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Abstract: This work originates from an experimental pro-
gram on strain distribution near the loaded surface of an
airfield concrete pavement, which provided us with results
that contrast with the rheological predictions of Boussi-
nesq for a homogeneous, linear-elastic and isotropic half-
space. We already reviewed and extended the original
work carried out by Boussinesq in previous papers, to pro-
vide a closed form second order solution that enabled us
to establish a good match between analytical and exper-
imental findings for point-loads. In this paper, we have
explained why Boussinesq’s closed form solution for a
homogeneous linear-elastic and isotropic half-space sub-
jected to a point-load is not exact, as believed until now,
but approximated. Then, we have shown that our second
order solution is the actual solution of Boussinesq’s prob-
lem. We have also presented the numerical analysis of sec-
ond order for rectangular and elliptical contact areas, both
loaded by uniform and parabolic laws of external pres-
sure. Moreover, we have evaluated the interaction effect
provided on the surface of a concrete half-space by the
twin wheels of an aircraft landing gear. Extension of the
solution to layered systems is also possible, for improv-
ing the knowledge of stress propagation into airfield pave-
ments and promoting more effective design standards.
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1 Introduction

The present study follows an experimental program un-
dertaken at the Guglielmo Marconi airport of Bologna
(Italy) for acquiring pavement strains at aircraft taxiing, by
means of some strain gauges embedded into the concrete
slab of the taxiway (Figure 1, [1]).

Figure 1: Rehabilitation interview of the taxiway at the Guglielmo
Marconi airport of Bologna (Italy): area of the rehabilitation inter-
view boxed in red and experimental segment filled in red (from [2].)

After stress identification, we found that the vertical
stresses transmitted to the pavement depend on the elas-
tic properties of concrete [1]. Moreover, the profile of the
acquired strains for static load (Figure 26 of [2]) is very
similar to the form of the wave propagating along the rail
foregoing the wheel for static load (Figure 3 of [3]). This
means that around the tire/pavement contact areas there
are some vertical tensile stresses (Figure 2, [2]) that are not
caused by friction forces, since they appear even when the
speed is very low, that is, in quasi-static conditions.

Both the dependence of the vertical stresses on con-
crete elastic properties and the presence of tensile stresses
around the contact areas are not accounted by Boussi-
nesq’s closed form elastic solution for a homogeneous,
linear-elastic and isotropic half-space subjected to a point-
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Direction of‘motion:

Figure 2: Vertical stresses induced near the surface by the front and
back wheels (from [2]).

Figure 3: Parameter definition for Eq. (2).

load perpendicular to the surface [4, 5]:

0z = %%cos% 6))
where 07 is the vertical stress at the distance r between the
application and the evaluation points, 9 is the angle be-
tween the point load vector and the radial arm connecting
the application to the evaluation point, and F is the point-
load applied at the surface (Figure 3).

In fact, from Eq. (1) we can see that ¢, is independent
of the elastic properties of the transmitting medium and
has the same sign as F independently of the distance from
the application point.

The inconsistencies between Boussinesq’s solution
and our experimental findings led us to a review of the
original work carried out by Boussinesq [6], in the search
for a higher order closed elastic solution for the homoge-
neous, linear-elastic and isotropic half-space subjected to
a point-load perpendicular to the surface. It is worth not-
ing that, even in the past, a number of numerical and em-
pirical models proposed modifications to Boussinesq’s so-
lution based on several inconsistencies between Boussi-
nesq’s solution and the experimental evidence [7-18]: the
most relevant inconsistency they took into account is that,
for most cases, Boussinesq’s solution results in stresses
and deflections that are greater than the measured values.
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Indeed, Boussinesq was himself aware that Eq. (1) may
not have been valid for non-solid materials and had devel-
oped a theory for stresses in a granular medium, assum-
ing the shear modulus to be proportional to the hydrostatic
stress [5]. Well, each of those modified old models is able
to capture some experimental behavior, but none of them
predicts the tensile stresses that we identified near the sur-
face [1, 2]. On the contrary, our new closed form elastic so-
lution [6] succeeds in explaining why a compression point-
load induces both compression and tensile stresses into
the homogeneous, linear-elastic and isotropic half-space.
It also provides stresses and deflections lower than those
of Boussinesq.

2 A comparison between
Boussinesq’s solution and the
second order solution

We must recall that Boussinesq obtained Eq. (1) by using

the theory of linear elasticity and the properties of poten-

tials. In particular, he built the solution on the similarity
between the system of equilibrium equations:

A+ aal)lf +uvViu =0
A+ 061}1/5 +uviv =0 )]
A+ ) a;; +uviw=0

where the body forces have been set to zero, since gravity
has been neglected:

fx=fy=fz=0, 3
and the system of equations:

0 (,OP\ __20@P) _

ax \%5z) "V ox 7O
d (,OP\  _,0(zP)
0 oP _ 2a(ZP)_
z\%%z) Vo 7O

that is satisfied by any potential function P for which the

Laplacian is equal to zero:

0’P  0’°P  0°P
2
P=>_+2-+-—=0.

ViP=Sat 52t oz ©)
The first expression for P chosen by Boussinesq is the
logarithmic potential ¥ of the loaded surface for the pre-
fixed point (x, y, z) of the semi-space under the surface, at

Unauthenticated
Download Date | 1/25/19 12:03 PM



DE GRUYTER

the distance r from the point Q = (x1, y1, 0) of the load

surface:
P=‘P=/log(z+r)dm (6)
with:
V¥ =0 @)
r=\/(x—x1)2+(y—y1)2+z2 ®
dm = dF = p (x1, y1) dx1dy, 9)

where p (x1, y1) is the mass density for unit surface at the
point Q.

In order to comply with the actual displacement field
at infinity (r — oo, Figure 4), which declines at infinity as
rapidly as the function 1/r, Boussinesq then used the first
partial derivative 0¥/ 9z of Eq. (6), instead of the logarith-
mic potential ¥, for the potential P in Eqgs. (4):

F
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Figure 4: The boundary of the half-space.

_ov_ [dm

iy . (10)

This substitution is allowable, since 0¥/0z still gives a
Laplacian equal to zero:
20V

Vi—=—=0.

0z ()

Nevertheless, the choice made by Boussinesq in Eq. (10) is
not sufficient for guaranteeing the well-posedness of the
boundary value problem. In fact, worrying about meeting
the boundary conditions for r — oo is not enough, be-
cause the boundary of the half-space is made by both the
loci r — oo and z = O (Figure 4). Due to lacking of in-
formation on the stress and strain behavior at the surface,
Boussinesq could not set a proper boundary condition for
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z = 0. Therefore, his solution satisfies the boundary condi-
tions for r — oo whereas does not comply with the bound-
ary conditions for z = 0. Consequently, Boussinesq’s so-
lution for z = 0 is highly sensitive to changes in the given
data, either for stresses or for displacements, particularly
for r — 0. According to the definition of well-posed prob-
lem [19], this makes Boussinesq’s mathematical model ill-
posed. For restoring well-posedness, we must comply with
the boundary conditions along the entire contour of the
half-space.

In conclusion, the solution of Boussinesq is not the ex-
act solution of the elastic problem he studied and can be
improved, particularly for z = 0.

We may rewrite Eq. (1) as:

3 F 5
=Z__ 12
0z = 5 ——5C08 9 (12)
or, in Cartesian coordinates:
3FZ
Uz = E F . (13)
Further forms of Eq. (1) in Cartesian coordinates are:
F 3
AN )
n(R? +22)?

where R is the horizontal distance from the application to
the evaluation point, and:

Oz = IB Z_z . (15)
Iz, known as the influence factor, takes the form:
5
27172
3 R
IB—E|:1+<E) :| . (16)

It should be noted that, as previously pointed out for Eq.
(1), in Egs. (12), (13), (14), and (15) the vertical normal stress
(02) is independent of the elastic constants at a point: E,
the longitudinal modulus of elasticity or Young’s modu-
lus, and v, Poisson’s ratio. That is, Boussinesq’s vertical
normal stress spreads in the medium independently of the
kind of medium itself. Since our experimental program
on stress identification in loaded concrete pavements pro-
vided evidence against this analytical result [1], we can
now conclude that the independence of g, from the elas-
tic constants is a false result, direct consequence of having
satisfied the boundary conditions in part.

Boussinesq obtained the solution for a point-load per-
pendicular to the surface (infinitesimal load surface) by re-
placing the integrals with their integrands, that is, by caus-
ing the dimensions of the load surface in the x/y plane to
vanish. This provides:

3 23

T dF (17)

Oz =
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where the minus sign depends on the fact that the outgo-
ing normal versor, n, on each horizontal plane at the depth
z is opposite to the z axis, whose direction is that of grav-

ity:

nx 0
n-= ny = 0 (18)
nz -1

For a finite load F, Eq. (17) gives Eq. (13), where o, is a stress
of compression. The vertical stress contours below a con-
centrated load form the ball-shaped surface shown in Fig-
ure 5.

In building our closed form solution, we followed the
same analytical strategy as Boussinesq [6]. This second
time, however, the point-load solution is obtained directly
by defining the potentials for the infinitesimal superficial
neighborhood of the point (x1, y1, 0). Consequently, we
set the logarithmic potential of the infinitesimal neighbor-
hood of mass dm equal to:

(19)

Y =log(z+r)dm

which satisfies the condition:

Locus of g, 09 =79 =0

Figure 5: Stress distribution of Boussinesq (from [6]).

V2P =0 (20)
If we take: op 1

the solution obtained following Egs. (4) and the assump-
tion in Eq. (21) is:

3

z
0z=-3 r_5dF (22)

which replaces Eq. (17).

Moreover, we further developed Boussinesq’s idea of
replacing the potential with one of its partial derivatives,
to provide a stress solution to the vertical point-load prob-
lem that also depends on the elastic constants [6]. In fact,
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following the spirit of the superposition principle and not-
ing that the partial derivatives of any arbitrary order of the
function 1) have a zero Laplacian (i.e. they satisfy the con-
dition V2 = 0), it is possible to refine the approximated
elastic solution provided by Boussinesq by adding to it a
further solution of Egs. (4), obtained by replacing ¥ with
one of its derivatives. By choosing the derivatives of the
second order [6], we found the second order solution:

Oz (23)
S [3Z acu (157 s Rk Aral g,
R K r A+urr A+pu
where:
r#0 (24)
v
A_E(1+u)(1—2v) (25)
£ (26)

ST
Thus, as expected, it is possible to build a closed form elas-
tic solution that puts o, in relationship with the elastic
constants E and v. In particular, the terms that refine Eq.
(22) - that is, the terms in round brackets of Eq. (23), multi-
plied by -2Cu/r? - significantly modify the normal stress

" when approaching the surface, whereas they are negligi-

ble at great depths. In fact, for z — 0:

A+2u 1

A+pu r_3dm

7)

-pz=limo, =2Cu
z—0

which depends on the elastic constants, whereas, for z —
oo, Eq. (23) gives the first order solution:

3

. z
lim 0; = -3=-dm
Z—oo r>

(28)

which, for the position in Eq. (9), is equal to Eq. (22). As
can be easily verified, for z — oo the solution proposed
in [6] is equal to the solution of Boussinesq even for the
displacement field.

Note that, in the assumption C > 0, the normal stress
given by Eq. (27) for z — 0 is opposite in sign to the normal
stress given by Eq. (28) for z — oo. This allows the vertical
stresses to change sign in function of the distance from the
application point.

The contour lines of Eq. (23) are given in Figure 6 for
a prefixed v and variable values of E, and in Figure 7 for
a prefixed E and variable values of v [20]. As we can see
in both Figure 6 and Figure 7, two families of stress con-
tours, one of tensile stresses and the other of compres-
sion stresses, now distinguish the solution. The contour
line that separates the two families (the locus o, = 0)
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Figure 6: Parametric analysis on E for the vertical stress contours (all distances in mm) (from [6]).

does not depend on Young’s modulus (Figure 6), whereas
it slightly depends on Poisson’s ratio (Figure 7). Lastly, the
family of compression stresses is no longer ball-shaped,
like that in Figure 5. The new drop-shaped stress contours
for compression stresses in some way resemble the stress
contours of several empirical modified models and, specif-
ically, those of Frohlich’s modified model [11]:

n Fz"

2T ®)

, =

In point of fact, when the concentration factor of Fr6h-
lich, n, is equal to 3, Eq. (29) provides the Boussinesq equa-
tion, whereas, for n > 3, Eq. (29) increases the depth at
which the stresses propagate so that the stress contours
protrude more deeply into the elastic medium, changing
the ball-shaped surface of Figure 5 into an ellipsoidal-
shaped surface (Figure 8). Values of n greater than 3 are
used specifically to predict soil compaction resulting from
heavy tractor tires, since it was found that agricultural
soils distribute stresses differently from the ball-shaped
surfaces shown in Figure 5 [21]: soil stresses are greater un-
der the load axis and smaller further away.

In [6], we showed that Eq. (27) matches the stresses
identified for z — 0 in the experimental campaign [1]. This
means that Eq. (23) complies with the boundary conditions
for z — 0. Moreover, since Egs. (9) and (28) demonstrate
that, for r — oo, Eq. (23) provides the same stresses as
Eq. (22), Eq. (23) inherits the complying with the bound-
ary conditions for r — oo from Boussinesq’s solution. Con-
sequently, the new solution for ¢, satisfies the boundary
conditions along the entire contour of the domain. Thus,
uniqueness of the solution for well-posed elastic prob-
lems [19] allows us to state that the second order solution
given by Eq. (23) not only improves Boussinesq’s solution:
it is the actual closed form solution of Boussinesq’s prob-
lem. This makes it unnecessary to employ empirical mod-
ified models for capturing the experimental behavior.
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Figure 7: Parametric analysis on v for the vertical stress contours (all distances in mm) (from [6]).
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Figure 8: Frohlich’s curves of equal vertical normal stress in the
elastic medium (from [6]).

3 Numerical results of second order
for contact areas greater than
zero

Variation of stress with depth for the case of load dis-
tributed over a contact area greater than zero follows the
same general pattern as for the point-load case.

Some of the most important fields of application for
Boussinesq’s problem are the design of airfield pave-
ments [1, 2, 22] and soil compaction modeling in agricul-
tural soils [23]. In both cases — and, for the first case, par-
ticularly when the airfield pavement is a flexible pavement
(Figure 9) - tire pressure and the extent of the tire-ground
contact area affect the intensity of stress at a given point.
Moreover, the major difference in stress intensities caused
by variation in tire pressure occurs near the surface. Con-
sequently, the surface course and base course of a flex-
ible pavement (Figure 9) are the most seriously affected
by high tire pressures. Finally, even the shape of the tire-
ground contact area and the load profile depend upon the
tire pressure. This makes modeling tire-ground interaction
particularly complex.

Wearing Course
Binder Course

Tack Coat —
Prime Coat —

Surface Course

Base Course

Subbase Course

12-60 m/

_Prepared Subgrade b T T T e

Natural Subgrade (1in =25.4 mm)

Figure 9: Cross section and stress distribution in a flexible pave-
ment: since the loaded area increases with depth, the further down
the layer is in the pavement structure, the fewer loads it must carry
(from [1]).
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Since the shape of both the contact area and the load
profile exercise an influence over the vertical stress distri-
bution with depth, in the following part of the paper, we
have examined and compared two contact area shapes,
each loaded by two different stress profiles.

We will investigate only the stresses induced by static
loads [24, 25], which become superimposed on the stresses
induced by moving loads [26, 27], dynamic loads [28, 29],
and sliding loads [30—34] to provide the stress distribution
of Figure 2. We will not take into account even nanoinden-
tation [35, 36]. The reason why we have studied only static
loads is that the critical areas of an airfield pavement are
those where the aircraft speed is low or the aircraft is at rest
(aprons, hard standings, taxiways, runway ends, turnoff
ramp, and hangar floors).

Detrimental effects of fuel spillage, severe jet blast and
long lasting loads occur very often in critical areas. In
those areas, one should possibly avoid the use of flexible
pavements. In fact, fuel spillage leaches out the asphalt
cement in asphaltic pavements and jet blast damages bi-
tuminous pavements when the intense heat impinges in
one area long enough to burn or soften the bitumen, so
that the blast erodes the pavement. Moreover, the higher
stiffness of rigid pavements (Figure 10) is recommended in
critical areas, in order to avoid wheel ruts due to repeated
tracking of aircraft and equipment. For all these reasons,
we chose to replace the original flexible pavement of the
taxiway at the Guglielmo Marconi airport of Bologna with
arigid pavement (Figure 1), made of concrete slabs resting
on a subbase [37, 38]. We carried out the computational
analysis accordingly, by considering vertical loads applied
to the surface of concrete half-spaces.

Wheel

Load
Concrete Slab 10:24 1

g CLEPTEPEEPEEELETLL
Base or Subbase 1 412
9-18in
_ Prepared Subgrade _ _ .

Natural Subgrade (1in = 25.4 mm)

Figure 10: Cross section and stress distribution in a rigid pavement
(from [1]).

3.1 Rectangular contact area

The simplest model we can assume for tire-ground interac-
tion is that of uniform load over a rectangular contact area
(Figure 11), where the longer side of the rectangular con-
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Figure 11: Uniform load distribution over a rectangular tire-ground
contact area (the A-A vertical section is taken along the cross-
section of the wheel).

tact area is in the direction of the wheel thickness, and the
shorter side is in the direction of the wheel diameter (mo-
tion direction). The o, contours on the A-A vertical cross-
section (orthogonal to the direction of motion) are shown
in Figure 12 for both the solution of Boussinesq and the
second order solution given by Eq. (23).

E=20000 N/mm?, v=0.25

5 (AT

E=20000 N/mm?, v=0.25

Depth z [mm]
Depth z [mm]

2
=]
o
2
=]

2
=]
)
3
=]

-300 200 -100 o 100 200 300
Distance y from the wheel center [mm]

-300 -200 -100 o 100 200 300
Distance y from the wheel center [mm]

Figure 12: g, contours on the A-A vertical cross-section of Figure 11:
Boussinesq’s solution on the left and the second order solution on
the right.

As for the point-load case, even in this case the sec-
ond order solution is composed of two families of stress
contours, one for the tensile stresses and one for the com-
pression stresses. Moreover, the shape of the compression
stress contours of second order changes with depth: at
great depths, they are similar to the compression stress
contours of Boussinesq’s solution, whereas near the sur-
face, they indicate that the negative stresses concentrate
at the ends of the contact area. In Boussinesq’s solution,
on the contrary, the superficial stress contours are very
flat, indicating an almost uniform distribution of stresses
under the contact area. The reason why the solution of
Boussinesq and the second order solution behave differ-
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ently near the surface, but not at depth, is ultimately a con-
sequence of Egs. (27) and (28).

E=20000 N/mm?, v=0.25

[N/mm?]

Depthz [mm]

Distance y from the wheel center [mm]

Figure 13: 3-D surface and stress contours of o, on the A-A vertical
cross-section of Figure 11, according to the second order solution.

In Figure 12, we can see that the positive stresses also
concentrate near, but in this case just outside, the ends of
the contact area. The contour of the contact area is, there-
fore, a very critical zone where stresses rapidly pass from
their maximum positive value to their maximum negative
value. A more detailed view of this behavior is provided
in Figure 13, where the second order solution for o is de-
picted along the third (vertical) axis. Figure 13 also gives
us an idea of how rapidly the positive stresses decline with
depth.

In Figure 14, we have plotted the stress profiles near
the surface, whereas, in Figure 15, they are plotted for z
= —75 mm, the depth at which the concentration effect of
the negative stresses along the A-A cross-section is almost
completely extinguished. A comparison between the right-
hand sides of Figures 14 and 15 shows that the ratio be-
tween the maximum negative stress (in absolute value)
and the maximum positive stress increases with depth.
Moreover, as we can see in both Figures 14 and 15, the
compressive stresses predicted by the second order solu-
tion are sensitively lower (in absolute value) than those
predicted by Boussinesq for the same external load. This

E=20000 N/imm?, v=0.25 E=20000 N/imm?, v=0.25
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Figure 14: Superficial profiles of 0, on the A-A vertical cross-section
of Figure 11: Boussinesq’s solution on the left and the second order
solution on the right.
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Figure 15: Profiles of o on the A-A vertical cross-section of Figure 11
for z=-75 mm: Boussinesq’s solution on the left and the second
order solution on the right.

is a good result since, as we have previously pointed out,
Boussinesq overestimates both stresses and deflections.
Note also that the graphs to the right of Figures 14 and 15
were obtained making the assumption of convenience that
the constant C in Eq. (23) is equal to 1. Obviously, it is al-
ways possible to calibrate C in order to match the experi-
mental data better.

The complete representation of o, on the horizontal
plane near the surface is given in Figure 16, where x is the
distance from the wheel centre computed along the motion
direction and y is the distance from the wheel centre com-
puted along the cross-section. In Figure 16, we can gain
a better appreciation of the effect of stress concentration
under the contour of the contact area for both the negative
and the positive stresses of the second order solution. In
particular, the negative stresses reach their highest values
under the corners of the contact area, whereas the posi-
tive stresses reach their highest values under the middle
points of the sides. Moreover, the maximum positive stress
along the longer sides is higher than the maximum posi-
tive stress along the shorter sides.

Note that the 3-D surfaces in Figure 16 have two planes
of symmetry (the planes x = 0 and y = 0) because we plot-
ted the 3-D surfaces for static loads. It must be recalled that
the existence of two positive peaks of equal intensity, one
before and one after the wheel, is compatible with the ex-
perimental data for static loads described in [2], where we
concluded that friction is not the main cause of the grow-
ing of tensile stresses inside the pavement, but interacts
with them enhancing the positive stresses from one side
of the wheel and decreasing the positive stresses from the
other side. Actually, in the case of moving loads, the fric-
tion forces developed on the contacts areas would have a
skew-symmetric effect on the shape of the 3-D surfaces of
0 and the positive peaks on the right of Figure 16 would
become more similar to those depicted in Figure 2, with
the positive stresses on the back of the wheel weaker than
the positive stresses on the front of the wheel. On the other

Distributed Loads on Adjacent Contact Areas =— 19
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Figure 16: 3-D surfaces and stress contours of o, near the surface:
Boussinesq’s solution on the top and the second order solution on
the bottom.

hand, however, when the aircraft speed is high the air-
craft is already partially airborne. In effect, at the speed at
which the aircraft passes over the pavement, on the wings
of the aircraft there is enough lift to reduce the stresses ap-
plied to the pavement considerably. This is why the central
portions of runways and the high-speed exit taxiways are
noncritical areas. Even touchdown at the end of the run-
way may not be critical because the airplane is partially
airborne. In conclusion, the static load equal to the maxi-
mum takeoff weight of the aircraft is actually the most in-
teresting case as far as thickness design of airfield pave-
ments is concerned.

Note also that the existence of tensile stresses when
a load moves along a concrete pavement was assumed by
several researchers, in the past [39-41], in order to explain
some of the main mechanisms of pavement distress. More
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precisely, the tensile stresses induced into pavements by
moving loads were always assumed as horizontal stresses.
Now we are able to explain those distresses analytically,
at the same time making clear that the tensile stresses are
vertical.

A more refined model of tire-ground interaction is that
of a rectangular contact area with parabolic load profile
along the cross-sections (Figure 17). In this second case
also, the second order solution is composed of two fam-
ilies of stress contours of opposite sign, whereas the so-
lution of Boussinesq only contemplates a single family of

Figure 17: Parabolic load distribution along the cross-sections of
a wheel with rectangular tire-ground contact area (the A-A vertical
section is taken along the cross-section of the wheel).
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Figure 18: 0, contours on the A-A vertical cross-section of Figure 17:
Boussinesq’s solution on the left and the second order solution on
the right.

E=20000 N/mm?, v=0.25

— aw

Distance y from the wheel center [mm] Depthz  [mm]

Figure 19: 3-D surface and stress contours of o on the A-A vertical
cross-section of Figure 17, according to the second order solution.
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stress contours, the family of the negative stresses (Figure
18). Apart from this, there is a fundamental difference be-
tween the two load profiles: in the second case, the nega-
tive stresses g, of the second order solution do not concen-
trate everywhere under the contact area. They, in fact, do
not concentrate along the direction of the parabolic load,
that is, under the ends of the contact area on the cross-
section in Figures 18 and 19 and under the ends of the con-
tact area on all the vertical cross-sections that are parallel
to A-A (Figure 20), including the vertical sections that pass
through the longer sides of the contact area. Nevertheless,
the negative stresses continue to concentrate along the di-
rection where the load is uniformly distributed, that is, un-
der the ends of the shorter sides and under the ends of the
contact area for all the vertical sections that are orthogo-
nal to A-A (Figure 20). We can conclude that the concen-
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Figure 20: 3-D surfaces and stress contours of g, near the surface:
Boussinesq’s solution on the top and the second order solution on
the bottom.
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tration of the negative stresses arises whenever the load is
uniformly distributed along one direction, under the ends
of the load distribution.

The positive peaks of the second order solution, on the
contrary, do not seem to depend upon the shape of the
load profile, since the positive stresses concentrate near
both the longer and the shorter sides of the contact area
(Figure 20). The presence of a positive ¢, near the con-
tour of the contact area does not, in fact, depend upon
the load profile, but on the terms in round brackets of Eq.
(23) (multiplied by —2Cu/r?), which refine the solution of
Boussinesq. The contour of the contact area is therefore
critical for tensile stresses, independently of the shape of
the load profile. Moreover, as for the previous case, posi-
tive stresses reach their highest values under the middle
points of the sides, with the maximum stress along the
longer sides being higher than the maximum stress along
the shorter sides. In Figure 20, we can also note that, as
for the former model, the negative stresses predicted by
the second order solution are sensitively lower (in abso-
lute value) than the ones predicted by Boussinesq for the
same external load.

3.2 Elliptical contact area

In this Section, we will consider the more realistic case of
an interaction model with an elliptical contact area. More-
over, as for the rectangular contact area, we will consider
both a uniform (Figure 21) and a parabolic load profile,
which, in this case, is a paraboloid (Figure 24). The results
of the stress analysis for an elliptical contact area are given
in Figures 22, 23, 25, and 26.

The results substantially confirm the findings for a
rectangular contact area. Specifically:

Figure 21: Uniform load distribution over an elliptical tire-ground
contact area (the A-A vertical section is taken along the cross-
section of the wheel).

Distributed Loads on Adjacent Contact Areas = 21

¢ The second order solution predicts the presence of
tensile stresses near the surface, which are absent
in the solution provided by Boussinesq.

E=20000 N/mm?, v=0.25
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-300 200 -100 0 100 200 300
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Figure 22: o, contours on the A-A vertical cross-section of Figure 21:
Boussinesq’s solution on the left and the second order solution on
the right.
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Figure 23: 3-D surfaces and stress contours of o, near the surface:
Boussinesq’s solution on the top and the second order solution on
the bottom.
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22 =— E. Ferretti

Figure 24: Parabolic load distribution along both directions of a
wheel with elliptical tire-ground contact area (the A-A vertical sec-
tion is taken along the cross-section of the wheel).
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Figure 25: o, contours on the A-A vertical cross-section of Figure 24:
Boussinesq’s solution on the left and the second order solution on
the right.

¢ The positive stresses arise near the contour of the
contact area independently of the shape of the load
profile.

¢ The maximum positive stresses arise at ends of the
shorter diameter.

¢ The negative stresses of the second order solution
are sensitively lower (in absolute value) than the
negative stresses of Boussinesq’s solution.

¢ The negative stresses concentrate along the direc-
tions of uniform load, under the ends of the load dis-
tribution, whereas they do not concentrate along the
directions of parabolic load.

4 Numerical results of second order
for two interacting distributed
loads

In the lifetime of airfield pavements, lateral wander is an

occurrence of particular importance. It arises because not

all aircraft movements take place in the same position,
for example, when taking off and landing. The position of
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Figure 26: 3-D surfaces and stress contours of o, near the surface:
Boussinesq’s solution on the left and the second order solution on
the right.

landing, for example, is influenced by the pilot’s level of
accuracy, cross-winds, width of runway, etc. Lateral wan-
der has a significant influence on the rutting performance
of airfield pavements, since individual aircraft wander pat-
terns create traffic lanes. The wander width is defined by
the zone containing 75% of the aircraft centerlines (1.15
standard deviations on either side of the mean value with
a normal distribution). Taxiways are affected by a higher
degree of traffic channelization than runways and traffic is
also highly channelized at runway ends and on the turnoff
areas between the runway to the taxiway or to the apron
area.

Not only individual aircraft wander affects pavement
performance. Aircrafts can have two or more landing gear
systems offset at different positions from the body of the
aircraft. Due to different gear assemblies (Figure 27), not

Unauthenticated
Download Date | 1/25/19 12:03 PM



DE GRUYTER

all aircrafts load the critical positions equally. Conse-
quently, different aircraft combinations will induce addi-
tional wandering that is not associated to the lateral devi-
ation of individual aircraft.

- e -
- - %
Trailer Tractor
-- - Single axle
T with single tires
Tandem axle Single axle
with duai tires with dual tires
(a)
Main single- <
tire gea$I -~ Nose wheels
-
Twin-tandem - -
gear - @™ Nose wheels
- T
(c)
- T
- D
-
Double - o
twin-tandem <- - o ~— Nose wheels
gears - e
- .
- G
(d)

Figure 27: Plan view of: a) single trailer-truck unit; b) tricycle land-
ing gear with single tires; c) twin-tandem landing gear; d) double
twin-tandem landing gear (not to scale) (from [1]).

Moreover, in the light of the former discussion on the
tensile stress field associated with the second order solu-
tion, we would expect that landing gear with twin wheels
are especially detrimental to airfield pavements, since the
short distance between the two wheels implies that the
tensile stresses propagating on the surface, starting from
the contour of the contact areas, will interact and increase
in the portion of pavement enclosed between the wheels.
This enhances the critical degree of the critical positions,
especially when the wheels are set in a twin-tandem (Fig-
ures 27a and 27c) or double twin-tandem configuration
(Figure 274d).

In the following part, we will examine the vertical
stresses induced by twin wheels, such as those of the sin-
gle axle in Figure 27a) and the nose wheels of Figures 27c)
and 27d).

Distributed Loads on Adjacent Contact Areas = 23

As we can see in Figure 29, for the simple interaction
model of rectangular contact areas and uniform load (Fig-
ure 28), when obtaining the result for twin wheels numeri-
cally, the superficial stress profiles under the contact areas
are equivalent to the juxtaposition of the stress profile on
the right of Figure 14. Also in this case, we can appreciate
the effect of negative stress concentrated at the ends of the
two contact areas.

-
-,

Figure 28: Uniform load distribution over the two rectangular tire-
ground contact areas of a twin wheel (the A-A vertical section is
taken along the cross-section of the twin wheel).

E 20000 N/mm?, v=0.25
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Distance y from the stem of the landing gear [mm]

Figure 29: Superficial profiles of o, on the A-A vertical cross-section
of Figure 28, according to the second order solution.

The positive stresses will also continue to concen-
trate near, but just outside, the ends of the contact ar-
eas, and rapidly decline on leaving the tires. Nevertheless,
the inter-tire distance is too small for the positive stresses
dampen completely between the two tires (Figure 29). Con-
sequently, the pavement surface between the two tires is
loaded in traction along all its extension. Due to the strong
damping of the tensile stresses, however, the maximum
tensile stress between the tires is almost the same as the
maximum tensile stress outside the tires, indicating that
the stress concentration at one end of the tire inter-space
does not affect the stresses at the opposite end.
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When compared with Figure 13, Figure 30, which con-
tains the same number of contour lines as Figure 13, tells
us that juxtaposing two tires on the pavement causes the
contour lines to protrude more deeply into the pavement
itself, both for the compressive stresses under the wheels
and the tensile stresses between the wheels. This is due
to the stress interaction caused by the juxtaposition. Note
also that, outside the wheels, this interaction does not sig-
nificantly modify the shape or the slope of the contour
lines shown in green, which separate the family of the con-
tour lines of traction from the family of the contour lines
of compression. In conclusion, tire juxtaposition modifies
the stress profiles at great depth, but not at the surface, ex-
cept for that portion of surface enclosed between the tires.

E=20000 N/mm?, v=0.25

Depthz [mm]

Distance y from the stem center [mm]

Figure 30: 3-D surface and stress contours of o, on the A-A vertical
cross-section of Figure 28 (second order solution).

The superficial stress profiles are independent of tires
juxtaposition also in Figure 31, where the 3-D stress pro-
files do not differ significantly from those of the single tire
on the right of Figure 16, except for a slight difference in
the portion of surface enclosed between the tires. The in-
dependence of the stress profile of one tire from the stress
profile of another tire on the same surface is, consequently,
not a property of a specific direction along the surface.

E=20000 N/mm?, v=0.25

[N/mm?]

Distance y from the stem
center, computed along the
cross-section A-A  [mm]

Distance x from the stem
center, computed along the
motion direction [mm]

Figure 31: 3-D surfaces and stress contours of o, near the surface
for the interaction model of Figure 28 (second order solution).
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By changing the load profile from uniform to parabolic
(Figure 32), the interaction between the two tires has the
same particular features as in the former case (Figures 33
and 34):

Figure 32: Parabolic load distribution along the cross-sections of
a twin wheel with rectangular tire-ground contact areas (the A-A
vertical section is taken along the cross-section of the twin wheel).
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Figure 33: 3-D surface and stress contours of on the A-A vertical
cross-section of Figure 32 (second order solution).
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Figure 34: 3-D surfaces and stress contours of near the surface for
the interaction model of Figure 32 (second order solution).

¢ the portion of surface enclosed between the two tires
is entirely loaded in traction;
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¢ the stress profiles are modified by tire juxtaposition E=20000 N/mm”, =0 25
at great depth, whereas they do not change at the
surface, except for a slight difference in the portion
of surface enclosed between the tires;

¢ the contour line 0, = 0 is not modified by tire juxta- a5 .
position either in terms of shape or of slope.

One can draw the same conclusions when we change
the contact area from rectangular to elliptical (Figures 35- Distance y from the stem Dtance o the st

center, computed along the center, com
, computed along the
40) . cross-section A-A  [mm] motion direction  [mm]

Figure 37: 3-D surfaces and stress contours of g, near the surface
for the interaction model of Figure 35 (second order solution).
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Figure 38: Paraboloid load distribution over the two elliptical tire-
ground contact areas (the A-A vertical section is taken along the
cross-section of the twin wheel).

Figure 35: Uniform load distribution over the two elliptical tire-
ground contact areas (the A-A vertical section is taken along the
cross-section of the twin wheel).
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Figure 39: 3-D surface and stress contours of o, on the A-A vertical
Figure 36: 3-D surface and stress contours of on the A-A vertical cross-section of Figure 38 (second order solution).
cross-section of Figure 35 (second order solution).

E=20000 N/mm?, v=0.25

As a final remark, we must recall that no closed form
solutions exist for a layered system, like an airfield pave-
ment. The different approaches used to deal with layered
elastic systems may be divided into:

¢ The Method of Equivalent Thicknesses (MET) [13],
which transforms the layered system to semi-infinite
half-spaces, on which Boussinesq’s closed form so- Cg‘i‘g;”ii;(gﬁ%‘g;[:;i’“qe Do tomreston

. . -Seclion; s mm motion direction [mm]
lutions is usually used; o

e Layered Analytical Models (LAM) [9], which are Figure 40: 3-D surfaces and stress contours of g near the surface
often referred to as mathematically exact solu- for the interaction model of Figure 38 (second order solution).
tions, where the fourth-order differential equation is
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solved for the given boundary conditions using nu-
merical integration;

¢ Finite Element Models (FEM), which divide a contin-
uum into smaller more manageable elements, finite
in size, each of which has its material behavior de-
fined. The behavior of each element can be analyzed
separately and the cumulative deformations of the
elements brought together to give a resulting defor-
mation for the whole structure.

Based on our results, Boussinesq’s closed form solu-
tion is no more suitable to be used in MET for modeling
layered elastic systems. It must be replaced with the sec-
ond order closed form solution.

Moreover, stress and deflection values as obtained by
Burmister in [9] are dependent upon the strength ratio of
the layers. They are used to estimate development of pave-
ment distress (rutting and fatigue cracking). Assuming the
strength ratio equal to 1, it is possible to compare Burmis-
ter’s analysis to that provided by a closed form solution.
Well, although at great depths Burmister’s and Boussi-
nesq’s analyses approach a common level, they are vastly
different near the base-subgrade contact. Since Egs. (27)
and (28) show that even the exact solution gives the same
result as Boussinesq at great depth while the two closed
form solutions differ near the surface, we can regard the
inconsistency between Burmister’s and Boussinesq’s anal-
yses as an indirect proof that Boussinesq’s solution does
not comply with the boundary conditions for z — 0. We
can also expect that Burmister’s results for the strength ra-
tio equal to 1 are much more like the second order (exact)
closed form solution than Boussinesq’s closed form solu-
tion.

5 Conclusions

In this paper, we have argued that Boussinesq’s closed
form solution for a homogeneous, linear-elastic and
isotropic half-space subjected to a point-load perpendicu-
lar to the surface is not the exact solution to Boussinesq’s
problem, since it does not satisfy the boundary conditions
for stresses near the surface. In point of fact, at the time
of Boussinesq the actual boundary condition for stresses
at the surface was not known. Only recently technology
has provided us with strain-gauges to be embedded into
concrete for strain acquisition and stress identification [1],
thus showing us that the solution of Boussinesq is not
reliable near the surface. The recent experimental find-
ings also allowed us to show that our new closed form
elastic solution [6], built as an extension of the analyti-
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cal strategy of Boussinesq to the second order solution,
satisfies the boundary conditions along the entire contour
of the half-space, thus representing the actual solution of
Boussinesq’s problem.

By way of example, we have provided and compared
with experimental data some numerical results of the sec-
ond order for rectangular and elliptical contact areas,
loaded by uniform and parabolic laws of external pres-
sure, for both single and twin wheels. The most inter-
esting finding concerns the existence of a tensile state
of stress near the contour of the contact areas, as in the
case of point-load [6, 20], which makes the new rheologi-
cal predictions adherent to the experimental acquisitions.
In point of fact, also for contact areas greater than zero,
the second order solution is composed of two families of
stress contours on the vertical cross-section, one family
for the tensile stresses and another for the compression
stresses. This substantially modifies the first order solu-
tion of Boussinesq, which is composed of a single family
of stress contours, the family of negative stresses.

We have also found that some characteristics of the
stress profiles depend upon the model of the external load,
whereas others do not. In particular, the superficial stress
profiles of the negative stresses under the contact areas
show two peaks near the contours of the contact areas ex-
actly when the load profile on the vertical section is uni-
formly distributed. On the contrary, the tensile state of
stress that arises near, but just outside, the contours of
the contact areas does not depend on the shape of the
load profile. In this latter case, in fact, the load profile
simply enhances the positive peaks when it is uniformly
distributed, but is not the main reason for the existence
of these peaks. Indeed, their existence is a direct conse-
quence of the second order solution of the problem of
Boussinesq.

Moreover, juxtaposing two or more tires on the sur-
face, like in the tandem configuration of a landing gear,
does not seem to affect the superficial stress distribution
significantly. It only modifies the stress profiles along the
tire inter-surface — which turns out to be loaded in tension
for all its extension — but does not enhance the positive
peaks between the tires.

Things work differently in depth, since the juxtaposi-
tion of several tires seems to affect the stress profiles on a
horizontal plane more significantly the greater the depth
of the plane. However, this is not essential to the lifetime
of airfield pavements, since they are designed to bear an
increased state of negative stress.

What is actually detrimental to a pavement is the ten-
sile state of stress near the surface [42]. At nowadays, in
fact, airfield pavements are directly or indirectly designed
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based on the solution of Boussinesq — which is ineffi-
cient in capturing the stress behavior near the surface,
in general, and the tensile state of stress, in particular —
and many of the pavement surface distresses are imputed
to causes other than tensile stresses, notably, creep and
viscosity. Consequently, there are no devices in place to
prevent the pavement from tensile failure. The enhanced
stress analysis provided by the exact closed form elastic
solution will now allow us to state that those distresses
may have origin just in the tensile state of stress near the
contour of the contact areas and do not, as was believed
until now, depend upon creep or viscosity (for a discussion
on the relationship between crack and creep in concrete,
see [43]).

6 Future developments

Our exact closed form elastic solution of Boussinesq’s
problem, together with new findings on the concrete con-
stitutive behavior [43-52] may lead us to a better insight
into performance of concrete airfield pavement and, ulti-
mately, to more effective standards in their design. In point
of fact, we must recall that the prediction of the propaga-
tion of the vertical stresses into the pavement and subsoil
when carried by an aircraft, in particular, and a vertical
load, in general, is an open question still now. In effect,
according to the type of traffic loads and climatic condi-
tions, the type of damage concerned, the structure consid-
ered, and the nature of the component materials, differ-
ent types of response models are currently used for airfield
pavements [1]. In order to avoid employing so many mod-
els, we can now study the layered system of any linear-
elastic pavement by using MET [13] and our exact closed
form solution of Boussinesq’s problem for linear-elastic
half-spaces. This should also close the gap between MET
and LAM [9] solutions when the strength ratio of pavement
layers is equal to 1.
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