Alma Mater Studiorum Università di Bologna Archivio istituzionale della ricerca

Bypassing the Inertness of Aziridine/CO2 Systems to Access 5-Aryl-2-Oxazolidinones: Catalyst-Free Synthesis Under Ambient Conditions

This is the final peer-reviewed author's accepted manuscript (postprint) of the following publication:

Published Version:

Bresciani G., Antico E., Ciancaleoni G., Zacchini S., Pampaloni G., Marchetti F. (2020). Bypassing the Inertness of Aziridine/CO2 Systems to Access 5-Aryl-2-Oxazolidinones: Catalyst-Free Synthesis Under Ambient Conditions. CHEMSUSCHEM, 13(20), 5586-5594 [10.1002/cssc.202001823].

Availability:

This version is available at: https://hdl.handle.net/11585/782544 since: 2022-08-24

Published:

DOI: http://doi.org/10.1002/cssc.202001823

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/). When citing, please refer to the published version.

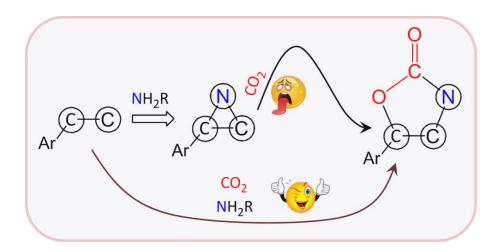
(Article begins on next page)

This is the final peer-reviewed accepted manuscript of:

G. Bresciani, E. Antico, G. Ciancaleoni, S. Zacchini, G. Pampaloni, F. Marchetti, "Bypassing the Inertness of Aziridine/CO₂ Systems to Access 5-Aryl-Oxazolidones: Catalyst-Free Synthesis Under Ambient Conditions", *ChemSusChem*, **2020**, *13*, 5586-5594.

The final published version is available online at:

https://doi.org/10.1002/cssc.202001823


Rights / License: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 (CCBYNCND)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

Bypassing the Inertness of Aziridine/CO₂ Systems to Access 5-Aryl-2-Oxazolidinones: Catalyst-Free Synthesis Under Ambient Conditions

Giulio Bresciani, Emanuele Antico, Gianluca Ciancaleoni, Stefano Zacchini, Guido Pampaloni, Fabio Marchetti

The largely investigated catalytic process affording 5-aryl-2-oxazolidinones by two-step assembly of a C_2 precursor with primary amine and carbon dioxide is replaced by the catalyst-free, direct addition of the amine/ CO_2 adduct to the C_2 unit in isopropanol or water.

Bypassing the Inertness of Aziridine/CO₂ Systems to Access 5-Aryl-2-Oxazolidinones: Catalyst-Free Synthesis Under Ambient Conditions

Giulio Bresciani, ^{a,b,§}Emanuele Antico, ^{a,§}Gianluca Ciancaleoni, ^{a,b,*}Stefano Zacchini, ^{b,c}Guido Pampaloni, ^{a,b,*}Fabio Marchetti ^{a,b,*}

^a Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy.

^b CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy.

^c Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.

Abstract

The development of sustainable synthetic routes to access valuable oxazolidinones via CO₂ fixation is currently a hot topic of research, and the aziridine/carbon dioxide coupling has aroused a considerable interest. This reaction is featured by a high activation barrier, so torequire a catalytic system, andmay present some other critical issues. Here, we describe the straightforwardgram-scale synthesis of a series of 5-aryl--oxazolidinones at ambient temperature and atmospheric CO₂ pressure, in the absence of any catalyst/co-catalystand using isopropanol or water as solvent. The key to this innovative procedure consists in the direct transfer of the pre-formed amine/CO₂ adduct (carbamate) to common aziridine precursors (dimethylsulfonium salts), replacing the classical sequential addition of amine (intermediate isolation of aziridine) and then CO₂. The reaction mechanism has been elucidated by NMR studies and DFT calculations applied to model cases.

Keywords: carbon dioxide activation; sustainability; catalyst free organic synthesis; oxazolidinones; aziridines.

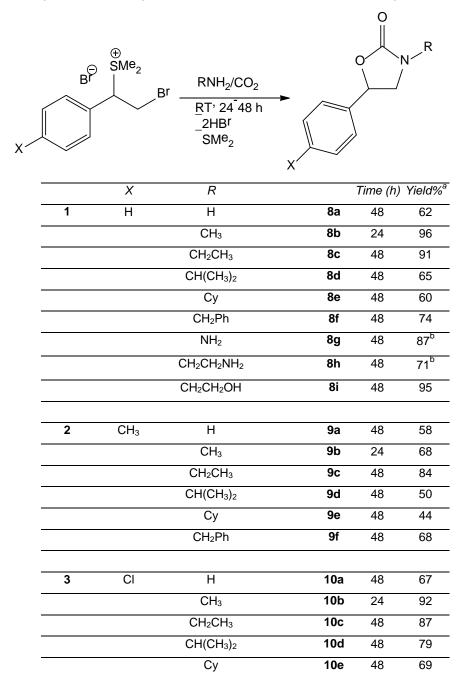
Introduction

Carbon dioxide is a nontoxic and ubiquitous substance associated to environmental issues, and its utilization as a C₁ synthon for organic synthesis, replacing hazardous compounds, is an ultimate goal of research, in theperspective of a sustainable world. In particular, oxazolidinones are five-membered heterocyclic compounds that find important applications for their biological activity² and as synthetic precursors to various natural and bioactive compounds.³ The recent years have witnessed an intense investigation aimed to develop new straightforward synthetic processes to access such fine chemicals exploiting CO₂ fixation routes.1^{b,f,}2^{a,4}All of the reported methods require the use of a catalyst unless high CO₂ pressure or supercritical carbon dioxide is employed. ⁵Thus, unsaturated amines, ^{6,7} haloamines ⁸ and amino-alcohols ^{6,9} have been investigated for their cyclization reactions with CO₂ to afford 2-oxazolidinones; even three-component systems may be effective, and in this regard, several epoxide/amine, ¹⁰ alkyne/amine, ¹¹ and alkene/amine ¹² combinations have been considered. Repo and co-workers demonstrated that a series of N-aryl-2-oxazolidinones are accessible from the one-pot carboxylation of aniline/1,2-dibromoethane in organic solvents under mild conditions. ¹³In this scenario, the coupling of CO₂ with aziridinesremainsan intriguing andintensively investigated approach.1^{b,g},6^{d,14}However, this reaction is featured by a high activation barrier, ¹⁵thereforeboth metal ¹⁶ and organocatalysts¹⁷ have been explored to the purpose. It should be remarked that the engagement of pressurized carbon dioxide is usually necessary, insteadexamples of efficient aziridine/CO2 coupling atambienttemperature and pressure are rare andinevitably associated to either a catalyst, ¹⁸ specialized

equipment¹⁹or limited substrate scope.²⁰Furthermore, the catalytic systems may present some critical issuesin terms of catalyst loadingand the need for a halide co-catalyst (Lewis base) and toxic solvents. 14 It is quite common in the literature that aziridines employed for the cyclization reaction with CO2are prepared witha convenient procedure whereby a sulfonium bromide salt, derived fromstyrene or related ring-substituted species, provides the C₂ unit of the three membered heterocycle (Scheme 1). 16a-b,17a-c,21 This protocol allows to access a variety of 2-aryl-aziridinesusing an excess of amine, and conversion into the corresponding aryloxazolidinones follows. In principle, two possible regioisomers can be finally obtained, bearing the substituted ring carbon bound to either oxygen (5-aryl-2-oxazolidinone) or nitrogen (4-aryl-2-oxazolidinone), and full regioselectivity is not oftenrealisable. 14,16a-b,22 Looking at the synthetic route in Scheme 1 and at variance to the literature, we wondered whether the two-step incorporation of the carbamato unit {OC(=O)NR}²³ (from RNH₂ and CO₂) within the final five-membered ring could occur in one pot, avoiding the intermediate aziridine step. Our idea stemmed from the largely documented evidence that carbon dioxide and amines easily form carbamato adducts. ²⁴Thus, the present work describes a novel and simple CO₂-fixation strategy to synthesize 5aryl-2-oxazolidinones bypassing the inertness of the aziridine/carbon dioxide system: exceptional simplicity and increased sustainable valuerespect to existing procedures is guaranteed by operating at ambient conditions (ambient temperature, atmospheric CO₂ pressure) and the complete absence of any catalyst/co-catalyst.

$$\begin{array}{c|c}
& \oplus \\
& \text{SMe}_2 \\
& \text{Ar}
\end{array}$$

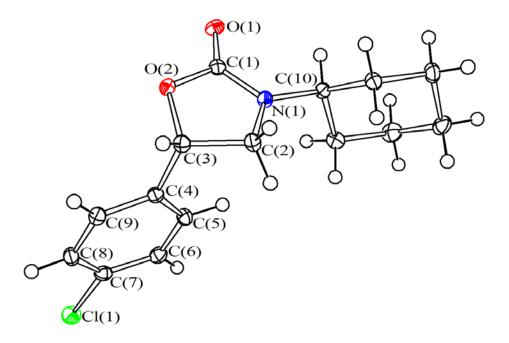
$$\begin{array}{c|c}
& RNH_2 \\
& & \text{RNH}_2/CO_2
\end{array}$$


Scheme 1.Black: widely investigated synthetic pathway to 5-aryl-2-oxazolidinones via aziridine/CO₂ coupling using a variety of catalytic systems and operating at variable reaction conditions; Green: unprecedentedstrategy described in this work (ambient temperature and CO₂ pressure; solvent = isopropanol or water; absence of metal/catalyst/nucleophile; full regioselectivity).

Results and discussion

1. Synthesis and characterization of compounds.

In order to obtain 5-aryl-2-oxazolidinones(gram-scale synthesis), deaeratedisopropanol saturated with carbon dioxide was left reacting with the primary amine up to completion. Following addition of the sulfonium salt (1-7)in an optimal 1:4 molar ratio respect to the amine, the mixture was stirred for 24-48 hours at ambient temperature under CO₂ atmosphere from a balloon. The desired products 8-14, except 8g, 8h and 10g, were generally isolated after work-up in good to excellent yields (Scheme 2). In comparison, the use of water as solvent required 6 equivalents of the amine and longer reaction times to achieve satisfying yields (see Table S1

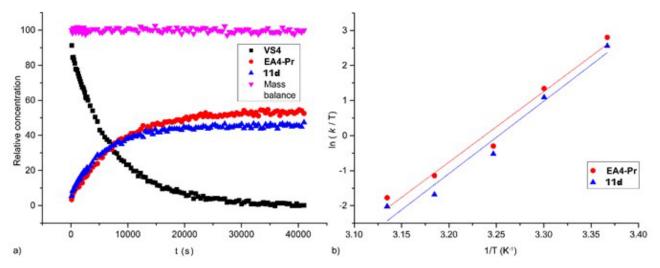

in the Supporting Information for details). Nonetheless, water revealed to be the appropriate choice to incorporate hydrazine and ethylenediamine, since the carbamates of these aminesare not soluble in isopropanol, andthus **8g**, **8h** and **10g** were obtained. The reaction leading to **8b** was selected as a model one to test further reaction solvents, and isopropanol resulted to be the best option (see SI, page S32). A comparative view of yields after variable times (Table S1) suggests that electronic and steric factors associated to the amine R substituent are influencing, and the best results are achieved with a compromise of electron donor properties and bulkiness. For instance, R = Me is beneficial compared to R = H, while lower yields have been achieved with R = Cy, and our attempts to obtain oxazolidinones from tert-butylamine and aniline were not successful.

_		CH₂Ph	10f	48	87
		NH ₂	10g	48	88 ^b
		CH(CH ₂) ₂ CH ₃	10h	48	88
4	F	Н	11a	48	65
		CH₃	11b	24	92
		CH(CH ₃) ₂	11d	48	72
		CH(CH ₂) ₂ CH ₃	11h	48	82
5	OMe	CH₃	12b	24	98
		CH₂CH₃	12c	48	92
6	NO ₂	CH ₃	13b	24	98
		CH₂CH₃	13c	48	92
7	CO ₂ Me	CH ₃	14b	24	89
		CH ₂ CH ₃	14c	48	67

Scheme 2.One pot synthesis of 5-aryl-2-oxazolidinones from (2-bromo-1-arylethyl)dimethylsulfonium bromide, primary amines (4 eq. respect to **1-7**; Cy = cyclohexyl, C_6H_{11}) and CO_2 in isopropanol. T = 298 K, pCO_2 = 1 atm. ^aYields referred to isolated products. ^bSolvent H_2O , 6 eq. of amines respect to **1,3**.

All thecompounds**8-14**were fully characterized by elemental analysis, IR and multinuclear NMR spectroscopy. According to the respective ¹H NMR spectra, **8-14**are exclusively obtained as a single regioisomer (no traces of 4-aryl-2-oxazolidinones). In addition, the molecular structures of **10a** and **10e** were elucidated by single-crystal X-ray diffraction studies; the representative structure of **10e** is shown in Figure 1, while a view of **10a** is supplied as Supporting Information (Figure S1).

Figure 1. Molecular structure of **10e**, with labelling. Displacement ellipsoids are at the 50% probability level. Hatoms have been omitted for clarity. Main bond distances (Å) and angles (°): C(1)-O(1) 1.2124(19), C(1)-O(2) 1.3663(18), C(1)-N(1) 1.3465(19), N(1)-C(2) 1.4522(18), C(3)-O(2) 1.4695(18), C(2)-C(3) 1.534(2), C(3)-C(4) 1.507(2), C(7)-Cl(1) 1.7429(15), N(1)-C(10) 1.4633(19), O(2)-C(1)-N(1) 121.39(13), C(1)-N(1)-C(2) 112.21(12), N(1)-C(2)-C(3) 101.24(12), C(2)-C(3)-O(2) 103.56(11), C(3)-O(2)-C(1) 109.09(11), C(2)-C(3)-C(4) 116.07(13).


Note that **8a-g**, **9a-c**, **9e**, **10a-c**, **10e**, **10h** and **11a-b**, **12b-c** and **14b** were all previously synthesizedby means of a catalytic system, often under not mild conditions. Instead, **8h-i**,**9d**, **9f**, **10d**, **10f-g**,**11d-h**, **13b-c**and **14c** are reported here for the first time.In particular, the classical procedure to access**8h-i**may be challenging due to elaborated protocols required for the preparation of the respective aziridine precursors, ²⁵or polymerization side-reactions favoured by the presence of the alcohol function. ²⁶

The route depicted in Scheme 2 consists in the preliminary formation of a CO₂/amine adduct (carbamate), followed by assembly of the latter with the C₂ unit supplied by the (2-bromo-1-aryl)dimethylsulfonium bromide reagent.²⁷For sake of comparison, a series of 5-aryl-oxazolidin-2-ones (including **8c,d,f** and **10h**) has been recently prepared by North and co-workers^{16b} via the metal-catalysed reaction at 50 °C of CO₂ with aryl-aziridines, the latter being preliminarily obtained and isolated from (2-bromo-1-arylethyl)dimethylsulfonium bromidesalts and an excess (up to 5 equivalents) of amine.^{21b,28}Calculated E factors related to the synthesis of **8c** from **1** and NH₂Et were approximately 2.2 and 2.5, respectively for the one pot procedure presented herein (procedure A in the SI) and the two-step one by North and co-workers^{16b} (solvent wastes were not considered).

In order to investigate mechanistic and kinetic aspects, the reactions leadingto8d and 11d weremonitored by NMR spectroscopy (see NMR studies in the SI). Thus, an excess of carbamate (from NH_2^iPr/CO_2) in aqueous solution was added to the precursor (1 and 4, respectively) in D_2O in an NMR tube. ¹H and 2D-HMBC experiments revealed the progressive formation of (1-arylvinyl)dimethylsulfonium salts(VS1, VS4), ²⁹promoted by the basicity of the carbamate(Scheme 3, step *i*). This finding is in alignment with previous reports on the reactivity of 1 with Brönsted bases. ³⁰

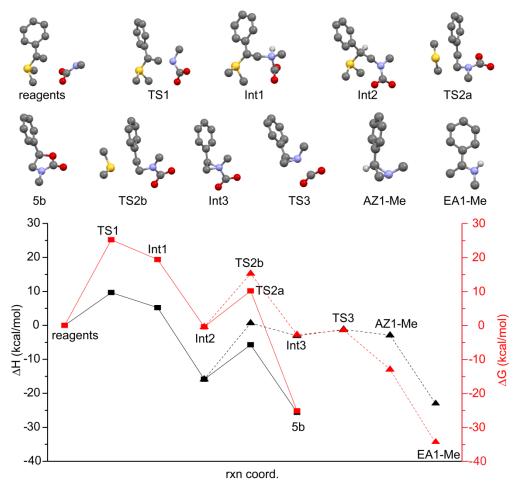
Scheme 3. NMR-detected steps of the reaction of (2-bromo-1-aryl)dimethylsulfonium bromide with N-isopropyl carbamate in D_2O or DMSO-d₆. In D_2O , **EA** are not detected and**8d/11d**separate as an oily phase.

Due to severe resonance broadening determined by the separation of an organic phase containing the oxazolidinone product from the aqueous medium, 31 we repeated the NMR study in DMSO-d₆, where **8d**and **11d** are soluble. Thus, the reaction of **1/4** with NH₂ Pr/CO₂ proceeded much faster than in D₂O, affording almost immediately **VS1/VS4** (Figures S2-S5), which then slowly converted into two different species (Scheme 3, step *ii*): one corresponded to **8d/11d**, while the second species was identified as an enamine (**EA1-Pr/EA4-Pr)**. Such enamines are featured by two diagnostic ¹H NMR signals (*e.g.* for **EA4-Pr** at 5.49 and 4.98 ppm) correlating with the same carbon in the ¹³C spectrum (107.4 ppm); in addition, a 2D HMBC experiment highlighted that the amino-substituent is geminal respect to the phenyl ring, without any other long-range contact (Figures S6-S10). The kinetic profile for the reaction leading to **11d**(in DMSO-d₆) could be elucidated by ¹⁹F NMR spectroscopy in the 297-319 K temperature range. The trend of [**11d**] and [**EA4-Pr**] concentrations as a function of time is fitted as an exponential growth (R^2 > 0.920 in every case; Figures 2A and S11a-d), providing the values of the reaction kinetic constants at different temperatures (Table 1). Fitting the data with the Eyring equation, the linearity is quite good (R^2 > 0.958; Figure 2B), and the activation enthalpies and entropies are comparable for the two products (**11d**: $\Delta H^{\dagger} = 10.4 \pm 1.1$ kcal mol⁻¹, $\Delta S^{\dagger} = -38 \pm 6$ cal mol⁻¹ K⁻¹; **EA4-Pr**: $\Delta H^{\dagger} = 10.2 \pm 1.0$ kcal mol⁻¹, $\Delta S^{\dagger} = -40 \pm 7$ cal mol⁻¹ K⁻¹).

Figure 2. a) Concentration of intermediate (**VS4**) and products (**11d** and **EA4-Pr**) along the reaction of **4** with NH_2^iPr/CO_2 in DMSO-d₆, as a function of time (T = 297 K); b) Eyring plot related to **11d** and **EA4-Pr**(R² = 0.964 and 0.959, respectively).

Table 1. Kinetic reaction constants at different temperatures (solvent: DMSO-d₆).

T(K)	$k_{8c}(s^{-1})$	$k_{\text{EA4-Pr}}(\text{s}^{-1})$
297	4900 ± 230	3800 ±150
303	1160 ± 25	900 ± 25
308	228 ± 24	182 ± 7
313	100 ± 5	58 ± 2
319	54 ± 4	42 ± 3


DFT calculations.

The reaction affording **8b**, via the preliminary formation of **VS1**,³²was chosen as a model for detailed DFT calculations, and theoverall, proposed pathwayis shown in Scheme 4.

Scheme 4.Proposed DFT mechanism for the reaction of dimethyl(1-phenylvinyl)sulfonium salt **VS1**(from **1**, see Scheme 3) with NH₂Me/CO₂; relevant transition states in blue; water as solvent (conductor-like polarisable continuum model).

According to the DFT-computed energies (Figure 3), the rate determining step is the initialnucleophilic addition of the carbamato nitrogen to the less hindered alkenic carbon of VS1 (C2), featured by anactivation enthalpy of 9.6 kcalmol⁻¹. Limited to this key step, the calculation was repeated on the reaction of **VS4** with ⁱPrNHCO₂⁻¹ (DMSO as solvent, Scheme 3): the activation enthalpy resulted 12.9 kcal mol⁻¹, i.e. in reasonable agreement with the experimental value (10.4 \pm 1.1 kcal mol⁻¹, see above). ³³While anyalternative attack to C¹ is prohibitive (ΔG^{\dagger} = 35 kcal mol⁻¹), C^2 -O coupling involving one carbamatooxygen is theoretically possible (ΔH^{\dagger} = 9.1 kcal mol⁻¹), but the resulting species seemsunable to evolve to any product. The intramolecular proton transfer converting Int1 into Int2occurs through a high-energy transition state ($\Delta G^{\dagger} = 40.3 \text{ kcal mol}^{-1}$), therefore it is presumably assisted by the excess of carbamate in the solution. The subsequent C-O bond forming cyclization(TS2a) yields8band resembles a previously proposed cyclization step for the formation of oxazolidinones from alkenes, chloramine-T and CO₂; ³⁴the competitive, presumableformation of the enamine**EA1-Me** from Int2parallels the experimentally observed formation of EA1-Pr and EA4-Prin DMSO (Scheme 3), and may be explained with a ring closure by the nitrogen atom (TS2b). The resulting aziridine AZ1-Mecanrearrange to EA1- $Me(\Delta G^{\dagger} = 22 \text{ kcal mol}^{-1})$. In general, the route via **TS2b**in water is probably disfavoured since the various equilibria are shifted toward the oxazolidinone product, precipitating from the aqueous reaction medium where instead enamines of the typeCH₂=C(Ar)(NHR) are expected to be soluble.³⁵According to ¹H NMR analyses of the crude mixtures, a minor amount of the relevant aziridine(<5%) is generally aside-product of the formation of 8-14, however this fact might be most properly related to the direct reaction of the amine with 1-

7.

Figure 3. (Down) DFT-computed energy paths for the formation of **8b** and **EA1-Me** from **VS1** and NH₂Me/CO₂. (Up) DFT-optimized geometries of the species involved in the mechanism; for the sake of clarity, most of hydrogen atoms are omitted.

Alternative, hypothetical reaction pathways were carefully examined by DFT calculations (Scheme S1): all of them exhibit higher activation barriers and are thus ruled out at ambient temperature (Figures S12-S14).

Conclusions

The synthesis of valuable oxazolidinones from the coupling of aziridines with CO_2 has aroused a notable interest:the use of a catalytic system has been usually taken for granted, often associated to high CO_2 pressure and/or high temperature, and many efforts have been addressed to develop suitable metal catalysts pointing towards a more sustainable process. Herein, we have reported a novel method to access thirty-three 5-aryloxazolidinones (twelve reported for the first time) in a gram-scale, consisting in the preliminary facile fixation of CO_2 with NH_2R , and subsequent reaction of the resulting carbamate with a C_2 synthon. The latter is widely employed in the literature to obtain aryl-oxazolidinones, but through a two-step route with the intermediate

isolation of 2-aryl-aziridines. Our innovative method overcomes the inertness of the aziridine/CO₂ system, and therefore does not require any type of promoter (catalyst or ring-opening nucleophile) and allows to operate under ambient temperature and atmospheric CO₂pressure. Moreover, avoiding the aziridine-forming step is beneficial even considering that aziridines are toxic, potentially carcinogenic chemicals. ^{14,36}

Corresponding Authors

- * <u>fabio.marchetti1974@unipi.it</u> (webpage: http://people.unipi.it/fabio_marchetti1974/)
- * gianluca.ciancaleoni@unipi.it
- * guido.pampaloni@unipi.it;
- § These authors equallycontributed to the work.

Acknowledgements

We gratefully thank the University of Pisa for financial support (Fondi di Ateneo 2018).

Supporting Information Available

Experimental procedures and characterization products; X-ray studies; NMR studies; DFT calculations; NMR and IR spectra of products. Cartesian coordinates of the DFT structures are collected in a separated .xyz file. CCDC reference numbers 1967793 (10a) and 1967794 (10e) contain the supplementary crystallographic data for the X-ray studies reported in this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44-1223/336-033; e-mail: deposit@ccdc.cam.ac.uk).

References

Selected recent reviews: (a) J.Artz, T. E.Müller, K. Thenert, *Chem. Rev.* 2018, 118, 434-504. (b) R. Dalpozzo, N. Della Ca', B. Gabriele, R. Mancuso, *Catalysts* 2019, 9, 511. (c) Q.-W.Song, Z. H. Zhou, L.-N. He, *Green Chem.* 2017,19, 3707-3728. (d) Q. Liu, L. Wu, R. Jackstell, M. Beller, *Nat. Commun.* 2015, 6, 5933. (e) F. D. Bobbink, A. P. van Muyden, P. J. Dyson, *Chem. Commun.* 2019, 55, 1360-1373. (f) M.Aresta, *Coord. Chem. Rev.* 2017, 334, 150–183. (g) J. E. Gómez, A. W.Kleij, *Adv. Organometal. Chem.* 2019, 71, 175-226. (h) N. A. Tappe, R. M. Reich, V. D' Elia, F. E. Kühn, *Dalton Trans.* 2018, 47, 13281–13313.

- (a) T.Niemi, T. Repo, Eur. J. Org. Chem. 2019, 1180–1188. (b) R.Barbachyn, The oxazolidinones, Topics in Medicinal Chemistry IssueAntibacterials, 2018, 2, 1-25. (c) W. J.Watkins, J. J. Plattner, Med. Chem. Rev. 2015, 50, 241-281. (d) C. A. Zaharia, S. Cellamare, C. D. Altomare, Ed. C.Lamberth, J. Dinges, Oxazolidinone Amide Antibiotics, From Bioactive Carboxylic Compound Classes 2016, 149-166. (e) P. S. Jadhavar, M. D. Vaja, T. M. Dhameliya, A. K. Chakraborti, Curr. Med. Chem. 2015, 22, 4379-4397. (f) N. Pandit, R. K. Singla, B. Shrivastava, Int. J. Med. Chem. 2012, doi:10.1155/2012/159285.
- (a) V. Zadsirjan, M. M. Heravi, Curr. Org. Synth. 2018, 15, 3-20. (b) S. G. Davies, A. M. Fletcher, P. M. Roberts, J. E Thomson, Org. Biomol. Chem. 2019,17, 1322-1335. (c) M. M. Heravi, V. Zadsirjan, B. Farajpour, RSC Adv. 2016, 6, 30498-30551. (d) M. M. Heravi, V. Zadsirjan, Tetrahedron: Asymmetry 2013, 24, 1149-1188.
- 4 (a) S. Wang, C. Xi., Chem. Soc. Rev. 2019, 48, 382-404. (b) S. Arshadi, A. Banaei, S. Ebrahimiasl, A. Monfared, E. Vessally, RSC Adv. 2019, 9, 19465–19482. (c) B. Yu, L.-Nian He, ChemSusChem2015, 8, 52-62.
- 5 Y. Kayaki, M. Yamamoto, T. Suzuki, T. Ikariya, *Green Chem.***2006**, *8*, 1019–1021.
- (a) P. Garcia-Dominguez, L. Fehr, G. Rusconi, C. Nevado, *Chem. Sci.* 2016, 7, 3914–3918.
 (b) X.-T. Gao, C.-C. Gan, S.-Y. Liu, F. Zhou, H.-H. Wu, J. Zhou, *ACS Catal.* 2017, 7, 8588–8593.
 (c) Z. Zhang, J.-Heng Ye, D.-Shan Wu, Y.-Qin Zhou, D.-Gang Yu, *Chem. Asian J.*2018, 13, 2292–2306.
 (d) S. Pulla,

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

- C. M. Felton, P. Ramidi, Y. Gartia, N. Ali, U. B. Nasini, A. Ghosh, J. CO₂ Utilization2013, 2, 49–57.
 (e) J.-F. Qin, B. Wang, G.-Q. Lin, Green Chem.2019,21, 4656-4661.
- 7 R. Yousefi, T. J. Struble, J. L. Payne, M. Vishe, N. D. Schley, J. N. Johnston, Catalytic, *J. Am. Chem. Soc.* **2019**, *141*, 618–625.
- 8 T. Niemi, J. E. Perea-Buceta, I. Fernandez, S. Alakurtti, E. Rantala, T. Repo, *Chem. Eur. J.***2014**, *20*, 8867–8871.
- (a) M. Tamura, M. Honda, Y. Nakagawa, K. Tomishige, *J. Chem. Technol. Biotechnol.* 2014, 89, 19–33.
 (b) C. J. Dinsmore, S. P. Mercer, *Org. Letters* 2004, 6, 2885-2888.
- (a) A. Hosseinian, S. Ahmadi, R. Mohammadi, A. Monfared, Z. Rahmani, J. CO₂ Utilization2018, 27, 381–389.
 (b) U. R. Seo, Y. K. Chung, Green Chem. 2017, 19, 803–808.
 (c) M. Lv, P. Wang, D. Yuan, Y. Yao, ChemCatChem2017, 9, 4451-4455.
- 11 H. Li, H. Feng, F. Wang, L. Huang, J. Org. Chem. 2019, 84, 10380–10387
- 12 J. K. Mannisto, A. Sahari, K. Lagerblom, T. Niemi, M. Nieger, G. Sztanj, T. Repo, *Chem. Eur. J.* 2019, 25, 10284–10289.
- 13 T. Niemi, J. E. Perea-Buceta, I. Fernandez, O.-M. Hiltunen, V. Salo, S. Rautiainen, M. T. Räisänen, T. Repo, *Chem. Eur. J.* 2016, 22, 10355–10359.
- 14 K. J.Lamb, I. D. V. Ingram, M. North, M. Sengoden, Curr. Green. Chem. 2019, 6, 32-43.
- (a) C. Phung, D. J. Tantillo, J. E. Hein, A. R. Pinhas, J. Phys. Org. Chem. 2018, 31, e3735.
 (b) A. Singh,
 N. Goel, Structural Chemistry 2014, 25, 1245-1255.
- Selected references: (a) Y. Xie, C. Lu, B. Zhao, Q. Wang, Y. Yao, J. Org. Chem. 2019, 84, 1951–1958.
 (b) M.Sengoden, M. North, A. C. Whitwood, ChemSusChem2019, 12, 3296-3303. (c) X.-Min Kang, L.-Hong Yao, Z.-Hao Jiao, B. Zhao, Chem. Asian J. 2019, 14, 3668-3674. (d) X.-F. Liu, M.-Y. Wang, L.-N. He, Curr. Org. Chem. 2017, 21, 698-707. (e) W. Chen, L.-xin Zhong, X.-wen Peng, R.-cang Sun, F.-chuang Lu, ACS Sustainable Chem. Eng. 2015, 3, 147–152.
- (a) A.-H.Liu, Y.-L. Dang, H. Zhou, J.-J. Zhang, X.-B. Lu, *ChemCatChem* 2018, 10, 2686-2692.
 (b) Z.-Z. Yang, L.-N. He, S.-Y. Peng, A.-H. Liu, *Green Chem.* 2010, 12, 1850–1854.
 (c) V. B. Saptal, B. M. Bhanage, *ChemSusChem* 2016, 9, 1980-1985.
 (d) K. Soga, S. Hosoda, H. Nakamura, S. A. Ikeda, *J. Chem.*

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

- Soc., Chem. Commun. **1976**, 617-617. (e) A.Ueno, Y. Kayaki, T. Ikariya, Green Chem. **2013**, 15, 425–430. (f) Y.Wu, G. Liu, Tetrahedron Letters **2011**, 52, 6450-6452.
- 18 H. Li, H. Guo, Z. Fang, T. M. Aida, R. L. Smith Jr., Green Chem. 2020, 22, 582-611.
- 19 (a) C.Phung, R. M. Ulrich, M. Ibrahim, N. T. G. Tighe, D. L.Lieberman, A. R. Pinhas, *Green Chem.* **2011**, 13, 3224–3229. (b) X.-Y.Dou, L.-N. He, Z.-Z. Yang, J.-L. Wang, *Synlett* **2010**, 14, 2159-2163.
- 20 (a) M. Franz, T. Stalling, H. Steinert, J. Martens, *Org. Biomol. Chem.* **2018**, *16*, 6914–6926. (b) A. Sudo, Y. Morioka, E. Koizumi, F. Sanda, T. Endo, *Tetrahedron Letters* **2003**, *44*, 7889–7891.
- Additional references: (a) Z.-Z. Yang, Y.-N. Li, Y.-Y. Wei, L.-N. He, *Green Chem.* 2011, 13, 2351–2353. (b) R. A.Watile, D. B.Bagal, Y. P.Patil, B. M.Bhanage, *Tetrahedron Letters* 2011, 52, 6383-6387.
 (c) R. A. Watile, D. B. Bagal, K. M. Deshmukh, K. P. Dhake, B. M. Bhanage, *J. Mol. Catal.* A2011, 351, 196-203. (d) D. B. Nale, S. Rana, K. Parida, B. M. Bhanage, *Appl. Catal.* A2014, 469, 340-349.
- (a) S. Arayachukiat, P. Yingcharoen, S. V. C. Vummaleti, L. Cavallo, A. Poater, V. D'Elia, *Mol. Catal.* 2017, 443, 280–285. (b) X.-B.Lu, *Top Organomet. Chem.*2016, 53, 171–198.
- 23 (a) M.Hulla, P. J. Dyson, *Angew. Chem. Int. Ed.* DOI 10.1002/anie.201906942. (b) Y.Yoshida, S. Inoue, *J. Chem. Soc. Perkin Trans.* **11979**, 3146-3150.
- 24 See for instance: (a) J.Septavaux,G. Germain,J.Leclaire, Acc. Chem. Res.2017, 50, 1692–1701. (b) Y.-N.Li,L.-N. He,Z.-F.Diao,Z.-F. Yang, Carbon Capture with Simultaneous Activation and Its Subsequent Transformation. Advances in Inorganic Chemistry2014, Vol. 66, Elsevier Ed. (c) D.Belli Dell'Amico,F. Calderazzo,L. Labella,F. Marchetti,G. Pampaloni, Chem. Rev. 2003, 103, 3857-3897, and references therein.
- 25 S. Sternativo, F. Marini, F. Del Verme, A. Calandriello, L. Testaferri, M. Tiecco, *Tetrahedron***2010**, *66*, 6851-6857.
- 26 (a) A. Šakalyte, J. A. Reina, M. Giamberini, A. Lederer, *Polymer Engineering and Science***2014**, *54*, 579-591. (b) B. L. Rjvas, K. E. Geckeler, E. Bayer, *Eur. Polym. J.***1991**, 27, 1165-1169.
- Attempts to synthesize the corresponding (2-bromo-1-arylethyl)dimethylsulfonium bromide salt from allylbenzene, isoprene, allylbromide, fumaronitrile, tetrachloroethene, 2,6-dichlorostyrene, 2,4,6-trimethylstyrene and pentafluorostyrene were not successful.

28 Y. Du, Y. Wu, A.-H. Liu, L.-N. He, *J. Org. Chem.* **2008**, *73*, 4709–4712.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

- 29 J. V.Matlock, S. P.Fritz, S. A. Harrison, D. M. Coe, E. M. McGarrigle, V. K. Aggarwal, J. Org. Chem. 2014, 79, 10226-10239.
- 30 (a) Y. L.Chow, B. H. Bakker, *Synthesis***1982**, 648-650. (b) Y. L.Chow, B. H. Bakker, K. Iwai, *J. Chem. Soc. Chem. Commun.* **1982**, 521-522.
- 31 NMR analysis of the aqueous phases at the end of reaction led to recognition of **VS1-4** only.
- 32 The fast reaction of **1** with NH₂Me/CO₂ in DMSO-d₆ was monitored by ¹H NMR spectroscopy, and the observation of two doublets at 6.60 and 6.42 ppm accounted for the intermediate formation of **VS1**.
- 33 Calculated $\Delta S^{\dagger} = -48$ cal mol⁻¹ K⁻¹; experimental $\Delta S^{\dagger} = -38 \pm 6$ cal mol⁻¹ K⁻¹.
- 34 D.-L. Kong, L.-N. He, J.-Q. Wang, Catal. Commun. 2010, 11, 992–995.
- 35 SciFinder, water solubility calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994-2019 ACD/Labs).
- 36 (a) R. F. Ulrich Steuerle, *Aziridines*in: Ullmann's Encyclopedia of Industrial Chemistry; Wiley: **2006**. (b) C.Cussac,F. Laval, Nucleic Acids Res. **1996**, *24*, 1742–1746.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)