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Abstract 

 

The efficacy against oxidative degradation in model and sulphite-free white wines of two 

commercial, insoluble chitosans (one being approved for winemaking) were investigated 

by electron paramagnetic resonance (EPR). Both compounds at various doses 

significantly inhibited the formation of -(4-pyridyl-1-oxide)-N-t-butylnitrone (4-POBN)-1-

hydroxyethyl adducts under normal wine storage conditions. Pre-incubation with 2 g/L 

chitosan followed by filtration had a better effect than adding 50 mg/L sulphur dioxide to 

the experimental Chardonnay wine on the release of 4-POBN adducts after 6 days of 

incubation with 100 M iron(II). In a relevant photooxidative system acetaldehyde 

formation was significantly reduced after 6 days of incubation. Parallel EPR tests were 

performed to assess the importance of metal chelation (iron and copper) versus direct 

scavenging of hydroxyl radicals on the effect of chitosan. The present data support the 

potentiality of using biocompatible chitosan as a healthier complement and/or alternative to 

sulphur dioxide against white wine oxidative spoilage. 

 

Keywords: Antioxidant, Chitosan, EPR spin trapping, Hydroxyl radical scavenging activity, 

Metal chelation, Photooxidation, Sulphur dioxide-free wines 

 

Abbreviations: AAPH, 2,2'-azobis(2-methylpropionamidine) dihydrochloride; CHI, 

chitosan; DAD, diode array detection; DEPMPO; 5-(diethoxyphosphoryl-5-methyl)-1-

pyrroline-N-oxide; DNPH, 2.4-dinitrophenylhydrazine; DMPO, 5,5'-dimethyl-1-pyrroline-N-

oxide; EPR, Electron paramagnetic resonance; H2O2, hydrogen peroxide; 1-HER, 1-

hydroxyethyl radical; 4-MeC, 4-methylcatechol; PBS, phosphate-buffered saline; 4-POBN, 

-(4-pyridyl-1-oxide)-N-t-butylnitrone; ORAC, oxygen radical absorbance capacity. 
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1. Introduction 

 

 Skilled oxidation management is perhaps the most crucial task in winemaking since it 

can offer significant improvement of the organoleptic characteristics (color, flavors and 

taste) and shelf life of the finished wine. In the last decades a vast literature has arisen 

dealing with the molecular events behind non-enzymatic oxidation of wine (Danilewicz, 

2003; Oliveira, Ferreira, De Freitas & Silva, 2011; Waterhouse & Laurie, 2006) that would 

guide technological interventions in wineries. The most plausible scenario for wine 

oxidation globally resembles that of oxidative stress in biology but, unlike in respiring cells, 

molecular oxygen is here reduced to water univalently, with successive formation of the 

hydroperoxyl radical HOO (the protonated form of superoxide (O2
-) at wine pH), 

hydrogen peroxide (H2O2), and finally the hydroxyl radical (HO). This cascade of 

reactions are susceptible to occur at any stage of winemaking, including after bottling, 

since the volume of dissolved oxygen and the headspace above the wine can reach 

several mL depending on type of closure and adopted vinification technology (Grant-

Preece, Barril, Schmidtke & Clark, 2017). This results in oxidation of the wine polyphenols 

to corresponding o-quinones and brown pigments (a phenomenon called 'browning'), with 

undesired effects on the aromatic profile and color (Oliveira et al., 2011; Waterhouse & 

Laurie, 2006). Trace transition metals, particularly iron and copper, have been shown to 

play a cardinal role in wine oxidation, notably because they catalyze the reduction of H2O2 

to HO by a Fenton-type reaction, being then redox cycled by those polyphenols, with 

experiments often involving the representative compound 4-methylcatechol (4-MeC), not 

itself found in wine but bearing a typical catechol moiety (Danilewicz, 2003). Finally, HO 

will oxidise ethanol and tartaric acid to acetaldehyde CH3CHO and glyoxylic acid, 

respectively, the former imparting to white wine a characteristic oxidative odor upon 

accumulation. 
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 Of the available methodologies to study the reactivity of HO in wine oxidation, 

electron paramagnetic resonance (EPR) spectroscopy coupled to spin-trapping has led to 

conclusive advances in the understanding of free radical processes. Fig. 1 shows that 

hydroxyl radicals, which nonspecifically attack any molecule at diffusion controlled rates 

(i.e., with second-order rate constants > 109 M-1.s-1), will oxidise ethanol to the main, 

thermodynamically stabilized secondary 1-hydroxyethyl radical (1-HER) intermediate. In 

low O2 conditions 1-HER is readily oxidized by Fe(III) to yield acetaldehyde. Despite being 

quenched by many wine constituents such as polyphenols and thiols (Kreitman, Laurie & 

Elias, 2013) enough 1-HER remains available to be spin trapped on nitrones added to a 

wine oxidation system, giving nitroxide adducts that can sometimes be detected for days 

(Elias, Andersen, Skibsted & Waterhouse, 2009a, 2009b; Elias & Waterhouse, 2010; 

Kreitman, Cantu, Waterhouse & Elias, 2013; Zhang, Shen, Fan, García Martín, Wang & 

Song, 2015; Nikolantonaki et al., 2019). 

 In oenology the most widely used intervention to protect must and wine against 

oxidation and microbial activity is adding sulphur dioxide (SO2). Bisulfite, the active form of 

SO2 at wine pH, is presumed to lessen overall wine oxidation process at several stages, 

i.e., by scavenging H2O2 to yield sulfate (Fig. 1), reducing o-quinones back to their 

phenolic precursors, or binding to carbonyls, especially the most abundant one, 

acetaldehyde (Danilewicz, 2003; Oliveira et al., 2011). Despite their remarkable efficacy, 

simple implementation and low cost, however, sulphites have demonstrated latent adverse 

effects in hypersensitive individuals, e.g., they may aggravate the symptoms of allergic 

asthma (Vally, Misso & Madan, 2009), and there is movement to promote supposedly 

healthier non-sulphited wines, or to support antioxidant alternatives in winemaking. Most if 

not all of the new technologies (pulsed electric fields, ultrasounds, UV irradiation) and 

natural preservation chemicals (dimethyl dicarbonate, lysozyme, bacteriocins) under 

development have as their purpose antimicrobial and enzyme inactivating effects (Santos, 
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Nunes, Saraiva & Coimbra, 2012). Furthermore, the use of other additives such as 

glutathione, ascorbic acid or polyphenols intended at inhibiting free radical mediated wine 

oxidation at H2O2 stage or downstream remain marginal (Kemp, Alexandre, Robillard & 

Marchal, 2015). 

 Another attractive route to control wine oxidation is inactivation of catalytic metals by 

potent chelators, as such intervention would, in principle, simultaneously inhibit Fenton 

chemistry, and the formation of o-quinones and acetaldehyde (Fig. 1). Chitosan is a -1.4-

connected linear polymer of D-glucosamine usually obtained by deacetylation of chitin, a 

homopolymer of N-acetyl glucosamine extracted from insects, crustaceans or fungi. Due to 

its regular and high density of amino and hydroxy groups (Fig. 1), this non-toxic, 

biodegradable biopolymer has remarkable metal chelation power and, because of its 

polycationic nature, chitosan also exhibits anti-microbial activity, both properties having 

attracted food scientists for decades (Bornet & Teissedre, 2008). Moreover, use of 

chitosan as an additive in winemaking for preventing cloudiness, removal of heavy metals, 

and reduction of Brettanomyces spp. contamination has been regulated by the EU in 2011 

(EC Regulation No 53/2011). Since its early introduction as anti-browning agent in white 

wines (Spagna, Pifferi, Rangoni, Mattivi, Nicolini & Palmonari 1996) chitosan has 

stimulated wine researchers as a substitute for SO2 (Chinnici, Natali & Riponi, 2014) and is 

gaining popularity in winemaking (Colangelo, Torchio, De Faveri & Lambri, 2018; Filipe-

Ribeiro, Cosme & Nunes, 2018; Castro-Marín, Buglia, Riponi & Chinnici, 2018). In the 

present work established EPR spin trapping and wine oxidation relevant techniques were 

applied for the first time, to obtain a deeper understanding of the mechanisms of how an 

approved, insoluble chitosan protects against white wine spoilage in winemaking 

conditions. 
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2. Materials and methods 

 

2.1. Chemicals and wine samples 

 

 The spin traps -(4-pyridyl-1-oxide)-N-t-butylnitrone (4-POBN) and 5,5'-dimethyl-1-

pyrroline-N-oxide (DMPO) were from TCI (Zwijndrecht, Belgium), and 5-

(diethoxyphosphoryl-5-methyl)-1-pyrroline-N-oxide (DEPMPO) was synthesized and 

purified as reported (Culcasi, Rockenbauer, Mercier, Clément & Pietri, 2006). Fluorescein, 

6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox) and 2,2'-azobis(2-

methylpropionamidine) dihydrochloride (AAPH) were from Acros (Illkirch, France). 

Phosphate-buffered saline (PBS) and other solvents or chemicals, including ferric chloride, 

ferrous sulfate heptahydrate, copper(II) sulfate, ferrozine [4,4'-[3-(2-pyridinyl)-1,2,4-

triazine-5,6-diyl]bisbenzenesulphonic acid], 2.4-dinitrophenylhydrazine (DNPH), 4-MeC, 

potassium metabisulfite, (+)-tartaric acid, acetaldehyde, and H2O2 were of analytical (> 

98.5%) or HPLC grade from Sigma-Adrich (Saint-Quentin Fallavier, France). Doubly 

distilled deionized water was used throughout. 

 A 7585% deacetylated chitosan having a 50190 kDa molecular weight was 

purchased from Sigma-Aldrich (CHI-1; product 448869), and a 8090% deacetylated 

chitosan having an average molecular weight of 1030 kDa (CHI-2) of fungal origin 

(Aspergillus niger) obtained from KitoZyme (Herstal, Belgium) were studied. 

 Commercially available sulphur dioxide-free white wine samples, obtained from 

Chardonnay grapes (100%; AOP Coteaux Champenois), were kindly provided by 

Champagne J. de Telmont (Damery, France). These wines had the following oenological 

characteristics, measured according to standard procedures described in the 

'Compendium of international methods of analysis of wines and musts', published in 2018 
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by the International Organization of Vine and Wine (OIV): harvest, 2015 (2016); ethanol (% 

v/v), 11.47 (11.35); pH, 3.22 (3.16); titratable acidity (g/L of sulphuric acid), 4.40 (4.60); 

volatile acidity (g/L of sulphuric acid), 0.26 (0.45); malic acid content (g/L), <2.0 (< 2.0); 

free SO2 (mg/L), < 9 (~4) and total SO2 (mg/L), 5 (not measurable). After opening, the 

wine samples were stored under N2 atmosphere. 

 

2.2. Model wine solution 

 

 One litre of model wine solution consisting of 12% (v/v) ethanol and tartaric acid (8 

g/L) was prepared and its pH was adjusted to 3.5 with 10 M NaOH. To guarantee air 

saturation, samples were stirred for 1 h before carrying out the experiment. 

 

2.3. Measurement of Fe(II) chelating activity 

 

 First, the chelating activity of CHI-2 was determined in model wine (pH 3.5) at room 

temperature using the ferrozine competition assay (Stookey, 1970) with modifications. 

Briefly, 0.1 mL of CHI-2 in suspension at different concentrations (0–10 g/L) was mixed 

with 50 L of ferrozine solution (0.72 mM) in 1.5 mL Eppendorf tubes. Following stirring of 

the samples for 10 min in darkness, 0.1 mL of Fe(II), as ferrous sulfate, (100 M) was 

added and agitation was maintained for 48 h. Following centrifugation (2320 g) of the 

samples for 5 min, 0.2 mL of supernatant was transferred into 96-well microplates and the 

absorbance was determined at 562 nm using a microplate reader (Tecan Infinite, 

Männedorf, Switzerland). Plotting absorbance inhibition versus chitosan concentration 

allowed IC50 values to be determined, defined as the effective chitosan (or ferrozine) 

concentration required to chelate 50% of iron(II). Calibration curves (from triplicate 
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measurements) were established in model wine at pH 3.5 by plotting absorbance versus 

ferrozine concentration (0.253 mM) at a given Fe(II) concentration (0.10.5 mM) using 

the same incubation protocol. 

 Second, the unchelated iron content of real wine samples spiked with 100 M Fe(II) 

alone or in the presence of CHI-2  (0.5 and 2 g/L) was also determined by means of flame 

atomic absorption according to the relevant OIV method (see above). Briefly, samples 

were saturated with air and aliquots (20 mL) were placed into 50-mL Falcon tubes sealed 

with stoppers and continuously agitated for 48 h at 20 °C in darkness. Afterwards, samples 

were centrifugated (45 g) and filtered prior to injection for iron analysis. The instrument 

was an Agilent 240FS AA spectrophotometer, with a deuterium lamp for background 

radiation correction, a hollow cathode lamp at 248.3 nm, and the airacetylene flame. 

Calibration curves were plotted using standard iron diluted with deionized water. All 

analyses were performed in triplicate. 

 

2.4. Irradiation and sample analysis 

2.4.1. Wine sample preparation 

 An additional set of iron-spiked wine samples containing CHI-2 (0.5 and 2 g/L) or SO2, 

as potassium metabisulfite, (50 mg/L) were prepared and stored as outlined for flame 

atomic absorption studies. Samples were placed at 20 °C in a temperature controlled 

chamber for 16 days at a distance of 5 cm from two cool daylight fluorescent lamps 

(Sylvania T8 Luxline Plus 36W 840) producing a light at 300580 nm wavelength and an 

average intensity of 2000 lux. The light intensity was measured using a 51000 series 

digital lux meter (Yogokawa, Lyon, France). All samples were shaken for 2 min four 

times/day throughout. All experiments were performed at least in triplicate. 
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2.4.2. HPLC-DAD analysis of acetaldehyde 

 At the end of the irradiation period the samples were analyzed for their content in 

acetaldehyde using a Merck Hitachi HPLC system consisting of an Elite LaChrom L-7000 

interface module with a diode array detector (DAD) (L-7455) and a EZchrom workstation 

for data processing. The UV spectra were recorded in the range 220400 nm. With the 

aim to detect exclusively the free fraction of aldehydes which take part in oxidation 

process, no acid hydrolysis of samples was carried out. Samples (800 L) were incubated 

with 200 L of a DNPH solution (10 mM in 2.5 M HCl) for 1 h at 45º C in darkness. After 

cooling at room temperature separation of the DNPH adducts was achieved on a 

Nucleodur C18 Htec column (Macherey-Nagel, Düren, Germany; 250 × 4.6 mm; 5 m) 

with a flow rate of 0.8 mL/min. Solvent A was acetonitrile; solvent B was water containing 

0.05% (v/v) solution of phosphoric acid (pH 2.7). The elution program was the following: 0 

min, 40% A, 8 min, 85% A, 9 min, 40% A, 13 min, 40% A, and injection volume was 20 L. 

The identification of the observed derivatives was based on their retention time compared 

with those of standards tested at 360 nm as well as their spectral characteristics. 

Quantification was based on peak area. 

 

2.5. Oxygen radical absorbance capacity (ORAC) assay 

 

 The assay was performed in microplates as previously described (Kandouli et al., 

2017). Briefly, a fluorescein stock solution (821 M) was prepared in PBS and stored at 4 

°C. Prior to use, the following solutions in KH2PO4 buffer (0.1 M, pH 7.4) were prepared: 

fluorescein stock solution rediluted as to reach 82.1 nM, and AAPH (153 mM). Test 

samples, Trolox calibration solution or the blank (25 L/well) were added to the wells of a 

96-well plate, diluted with fluorescein solution (150 L/well) and incubated for 10 min at 37 
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°C. AAPH solution (25 L/well, 19.12 mM, final concentration) was then added and the 

fluorescence intensity (excitation at 485 nm, emission at 530 nm) was monitored every 2 

min for 70 min with a microplate reader. The ORAC value was calculated using the net 

area-under-curve and expressed as mol Trolox/ mL. 

 

2.6. Preparation of solutions and suspensions for EPR spin trapping analysis 

 

 Samples to be scanned by EPR were aspirated into 50 L glass capillary tubes 

(Hirschmann Lab., Eberstadt, Germany), as to fill them completely, and sealed with 

Critoseal (McCormick Scientific, St Louis, MO) at lower (nucleophilic addition and Fenton 

reaction with 4-MeC) or both ends (remaining studies). 

 

2.6.1. Solutions for in situ photolysis and Fenton reaction in model wine and calculation of 

rate constants 

 Hydrogen peroxide (3% v/v) was used as photolytic precursor of HO. Solutions of 

chitosan (0.12 g/L) dissolved in water containing 0.5% (v/v) acetic acid (pH 3.18) and 

DMPO (3.33 mM, final) were continuously illuminated using a 1000 W xenon-mercury 

UVVis light source (Oriel, Newport Corp., Irvine, CA) guided within the EPR cavity 

through an optical glass fiber. The corresponding blank spectra were substracted from 

experimental spectra before data processing. 

 The apparent second-order rate constant kCHI for the reaction of HO with chitosan 

was calculated using the equation: 

I0/I = 1 + [(kCHI/(kDMPO × CDMPO) × CCHI] 
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where I0 and I is the intensity of the EPR signal recorded in the control and in presence of 

chitosan, respectively, CDMPO and CCHI are the concentrations of DMPO and chitosan, 

respectively, and kDMPO is the second-order rate constant for the trapping of HO on 

DMPO. The slope of the regression plot of I0/I against CCHI for a constant value of CDMPO 

was used to estimate kCHI (Finkelstein, Rosen & Rauckman, 1980): 

kCHI = slope × CDMPO × kDMPO 

assuming that kDMPO = 3.4 × 109 M-1.s-1 using the above conditions and photolytic system 

(Finkelstein et al., 1980). 

 To estimate the effect of hydrogen peroxide and iron(II) on Fenton-driven 4-POBN spin 

adduct formation H2O2 (0.2525 g/mL) was added to a freshly prepared solution of the 

nitrone (15 mM) and Fe(II) (0.1 or 0.2 mM) in model wine. EPR spectra were acquired 130 

s or 10 min after addition of H2O2. 

 

2.6.2. Suspensions for nucleophilic addition assays 

 A suspension of tested chitosan (0.52 g/L) in water containing a wine relevant 

concentration of Fe(III), as FeCl3, of 30 mg/L and Cu(II), as CuSO4, of 12.5 mg/L was 

stirred for 1 h at room temperature to allow for metal complexation by chitosan. EPR 

spectra were recorded 1 min following addition of aqueous DEPMPO (55 mM) to the 

suspension. 

 

2.6.3. Suspensions for Fenton reaction assays and incubations 

 All experiments described below (incubations and EPR spectrometry) were conducted 

at 2022 °C in darkness. 
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 To assess the effect of CHI-2 (0.5 or 2 g/L) or SO2 (50 mg/L) on 4-POBN adduct 

formation the tested inhibitor was pre-incubated with 100 M Fe(II) for 48 h in model wine. 

Following pre-incubation of suspensions/solutions were added the nitrone (15 mM) and 

H2O2 (2.5 g/mL) dissolved in model wine. EPR spectra were then sequentially recorded 

up to 1 h following addition of H2O2. In some experiments 4-MeC (1 mM) was also added 

after pre-incubation. 

 To extend the above experiments to wine oxidation under winemaking conditions the 

incubations were prolonged up to 3 or 6 days in model and real wine, respectively. A 48-h 

pre-incubation with 100 M of Fe(II) and varying concentrations of the tested inhibitor (i.e., 

chitosan, SO2 or ferrozine) was first applied. Then 4-POBN (15 mM) alone (real wine) or 

mixed with 4-MeC (1 mM; model wine) were added and the EPR signal intensity was 

followed over time. In experiments performed in real wine samples were gently decantered 

by centrifugation at 25 g for 5 min before adding the nitrone in the clear supernatant. 

 Throughout incubation the solutions/suspensions were stored in capped Eppendorf 

tubes with a ~10 times air volume above and stirred at 510 rpm with a Stuart SB3 rotator 

(Cole-Parmer, Vernon Hills, IL). 

 

2.7. Acquisition of EPR spectra and apparatus 

 

 EPR signals were obtained with a Bruker ESP 300 spectrometer (Karlsruhe, Germany) 

operating at X-band (9.79 GHz) with 100 kHz modulation frequency and a microwave 

power of 10 mW. Typical settings in DMPO and 4-POBN (DEPMPO) spin trapping were: 

modulation amplitude, 0.625 (0.279) G; time constant, 81.92 (40.96) ms; gain, 1 × 105 

(1.25 × 105); sweep width, 60 (140) G; sweep time/scan, 41.94 (41.94) s; number of 

accumulated scans, 10 (1). To determine g-factors the magnetic field strength and 
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microwave frequency were measured with a Bruker ER 035M NMR gaussmeter and a 

Hewlett Packard 5350B frequency counter, respectively. Spin adduct intensities were 

determined by double integration of simulated spectra using WinSim software (Duling, 

1994). Area-under-curve of spin adduct variations were obained using Prism sofware 

(GraphPad Software, San Diego, CA). 

 

2.8. Statistical analysis 

 

 Data are given as mean ± SEM for the indicated number of independent experiments. 

Evaluation of statistical significance was conducted by one-way analysis of variance 

(ANOVA) followed, if significant (p < 0.05), by a posteriori Duncan test. Differences 

between groups were considered significant when p < 0.05. 

 

3. Results and discussion 

 

 Owing to its insolubility at wine pH and known metal chelation property, suspensions 

of chitosan were stirred for 2 days in darkness with 100 M (5.5 mg/L) Fe(II), a typical 

concentration found in white wine, to ensure maximum metal chelation before oxidation 

under wine conditions was induced. Under these pre-incubation conditions 500 M 

ferrozine were found to chelate 142 M of Fe(II) in model wine at pH 3.5, while increasing 

the pH to 4.5 resulted in a 30% increase of the chelating power, in agreement with 

previous observations (Stookey, 1970). 
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3.1. EPR evidence that chitosan slowers free radical formation during wine oxidation 

 

 A general method to follow 1-HER formation in oenology as an intermediate in non-

enzymatic wine oxidation (Fig. 1) is to apply EPR spin trapping using the linear arylnitrone 

4-POBN as the spin trap (Elias et al., 2009a, 2009b; Nikolantonaki et al. 2019). Thus, in 4-

POBN (15 mM)-containing model wine (12% v/v ethanol, 8 g/L tartaric acid, pH 3.5) 

challenged by HO radicals formed via a Fenton reaction, the strong six-lines spectrum of 

4-POBN-1-HER spin adduct was detected, with hyperfine splittings: aN = 15.62 G, aH = 

2.55 G, a13-C = 5.22 G, and g = 2.0054 in good agreement with previous data, including the 

coupling value of the 13C satellite lines (Halpern, Yu, Barth, Peric & Rosen, 1995; Nakao & 

Augusto, 1998; Pou et al., 1994). In the same system removal of ethanol allowed transient 

detection of the 4-POBN/hydroxyl radical adduct (4-POBN-OH) as a sextet with slightly 

different EPR parameters: aN = 14.99 G, aH = 1.65 G, and g = 2.0057, consistent with early 

data (Pou et al., 1994). The fact that 1-HER, and not the primarily formed HO (Fig. 1), is 

the major species trapped in 4-POBN spin trapping studies on alcoholic beverages mainly 

relies on: (i) the very low stability of 4-POBN-OH versus 4-POBN-1-HER (Halpern et al., 

1995; Pou et al., 1994), and (ii) the large excess of ethanol (molar range) with respect to 

the nitrone (millimolar range) in the system to compete with HO. Indeed, detection of 

nitrone/HO adducts in oxidizing wine required a molar concentration of the trap (Elias et 

al., 2009a). 

 As depicted in Fig. 1 endogenous wine's phenolics can be considered suitable 

Fe(II)/Fe(III) redox recyclers to sustain the Fenton reaction involved in wine oxidation 

(Elias et al., 2009a; Elias & Waterhouse, 2010). When the model wine system above had 1 

mM of 4-MeC added (taken as a model for wine's catechols), a wine's typical 

concentration with respect to total phenolics (Kreitman, et al., 2013b), 4-POBN-1-HER 

adducts developed over 3 days at ambient temperature and in darkness, provided that 
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incubating samples were always well aerated. Given the known high stability and 

resistance to redox-active agents of 4-POBN-1-HER adducts (Halpern et al., 1995) a 

sensitive EPR acquisition method was applied here, where accumulating signals in ~7-min 

blocks allowed detection of weak signal intensities since 1 h in control samples (Fig. 3A). 

Both chitosans added in suspension up to 2 g/L significantly inhibited oxidative formation 

of 4-POBN-1-HER with similar profiles (but no clear dose-dependence), CHI-2 being the 

most effective after 48 h of action. A very significant inhibitory effect of the best compound, 

CHI-2, added at 1 or 2 g/L was also seen when incubations were carried out in sulphite-

free Chardonnay wine for up to 6 days at ambient temperature, again with no significant 

dose effect except in the early oxidation phase (Fig. 3B). 

 In order to address the mechanisms by which chitosans protect synthetic and real 

wine against free radical mediated ethanol oxidation, i.e., by delaying the formation of 1-

HER radical intermediate, incubations in both matrices were carried out in the presence of 

SO2 at a winemaking dose (50 mg/L), or the strong iron(II) chelator ferrozine. By 

interacting with two main components of the Fenton system (Fig. 1), SO2 and ferrozine can 

inhibit 1-HER formation by removing H2O2 or forming iron complexes with no catalytic 

power, respectively (Elias et al., 2009b; Elias & Waterhouse, 2010; Kreitman et al. 2013b). 

The strong decreases in 4-POBN-1-HER formation seen with both types of treatments 

seem to confirm the pertinence of these two mechanisms (Fig. 3). Thus, spin adduct 

formation re-increased in SO2 added samples after 48 h incubation, possibly because 

decreased levels of free SO2 (i.e., the scavenging-active SO2 fraction not linked to 

acetaldehyde and not already oxidized to sulfate) could no more efficiently eliminate the 

continuous H2O2 formation in the system. 

 EPR signals from all samples pre-treated with high ferrozine (500 M) exhibited the 

lowest intensities throughout the incubation time frame (Fig. 3). This is consistent with the 
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results of the Fe(II) activity assay above suggesting that practically all of the 100 M 

iron(II) added should have been complexed by ferrozine into a Fenton-inactive species. 

Moreover, from the IC50 values obtained by the ferrozine assay in model wine it was found 

that 168 M ferrozine and 2.4 g/L CHI-2 exhibited similar chelating effects toward 100 M 

of Fe(II). This could explain the similarity of 4-POBN-1-HER inhibition profiles between 

samples supplied with 150 M ferrozine and those with added CHI-2, but not CHI-1 (Fig. 

3A). 

 The extent to which pre-treating the real wine with CHI-2 had reduced the amount of 

catalytic Fe(II) before the spin trapping reaction shown in Fig. 3B started, was quantified 

by flame atomic absorption. The endogenous concentration of Fe in the wine was only of 

6.8  0.1 M (both vintages combined). Following addition of 100 M Fe(II) and incubation 

for 2 days in darkness, 98.9  1.1 M of iron was detected, with a small loss consequent 

to, e.g., adsorption onto the labware or wine proteins, or chelation by tartaric or citric acids. 

In the presence of CHI-2 at 0.5 and 2 g/L, the free iron content of the wine samples was 

significantly decreased to 48.5  0.4 and 31.2  0.8 M, respectively. 

 It is therefore possible that part of the effect of chitosans found in the above EPR 

experiments may be due to Fe(II) chelation properties. Chelation capacity of chitosan in 

oenology has already been reported (Bornet & Teissedre, 2008; Chinnici et al., 2014; 

Colangelo et al., 2018). Since for these compounds metal removal is based on the 

formation of a complex involving amine or hydroxyl groups (Fig. 1), chelation capacity 

increases with increasing degree of deacetylation and decreasing molecular weight as a 

consequence of greater availability of amino groups toward metal ions (Bornet & 

Teissedre, 2008). These structural features may explain the lower effectiveness of CHI-1 

versus CHI-2 (Fig. 3A). Furthermore, chitosan can adsorb polyphenols into its matrix, 

decreasing their level in wine (Chinnici et al., 2014; Spagna et al., 1996). Hence, such a 
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decrease in the 4-MeC (model wine) or oxidizable polyphenols (real wine) contents would 

indirectly inhibit spin adduct formation by lowering H2O2 levels. 

 

3.2. Mechanistic understanding of the inhibitory effect of chitosan 

 

3.2.1. Quantification of H2O2 levels occurring during wine oxidation 

 In the above experiments the relative EPR intensities were found to be similar over the 

incubation time frame regardless experiments were performed in 4-MeC-supplemented 

model or real wine (Fig. 3). To estimate the H2O2 concentrations implicated, a Fenton 

assay was run in unsupplemented model wine by measuring 4-POBN-1-HER levels, 

obtained using an identical temperature and acquisition protocol, as a function of Fe(II) 

and H2O2 constituents. As seen in Fig. 4, spin adduct concentration, which increased with 

any of these two constituents, was more dramatically affected upon doubling iron(II) 

content than when H2O2 concentration was increased 10 times. This substantiates the 

above and previous findings (Bornet & Teissedre, 2008; Elias et al., 2009b; Kreitman et 

al., 2013b) that decreasing metal ion content in wine may be a more sustainable strategy 

against oxidation than temporarily scavenging H2O2 by adding SO2. Furthermore, in 

completely filled and stopped capillaries, 4-POBN-1-HER intensities only moderately 

augmented 10 min versus ~2 min after triggering the Fenton reaction, and consequently 

the generation/detection system run here can be considered as a controlled one. 

 As seen in Fig. 3, accumulation of long-lived 1-POBN-1-HER adducts resulted in 

average EPR intensities peaking at ~2.5 relative units in the controls when 100 M Fe(II) 

was used to start oxidation. According to the results of Fig. 4 where H2O2 was added at 

once in the system, this suggests that the total H2O2 concentration decomposed by the 

Fenton reaction over 36 days under wine oxidation conditions was very low, ranging 
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0.252.5 g/mL (775 M), as visualized by the dashed line in Fig. 4. Fenton generators 

commonly used in wine oxidation spin trapping studies involve similar Fe(II) concentrations 

but at least fourfold higher H2O2 concentrations (Elias et al., 2009a; Nikolantonaki et al., 

2019). Obviously, the EPR spin trapping technique applied here underestimates H2O2 

levels produced in wine oxidation because a variety of scavenging mechanisms are 

operating, e.g., reactions with SO2. Thus in a set of red wines oxidized in air at 40°C using 

100 M Fe(II), a rate of H2O2 formation of ~14 M/30 min was reported (Héritier, Bach, 

Schönberger, Gaillard, Ducruet & Segura, 2016). 

 

3.2.2. Effect on Fenton-derived 1-HER 

 Having defined the combination of 100 M Fe(II) + 2.5 g/mL H2O2 (74 M) as a wine-

like Fenton system to model incubations of Fig. 3A, it was applied in model wine  4-MeC 

(1 mM), alone or in the presence of inhibitors, and the effects on 4-POBN-1-HER formation 

were monitored for up to 1 h. In unsupplemented medium EPR signals, which expectedly 

increased along with the continuous formation of HO radicals, showed a 2.53.5 

amplification in the presence of 4-MeC (Fig. 5A). A similar effect has been reported by 

Elias and Waterhouse (2010) who suggested that the recycling of Fe(III) to Fe(II) by 4-

MeC may increase adventitiously the amount of 1-HER available for spin trapping (Fig. 1). 

The control EPR signals in Fig. 5A were decreased up to 89% (unsupplemented) or 95% 

(with 4-MeC) in samples pre-incubated with CHI-2 suspensions (0.5 or 2 g/L) for 2 days, 

with no clear dose-response effect. In these experiments background 4-POBN-1-HER 

adducts were detected in SO2 added samples up to 30 min. 

 

3.2.3. Effect on photochemically generated hydroxyl radicals 
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 Having investigated the iron(II) chelating property of chitosans as a key step of the 

inhibition of HO-mediated wine oxidation, additional spin trapping experiments were 

carried out in attempt to delineate the specific HO scavenging behaviour of these 

compounds. Previous EPR investigations of the antioxidant properties of chitosan have 

generally focused on hydrosoluble derivatives and standard assays, including Fenton 

reaction-based tests on HO scavenging (see, e.g., (Park, Je & Kim, 2003)) for which 

there is clear interference with Fe(II) chelation property. Here, an iron independent method 

for producing HO spin adducts was used, where in situ photolysis of 3% H2O2 in the 

presence of the cyclic nitrone DMPO (ca. 3 mM) in 0.5% acetic acid solution (pH 3.2) 

afforded the known DMPO/hydroxyl radical adduct (DMPO-OH), giving a characteristic 

1:2:2:1 EPR quartet with aN = aH = 14.95 G and g = 2.0053 (Fig. 2b). 

 Both chitosans, soluble in the medium up to 2 g/L, dose-dependently inhibited the 

formation of DMPO-OH. Using the kinetic analysis of (Finkelstein et al., 1980) plots of I0/I 

against concentration were obtained (see Methods), exhibiting satisfactory linear fits (Fig. 

5B). Assuming an average molecular weight of 120 and 20 kDa for CHI-1 and CHI-2, 

respectively, second-order rate constants for the reaction of HO were calculated as 7 × 

1012 and 1012 M-1.s-1 for CHI-1 and CHI-2, respectively. Such high values, reflecting 

diffusion-controlled processes, have been reported for many macromolecules, including 

proteins (Bailey et al., 2014). Using pulse radiolysis, a technique more specific for 

determining HO rate constants, a value of 6.3 × 108 M-1.s-1 has been reported for 

deacetylated chitosan from a crustacean, krill (Euphausia superba) at pH 3 (Ulanski & von 

Sonntag, 2000). 

 As displayed in Fig. 1, molecular mechanisms for HO scavenging by chitosan 

backbone can involve either free amine groups and/or their ammonium derivatives, or 

typical H-abstraction reactions along the polysaccharide unit (Xie, Xu & Liu, 2001). 

Moreover, earlier EPR and pulse radiolysis studies have revealed a low selectivity for H-
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abstraction onto the chitosan unit, i.e., these compounds would behave as if a single 

preferred site was submitted to HO attack (Ulanski & von Sonntag, 2000). This could 

explain the linear variations of Fig. 5B, with intercepts of 1.1 and 1.5 for CHI-1 and CHI-2, 

respectively, close to the theoretical value of 1 in the kinetic model of (Finkelstein et al., 

1980). 

 In another approach to discriminate between iron chelation and free radical 

scavenging in the inhibitions seen in Fig. 3 the ORAC-fluorescein values were calculated 

for tested wines. This method, which measures the scavenging efficacy against a peroxyl 

radical formed by thermal scission of an azo initiator, AAPH, has been widely applied to 

assess the antioxidant capacity of wine (Sánchez-Moreno, Cao, Ou, & Prior, 2003; 

Stockham et al., 2013), a high ORAC showing a better antioxidative power. In this study 

the ORAC found for experimental wine, typical of Chardonnay wines (Sánchez-Moreno et 

al., 2003; Stockham et al., 2013), is yet twice as low as that for 4-MeC containing synthetic 

wine (Table 1). If radical scavenging was the dominant mechanism this would lead in 

principle to lower levels of 4-POBN-1-HER in the model vs. the real wine in the incubation 

controls with no added iron chelator. To estimate these levels the area-under-curves 

(AUC) of Fig. 3A were calculated and the expected [2 (real wine):1 (model wine)] ratio was 

obtained in control experiments only during the first incubation day, consistent with 

differences in ORACs (Table 1). Therefore, further decrease of this ratio found up to day 3 

may suggest a shift from dominant radical scavenging to other inhibitory mechanisms, 

e.g., delayed Fe(II) chelation by 4-MeC or other wine phenolics. In samples incubated with 

CHI-2 (2 g/L) the same AUC analysis, yielding expected lower values, also demonstrated 

a nearly constant 2:1 ratio. This suggests that, once iron had been removed by the 2-days 

pre-treatment, it is the antioxidant property of chitosan that could have caused the lower 

spin adduct levels observed. It is worth mentioning, however, that good correlations 
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between ORAC assay and EPR spin trapping have been only reported for peroxyl, but not 

hydroxyl radicals (Kameya, Watanabe, Takano-Ishikawa & Todoriki, 2014). 

 

3.2.4. Effect on cupric and ferric ions 

 Adding copper, as Cu(II), during the winemaking process is a common practice, in 

particular to decrease the levels of sulfur containing compounds responsible for off-flavors 

before bottling of white wines. Since cupric ions can catalyze H2O2 degradation by a 

Fenton-like mechanism (Hanna & Mason, 1992), they would potentiate the effect of Fe(III) 

in wine oxidation (Danilewicz, 2003). In wine studies, however, use of spin trapping is 

complicated because Cu(II) often induce degradation of nitrones into unwanted nitroxides 

and/or lead to paradoxical 1-HER formation profiles (Elias et al., 2009b). 

 In this study EPR has been used to assess indirectly the effect of chitosans on iron 

and copper at wine-like concentrations, by measuring the impact on nucleophilic induced 

spin adduct formation. Thus, by forming a transient complex at the nitronyl oxygen of spin 

traps such as DMPO or its phosphorylated analog, DEPMPO, Fe(III) or Cu(II) catalyze the 

nucleophilic addition of water to form the corresponding hydroxyl radical adduct, and this 

reaction is inhibited by Fe(III) (Culcasi et al., 2006a) and Cu(II) (Hanna & Mason, 1992) 

chelators. When an aqueous solution of DEPMPO (55 mM), a chiral molecule (Fig. 2), was 

added to a mixture of wine-like 30 mg/L Fe(III) and 12.5 mg/L Cu(II), a major 8-lines EPR 

spectrum was observed (Fig. 2c). A satisfactory fit was obtained assuming a mixture of 

EPR-distinguishable diastereoisomeric DEPMPO/hydroxyl radical adducts (DEPMPO-OH) 

with the following parameters (couplings in G): cis-DEPMPO-OH (aN = 14.05, aP = 47.25, 

aH = 14.13), and trans-DEPMPO-OH (aN = 14.05, aP = 47.22, and aH = 12.73), and g = 

2.0057. A minor carbon-centered DEPMPO adduct was also detected (aN = 14.32 G, aP = 

45.91 G, aH = 21.36 G), possibly due to some degradation of the trap by Cu(II), and 
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accounting for 24% of the total signal. The cis:trans ratio in Fig. 2c was of 36:64, 

consistent with a HO scavenging-unrelated, nucleophilic addition mechanism (Culcasi et 

al., 2006b). When metal added solutions were stirred for 1 h at ambient temperature in the 

presence of varying amounts of chitosan, further addition of DEPMPO to the suspensions 

led to dose dependently decreased DEPMPO-OH levels, by 7392%, with no differences 

between chitosans (Fig. 5C). Altogether these results demonstrated sequestration of 

Fe(III) / Cu(II) as another facet of the inhibitory action of chitosan in wine oxidation. 

Accordingly, chitosan has been shown to adsorb iron from wines spiked with ferric ions 

(Bornet & Teissedre, 2008).  

 

3.2.5. Effect on photooxidation-induced acetaldehyde formation 

 To substantiate the effect of CHI-2 seen in Fig. 3B the production of acetaldehyde was 

monitored by HPLC-DAD in experimental wine spiked with 100 M Fe(II) and irradiated 

with fluorescent light (300580 nm) for up to 6 days at ambient temperature. Long term 

exposure to sunlight or fluorescent tubes has been shown to contribute to the development 

of browning and the formation of off-odors in white wine. In wine conditions (pH and 

metals) a main proportion of carboxylic acids in wine, such as tartaric and lactic acids, 

exist as Fe(III) carboxylate complexes, the irradiation of which leads to a range of 

carbonyls, including acetaldehyde. This in turn will release free Fe(II), providing an 

additional source of catalytic iron to fuel the Fenton system, a forced oxidation mechanism 

termed as 'photo-Fenton' (Grant-Preece et al., 2017). 

 At opening, acetaldehyde concentration of experimental SO2 free wine was 7.6  0.7 

mg/L (mean value from both vintages), falling within the lowest acetaldehyde 

concentrations reported in just finished, sulphited dry white wines (Jackowetz & de 

Orduña, 2013). Following initial production by yeasts during fermentation acetaldehyde 
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can be further synthesized from ethanol through Fenton oxidative degradation (Fig. 1). 

Here this second source of acetaldehyde is likely poorly active since when the wine was 

stored for 2 days in darkness with a 1.5 times air volume in the headspace, a non 

significant increase to 9.1  0.2 mg/L was found, possibly because catalytic iron present in 

the wine was only ~0.4 mg/L. Wine samples added 5.5 mg/L Fe(II) and incubated in 

darkness for 2 days, which retained 5.4 mg/L iron after filtration, showed, however, non 

significantly increased acetaldehyde levels of 10.8  0.4 mg/L (Table 1). Under photo-

Fenton conditions acetaldehyde in the controls increased significantly afterwards, doubling 

after 6 days irradiation. In wine samples spiked with 5.5 mg/L Fe(II) and having had their 

iron content lowered by 51% and 68% after 2 days in contact with CHI-2 at 0.5 and 2 g/L, 

respectively, this irradiation-induced elevation of acetaldehyde concentration was 

significantly inhibited, with decreases of 19% and 38%, respectively, at day 6 (Table 1). 

Being a strong binder for sulphur dioxide (Oliveira et al., 2011) free acetaldehyde 

expectedly exhibited the lowest concentrations in irradiated wine added SO2 (50 mg/L). 

However, after 6 days of light exposure, once complete oxidation and/or binding of SO2 

was reached, acetaldehyde production in those samples was not statistically different from 

that in samples containing 2 g/L CHI-2 (Table 1) and therefore the acetaldehyde inhibition 

pattern in CHI-2 added wine paralleled that seen for 1-HER formation in Fig. 3B. 

 

4. Conclusion 

 

 The results of this study strengthen current interest in using chitosan as a substitute 

for and/or complement to lower sulphur dioxide and suphites in winemaking. By monitoring 

the formation of spin trapped 1-HER, a pivotal intermediate of wine oxidation, EPR 

analysis sought to establish a chronology of chitosan antioxidant action under wine 
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relevant doses, application and aging conditions. It was found that once the catalytic 

activity of the metal pool in wine, especially Fe(II)Fe(III), has been partly deactivated by 

chelation, direct scavenging of oxidizing species such as HO continuing to form at slow 

rates may represent a significant inhibitory mechanism of chitosan. In this regard, the well 

documented metal ions-sensitive depolymerization of chitosan by H2O2 (Chang, Tai & 

Cheng, 2001) could be an additional protective effect against wine oxidation as depicted in 

Fig. 1. Studies are in progress to verify, using specific tests, if a related free radical-

independent mechanism could participate in the effects seen in the present study. 

 Of note, the significant impact of chitosans against free radical formation seen here 

was obtained as the compounds were directly added in suspension in the finished wine. 

This will encourage designing future spin trapping studies using EPR techniques specific 

for large heterogenous samples to follow in situ oxidation of white musts during the 

alcoholic fermentation. 
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Figure captions 

 

Fig. 1. Free radical mediated formation of acetaldehyde from ethanol during wine 

oxidation, its assessment using EPR spin trapping, and potential mechanisms of chitosan 

protection. 4-MeC, 4-methylcatechol. 

 

Fig. 2. Spin traps used in the study, spin adducts detected, and representative EPR 

spectra in the absence of inhibitor. Experimental conditions: (a) incubation of wine for 96 h 

at room temperature in darkness in the presence of 4-POBN (15 mM); (b) photolysis of 

H2O2 (3% v/v in 0.5% acetic acid solution) in the presence of DMPO (3.33 mM); (c) 

nucleophilic addition of water in the presence of FeCl3 (30 mg/L), CuSO4 (12.5 mg/L) and 

DEPMPO (55 mM). The asterisk indicates the asymmetric carbon of DEPMPO. Open 

circles indicate lines from a minor DEPMPO carbon centered radical adduct. 

 

Fig. 3. Effect of treatments on 4-POBN-1-HER spin adduct formation at room temperature 

during oxidation under air of (A) model wine, and (B) SO2 free Chardonnay wine. 

Treatments and 100 M of Fe(II) as the oxidant were first applied for 48 h, followed by 

addition of 4-POBN (15 mM) alone (real wine) or with 1 mM of 4-methylcatechol (model 

wine). Continuous agitation was applied throughout. CHI, chitosan. Level of significance 

vs. control (by one-way ANOVA followed by Duncan test): (A): **p < 0.01 vs. CHI-2; *p < 

0.05 vs. CHI-2; §p < 0.05 vs. CHI-1 (all at any dose); (B): **p < 0.01 vs. CHI-2 (any dose); 

p < 0.05 vs. CHI-2 (2 g/L). Vertical bars represent SEM (n = 310). 

 

Fig. 4. Effect of varying H2O2 on the EPR signal detected in model wine 130 s (filled bars) 

or 10 min (empty bars) after induction of a Fenton reaction in the presence of wine-like 

concentrations of iron(II). The dashed line visualizes the maximum of spin adduct levels 

obtained in incubations (Fig. 3). Vertical bars represent SEM (n = 3). 
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Fig. 5. Assessment by EPR using various spin traps of the inhibitory effect of chitosan 

(CHI) on some potential mechanisms involved in wine oxidation. (A) Effect on [100 M 

Fe(II)/ 2.5 g/mL H2O2] Fenton reagent in model wine; (B) Determination of apparent rate 

constants for direct hydroxyl radical scavenging in acidic water (pH 3.17). I0, I: intensity of 

EPR signal in unsupplemented and test sample, respectively. Concentrations are 

estimates from mean molecular weights; (C) Inhibition of metal-catalyzed nucleophilic 

addition in water, in the presence of a wine-relevant metal concentration [30 mg/L of Fe(II) 

+ 12.5 mg/L of Cu(II)]. Nitrones used were: (A) 4-POBN (15 mM); (B) DMPO (3.33 mM); 

and (C) DEPMPO (55 mM). Samples in A and C were pre-incubated with metals as 

described in the legend of Fig. 3. 4-MeC, 4-methylcatechol at 1 mM. Vertical bars 

represent SEM (n = 3). 
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Table 1 

Radical scavenging activity and effect of treatments on spin adduct and fluorescent lightning induced acetaldehyde formationa,b. 

__________________________________________________________________________________________________________________________ 

sample ORAC AUC/incubation time
c
 acetaldehyde (mg/L) 

and treatment (mol Trolox/mL) 

__________________________________________________________________________________________________________________________ 

 1 day 2 days 3 days control
d
 1 day 4 days 6 days 

 ________________________________________ _________________________________________________ 

 Ctr CHI-2 Ctr CHI-2 Ctr CHI-2 

  (2 g/L)  (2 g/L)  (2 g/L) 

 ____________________________________ 

MW
e
 not measurable 

MW + 4-MeC
f
 6.24  0.27 11 5 47 18 99 31 

Chardonnay wine 3.18  0.12 23 11 61 36 110 63 10.8 ± 0.4 14.1 ± 0.7*** 16.2 ± 0.9*** 21.6 ± 1.7*** 

+ CHI-2 (0.5 g/L)   10.0 ± 0.3 11.8 ± 0.5*
§
 13.0 ± 0.3*

§
 17.4 ± 1.2*

§
 

+ CHI-2 (2 g/L)   9.6 ± 0.3
§
 10.3 ± 0.3

+
 11.5 ± 0.3*

+
 13.4 ± 1.0*

+
 

+ SO2 (50 mg/L)   5.0 ± 0.1
§
 5.4 ± 0.3

+
 6.7 ± 0.5*

+
 11.2 ± 0.8*

+
 

____________________________________________________________________________________________________________________________ 

a.In the presence of 100 M of Fe(II). 

b Mean  SEM (n = 35). 

c AUC, area-under-curve (arbitrary units) calculated from the curves in Fig. 3. Ctr, unsupplemented sample. 
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Table 1 (continued) 

 

d Before illumination, after 2-days incubation in darkness. 

e Model wine (12% v/v, 8 g/L tartaric acid, pH 3.5). 

f 4-methylcatechol at 1 mM. 

Statistics: (*p < 0.05 and ***p < 0.001) vs. pre-illuminated control; (§p < 0.05 and +p < 0.001) vs. untreated wine after the same illumination time. 
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Metal chelation and free radical scavenging in wine oxidation were tested by EPR. 

 

A dose of 2 g/L of approved chitosan efficiently stabilized an unsulphited white wine. 

 

Inhibition of Fe(II)/Fenton chemistry and scavenging of hydroxyl radicals are involved. 

 

Concomitant decreased acetaldehyde formation was observed. 


