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Simple Summary: The exposure of animals to excessive heat leads to heat stress, heat stroke, or even
death. The first negative effects of heat exposure occur in the gut. The elevated temperature leads to
damage in intestinal walls and shifts in the composition of intestinal microbiota. In effect, the gut
content (mainly intestinal microbiota and their metabolites) leaks through compromised intestinal
walls into milieu of the body. Prebiotics (e.g., GOS—galactooligosaccharides) can be used to mitigate
the negative effects of the heat stress in poultry. GOS that are delivered in ovo on day 12 of egg
incubation stimulates the development of healthy intestinal microbiota in a chicken embryo. Healthy
intestinal microbiota enhances the barrier function of the gut and the immune system. Chickens
were originally domesticated in southeast Asia and are therefore genetically adapted to handle high
temperatures. However, genetic selection towards performance leads to sensitization to high ambient
temperature. In this paper, we studied slow-growing chickens with a reputation for heat resistance.
We used in ovo stimulation with the GOS prebiotic that was delivered in ovo to promote healthy
gut microbiota. In this manner, we combine genetics and environment to describe a model of heat
resistance in poultry.

Abstract: Galactooligosaccharides (GOS) that are delivered in ovo improve intestinal microbiota
composition and mitigate the negative effects of heat stress in broiler chickens. Hubbard hybrids are
slow-growing chickens with a high resistance to heat. In this paper, we determined the impact of
GOS delivered in ovo on slow-growing chickens that are challenged with heat. The experiment was
a 2 × 2 × 2 factorial design. On day 12 of incubation, GOS (3.5 mg/egg) was delivered into the egg (n
= 300). Controls (C) were mock-injected with physiological saline (n = 300). After hatching, the GOS
and C groups were split into thermal groups: thermoneutral (TN) and heat stress (HS). HS (30 ◦C)
lasted for 14 days (days 36–50 post-hatching). The spleen (n = 8) was sampled after acute (8.5 h)
and chronic (14 days) HS. The gene expression of immune-related (IL-2, IL-4, IL-6, IL-10, IL-12p40,
and IL-17) and stress-related genes (HSP25, HSP90AA1, BAG3, CAT, and SOD) was detected with
RT-qPCR. Chronic HS up-regulated the expression of the genes: IL-10, IL-12p40, SOD (p < 0.05), and
CAT (p < 0.01). GOS delivered in ovo down-regulated IL-4 (acute p < 0.001; chronic p < 0.01), IL-12p40,
CAT and SOD (chronic p < 0.05). The obtained results suggest that slow-growing hybrids are resistant
to acute heat and tolerant to chronic heat, which can be supported with in ovo GOS administration.
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1. Introduction

Acute and chronic thermal stress significantly hinders the growth performance of poultry [1]. This
is due to the fact that the feed intake of chickens that are reared in intensive poultry farms is negatively
correlated with environmental temperature [2]. The main ancestor of the domestic chicken is red
junglefowl (Gallus gallus) from the hot jungle climate of Southeast Asia [3]. However, intensive genetic
selection for growth and feed efficiency leads to an increased sensitivity of heavy-weight broilers to
environmental conditions, including ambient temperature [4]. There is a negative correlation between
heat tolerance and growth rate [5]. Fast-growing broilers produce more heat and have a higher heat
load [6], which reduces feed intake and growth parameters [7–9]. Heat stress (HS) could lead to meat
quality issues due to increased ante- and post-mortem glycolytic metabolisms coupled with a reduced
protein synthesis and turnover, enhanced fat deposition, and the overproduction of reactive oxygen
species [10]. The gastrointestinal tract (GIT) is also very responsive to heat, which alters intestinal
microbiota composition [11] and decreases the integrity of the intestinal epithelium [12]. Since exposure
to high temperatures is difficult to avoid in intensive production systems, losses in the production
and mortality are high [13]. The negative effects of HS in poultry are due to high animal stocking, the
insufficient ventilation of poultry houses, as well as geographical factors [14]. Intergovernmental Panel
on Climate Change (IPCC) reports clearly show that the climate is warming [15]. Problems related
to maintaining optimal temperatures in poultry houses will become more challenging, especially
during predicted heat waves, even in moderate climates. HS leads to behavioral, biochemical, and
physiological changes. Responses to heat vastly depend on the genetic adaptation of the individual [16]
but also on environmental factors, such as intestinal microbiota [17]. Compromised genetic or
environmental conditions result in poorer thermoregulation [18].

Heat-resistance depends on the genetic adaptation of the chickens. Native chickens from tropical
and sub-tropical regions are more tolerant to high ambient temperatures than fast-growing lines [19,20].
Since they are smaller and lighter and have not been subjected to selective pressure for meat-related
traits, they have retained their genetic adaptation to handle high temperatures. Studies on Brazilian
breeds (Pelaco and Caneluda) [18] and Egyptian breeds (Fayoumi, Dandarawi, and Sinai) [21] have
shown a good tolerance to elevated ambient temperature, manifested by the increased expression of
heat shock proteins (HSP). In some countries, native breeds are crossbred with commercial broiler
lines to obtain heat-resistant hybrids with good meat production [22]. The hybrids that were used
in our experiment are slow-growing free-range chickens that are obtained by crossing a Hubbard
RedBro male with a Hubbard JA57 (https://www.hubbardbreeders.com/products/crosses/ja57/) female.
These free-range poultry hybrids are distinguished by a good adaptation to a warm climate and a high
disease resistance (Federico Sirri, unpublished data).

HS in poultry influences the composition of intestinal microbiota [23], leading to gut dysbiosis [24].
Unstable microbiota impairs the morphology and barrier function of the GIT [25]. Feed additives such
as prebiotics support the gut microbiota under stressful conditions [26–28]. Prebiotic and probiotic
supplementation allow for the maintenance of stable microbiota populations in the gut [29] and prevent
“leaky guts” [30]. One of the most efficient ways to improve intestinal microbiota composition in
poultry is in ovo stimulation. It allows for the precise introduction of a specific substance directly into
the internal environment of the incubating egg. During in ovo stimulation, a prebiotic or synbiotic is
injected into the air cell of the incubating egg (in this study, on day 12 of egg incubation) and stimulates
the development of indigenous microbiota prior to hatching [31]. The prebiotic supplementation at the
embryonic stage supports not only the microbiota development in the growing chickens [32–34] but
also improves the immune system [35,36], gut morphology [37] and the intestinal barrier function [32].

https://www.hubbardbreeders.com/products/crosses/ja57/
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The positive effect of GOS supplementation on the poultry intestinal microbiome has been
demonstrated [38]. Galactooligosaccharides are potent prebiotics that exert beneficial effects on
intestinal microbiota in chickens. Particularly interesting is the possibility of using in ovo technology
for the early stimulation of the microbial communities with GOS [32,39,40]. The molecular data
on broiler chickens have indicated that HS triggers systemic immune and stress responses, which
are balanced by GOS that are delivered in ovo [41]. It also mitigates the negative effects of HS in
broiler chickens on performance traits, including improved growth efficiency, feed efficiency [39],
and meat quality [10]. In this study, we focused on chickens with a different genetic background, i.e.,
slow-growing hybrids. The aim of this study was to assess the impact of GOS that were delivered in
ovo on the modulation of the immune-related and stress-related gene expression signatures in the
spleens of slow-growing chickens that were subjected to HS. Hereby, we hypothesize that the genetics
of slow-growing chickens combined with in ovo stimulation with GOS will contribute to increased
HS resistance.

2. Materials and Methods

2.1. Ethical Statement

The animal procedures were conducted in compliance with decision of the Ethical Committee in
Rome (Italy), decision number 503/2016.

2.2. Experimental Trial and Tissue Collection

The experimental material was slow-growing crossbred Hubbard chickens. After 12 days of
incubation, 300 eggs were injected with a single dose of 3.5 mg GOS/egg (GOS group) suspended in 0.2
mL of physiological saline into the air chamber. Controls (the C group) were mock-injected with sterile
physiological saline (n = 300, volume 0.2 mL/egg). Injection was carried out according to the in ovo
procedure [32]. After hatching, the GOS and C groups were divided into two subgroups: maintained
in thermoneutral condition (TN) and under the HS condition. In all groups, chicks were sexed and
vaccinated against coccidiosis, infectious bronchitis virus, Marek’s disease virus, Newcastle disease,
and Gumboro disease, and they received food and water ad libitum. The composition of the diets is
presented in Table 1. Male chicks (n = 600, 300 per treatment) were transferred to an environmentally
controlled poultry house and divided into 4 groups of 150 chicks/treatment/environmental condition.
Each group was composed of 6 replicates of 25 birds each. HS had two forms: acute (on day 36, the
temperature in the poultry house was raised to 30 ◦C for 8.5 h) and chronic (on day 36, the temperature
was raised to 30 ◦C, and these conditions were maintained for 14 days). After that, 8 randomly selected
animals from each group with an average body weight were slaughtered and dissected. Fragments of
the spleen were collected in the tubes with 3 mL of an RNAlater solution (Invitrogen, Waltham, MA,
USA) for RNA stabilization and stored at −80 ◦C until further processing.

Table 1. Dietary formulation supplied in slow-growing chickens during three feeding phases.

Ingredient Starter (0–14 d) Grower (15–36 d) Finisher (37–50 d)

Corn 42.17 34.96 12.73
White corn 0.00 0.00 15.00

Wheat 10.00 20.00 25.01
Sorghum 0.00 0.00 5.00

Soybean meal 23.11 20.63 17.60
Expanded soybean 10.00 10.00 13.00

Sunflower 3.00 3.00 3.00
Corn gluten 4.00 3.00 0.00
Soybean oil 3.08 4.43 5.48

Dicalcium phosphate 1.52 1.20 0.57
Calcium carbonate 0.91 0.65 0.52
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Table 1. Cont.

Ingredient Starter (0–14 d) Grower (15–36 d) Finisher (37–50 d)

Sodium bicarbonate 0.15 0.10 0.15
Salt 0.27 0.27 0.25

Coline cloride 0.10 0.10 0.10
Lysine solfate 0.59 0.55 0.46
Dl-methionine 0.27 0.29 0.30

Threonine 0.15 0.14 0.14
Enzyme-roxazyme g2g 0.08 0.08 0.08

Phytase 0.1% 0.10 0.10 0.10
Coccidiostat

Vit-min premix 1 0.50 0.50 0.50

Dry matter, % 88.57 88.65 88.64
Protein, % 22.70 21.49 19.74
Lipid, % 7.06 8.24 9.74
Fiber, % 3.08 3.04 3.07
Ash, % 5.85 5.17 4.49
Lys, % 1.38 1.29 1.21
Met, % 0.67 0.62 0.59

Met + Cys, % 1.03 0.97 0.91
Calcium, % 0.91 0.80 0.59

Phosphate, % 0.63 0.57 0.46
Metabolizable energy (kcal/kg) 3.076 3.168 3.264

1 Provided the following per kg of diet: vitamin A (retinyl acetate), 13,000 IU; vitamin D3 (cholecalciferol), 4000 IU;
vitamin E (DL-α_tocopheryl acetate), 80 IU; vitamin K (menadione sodium bisulfite), 3 mg; riboflavin, 6.0 mg;
pantothenic acid, 6.0 mg; niacin, 20 mg; pyridoxine, 2 mg; folic acid, 0.5 mg; biotin, 0.10 mg; thiamine, 2.5 mg;
vitamin B12 20 µg; Mn, 100 mg; Zn, 85 mg; Fe, 30 mg; Cu, 10 mg; I, 1.5 mg; Se, 0.2 mg; and ethoxyquin, 100 mg.

2.3. RNA Isolation

Total RNA was isolated from the spleen. Fragments of the spleen tissue were homogenized
with the TissueRuptor homogenizer (Qiagen GmbH, Hilden, Germany) in TRIzol® LS Reagent
(Ambion/Thermo Fisher Scientific, Valtham, MA, USA). Further steps of RNA isolation and purification
were performed with a commercial kit (Universal RNA Purification Kit, EURx, Gdansk, Poland). RNA
quality and quantity were evaluated by using electrophoresis in 2% agarose gel and a NanoDrop 2000
spectrophotometer (Scientific Nanodrop Products, Wilmington, NC, USA).

2.4. Quantitative Reverse Transcription PCR (RT-qPCR)

Complementary DNA (cDNA) was synthesized by using the Maxima First Strand cDNA Synthesis
Kit for RT-qPCR (Thermo Scientific/Fermentas, Vilnius, Lithuania), following the manufacturer’s
recommendations. Obtained cDNA was diluted to 70 ng/µL and stored at −20 ◦C. RT-qPCR reactions
were conducted with a total volume of 10 µL. The reaction mixture included Maxima SYBR Green qPCR
Master Mix (Thermo Scientific/Fermentas, Vilnius, Lithuania), 1 µM of each primer (Sigma-Aldrich,
Schnelldorf, Germany), and 2 µL of diluted cDNA. Thermal cycling was performed in a LightCycler II
480 (Roche Diagnostics, Basel, Switzerland). Each RT-qPCR reaction was conducted in two technical
replicates. Gene expression analysis was performed for two gene panels, which were reported
earlier [41]. The first gene panel was associated with the immune response and included the genes: IL-2,
IL-4, IL-6, IL-10, IL-12p40, and IL-17. The second gene panel was associated with stress response and
included the genes: HSP25, HSP90AA1, BAG3, CAT, and SOD. UB and ACTB were used as reference
genes. The sequences of the primers that were used in this experiment are presented in Table 2.

2.5. Relative Quantification of Gene Expression and Statistical Analysis

The normalization of the expression levels (Ct− cycle threshold) of the target genes was performed
with a geometric mean of the two reference genes (UB and ACTB). ∆Ct was calculated by subtracting the
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Ct of the reference genes from the Ct of the target genes (Ct target−Ct reference). All statistical analyses
were based on ∆Ct values. The full-factorial study design allowed us to analyze the impact of GOS that
were delivered in ovo and different levels of HS on gene expression signatures in slow-growing hybrid
chickens. The first statistical model was two-way ANOVA with interaction, in which in ovo treatment
and ambient temperature (acute or chronic HS vs. TN) were considered independent variables (factors).
In this analysis, the two time-points of tissue collection (day 36—acute HS and day 50—chronic HS)
were independently analyzed. The second statistical model included in ovo treatment and HS (acute
vs. chronic HS) as factors. In this model, the datasets from acute and chronic HS were combined.
In both ANOVA analyses, the factors (or interaction between them) were considered significant at
p < 0.05, p < 0.01, or p < 0.001.

Relative gene expression was calculated with the ∆∆Ct algorithm. In the ∆∆Ct algorithm,
a selected a calibrator (control ∆Ct) was subtracted from the ∆Ct of the experimental group. The fold
change (FC) of the target gene in the experimental group vs. the control group was calculated according
to the formula: 2−∆∆Ct [42]. To visualize the pairwise differences between the treatment groups,
the results of the log2 fold change were graphed and compared with a Student’s t-test. The pairwise
comparisons were considered significant at p < 0.05. The calculations were performed in MS Excel and
SAS Enterprise Guide 9.4 (SAS Institute, Cary, NC, USA). Graphs were drawn by using Graph Pad
Prism 7 (GraphPad, La Jolla, CA, USA).

Table 2. List of target genes and primers sequences for RT-qPCR.

Gene a NCBI Gene
ID Primer Sequences (5′-3′) Function b Ref.

Panel 1. Immune-related genes

IL-2 373958 F: GCTTATGGAGCATCTCTATCATCA
R: GGTGCACTCCTGGGTCTC

Cytokine important for the proliferation
of T and B lymphocytes. Important role in
the immune response to antigenic stimuli.

[41]

IL-4 416330 F: GCTCTCAGTGCCGCTGATG
R: GGAAACCTCTCCCTGGATGTC

Pleiotropic cytokine produced by
activated T cells. B-cell stimulatory factor. [43]

IL-6 395337 F: AGGACGAGATGTGCAAGAAGTTC
R: TTGGGCAGGTTGAGGTTGTT

Cytokine that plays a role in
inflammation and the maturation of B

cells. Produced at sites of acute and
chronic inflammation.

[44]

IL-10 428264 F: CATGCTGCTGGGCCTGAA
R: CGTCTCCTTGATCTGCTTGATG

Pleiotropic effects in immunoregulation
and inflammation. Inhibits synthesis of

cytokines.
[45]

IL-12p40 404671 F: TTGCCGAAGAGCACCAGCCG
R: CGGTGTGCTCCAGGTCTTGGG

Can act as a growth factor for activated T
and Natural Killer cells. Stimulates

production of IFN-gamma.
[46]

IL-17 395111 F: GGGATTACAGGATCGATGAGGA
R: GAGTTCACGCACCTGGAATG

Cytotoxic T-lymphocyte-associated
protein 8. Proinflammatory cytokine

produced by activated T cells.
[41]

Panel 2. Stress response genes

HSP25 428310 F: CCGTCTTCTGCTGAGAGGAGTG
R: ACCGTTGTTCCGTCCCATCAC

Heat shock protein family B (small)
member 9. Response to various cellular
stresses. Molecular chaperones which
bind to and inhibit irreversible protein

aggregation or misfolding under stressful
conditions.

[47]

HSP90AA1 423463 F: GGTGTTGGTTCCTACTCTGCTTAC
R: ACTGCTCATCATCATTGTGCTTGG

Heat shock protein family class A
member 1. Is a molecular chaperone that
aids protein folding and quality control

for a large proteins.

[47]

BAG3 423931 F: AGGGTCGTGCGGATGTGC
R: TGTGGTGGCTTAGGCTCTGC

BAG family molecular chaperone
regulator 3. Cellular response to stress. [47]

CAT 423600 F: GGGGAGCTGTTTACTGCAAG
R: CTTCCATTGGCTATGGCATT

Catalase a key antioxidant enzyme in the
bodies defense against oxidative stress. [48]

SOD1 395938 F: AGGGGGTCATCCACTTCC
R: CCCATTTGTGTTGTCTCCAA

Superoxide Dismutase binds copper and
zinc ions. Responsible for destroying free

superoxide radicals.
[48]
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Table 2. Cont.

Gene a NCBI Gene
ID Primer Sequences (5′-3′) Function b Ref.

Reference genes

ACTB 396526 F: CACAGATCATGTTTGAGACCTT
R: CATCACAATACCAGTGGTACG

Beta-actin is highly conserved protein
involved in cell motility, structure,

integrity and intercellular signaling.
Ubiquitously expressed in all eukaryotic

cells.

[49]

UB 101747587F F: GGGATGCAGATCTTCGTGAAA
R: CTTGCCAGCAAAGATCAACCTT

Ubiquitin is associated with protein
degradation, DNA repair, cell cycle
regulation kinase modification, and

regulation of other cell signals pathways.

[49]

a Annealing temperature for RT-qPCR was 58 ◦C except from IL-12p40 (65 ◦C); b gene function derive from GeneCards
(http://www.genecards.org).

3. Results

3.1. Effects of in ovo Treatment and Thermal Challenge on Gene Expression

The results of two-way ANOVA with interaction, using the first statistical model (GOS vs. C; HS vs.
TN; GOS vs. C x HS vs. TN), are presented in Table 3. In acute HS, among the immune-related genes,
only IL-4 responded with differential messenger RNA (mRNA) expression to GOS treatment (p < 0.001),
temperature (p < 0.05), and the interactions between those two factors (p < 0.01). GOS treatment
modulated the expression of the stress-related genes: BAG3, CAT and SOD (p < 0.05). In chronic HS,
GOS that were delivered in ovo had immunomodulatory effect on: IL-2 (p < 0.05) and IL-4 (p < 0.001).
Temperature significantly modulated the expression of IL-4 (p < 0.01) and IL-12p40 (p < 0.05). GOS
treatment, in interaction with the temperature, showed a modulatory effect on stress-related genes:
CAT and SOD (p < 0.01).

Table 3. Effects of in ovo treatment and ambient temperature on gene expression signatures in the
spleens of slow-growing chickens.

Gene Treatment 1 Temperature 2 Treatment × Temperature 3

Acute HS

Immune-related panel

IL-2 NS NS NS
IL-4 <0.001 <0.05 <0.01
IL-6 NS NS NS

IL-10 NS NS NS
IL-12p40 NS NS NS

IL-17 NS NS NS

Stress-related panel

BAG3 <0.05 NS NS
CAT <0.05 NS NS
SOD <0.05 NS NS

HSP25 NS NS NS
HSP90 NS NS NS

Chronic HS

Immune-related panel

IL-2 <0.05 NS NS
IL-4 <0.001 <0.01 NS
IL-6 NS NS NS

IL-10 NS NS NS
IL-12p40 NS <0.05 NS

IL-17 NS NS NS

http://www.genecards.org
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Table 3. Cont.

Gene Treatment 1 Temperature 2 Treatment × Temperature 3

Stress-related panel

BAG3 NS NS NS
CAT NS NS <0.01
SOD NS NS <0.01

HSP25 NS NS NS
HSP90 NS NS NS

Effects: 1 In ovo delivery of galactooligosaccharides (GOS) vs. physiological saline (C); 2 ambient temperature
(TN—thermoneutral vs. HS); 3 interaction between in ovo treatment and ambient temperature on immune-related
and stress-response genes in chicken spleens. Gene expression analysis was done with RT-qPCR. The significance of
effects that were calculated with two-way ANOVA. Significance levels: p < 0.05, p < 0.01 or p < 0.001 (significant),
and p > 0.05 (non-significant, NS).

The results of the two-way ANOVA that was performed with the second statistical model (GOS
vs. C; acute HS vs. chronic HS; GOS vs. C × acute HS vs. chronic HS) are presented in Table 4. In this
statistical model, we evaluated the effects of acute and chronic HS on the associated gene expression in
the splenic tissue of slow-growing chickens. In ovo treatment had an effect on gene expression of IL-4
(p < 0.001), which was consistent with the results obtained in the first statistical model. HS (acute vs.
chronic) changed the gene expression of IL-2 (p < 0.05) and HSP90 (p < 0.05), which was not observed
by comparing TN vs. HS (acute or chronic). The interaction of the two factors significantly affected the
stress-related genes CAT and SOD (p < 0.05).

Table 4. Effects of in ovo treatment and the duration of heat stress (HS) on gene expression signatures
in the spleens of slow-growing chickens.

Gene Treatment 1 HS 2 Treatment × HS 3

Immune-related panel

IL-2 NS <0.05 NS
IL-4 <0.001 NS NS
IL-6 NS NS NS

IL-10 NS NS NS
IL-12p40 NS NS NS

IL-17 NS NS NS

Stress-related panel

BAG3 NS NS NS
CAT NS NS <0.05
SOD NS NS <0.05

HSP25 NS NS NS
HSP90 NS <0.05 NS

Effects: 1 In ovo delivery of galactooligosaccharides (GOS) vs. physiological saline (C); 2 HS (acute HS vs. chronic
HS); 3 interaction between in ovo treatment and ambient temperature on immune-related and stress-response genes
in chicken spleens. Gene expression analysis was done with RT-qPCR. The significance of effects was calculated with
two-way ANOVA. Significance levels: p < 0.05, p < 0.01 or p < 0.001 (significant), and p > 0.05 (non-significant, NS).

3.2. Relative Gene Expression Changes in Heat Stress

Short-term (acute) heat (TN-C vs. HS-C) did not affect the gene expression signatures that are
associated with immune and stress responses in slow-growing chickens. On the other hand, long-term
(chronic) heat activated some immune-related and stress-related genes, presented in Figure 1. Chronic
HS up-regulated anti-inflammatory (FC log2 of IL-10 = 1.88, p < 0.05) and pro-inflammatory cytokines
(FC log2 IL-12p40 = 2.01, p < 0.05). Additionally, oxidative stress was activated in the spleen during
chronic HS (FC log2 CAT gene = 1.72, p < 0.01 and FC log2 SOD gene = 1.55, p < 0.05). Surprisingly,
the genes encoding chaperones (HSP25 and HSP90) were not activated by either acute or chronic heat
(p > 0.05).
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interleukin: IL-2, IL-4. IL-6, IL-10, IL-12p40, and IL-17 and stress-related genes: CAT, SOD, BAG3, 
HSP25 and HSP90. The x-axis shows a list of genes. The y-axis indicate the relative mRNA abundance 
of the genes after heat challenge (n = 8). Gene expression analysis was carried out with RT-qPCR. 
qPCR reactions were performed in triplicate. The geometric mean of the ACTB and UB reference genes 
was used to calculate delta cycle threshold (dCt) values. The relative gene expression (FC – fold 
change) was calculated with the delta delta cycle threshold (ddCt) formula and the fold change (FC) 
was calculated as follows: FC= 2−ΔΔCt. FC values were transformed and presented as Log2FC. The 
standard error of the means (SEM) shows distribution of the Ct values. Normalized data (dCt values) 
of thermoneutral control (mock-injected) and heat-stressed control (mock-injected) groups were 
compared with a Student’s t-test. Significant differences (p < 0.05) are labelled with an asterisk (*). 
Figures were prepared by using GraphPad Prism 7 (GraphPad, La Jolla, CA, USA). 
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and stress-related genes during HS (HS-GOS). The most striking effects of GOS that were delivered 
in ovo on the immune-related gene expression signatures was the down-regulation of IL-4 cytokine 
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HS. Overall, GOS that were delivered in ovo decreased the splenic expression of the immune-related
and stress-related genes during HS (HS-GOS). The most striking effects of GOS that were delivered in
ovo on the immune-related gene expression signatures was the down-regulation of IL-4 cytokine during
acute (FC log2 IL-4 = −6.10, p < 0.01) and chronic (FC log2 IL-4 = −3.45, p < 0.01) HS. Furthermore, GOS
that were delivered in ovo decreased the expression of pro-inflammatory cytokine, IL-12p40, during
chronic heat (FC log2 IL-12p40 = −1.13, p < 0.05). Finally, in ovo treatment reduced oxidative stress
induced by chronic heat (FC log2 CAT = −1.72, p < 0.05 and SOD = −1.56, p < 0.05). GOS that were
delivered in ovo did not modulate expression of the chaperones (p > 0.05).
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Figure 2. Relative mRNA expression of immune-related and stress-related genes in the spleens of
slow-growing chickens injected in ovo with GOS and challenged with heat on two levels: A—acute
(30 ◦C for 8.5 h); and B—chronic (30 ◦C for 14 days). Gene panel includes: interleukin: IL-2, IL-4. IL-6,
IL-10, IL-12p40, IL-17 and stress-related genes: CAT, SOD, BAG3, HSP25 and HSP90. X-axis shows
a list of genes. Y-axis indicate relative mRNA abundance of the genes after heat challenge (n = 8).
Gene expression analysis was carried out with RT-qPCR. qPCR reactions were performed in triplicates.
Geometric mean of ACTB and UB reference genes was used to calculate dCt values. The relative gene
expression was calculated with ddCt formula (FC = 2−∆∆Ct). FC values were transformed and presented
as Log2FC. Standard error of the means (SEM) shows distribution of the Ct values. Normalized data
(dCt values) of heat-challenged (A-acute, B-chronic) control (mock-injected) and heat-stressed GOS
treatment groups were compared with Student’s t-test. Significant differences (p < 0.05) were labelled
with an asterisk (*). Figures were prepared by using GraphPad Prism 7 (GraphPad, La Jolla, CA, USA).
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4. Discussion

4.1. Immune-related Gene Expression Signatures

In this study, we determined impact of two factors (i.e., the GOS that were delivered in ovo and
HS) on immune-related and stress-related gene expression signatures in the spleens of slow-growing
chickens. The spleen is the largest peripheral lymphoid organ and plays a key role in immune responses
in chickens [50]. Gene expression signatures that were determined in the splenic tissue informed about
the systemic immune response to challenging factors, including heat [51]. The GIT is highly responsive
to heat. The detrimental effects of HS on intestinal homeostasis include a reduced nutrient absorption,
a disrupted integrity of the intestinal wall, and an activated immune system [52,53]. Intestinal epithelial
cells are connected with gap junctions, tight junctions, adherent junctions, and desmosomes [54].
Under the influence of high temperature, the barrier function is compromised, and the intestinal lumen
content enters the bloodstream, causing chronic systemic inflammation [25]. The activation of Toll-like
receptors (TLR) by microbial signatures triggers myeloid differentiation primary response 88 (MyD88),
which in turn induces cytokine secretion [55].

Cytokines are intracellular peptides that serve as immune mediators. During HS, the levels
of both pro-inflammatory and anti-inflammatory cytokines increase. This is due to endotoxemia,
which is a storm of microbial endotoxin (i.e., LPS—lipopolysaccharides) infiltrating the milieu of
the body [56]. In the current study, slow-growing chickens that were subjected to chronic HS
demonstrated a significantly higher expression of IL-10 and IL-12p40. IL-10 skews immune responses
towards Th2-type (humoral) responses, while IL-12p40 is associated with Th1-type (cellular) immune
responses [57]. There is a strong interaction between these cytokines. IL-10 causes a negative regulation
of the Th1 response [58]. In this paper, chronic (but not acute) HS increased the level of splenic
mRNA encoding both IL-10 and IL-12p40. There are two hypotheses of such the counter-balancing
expression of pro- and anti-inflammatory cytokines in the spleens of heat-stressed chickens. First,
the IL-10 and IL-12p40 cytokine expression in the spleen can be mediated by the TLR2 signaling
pathway, triggered by Gram-positive cell wall components [59]. In heat-stressed individuals, those
Gram-positive cell wall components originate from intestinal content, which leaks into the milieu of
the body due to increased intestinal permeability [56]. Different bacterial ligands can stimulate TLR2
receptors on different antigen presenting cells (e.g., lymphocyte B, dendritic cells, or macrophages)
in the spleen [60]. The gastrointestinal origin of those TLR ligands suggests their variability, and,
as such, the ability to activate TLR signaling pathways in different cells. The second hypothesis is
associated with endotoxemia that is mediated by LPS influx from the gut due to HS (as mentioned
above). Endotoxemia triggers strong pro-inflammatory responses (mediated by IL-12p40) that are
balanced by anti-inflammatory IL-10 cytokine [61]. In summary, the activation of two major cytokines
in the spleens of slow-growing chickens indicates that the individuals responded to heat with increased
pro- and anti-inflammatory immune responses.

GOS that were delivered in ovo balanced the level of IL-10 and IL-12p40 to the baseline (under
acute HS) or even down-regulated cytokine expression (under chronic HS). Previously, we have
determined that GOS that were delivered in ovo increased the expression of the genes that are involved
in the barrier function of the gut of broiler chickens [32]. An improved barrier function allows for
a decrease of intestinal permeability due to stress and the influx of antigens into the milieu of the
body [62]. In the absence of an antigenic cocktail, TLR-mediated immune responses are not activated.
In a broiler study that was conducted with the same experimental design as the current study, IL-12p40
was up-regulated by acute HS, but in ovo GOS stimulation decreased its expression to the level of the
control groups [41]. It can be concluded that heat induced mild immune responses in slow-growing
chickens, but GOS that were delivered in ovo managed to dampen immune responses under HS.

Interleukin 4 (IL-4) was one of the cytokines that was modulated in slow-growing chickens by both
environmental factors, i.e., GOS that were delivered in ovo and HS. Individuals that were treated with
GOS under acute and chronic HS expressed a decreased mRNA level of the IL-4 cytokine, confirmed by
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a significant interaction between the two factors. In our earlier study on broilers [41], the mRNA level
of IL-4 was elevated by acute HS (similarly as IL-12p40), but in ovo stimulation with GOS dampened
its level to the baseline (i.e., mock-injected controls). In the current study on slow-growing chickens,
IL-4 was numerically down-regulated by HS alone, and the down-regulation was further enhanced
by the in ovo delivery of GOS (the interaction between treatment and temperature was significant).
IL-4 cytokine acts in humoral immunity as a pleiotropic cytokine that is produced in response to
receptor activation by Th2-type T cells, basophils, and mast cells [63]. Its major function is regulating
antigen-stimulated naïve T cell differentiation and the expression of the specific immunoglobulin E
(IgE) and immunoglobulin G (IgG) by B cells [64]. Quinteiro-Filho et al. (2017) found that chronic HS
decreased the plasma levels of Immunoglobilin A (IgA) and IgG in broiler chickens [65]. It seems that
splenic IL-4 is a good biomarker of the HS response in different chicken genotypes. Early GOS delivery
dampens heat-induced Th2 immune responses in slow-growing chickens.

4.2. Stress-related Gene Expression Signatures

Exposure to HS can lead to oxidative stress, which is characterized by the accumulation of
reactive oxygen species (ROS) in the cells. The first line of defense is the production of cellular
antioxidant enzymes including CAT and SOD, which protect the cells from ROS-induced cellular
damage [66]. The current study showed a significant increase in the mRNA expression of CAT
and SOD genes during chronic HS. Such increase indicates the activation of the pathways that are
associated with counteracting the effects of oxidative stress. HS has been reported to increase the
hepatic activity of CAT and SOD enzymes in two broiler chicken genotypes (Ross 308 and Cobb
500) (http://en.aviagen.com/brands/ross/products/ross-308) [67]. Habashy et al. (2018) reported the
up-regulation of the mRNA level of SOD (but not CAT) gene under chronic HS (12 days) [68].
Low/basic levels of oxidative stress can play an important role in adapting to stressful environmental
conditions [69]. In poultry, antioxidants use ROS to activate the expression of vitagenes, which are
responsible for biological adaptation to stress. Vitagenes include the SOD and HSP genes.

In slow-growing chickens, only chronic HS triggered mRNA responses. Long-term HS (14 days)
activated anti-inflammatory (IL-10), pro-inflammatory (IL-12p40), and oxidative stress responses
(CAT and SOD). Long-term HS can lead to chronic systemic oxidative stress, which is associated
with mild subclinical inflammation. This condition, called “OxInflammation,” impairs natural
homeostatic adaptation, which leads to stronger systemic inflammation and an increased susceptibility
to diseases [70]. If it is not possible to eliminate stressors from the environment, OxInflammation can
be reduced by improved acclimatization (e.g., by stimulating intestinal microbiota) and adaptation
(e.g., by using slow-growing hybrids).

In this study, both CAT and SOD were up-regulated by chronic (but not acute) HS, but in ovo
delivered GOS dampened the mRNA expression of both genes. GOS-stimulated chickens expressed
down-regulated signatures of oxidative stress compared to mock-injected birds. Oxidative stress has
been recently linked with intestinal microbiota [71]. Apparently, direct contact between intestinal
epithelial cells and microbiota induces the production of physiological ROS [72]. Different species of
intestinal microbiota induce different levels of ROS production in the gut. For example, Lactobacillus
has been reported to trigger ROS production both in vitro and in vivo [72]. We previously determined
that GOS that were delivered in ovo elicited bifidogenic effects in broiler chickens (i.e., a higher level of
Bifidobacteria), which resulted in a decreased Lactobacilli level in the caecum [32]. We can speculate that
GOS that were delivered in ovo had a potent effect on intestinal microbiota composition, which led to
a decreased intestinal ROS production under chronic HS.

Splenic HSP genes in slow-growing chickens did not respond to HS, neither acute nor chronic. The
up-regulation of HSP is a cellular reaction to reduce the risk of damage (by protein misfolding) during
stress. In our earlier study, we observed that the mRNA expression of HSP was triggered in broiler
chickens by acute HS, which did not cause any molecular responses in slow-growing chickens (data not
presented). This suggests that slow-growing chickens are heat-tolerant, and the mild elevated ambient
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temperature (30 ◦C) did not activate HS response via chaperone proteins [73]. Comparative studies on
two Brazilians native chicken breeds and commercial line Cobb chickens have shown that HSP70 and
HSP90 gene expression differs significantly between breeds. HSP genes were highly up-regulated in
native breeds only at a very high ambient temperature (39 ◦C), which proved them resistant to high
temperatures [18].

On a performance level, HS causes losses in feed intake and growth rate. In broiler chickens,
chronic HS has been found to significantly reduce (p < 0.01) final body weight (BW) (2.52 kg in TN
vs. 3.11 kg in HS) [32,39,40]. In the current study, chronic HS also reduced final BW (p < 0.001),
but the difference between TN and HS was almost two times lower than in broiler chickens (2.21 kg
in TN vs. 1.94 kg in HS), even with the longer rearing period (42 days in broilers vs. 50 days
in slow-growing chickens). The slow-growing crossbreds, which were analyzed in this study, are
considered by the Hubbard breeding company as “exceptional in their rusticity.” This indicates better
hardiness in comparison to highly selected and fast-growing broilers. The results presented in this
paper confirm that slow-growing crossbreds lost only 12% of their total BW due to HS, whereas the
losses in fast-growing broilers amounted to 24% of their total BW. GOS that were delivered in ovo
improved (p < 0.01) the final BW in broiler chickens (2.76 kg in control chickens vs. 2.89 kg in GOS).
In the current study, the final BW of slow-growing chickens was not improved (p > 0.05) by GOS
that were delivered in ovo (2.04 kg in control chickens vs. 2.00 kg in GOS) (Federico Sirri, personal
communication). The differences in growth rate seemed to have had an impact on the responses to HS
in chickens. However, at this point, the data on slow-growing chickens are limited. Therefore, we find
it difficult to provide an explanation for why this genotype reacted differently than the highly selected,
fast-growing broilers.

5. Conclusions

Slow-growing chickens proved to be well adapted to acute HS, which did not trigger immune-
related or stress-related gene expression in the spleen. On the other hand, chronic HS activated genes that
are associated with inflammation and oxidative stress (i.e., OxInflammation). GOS that were delivered
in ovo mitigated heat-induced OxInflammation and decreased Th2 responses (down-regulation of
IL-4). We demonstrated that the genetic adaptation of slow-growing chickens to HS combined with in
ovo stimulation with GOS has mitigating effects on the molecular pathways that are associated with
immune and stress responses.
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