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Abstract: We investigate the onset of convection in an inclined Darcy-Bénard layer. When such a
layer is unbounded in the spanwise direction it is generally known that longitudinal rolls comprise
the most unstable planform. On the other hand, when a layer has a sufficiently small spanwise
width, then transverse rolls form the most unstable planform. However, the layer remains stable to
transverse roll disturbances when the inclination is above roughly 31 degrees from the horizontal.
This paper considers the transition between these two extreme cases where the spanwise width
takes moderate values and where rectangular cells are considered. It is found that the most unstable
planform is quite strongly sensitive to the magnitude of the spanwise width and that there are large
regions of parameter space within which three-dimensional convection patterns have the smallest
critical Darcy-Rayleigh number.
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1. Introduction

The Rayleigh-Bénard instability in a porous layer saturated by a fluid and heated from below has
been the subject of many investigations over the last decades. A thorough and updated survey of the
most important results in this field can be found in the book by Nield and Bejan [1]. The alternative
name used for this instability when a porous medium is involved is Darcy-Bénard as the momentum
transfer for seepage flows is modelled through Darcy’s law. Usually, the porous layer where the
thermoconvective instability arises in the form of cellular patterns is assumed to be horizontal and
bounded by impermeable walls kept at different uniform temperatures. This situation has a stationary
basic state where no flow occurs and a vertical temperature gradient directed downward causes the
instability. There is a different scenario when the porous layer is inclined at an angle α to the horizontal.
In this case, the basic seepage velocity is a parallel vector field with a non-uniform linear profile
yielding a longitudinal flow with zero net rate.

Pioneering studies of the Darcy-Bénard problem in an inclined porous layer were carried out
by Bories and Combarnous [2] and by Weber [3]. The main consequence of the inclination is that the
critical Rayleigh number at the onset of the instability depends on the inclination α through a factor
1/ cos α. The ultimate effect of this factor is that no convective instability can arise when the porous
layer becomes vertical (α = 90◦). A rigorous analysis of this effect is reported in a short paper by
Gill [4]. The consequences of Gill’s no-go theorem for the instability in a vertical layer were studied
further by Lewis, Bassom and Rees [5] using asymptotic theory and by Straughan [6] using nonlinear
stability theory. It must be mentioned that the scaling of the critical Rayleigh number through the factor
1/ cos α holds whenever the most unstable modes at onset are longitudinal rolls. This is the typical
situation when the inclined porous layer has no lateral confinement. On the other hand, the effect of
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lateral confinement implies the emergence of transverse rolls as the preferred modes activating the
instability (Rees and Bassom [7]), when the distance between the confining sidewalls is very narrow.
As shown by Rees and Bassom [7], a peculiarity of unstable transverse rolls is their disappearance
when the inclination of the porous layer exceeds the threshold angle α = 31.49032◦.

Further studies of the Darcy-Bénard instability in an inclined porous layer have been carried out,
for instance, by Postelnicu and Rees [8], Rees and Postelnicu [9], Rees, Postelnicu and Storesletten [10],
Rees, Storesletten and Postelnicu [11], Barletta and Rees [12]. Such studies were mainly concerned
with the model employed to describe the flow and the heat transfer in the porous medium either by
including the anisotropy of the porous material, or inertial effects, or the local thermal non-equilibrium
within the saturated medium. Further investigations were focussed on alternative types of temperature
and velocity conditions employed to model the inclined plane boundaries which, in the classical
Darcy-Bénard problem, are assumed as impermeable and isothermal. This is the case of the papers
by Barletta and Storesletten [13], Rees and Barletta [14], Barletta and Rees [15], Barletta and Celli [16],
Celli and Barletta [17]. Further recent studies have been reported by Rees and Bassom [18] and by
Wen and Chini [19]. In the former paper, the boundary layer regime is analysed for a porous medium
heated from below through an inclined isothermal boundary with uniform suction. In the latter paper,
a nonlinear analysis of transverse rolls is performed for Darcy-Bénard convection in an inclined porous
layer where it is shown that it is possible to obtain strongly nonlinear convection at inclinations greater
than the above-mentioned 31.49032◦. We also mention the early work by Riley and Winters [20] who
undertook a bifurcation analysis of transverse cells in an inclined finite porous cavity.

The aim of this paper is to extend the linear analysis of the onset of instability carried out by Rees
and Bassom [7] who considered a two-dimensional model of the instability as driven by transverse
rolls. When there is a lateral confinement where the distance between the sidewalls is not too small
then it may be possible for three-dimensional modes to arise at onset of convection. Such modes will
correspond to rectangular planforms and these are equivalent to the sum of two otherwise identical
oblique rolls aligned at equal but opposite directions from that of a longitudinal roll. A general modal
map of the onset of instability in the inclined porous layer is provided for different inclinations, α,
and aspect ratios of the transverse cross-section of the layer. The analysis is carried out numerically by
employing a shooting-method solution of the stability eigenvalue problem. A perturbation analysis
is also presented providing some analytical results for the transition between longitudinal rolls and
oblique rolls forming the preferred pattern of convection.

2. Governing Equations and Stability Analysis

The aim is to investigate the effect of the presence of sidewalls on the onset of convective instability
for the inclined Darcy-Bénard problem. Specifically the intention is to determine the identity of the most
unstable mode without being restricted solely to transverse or longitudinal rolls. The nondimensional
governing equations are

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (1)

u = −∂p
∂x

+ (Ra sin α)(θ − 1
2 ), (2)

v = −∂p
∂y

+ (Ra cos α)(θ − 1
2 ), (3)

w = −∂p
∂z

, (4)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
+ w

∂θ

∂z
=

∂2θ

∂x2 +
∂2θ

∂y2 +
∂2θ

∂z2 , (5)
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where z is a horizontal coordinate and where α is the angle of rotation of the layer about the z-axis.
In addition, y is the coordinate which acts in the normal direction to the heated surfaces, and x is the
coordinate up the layer. The above equations form the standard set for problems of this type, and the
Darcy-Rayleigh number, Ra, is given by

Ra =
ρgβKd ∆T

µκ
, (6)

where d is the thickness of the uniform layer where ρ is the reference density, g the strength of gravity,
β the coefficient of cubical expansion, ∆T the temperture drop across the layer, µ the dynamic viscosity,
and κ the thermal diffusivity of the porous medium. The boundary conditions which are required to
complete the specification of the problem are,

v = 0, θ = 1 on y = 0, v = 0, θ = 0 on y = 1, w = 0,
∂θ

∂z
= 0 on z = 0, L. (7)

We note that the conditions on the spanwise sidewalls at z = 0, L also imply that ∂p/∂z = 0 there.
From these equations we see that the basic state, whose stability forms the subject of the paper,

is given by,

θ = 1− y, u = Ra sin α( 1
2 − y), v = w = 0,

∂p
∂y

= Ra cos α( 1
2 − y). (8)

These profiles may be subtracted out of the governing equations and the resulting system is then
linearised. Equations (1) to (4) then remain unchanged, but Equation (5) takes the form,

∂θ

∂t
+ (Ra sin α)( 1

2 − y)
∂θ

∂x
− v =

∂2θ

∂x2 +
∂2θ

∂y2 +
∂2θ

∂z2 . (9)

The velocity components may now be removed and the resulting pair of equations in
pressure/temperature form are,

∂2 p
∂x2 +

∂2 p
∂y2 +

∂2 p
∂z2 = (Ra sin α)

∂θ

∂x
+ (Ra cos α)

∂θ

∂y
, (10)

∂θ

∂t
+ (Ra sin α)( 1

2 − y)
∂θ

∂x
− (Ra cos α)θ +

∂p
∂y

=
∂2θ

∂x2 +
∂2θ

∂y2 +
∂2θ

∂z2 . (11)

The boundary conditions are now that,

∂p
∂y

= θ = 0 on y = 0, 1,
∂p
∂z

=
∂θ

∂z
= 0 on z = 0, L. (12)

We shall consider three-dimensional disturbances which are proportional to cos(nπz/L),
i.e., where n rolls have been fitted into the spanwise width of the layer. This form may be used
for both the pressure and the temperature because each satisfies a zero Neumann condition at the
sidewalls. However, there also needs to be a component in the x-direction in order to allow for the
presence of three-dimensional convection, and therefore we may take the disturbance temperature
field to be proportional to cos(nπz/L) cos(mx) where m is a wavenumber. This product of cosines,
which represents convection with a rectangular planform, may also be split into the sum of two
independent oblique rolls,

cos(nπz/L) cos(mx) = 1
4

[
ei(nπz/L−mx) + ei(nπz/L+mx)

]
+ complex conjugate, (13)

which are equally inclined away from the direction of the x-axis but in opposite directions. We note
that it is sufficient to consider just one of these rolls since the other has identical stability properties.



Fluids 2020, 5, 83 4 of 20

Therefore in the rest of the paper we shall refer to an oblique roll disturbance as a proxy for the 3D cell
with the rectangular planform given that it may be visualised easily.

The presentation of the stability analysis is made easier by defining an overall wavenumber, k,
where k is given by,

ei(nπz/L−mx) = eik(z cos φ−x sin φ). (14)

and where φ is its orientation. We note that φ = 0 corresponds to longitudinal rolls, and φ = π/2
to transverse rolls (although such rolls will also require n = 0). Although our computations will
use k, it is the spanwise width, L, and the nuber of cells, n, which are imposed on the configuration.
Therefore we have,

k =
nπ

L cos φ
; (15)

this dependence of k on φ will be relied upon later. Therefore we shall take the following form for the
disturbances, (

p
θ

)
= eik(z cos φ−x sin φ)+λt

(
f (y)
g(y)

)
+ complex conjugate, (16)

where λ = λr + iλi is the complex exponential growth rate. The functions f (y) and g(y) satisfy,

f ′′ − k2 f = (Ra cos α) g′ − (ikRa sin α sin φ) g, (17)

g′′ − k2g = f ′ − (Ra cos α) g− (ikRa sin α sin φ) ( 1
2 − y)g + λg. (18)

This will be treated as an eigenvalue problem for both Ra and λi where λr = 0 is imposed and which
corresponds to marginal stability. The boundary conditions are taken to be,

f ′(0) = f ′(1) = g(0) = g(1) and g′(0) = 1, (19)

where the last condition is a normalisation condition. This complex eigenvalue problem was solved
using a fourth order Runge Kutta method as part of a shooting method code. Computations made
with this code, which uses a pressure/temperature formulation, compare perfectly with those of
Rees and Bassom [7] who used a streamfunction/temperature formulation. Table 1 shows how the
computed values of the critical Darcy-Rayleigh number vary with successive interval-halving where
N is the number of uniform intervals. Two different cases are presented and they demonstrate that the
numerical errors reduce by a factor of roughly 24 as the intervals are halved, which also confirms the
4th order accuracy of the method. We have therefore decided to use a uniform grid of 100 intervals in
all of our computations; this may be seen to provide eight significant figures of accuracy.

Table 1. Accuracy tests for the given cases with n = 1.

L = 1, α = 0, φ=0 L = 1.2, α = 25◦, φ = 10◦

N Rac(N) Error Rac(N) Error

25 39.478 580 76 0.000 163 16 45.024 341 41 0.000 201 46
50 39.478 427 84 0.000 010 24 45.024 152 58 0.000 012 63

100 39.478 418 25 0.000 000 65 45.024 140 74 0.000 000 79
200 39.478 417 64 0.000 000 04 45.024 140 00 0.000 000 05
400 39.478 417 61 0.000 000 00 45.024 139 95 0.000 000 00
800 39.478 417 61 0.000 000 00 45.024 139 95 0.000 000 00
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It is important to note that while some of the computations presented in Rees and Bassom [7]
correspond to travelling modes, i.e., they correspond to nonzero values of λi, these cases arise in
regions of parameter space which are quite distant from where the minima in the neutral curves are
located. Therefore the present computations, which are concerned with such minima, always give rise
to stationary modes for which λi = 0.

3. Results and Discussion

The ultimate aim is to provide an informative modal map in the spirit of Beck’s well-known
analysis of Darcy-Bénard convection in a cuboid [21]. This will show the preferred planform for
convection at onset as a function of both the spanwise width of the layer and the inclination angle.
We shall begin with an attempt to understand how the neutral curves vary with the governing
parameters.

3.1. Sample Neutral Curves

The four subfigures which comprise Figure 1 display how the critical Darcy-Rayleigh number
varies with the roll orientation, φ for the inclination angle, α = 5◦. The subfigures are distinguished by
having different numbers of rolls occupying the layer. In all cases the equivalent critical Darcy-Rayleigh
number for the transverse mode is given by the blue line. A rather large number of curves are displayed
here and it is impractical to attempt to label them. Therefore the manner in which the curves have
been plotted serves to identify the values of L. Thus red curves correspond to values of L which are
less than n, and dashed curves denote cases where L is an integer. The right-most curve corresponds
to L = 5. Therefore, in all four cases shown, the curve with the lowest minimum value may be seen
to correspond to when L = n, given that it is dashed and is the first instance of a black curve as one
moves to the right. In fact, each of the L = n curves shown have identical shapes because of the form
of Equation (15) which means that the linear stability equations are solved using precisely the same
value of k. This observation may also be generalised to saying that any two cases with identical values
of n/L, φ and α are identical mathematically and have the same critical Darcy-Rayleigh number.

We note that the curves corresponding to different widths, L, always have their minimum below
the critical value of Ra for transverse rolls, and therefore we do not expect transverse rolls to form
the most unstable mode unless the layer is sufficiently narrow, i.e., unless L is sufficiently small.
In addition, the roll orientation is not always that of the longitudinal roll (φ = 0), but φ often takes
nonzero values and corresponds to an oblique mode.

We mention that the locus of the minima as L increases continuously traces the same curve
independently of the value of n, and this will also be true for a similar set of curves for different
inclinations. Therefore we shall not present such a large amount of data for other inclination.

Figure 2 shows how such neutral curves vary with the inclination angle, and we have chosen the
2-roll case, n = 2, for these. The main general observation is that the Darcy-Rayleigh number increases
with increasing inclination, should n, L and φ be held fixed, and this also includes the transverse roll.
Yet again, for any chosen value of L and α the minimum value of the Darcy-Rayleigh number lies
below that of the transverse roll, and it may or may not correspond to φ = 0.

Let us consider, for example, the α = 10◦ case, and specifically at the two black curves which
intersect the vertical axis one moves upwards from Ra = 40. The dashed line, which corresponds to
L = 2, has its minimum at φ = 0 and therefore it is a longitudinal roll. The second curve, a continuous
curve, has its minimum at φ ' 22◦ and is an oblique roll. Therefore this is a case where neither the
transverse nor the longintudinal roll forms the preferred mode, a situation which, as will be seen,
is quite common for low inclinations.

Curves for L > 5 follow the same trend, namely that their minima correspond to increasing values of
both Ra and φ. In fact Ra will never exceed the value for the tranverse roll while φ tends towards 90◦.
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Figure 1. Critical values of Ra against φ for L = 0.6, 0.8 (0.2) · · · 5 when the inclination
from the horizontal is α = 5◦ and for the n = 1, n = 2, n = 3 and n = 4 modes. The red
curves denote those values of L which are less than n. The dotted lines correspond to integer
values of L while the rightmost curve is for L = 5. The blue horizontal line corresponds to
transverse rolls.

In Figure 3 neutral curves are shown again but from a different point of view. We have taken
the inclination α = 20◦ to represent a typical case, and have concentrated on aspect ratios varying in
steps of 0.2 from L = 3 to L = 4. The different curves correspond to different values of n and these are
colour-coded in the manner defined in the caption.

When L = 3, the preferred mode is the n = 3 mode which is displayed in red. When L increases
to 3.2, the various minima in the curves tend to move either to the right (when φ is nonzero) or
downwards (when φ is zero). This process continues in the same way except that when L = 3.4, the red
n = 3 curve now has a local maximum at φ = 0 and the global minimum, which is difficult to see in
the figure, is at φ ' 25.8◦. Therefore the preferred mode is now an oblique roll. At L = 3.6 the critical
Darcy-Rayleigh number for the n = 3 longitudinal is now larger than that for the n = 4 roll, shown in
purple. However, the oblique n = 3 mode remains the preferred pattern. When L = 3.8 and L = 4,
the n = 4 longitudinal roll assumes the role of being the most dangerous.

Although we have chosen to consider this transition using the case α = 20◦ and when L varies
between 3 and 4, this scenario is ubiquitous. There are two exceptions, however: (i) when L is
sufficiently far below 1 that transverse rolls are favoured, and (ii) when the inclination is sufficently
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large. So Figures 4–6 begin the the process of understanding the global picture of the linear stability
properties of this system. These figures, which correspond respectively to α = 10◦, α = 20◦ and
α = 25◦, show how the critical Darcy-Rayleigh number and the roll orientation varies with aspect ratio,
L. In the Darcy-Rayleigh number plots we show curves for transverse, longitudinal and oblique rolls.
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Figure 2. Critical values of Ra against φ for the n = 2 mode, the following values of L:
L = 0.6, 0.8 (0.2) · · · 5, and for the indicated inclinations from the horizontal. The red
curves denote those values of L which are less than n. The dotted lines correspond to integer
values of L while the rightmost curve is for L = 5. The blue horizontal line corresponds to
transverse rolls.
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Figure 3. Critical values of Ra against φ for α = 20◦ and for the given values of L.
The following modes are shown: n = 1, n = 2, n = 3, n = 4, n = 5, n = 6 and n = 7.
The horizontal line corresponds to transverse rolls.
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Figure 4. Showing the variation of Ra and φ against L when α = 10◦. For the curves for Ra,
blue indicates longitudinal rolls, while red indicates oblique rolls and black the transverse
roll. The disks denote the beginning and ending of the ranges within which oblique rolls
are favoured.

The blue curves denote longitudinal rolls, and in Figure 4, for the longitudinal mode which
has its minimum at L = 1, it needs only a very slight increase in L from L = 1 to L = 1.023303
for the longitudinal mode’s variation in φ to make the above-mentioned transition from φ = 0
being a minimum to being a local maximum, and then oblique rolls form the preferred planform.
The transitional value, L = 1.023303, may be referred to as a quartic point.

The detailed variation of φ with L is shown in the lower part of the figure and it resembles the
separate buildings of the Sydney Opera House in its disjointed shape. The sudden transitions in φ

back to zero correspond to the blue disks in the upper plot where, for example, the n = 1 red curve
crosses the n = 2 blue curve and the preferred mode changes its identity.

Figures 5 and 6 have similar features except that it becomes clear that there are only a finite
number of ‘buildings’ in the Sydney Opera House shape. The reason is that the quartic point for each
inclination, the red disks in Figures 4–6, all occur at the same value of the Darcy-Rayleigh number,
while the intersections between the curves corresponding to neighbouring longitudinal mode curves
occur at decreasing values of the Darcy-Rayleigh number. So for α = 20◦ there are four disconnected
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ranges of values of L for which oblique modes arise, while for α = 25◦ it is only two, and for α = 30◦,
which is not shown here, it is just the one.
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Ra

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0
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30

40

50

60

L

φ

Figure 5. As Figure 4 but for α = 20◦.

It is possible to determine quite easily what happens when α = 0. The neutral curve for an
unbounded horizontal plane layer is given by,

Ra =
(k2 + π2)2

k2 (20)

where, for the present bounded problem, k is given by Equation (15). Hence we have,

Ra = π2 (L2 cos2 φ + n2)2

n2L2 cos2 φ
. (21)

For a given number of rolls, n, this expression is maximised when

L cos φ = n or cos φ = n/L, (22)

at which point Ra = 4π2. When L is an integer, the case n = L yields an n-cell longitudinal roll pattern
(φ = 0) as the most unstable disturbance; other values of n give larger values of the Darcy-Rayleigh
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number irrespective of the roll orientation. When L is not an integer, then the most unstable disturbance
takes the form of oblique rolls with n cells where n is any integer which is smaller than L. For example,
when L = 3.5, then there are three possible planforms where Rac = 4π2, namely n = 1 (cos φ = 1/3.5),
n = 2 (cos φ = 2/3.5) and n = 3 (cos φ = 3/3.5). These curves are shown as the black dashed lines in
Figure 7 when we see that there will always be a degeneracy whenever L > 2 by having more than
one choice of pattern with the smallest possible critical Darcy-Rayleigh number. Although we shall
not prove it here once α rises about zero be it ever so slightly, this degeneracy in the identity of the
preferred mode resolves. The unique preferred mode then becomes the one with the largest value of n
which is less than L, and this is shown as the red line.

The variation in the orientations of the oblique mode with L for this very slightly-inclined case is
shown in Figure 7, and these too resemble the Sydney Opera House shape. Moreover, if one compares
the dependence of Φ on L as shown in Figures 4–6 in that order, then the dependence shown in Figure 7
is clearly seen to be reasonable. One implication of Figure 7 is that longitudinal rolls can only form the
preferred onset pattern in a horizontal layer when L is an integer.
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Figure 6. As Figures 4 and 5 but for α = 25◦.
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Figure 7. Showing the orientations of the preferred modes (black dotted lines) when the
layer is horizontal and for which Rac = 4π2. The given values of n correspond to the number
of cells in the spanwise direction. The red line depicts the preferred mode when |α| � 1.

3.2. The Modal Map

Finally, we are in a position to provide the modal map which summarises the stability properties
of the inclined layer with a finite spanwise width, and this is shown in Figure 8. There are three main
regions and these are colour-coded for easy reference. The blue region corresponds to when we expect
transverse rolls to appear first as Ra increases. The region is bounded to the right at L = 1 and above
by α = 31.49032◦, which is the maximum inclination for linear instability (Rees and Bassom 2000).

The white regions are when longitudinal rolls are preferred. For a randomly chosen value of
L, the appearance of longituinal rolls becomes decreasingly likely as the layer tends towards being
horizontal, and the ever-decreasing ranges of values of L tend to be focused near integer values of L.

The orange shark fin shapes correspond to when oblique rolls (i.e., rectangular cells) are favoured.
The left hand boundaries correspond to when the neutral curves (in terms of Ra against φ) have a
quartic point, and therefore Ra satisfies d2Ra/dφ2 = 0; such locations are shown as the blue disks
in Figures 4–6. Numerically, this curve was obtained by solving Equations (A6)–(A11) given in the
Appendix A (although the Appendix A also provides the analytical solution).

The right hand boundaries correspond to the red disks in those Figures, i.e., where an oblique
mode for n rolls has the same critical Darcy-Rayleigh number as a longitudinal mode with n + 1
rolls. This curve was obtained by solving Equations (5) and (7) together with (A8) and (A9) which
guarantees that the minimum in the neutral curve has been obtained. The value of α as a function of L
was obtained by adding the further constraint that the oblique mode with n cells has the same critical
Darcy-Rayleigh number as the longitudinal mode with n + 1 cells.

When these two curves meet at the sharp end, both sides of the fin tip represent longitudinal
rolls, the left with say n rolls and the right with n + 1 rolls. This is well-known to take place when
L =

√
n(n + 1), for this is what happens for 2D convection in a porous box of aspect ratio, L (cf. p313

of Nield and Bejan 2017).
The Appendix contains a detailed analysis for the left hand sides of the fins, and this provides the

following formula relating α to n and L:

tan2 α =
96n2L4(L2 − n2)

(L2 + n2)3[(π2 + 3)L2 + (15− π2)n2]
(23)

which compares favourably to 8 significant figures with the numerical calculations shown in Figure 7.
When L =

√
n(n + 1) is substituted into Equation (23) we obtain

tan2 α =
96n(n + 1)2

(2n + 1)3(18n + 3 + π2)
, (24)

which gives the value of α at the tip of the fin. For n = 1 and n = 5, for example, Equation (24) yields,
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tan2 α =
128

9(21 + π2)
and tan2 α =

17820
1331(93 + π2)

. (25)

Some numerical data which has been obtained using Equation (24) are given in Table 2, below.

Table 2. Inclinations corresponding to the nth fin tip.

n α(Degrees)

1 34.167212
2 28.006732
3 24.143052
4 21.499921
5 19.557799

10 14.306414
20 10.288103
50 6.572284
100 4.662749

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

5

10

15

20

25

30

35

L

α

n = 0

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

Figure 8. Modal map showing the form of the most dangerous disturbance. Blue signifies
transverse rolls, orange signifies oblique rolls and white corresponds to longitudinal rolls.
The vertical lines shows the boundary between longitudinal rolls with n cells and with n + 1
cells. The lines within each orange region denote the following values of φ: 10◦ (dashed),
20◦, 30◦, 40◦ and 50◦.

Table 2 shows that, as L increases, the range of inclinations within which we might observe
oblique rolls decreases as the aspect ratio increases. Indeed, it is quite easy to use Equation (24) to
show that

tan2 α =
2

3n
+ O(n−2) when n� 1. (26)
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We have also presented lines of constant φ within the orange regions of Figure 8 to indicate concisely
which oblique modes are to be expected. The form of these contours suggests that the maximum
possible value of φ within any chosen shark fin shape is to be found at the bottom right hand corner.
This value of φ may be found using Equation (22) using L = n + 1. Therefore we have,

cos φ = n/(n + 1). (27)

For the left-most shark fin we have φ = cos−1(1/2) = 60◦ while for the second we have φ =

cos−1(2/3) = 48.1897◦, and so on. As an extreme example, for n = 100, which is the final entry in
Table 2, φ = cos−1(100/101) = 8.0693◦. Therefore, when L is large, not only is there a small range of α

within which which oblique rolls are preferred, but the deviation from the direction of the longitudinal
roll is also small.

4. Conclusions

In this paper we have studied the effect of having a spanwise constraint on the onset of
Darcy-Bénard convection in an inclined porous layer. When the layer is unconstrained in this way,
it is well-known that longitudinal rolls always form the most unstable convection pattern and that
the critical Darcy-Rayleigh number is 4π2/ cos α. It is also well-known that if the layer is sufficiently
well-constrained by having an exceptionally narrow layer then transverse rolls arise. Here we have
relaxed the assumption that convection takes either of these two forms by considering cells with a
rectangular planform, for which the oblique rolls are a proxy. It has been found that, for moderate
values of the aspect ratio, L, and for inclinations which are less than, say, 30◦, quite a large amount of
the (L, α) parameter space corresponds to oblique rolls forming the preferred pattern of convection.

We have been able to provide an analytical expression for when a longitudinal roll loses its
dominance to oblique modes as L increases. We have also found a precise expression for when oblique
rolls give way to longitudinal rolls as the inclination increases (viz. the apex of the shark fin shapes).
Although transverse rolls are well known to be unstable only when α < 31.49032◦, we have found that
it is possible to obtain oblique rolls at slightly higher inclinations than that, although α = 34.167212 is
the upper limit.

If one were to wish to extend this analysis still further by considering an inclined cuboid, then the
task will be very substantially more difficult. In the present case the basic state may be written down
analytically, while this cuboidal extension will need its basic state computed numerically. But even
then, there are complications because the concept of the onset of convection doesn’t always apply
(Guerrero-Martínez, Karimi and Ramos [22]). Even when confined to two-dimensional convection,
some aspect ratios (typically those where L is close to being an even integer) will exhibit a classical
bifurcation from the basic state to a strongly convecting solution, but others (where L is close to being
an odd integer) exhibit a smooth transition to strong convection. Another complicating factor is that
the work of Wen and Chini [19] has uncovered subcritical onset of convection.
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Abbreviations
Latin letters
A imaginary constant
A, C, E particular integral coefficients for g1
B complementary function coefficient
B, D, F particular integral coefficients for f1
d height of the channel
f , g reduced pressure and temperature
g gravity
k wave number
K permeability
L channel aspect ratio
L1,L2 differential operators in Equation (A41)
m wave number
n number of rolls
N number of intervals
p pressure
Ra Darcy-Rayleigh number
R1,R2 right hand sides in Equation (A41)
t time
u Darcy velocity along the layer
v Darcy velocity across the layer
w spanwise Darcy velocity
x coordinate along the layer
y coordinate across the layer
z spanwise coordinate
Greek letters
α inclination angle
β coefficient of cubical expansion
∆T temperature difference
θ temperature
κ thermal diffusivity
λ exponential growth rate
µ dynamic viscosity
ρ reference density
φ orientation of oblique roll
Other symbols
0, 1, 2 terms in series expansion
i imaginary component
r real component
′ differentiation with respect to y

Appendix A

The aim of this Appendix is to find an analytical expression relating α and L on the left hand edge
of the shark fins. This locus corresponds to when

∂2Ra
∂φ2 = 0 (A1)

when φ = 0. This marks the transition from when φ = 0 represents a global minimum in the neutral
curve to when it is a local maximum, i.e., φ = 0 represents a quartic minimum. Therefore we need to
solve Equations (17) and (18) using a small-φ expansion. These equations are reproduced below for
the sake of completeness:

f ′′ − k2 f = (Ra cos α) g′ − (ikRa sin α sin φ) g, (A2)

g′′ − k2g = f ′ − (Ra cos α) g− (ikRa sin α sin φ) ( 1
2 − y)g, (A3)

where the exponential growth rate has been set to zero. The boundary conditions are,

f ′(0) = f ′(1) = g(0) = g(1). (A4)
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Solutions are sought in the form of a power series in φ. Therefore we begin with the expansions,

f = f0 + φ f1 + φ2 f2 + · · ·

g = g0 + φg1 + φ2g2 + · · ·

Ra = Ra0 + φRa1 + φ2Ra2

(A5)

and then it is necessary to solve the following systems,

f ′′0 − k2 f0 −
(

Ra0 cos α
)

g′0 = 0, (A6)

g′′0 − k2g0 +
(

Ra0 cos α
)

g0 − f ′0 = 0, (A7)

f ′′1 − k2 f1 −
(

Ra0 cos α
)

g′1 = −
(

ikRa0 sin α
)

g0, (A8)

g′′1 − k2g1 +
(

Ra0 cos α
)

g1 − f ′1 = −
(

ikRa0 sin α
)
( 1

2 − y)g0, (A9)

f ′′2 − k2 f2 −
(

Ra0 cos α
)

g′2 =
(

Ra2 cos α
)

g′0 −
(

ikRa0 sin α
)

g1 + k2 f0, (A10)

g′′2 − k2g2 +
(

Ra0 cos α
)

g2 − f ′2 = −
(

Ra2 cos α
)

g0 −
(

ikRa0 sin α
)
( 1

2 − y)g1 + k2g0 (A11)

The terms typeset in blue in Equations (A10) and (A11) require some explanation. Equation (15) may
be expanded according to,

k =
nπ

L cos φ
=

nπ

L
(1 + 1

2 φ2) + · · · . (A12)

This means that the k2 terms in Equations (A2) and (A3) are, formally,

k2 =
(nπ

L

)2
(1 + φ2 + · · · ) = k0 + φ2k0, (A13)

where k0 = nπ/L. In Equations (A6) to (A11) the 0-subscripts have been omitted for
clarity of presentation.

In the above systems we have also set Ra1 = 0 for reasons of symmetry, and therefore this term
has been omitted. Although we have retained Ra2 in the above, it is our intention to set Ra2 = 0 in
order to determine the relationship between L and α which defines the left hand side of each of the
sharks fins in Figure 8.

At leading order, we shall use the following as the solutions,

Ra0 cos α =
(k2 + π2)2

k2 , f0 = −π
(k2 + π2)

k2 cos πy, g0 = sin πy. (A14)

At O(φ) we have the equations,

f ′′1 − k2 f1 −
(

Ra0 cos α
)

g′1 = −
(

ikRa0 sin α
)

sin πy ≡ −A sin πy, (A15)

g′′1 − k2g1 +
(

Ra0 cos α
)

g1 − f ′1 = −
(

ikRa0 sin α
)
( 1

2 − y) sin πy ≡ A(y− 1
2 ) sin πy, (A16)

which defines the quantity, A = ikRa0 sin α, for the sake of brevity. First, we note the presence of the
following Complementary Function,
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f1 = (2k2 + π2)1/2
( k2 + π2

k2

)
B cosh σ(y− 1

2 ), (A17)

g1 = B sinh σ(y− 1
2 ), (A18)

where

σ =
√

2k2 + π2, (A19)

and where B is presently arbitrary.
The Particular Integral may be found making the following substitutions into Equations (A15)

and (A16),

g1 = A cos πy + B(y− 1
2 ) sin πy + C(y− 1

2 )
2 cos πy, (A20)

f1 = D sin πy + E(y− 1
2 ) cos πy + F(y− 1

2 )
2 sin πy. (A21)

When considering those terms which are proportional to (y− 1
2 )

2, Equations (A15) and (A16) yield,

− (k2 + π2)F + (Ra0 cos α)πC = 0, (A22)(
Ra0 cos α− k2 − π2

)
C− πF = 0. (A23)

These equations are multiples of one another and they both yield,

F =
π

k2 (k
2 + π2)C. (A24)

When considering those terms which are proportional to (y− 1
2 ), we obtain,

− (k2 + π2)E− (Ra0 cos α)πB = 2(Ra0 cos α)C− 4πF, (A25)(
Ra0 cos α− k2 − π2

)
B + πE = A+ 2F + 4πC. (A26)

If we multiply Equation (A25) by π, Equation (A26) by (k2 + π2) and add, then the left hand sides
cancel and we are left with the solvability condition,

2π(k2 + π2)
(3k2 + π2)

k2 C + 2(k2 − π2)F + (k2 + π2)A = 0. (A27)

This, together with Equation (A24) yields the following expressions for C and F:

C = − 1
8π
A, F = − k2 + π2

8k2 A. (A28)

When these expressions are substituted into Equations (A25) and (A26), both give the following relation
betwen B and E:

π2(k2 + π2)B + πk2E = 1
4 (k

2 − π2)A. (A29)

Now we consider those terms which are not proportional to a power of (y− 1
2 ). These give,

− (k2 + π2)D +−(Ra0 cos α)πA = (Ra0 cos α)B + 2πE +
π2 − 3k2

4k2 A, (A30)(
Ra0 cos α− k2 − π2

)
A− πD =

A
4π

+ E− 2πB. (A31)
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The left hand sides of these equations may be eliminated by multiplying Equation (A30) by π and
subtracting Equation (A31) multiplied by (k2 + π2). This eventually simplifies to,

π2(k2 + π2)(3k2 + π2)B + kπ2(k2 − π2)E + 1
4 (π

4 − 4k2π2 − k4)A = 0. (A32)

Equations (A32) and (A29) forms a pair of equations for B and E. These values are found to be

B =
1

8π2A, E =
k2 − 3π2

8πk2 A. (A33)

When these expressions are substituted into Equations (A30) and (A31), both give the following relation
between A and D:

π2(k2 + π2)A− πk2D =
(k2 − 3π2)

8π
A. (A34)

Thus far, four of the constants which were introduced in Equations (A20) and (A21) have been
found together with a relationship between the other two, namely Equation (A34). When this Particular
Integral is added to the Complementary Function given in Equations (A17) and (A18) there remains
two constants to determine. This is undertaken by ensuring that the appropriate boundary conditions
are satisfied by f1 and g1:

f ′1(0) = f ′1(1) = g1(0) = g1(1) = 0. (A35)

Although there are four boundary conditions the symmetry of the solutions shown in Equations (A20)
and (A21) means that they represent only two in practice and therefore the full set of constants may
now be determined.

The condition, f ′1(1) = 0, yields,

− πD− E− 1
4 πF +

(2k2 + π2)(k2 + π2)

k2 B sinh 1
2 σ = 0, (A36)

while the condition, g1(1) = 0, yields,

− A− 1
4 C + B sinh 1

2 σ = 0. (A37)

We may combine these two equations together so that Equation (A34) may be used to eliminate A and
D. Thus we subtract Equation (A36) multiplied by k2 from Equation (A37) in order to obtain,

(k2 + π2)
[
π2 − (2k2 + π2)

]
B sinh 1

2 σ = π2(k2 + π2)A− πk2D + 1
4 π2(k2 + π2)C− k2(E + 1

2 πF). (A38)

Using the above solutions for C, E and F together with Equation (A37) we obtain,

B = 0, (A39)

and therefore this complementary function plays no role in the final solution. Now we use
Equations (A37) and (A34) separately to show that,

A =
A

32π
, D =

(
k2 + π2

32k2 +
3π2 − k2

8π2k2

)
A. (A40)

At O(φ2) it is necessary to guarantee that Equations (A10) and (A11) have a solution. At this stage
in such an analysis it would be usual to be computing the value of Ra2, but here we are attempting
to find an analytical expression which relates L and α for the specific case where φ = 0 corresponds
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to where ∂2Ra/∂φ2 = 0 – such a locus delineates the region where φ = 0 is a local minimum in the
neutral curve from the region where nonzero values of φ yield the minimum.

If we were to write Equations (A10) and (A11) in the respective forms,

L1( f2, g2) = R1 and L2( f2, g2) = R2, (A41)

then it is straightforward to show that,

∫ 1
0

[
f0L1( f2, g2)− Ra0 cos α g0L2( f2, g2)

]
dy =

∫ 1
0

[
f2L1( f0, g0)− Ra0 cos α g2L2( f0, g0)

]
dy = 0. (A42)

Hence the solvability condition for this system is

∫ 1

0

[
f0R1 − Ra0 cos α g0R2

]
dy = 0. (A43)

This condition may be evaluated analytically and it eventually yields the relation,

tan2 α =
96k2π4(π2 − k2)

(π2 + k2)(π4 + 3π2 + 15k2 − k2π2)
. (A44)

Given that k = nπ/L, this becomes,

tan2 α =
96n2L4(L2 − n2)

(L2 + n2)3[(π2 + 3)L2 + (15− π2)n2]
. (A45)
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