, which gives rise to a stationary rate of flow; it results

1
w0

dv20

dz
−

1
4w2

0

∣∣∣∣∣dW1

dz

∣∣∣∣∣2 = C (35)

However, v20 must satisfy the boundary conditions, and then C = 0. It results
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dv20

dz
=

1
4w0

∣∣∣∣∣dW1

dz

∣∣∣∣∣2 (36)

Equation (25), recalling that ξ = ke−αz/2 and thus w0 = exp(−αz) = ξ2/k2, gives

dW1

dz
= −

αξ
2

{
d[ξU1(ξ)]

dξ
+ i

d[ξU2(ξ)]

dξ

}
(37)

and then
dv20

dz
=
α2k2

16


(

d[ξU1(ξ)]

dξ

)2

+

(
d[ξU2(ξ)]

dξ

)2
 (38)

which can be integrated numerically. The velocity v20 gives a stationary rate of flow Q20

Q20 = 2

0∫
−1

v20(z)dz (39)

and integrating by parts, we obtain:

Q20 = −2

0∫
−1

z
dv20

dz
dz (40)

3. A Numerical Example

A literature overview shows that when an oilfield is flooded with a non-Newtonian fluid,
the mobility ratio between the displaced fluid and the displacing fluid becomes favorable with respect
to flooding with water. Oil displacement tests indicate that water-soluble polymer added to the injection
water can recover additional oil from an oilfield. The polymers often used are polyacrylamide or
polysaccharide; these substances provide the highest viscosity for an assigned concentration. To show
the use of the proposed solution and make a comparison with previous results obtained by the authors,
the found results are applied to the particular fluid used in [9], with the same geometry: a microgel-free
xanthan polysaccharide dissolved in saltwater (salinity = 5 g/L NaCl, T = 30 ◦C). Interpolating, with
the least-squares method, the experimental data of the paper of Chauveteau [11] for a concentration of
800 ppm with the logarithmic model, we obtain τ0 = 2.4449 Pa and λ = 0.002571 s. The density of
the solution is ρ = 1001 kg/m3. As in the previous paper [9], where the same problem is analyzed

using the three-parameter Williamson model = µ∞γ+
(µ0−µ∞)γ

1−λγ , the layer has a half-width δ = 1.4 mm,
and pressure gradient is P0 = 1480 Pa/m; the dimensionless variables and µ become p0 = 0.006979
and µ = 0.008235. Equation (17) allows to calculate the velocity u0 = v0δ

λ , which produces the steady

discharge q0 = Q0δ
2

λ = 5.85 cm2/s (W model q0 = 5.68 cm2/s); the steady second-order velocity v20 can
be calculated integrating numerically Equation (38), and then u20 = ε2 v20δ

λ , at frequency f = 0.25 Hz

(ω = 1.5708 Hz) u20, produces a discharge q20 = ε2 Q20δ
2

λ = 1.27ε2 cm2/s (W model q20 = 1.22ε2

cm2/s). The constants a1, a2, b1 and b2 in Equations (26) and (27) become respectively a1 = 0.1858,
a2 = −0.4290, b1 = −0.9548 and b2 = −1.5283. Equation (28) allows calculating the first order
periodic velocity v1(z, t). At the layers axis Z = 0, i.e., ξ = 1.6525, it results u1(0, T) = εδ

λ v1(0, t) =
ε[0.3636 cos(ωT) + 0.1366 sin(ωT)] m/s (W model u1(0, T) = ε[0.3899 cos(ωT) + 0.1721 sin(ωT)] m/s).

4. Analysis and Discussion

To visualize the results and better understand them, it is useful to refer to the following Figures.
Figure 2 shows the experimental data and the approximating curves for the model of Williamson

(W) and the logarithmic model (L); for low values of γ, the model L gives minor values for τ of the
model W, and therefore a higher velocity can be expected at the axis of the layer.
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Figure 2. Microgel-free xanthan polysaccharide dissolved in a saltwater (salinity = 5 g/L NaCl,
temperature = 30 ◦C); experimental data [11] fitted by W and L models.

Figure 3 shows the velocity profile in a steady state. As expected, the L model gives rise to a
stationary component of the axis velocity greater by about 10% compared to the one given by the
model W.
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The stationary flow rate, which is the most relevant data, differs in the two cases only by 3%.
Figure 4 shows, as a function of frequency, the first approximation speed evaluated on the axis,

for both models. For low frequencies (<1 Hz), the W model gives higher values than the L model, with
differences within 10%. It should be noted that the velocity u1 is less important, because it does not
give rise to a flow rate in the period.
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Figure 5 shows the steady component of the second-order approximation velocity u20, for a
frequency f = 0.25 Hz. Unlike the steady component, in the central part of the layer the W model
gives a higher velocity than the L model, while in the zones towards the wall the L model gives a
higher velocity. This is due to the great slope of the γ− τ curve relative to the W model, compared to
that of the L model for low values of γ (i.e., near the layers axis, see Figure 2), which therefore increases
the effects of the non-linearity. The opposite happens near the wall, where γ is higher and the slope
of the γ − τ is greater in the L model. The stationary rate of flow q20, given by the two models for
a frequency f = 0.25 Hz, is practically the same (difference < 2%) as shown in Figure 6, where the
second approximation stationary flow rate, calculated with the L model as a function of frequency,
is plotted, together with the value given by the model W for f = 0.25 Hz [9].
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Figure 6. Discharge as a function of the frequency for the L model; the dot shows the value of discharge
for the W model for f = 0.25 Hz [9].

Figure 7 shows the velocity at the axis and at Z = 0.6δ as a function of time, for f = 0.25 Hz and
ε = 0.25, taking into account the components u0, u1 and u20: u = u0 + εu1 + ε2u20. As foreseeable by
the velocity profiles in Figure 3, the L model always gives a higher value at Z = 0, while for Z = 0.6δ
the differences between the two models are considerably reduced.

From a mathematical point of view, the L model is simpler than the W model; the latter requires
the calculation of complex index Bessel functions, while the L model makes use of the Kelvin functions
of integer order (0 and 1), which are easily calculable and also tabulated, e.g., in the handbook of
Abramowitz and Stegun [12]. From a fluid mechanics point of view, to judge which of the two models
is more suitable it would be necessary to have available experimental data, which the authors however
have not been able to find in the literature. Both models do not take into account the roughness of the
walls, which probably should produce a decrease in the flow rate. The effect of roughness, however,
according to the authors, could be highlighted only by adopting a numerical solution.
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5. Conclusions

The velocity field for a pulsatile flow of a non-Newtonian fluid in a rock fracture has been
described using an approximate analytical expression. A two-parameter logarithmic model has been
chosen to describe the rheological behavior of the fluid. The fracture has been schematized by two
parallel smooth plates; this scheme gives reliable results if the normal stress is less than ~10 MPa and if
the aperture variation along a flow path is not large. The solution, carried out up to the second order of
approximation, is expressed as a power series expansion of the amplitude of the pulsatile component
of the pressure gradient. A numerical example is made using the same fluid and the same geometry of
a previous work by the authors, in which the fluid was represented with a three-parameter Williamson
model in order to compare the results provided by the two models.

From the comparison, there results that the values of the mean flow rate in a period given by two
different models are almost identical, even in the case in which the amplitude of the perturbation ε is a
quarter of the steady component. The velocity profiles are quite different; in particular, the velocity
near the axis is higher for the L model (with a maximum deviation of 10% on the axis), since the
apparent viscosity at low shear rate given by the L model is lower than that provided by the W model,
as shown in Figure 1.

The authors believe that it is essential to have several rheological models to test, because it is not
possible to know a priori what will best represent the experimental data. They therefore consider the
introduction of this particularly simple rheological model to be justified and useful.
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