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EMBEDDINGS OF SPHERICAL HOMOGENEOUS SPACES

JACOPO GANDINI

Abstract. We review in these notes the theory of equivariant embeddings of

spherical homogeneous spaces. Given a spherical homogeneous space G/H,
the normal equivariant embeddings of G/H are classified by combinatorial

objects called colored fans, which generalize the fans appearing in the classifi-

cation of toric varieties and which encode several geometric properties of the
corresponding variety.
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1. Introduction

These notes are based on a series of lectures that I gave at the workshop Spher-
ical varieties, organized by Michel Brion and Baohua Fu at the Tsinghua Sanya
International Mathematics Forum in November 2016.

Given a connected reductive group G over an algebraically closed field of charac-
teristic zero, a general theory of the embeddings of a homogeneous space G/H was
formulated by Luna and Vust [24]. An invariant of G/H which plays an important
role here is the complexity of G/H, that is, the minimal codimension of a B-orbit
in G/H, where B is a fixed Borel subgroup of G. The theory of Luna and Vust
works particularly well when the complexity of G/H is zero, in which case G/H is
also called spherical.

The class of spherical homogeneous spaces contains several important families
which were studied independently and whose embedding theories are interesting in
their own right. For example, torus embeddings, embeddings of symmetric varieties
(i.e. H is the set of fixed points of an algebraic involution of G), embeddings of
horospherical varieties (i.e. H contains a maximal unipotent subgroup of G) all fall
within the theory of spherical embeddings.

The theory of spherical embeddings was then extended to arbitary characteristics
by Knop [17]. Other expositions can be found in Timashev’s book [34], where the
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2 JACOPO GANDINI

case of complexity 1 is also considered, in Brion’s lecture notes [5] and in Pezzini’s
lecture notes [27] (the latter two in characteristic zero).

Both in the exposition of the material and in the arguments that we present,
we mainly followed Knop’s paper [17]. In order to make the material as accessible
as possible for those who are new to the subject, detailed arguments are given, as
well as some examples treated in detail. A basic knowledge of algebraic geometry
and of algebraic groups is assumed, for which we refer respectively to [12] and to [31].

Acknowledgements. I am grateful to Michel Brion and Baohua Fu, both for the
invitation and for organizing this workshop and the conference which followed it.
I thank Johannes Hofscheier and Dmitry Timashev for helpful discussions, and es-
pecially Bart Van Steirteghem and the referee for several remarks and suggestions
which improved these notes.

Notation and conventions on algebraic groups and varieties. Throughout the
paper, we fix an algebraically closed field k of characteristic p > 0. Every variety
will be defined over k, and is assumed to be irreducible. We will denote by Gm
and by Ga resp. the multiplicative group and the additive group of k, regarded
as algebraic groups. Given an algebraic group K, we denote by K0 its connected
component containing the identity, by Ku its unipotent radical and by X (K) its
group of characters. If V is a K-module, we denote by V K the subspace of K-
invariants and by V (K) the subspace of K-semi-invariants. If moreover χ ∈ X (K),
we denote

V (K)
χ = {v ∈ V | k.v = χ(k)v for all k ∈ K}.

Throughout the paper, G will denote a connected reductive group. We fix a Borel
subgroup B ⊂ G and a maximal torus T ⊂ B. The opposite Borel subgroup of B
is denoted by B−, this is the unique Borel subgroup of G such that B ∩ B− = T .
The unipotent radicals of B and B− are respectively denoted by U and U−. We
denote by X (T )+ ⊂ X (T ) the monoid of dominant characters with respect to B.
Finally, we denote by W be the Weyl group of G with respect to T , and by w0 ∈W
the longest element defined by B.

If H ⊂ G is a closed subgroup and χ ∈ X (H), let

IndGH(χ) = {f ∈ k[G] | f(gh) = χ(h−1)f(g) ∀g ∈ G, ∀h ∈ H}
be the corresponding induced representation ofG (see [15, Chapter I.3]). If char(k) =
0 and λ ∈ X (T )+, we denote by V (λ) the simple G-module of highest weight λ and
by V ∗(λ) its dual. More generally, in arbitrary characteristic, we denote by V (λ) the

Weyl module of highest weight λ, and by V ∗(λ) its dual, namely V ∗(λ) = IndGB(−λ)
(see [15, Chapter II.2]).

If V is a G-module and λ ∈ X (T )+, we define the multiplicity of V (λ) in V by

mλ(V ) := dimk HomG(V (λ), V ).

By Frobenius reciprocity, we have mλ(V ) = dimV
(B)
λ . When char(k) = 0, this

is the number of times that V (λ) occurs in a decomposition of V into simple G-
modules.

A line bundle p : L → X on a G-variety X is said to be G-linearized if its
total space is endowed with an action of G such that p is G-equivariant and the
induced map on the fibers Lx → Lg.x is linear for all g ∈ G and x ∈ X. If L is
a G-linearized line bundle on X, then the space of sections Γ(X,L) has a natural
G-module structure, and all the powers L⊗n are G-linearized as well.

Remark 1.1. Let H ⊂ G be a closed subgroup. The G-linearized line bundles
on G/H are easily described in terms of characters and associated bundles. If
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χ ∈ X (H), let Lχ = G ×H k = (G × k)//H be the categorical quotient of G × k
by the action of H given by h.(g, x) = (gh−1, χ(h)x): such a quotient always
exists, and it is also a geometric quotient (see [34, Section 2.1] for more details on
associated bundles). Then Lχ is a G-linearized line bundle on G/H, and the map
χ 7→ Lχ defines a homomorphism X (H)→ Pic(G/H) whose image is the group of
G-linearizable line bundles. Indeed if p : L → G/H is a G-linearized line bundle
and if χ ∈ X (H) is the character given by the action of H on the fiber LeH , then the
natural morphism G×LeH → L induces a G-isomorphism L ' Lχ. If Pic(G) = 0,
then every line bundle on G/H is G-linearizable, and if moreover G is semisimple
it can be linearized in a unique way: indeed we have an exact sequence

X (G)→ X (H)→ Pic(G/H)→ Pic(G)

(see [20, Proposition 4.6]). By the definition of induced representation, we have the
following isomorphism of G-modules, with respect to the right action of H on k[G]:

Γ(G/H,Lχ) ' IndGH(χ) = k[G]
(H)
−χ . ♦

Notations and conventions in convex geometry. Given a lattice Λ we denote by
Λ∨ = HomZ(Λ,Z) the dual lattice, and we set ΛQ = Λ ⊗Z Q. A subset C ⊂ ΛQ is
called a cone if it is closed under addition and multiplication by scalars in Q+ =
{q ∈ Q | q > 0}. The dual of C is the cone

C∨ = {α ∈ Λ∨Q | 〈α, v〉 > 0 ∀v ∈ C},

and the annihilator of C is C⊥ = C∨ ∩ (−C∨). The linear part of C is the maximal
subspace Lin(C) ⊂ V which is contained in C. If v1, . . . , vn ∈ ΛQ, we denote by
cone(v1, . . . , vn) the cone that they generate in ΛQ. A cone C is called strictly
convex if Lin(C) = 0. It is called rational if it is generated by elements of Λ, finitely
generated (or polyhedral) if it is generated by finitely many elements v1, . . . , vn ∈
ΛQ, and simplicial if it is generated by linearly independent vectors. A face of C is
the intersection of C with a hyperplane α⊥ = {v ∈ C | 〈α, v〉 = 0} where α ∈ C∨.
The dimension of C is the dimension of its linear span, an extremal ray is a face of
dimension 1. The relative interior of C is the subset C◦ obtained by removing from
C all its proper faces.

2. Characterizations of sphericality

Definition 2.1. A normal G-variety is called spherical if it contains an open B-
orbit.

Notice that every spherical variety X possesses in particular an open G-orbit,
which is a spherical homogeneous space. Therefore, once a base point x0 ∈ X is
fixed, we can regard X as a normal equivariant embedding of a spherical homoge-
neous space. If moreover we assume that the orbit morphism G→ Gx0 is separable
and if H is the stabilizer of x0, then we get an embedding of G/H.

By an embedding of a spherical homogeneous space G/H we will always mean
a G-variety X together with an equivariant open embedding G/H ↪→ X. We
will say that G/H ↪→ X is a spherical embedding if moreover X is normal. In
particular, given a spherical embedding G/H ↪→ X, we will identify the orbit
morphism G → Gx0 with the projection π : G → G/H. We will say that a
subgroup H ⊂ G is spherical if G/H is spherical. Unless otherwise stated, we will
always assume that the base point x0 is inside the open B-orbit, that is BH is an
open subset of G.

Example 2.2. We list here below some of the main examples of spherical varieties.
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i) (Flag varieties) Any complete homogeneous space is spherical. Indeed, it
is of the form G/P with P a parabolic subgroup, hence it contains finitely
many B-orbits by the Bruhat decomposition.

ii) (Horospherical varieties) Any homogeneous space G/H with H a closed
subgroup containing U . Indeed, again by the Bruhat decomposition, G/B
contains an open U -orbit, hence an open H-orbit.

iii) (Toric varieties) If G = T is a torus and X is a normal T -equivariant
embedding of T , then it is spherical with respect to T (in which caseB = T ).

iv) (Reductive groups) Any reductive group G is spherical with respect to the
action of G × G by left and right multiplication. Indeed, by the Bruhat
decomposition B ×B has an open orbit on G.

v) (Symmetric matrices) Suppose that char(k) 6= 2 and let X = Symn be
the space of symmetric matrices of order n, with the action of GLn by
congruence: for g ∈ GLn, we set g.A = (g−1)TAg−1. Let B ⊂ GLn be
the subgroup of upper triangular matrices and let xn ∈ X be the identity
matrix: then Bxn ⊂ X is open, hence X is a spherical variety. Notice that
the open GLn-orbit, isomorphic to GLn/On, is the space of nonsingular
symmetric matrices.

vi) (Determinantal varieties) Let Mm,n be the space of m×n-matrices, and let
Mm,n,r ⊂Mm,n be the subset of matrices whose rank is at most r, endowed
with the action of GLm ×GLn. Then the matrices of rank r form an open
(GLm ×GLn)-orbit. If

x0 =

(
Ir 0
0 0

)
then the stabilizer of x0 consists of the matrices of the form(

Ar,r Br,m−r
0 Cm−r,m−r

)
×
(
Ar,r 0
Dn−r,r En−r,n−r

)
.

Hence Mm,n,r is an affine variety of dimension r(m+n− r). Let B−m (resp.
Bn) be the Borel subgroup of lower triangular (resp. upper triangular)
matrices in GLm (resp. in GLn). By computing dimensions it follows that
the (B−m×Bn)-orbit of x0 is open in Mm,n,r. Since it is normal (see Example
3.5), it follows that Mm,n,r is an affine spherical variety.

vii) (Symmetric spaces) Suppose that char(k) 6= 2 and let σ : G → G be an
algebraic involution, let Gσ be the subgroup of fixed points and let H be
a closed subgroup of G such that Gσ ⊂ H ⊂ NG(Gσ), then G/H is called
a symmetric space. As a consequence of the Iwasawa decomposition (see
[34, Theorem 26.14]), every symmetric space is spherical. Example iv) is a
particular instance of this situation, whereas Example v) is as an embedding
of a symmetric space: in the first case, consider the involution of G × G
defined by σ(g1, g2) = (g2, g1), in the second case consider the involution of
GLn defined by σ(g) = (gT )−1. 4

We start by recalling some basic results from the theory of algebraic group and
their invariant theory. We start with a very basic result, for an (easy) proof see
[29, Lemma 1.4].

Lemma 2.3. If K is a linear algebraic group acting on an algebraic variety X,
then any element in k[X] is contained in a finite dimensional K-stable subspace.

The following is a fundamental result on the invariants of the maximal unipotent
subgroup U ⊂ G, which will be essential for our purposes.

Theorem 2.4 ([13, Theorem 9.4]). Let X be an affine G-variety, then k[X]U is a
finitely generated k-algebra.
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We now recall an important consequence of the geometric reductivity of G (recall
that reductive is equivalent to geometrically reductive, and if char(k) = 0 it is even
equivalent to linearly reductive, see e.g. [9, Chapter 9]).

Theorem 2.5 ([13, Theorem 9.9]). Let X be an affine G-variety, let Y ⊂ X be
closed and G-stable and let f ∈ k[Y ]U . Then there exist n ∈ N and f ′ ∈ k[X]U such
that f ′|Y = fn.

Notice that in the previous theorem one can always take n = 1 if char(k) = 0,
and a power of the characteristic if char(k) > 0. We can rephrase the previous
theorem in terms of B-eigenfunctions as follows. Recall that B = TU , and since
U has no nontrivial characters we have k[X](B) ⊂ k[X]U . On the other hand T is
linearly reductive, and since it normalizes U it acts on k[X]U : therefore

k[X]U =
⊕

λ∈X (T )

(k[X]U )
(T )
λ =

⊕
λ∈X (B)

k[X]
(B)
λ .

Therefore taking into account the T -action as well we can restate Theorem 2.5
as follows.

Corollary 2.6. Let X be an affine variety G-variety, let Y ⊂ X be closed and
G-stable and let f ∈ k[Y ](B). Then there exist n ∈ N and f ′ ∈ k[X](B) such that
f ′|Y = fn.

We now give a classical characterization of sphericality.

Definition 2.7. We say that a G-module V is multiplicity-free if mλ(V ) 6 1 for
all λ ∈ X (T )+.

Theorem 2.8. Let X be a normal G-variety, then the following are equivalent:

i) X is spherical;
ii) Any B-invariant rational function on X is constant;
iii) If X is quasi-projective: for every G-linearized line bundle L on X, the

space of global sections Γ(X,L) is a multiplicity-free G-module;
iii’) If X is quasi-affine: the coordinate ring k[X] is a multiplicity-free G-

module.

Proof i) ⇔ ii). The first implication is obvious, so we suppose that k(X)B = k.
By a theorem of Rosenlicht (see [13, Theorem 19.5]), B-orbits in general position
can be separated by B-invariant functions: that is, there exists a B-stable affine
open subset U ⊂ X such that for all x, y ∈ U with Bx 6= By there exists f ∈ k(U)B

such that f(x) 6= 0 and f(y) = 0. On the other hand f must be constant, therefore
U is a single B-orbit.

ii) ⇒ iii). Let s1, s2 ∈ Γ(X,L)(B) be highest weight vectors of the same weight.
Then s1

s2
∈ k(X)B = k, hence s1 and s2 are proportional. It follows that the

dimension of Γ(X,L)
(B)
λ is 1 for all λ ∈ X (T )+, as claimed.

iii) ⇒ ii). This is basically a consequence of the following fact: every normal
quasi-projective G-variety can be embedded equivariantly in the projective space of
a finite dimensional G-module (see [20, Corollary 2.6]). Let ι : X ↪→ P(V ) be such
an equivariant embedding and denote L = i∗OP(V )(1). Then L is by construction
a very ample and G-linearized line bundle on X, and for all n ∈ N the restriction
to X yields a G-equivariant homomorphism SnV ∗ → Γ(X,L⊗n).

Let now f ∈ k(X)B , then there exist n ∈ N and p, q ∈ SnV ∗ such that f =
p|X
q|X

.

We may assume that p, q are B-eigenvectors: indeed, the B-module V ′ = {q′ ∈
SnV ∗ | fq′ ∈ SnV ∗} is nonzero and finite dimensional, hence it contains a nonzero
B-eigenvector by the Lie-Kolchin theorem (see e.g. [31, Theorem 6.3.1]). Since f
is B-invariant, if p and q are B-eigenvectors, then they have the same weight. On
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the other hand by assumption Γ(X,L⊗n) is a multiplicity-free G-module, thus p|X
and q|X must be proportional, and f must be constant.

iii’) ⇒ ii). If X is quasi-affine, then k(X) is the quotient field of k[X]. Let
f ∈ k(X)B and write f as the ratio of two elements p, q ∈ k[X]. Notice that we
can assume p, q ∈ k[X](B). Let indeed V be the subspace of k[X] generated by the
B-orbit of q, then V is finitely dimensional by Lemma 2.3, and since it is B-stable
by the Lie-Kolchin theorem it contains a B-eigenvector q′. Write q′ =

∑
i ξi(bi.q)

with ξi ∈ k and bi ∈ B and denote p′ =
∑
i ξi(bi.p), then f = bi.f = bi.p

bi.q
for

all i, hence f = p′

q′ , and it follows that p′ is B-semi-invariant as well. Clearly p′

and q′ must have the same weight, hence they are proportional because k[X] is
multiplicity-free, and f is constant.

By considering the normalization, one can restate the previous theorem for a
larger class of G-varieties.

Definition 2.9. A G-variety is called multiplicity-free if it contains an open B-
orbit.

Let X be a G-variety and let p : X̃ → X be the normalization. Then the action

G×X → X induces a morphism G×X̃ → X. On the other hand G×X̃ is a normal

variety, thus by the universal property we get a morphism G× X̃ → X̃, which can

be easily seen to be an action of G on X̃ making p an equivariant morphism.

Notice that X is multiplicity-free if and only if X̃ is spherical. If moreover X

is quasi-projective (resp. quasi-affine), then X̃ has the same property, and if L
is a G-linearized line bundle on X, then the pullback p∗L is G-linearized as well

and Γ(X,L) is identified with a G-stable subspace of Γ(X̃, p∗L). Therefore, we can
restate the previous theorem as follows.

Theorem 2.10. Let X be a G-variety and let X̃ → X be the normalization, then
the following are equivalent:

i) X is multiplicity-free;
ii) Any B-invariant rational function on X is constant;

iii) If X is quasi-projective: for every G-linearized line bundle L on X̃, the

space of global sections Γ(X̃,L) is a multiplicity-free G-module;
iii’) If X is quasi-affine: the coordinate ring k[X] is a multiplicity-free G-

module.

Other characterizations of sphericality (or more generally of multiplicity-freeness)
come from the study of the G-orbits and of the B-orbits. In particular we have the
following.

Theorem 2.11. Let X be a G-variety, then the following are equivalent:

i) X is multiplicity-free;
ii) Every G-variety which is equivariantly birational to X contains finitely

many G-orbits;
iii) X contains finitely many B-orbits.

The implication iii) ⇒ i) is clear from the definition. For the implication i) ⇒
ii), by taking the normalization we can assume that X is normal, in which case the
claim will be proved later (see Corollary 5.3). For the other implication, and for
other characterizations as well, see [34, Section 25].

Every homogeneous G-variety G/H is smooth, and it is quasi-projective. The
latter claim follows by a theorem of Chevalley, stating that G/H can be equivari-
antly embedded in the projective space of a finite dimensional rational G-module
(see e.g. [31, Theorem 5.5.3]). Therefore Theorem 2.8 applies in particular to the
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case of homogeneous varieties. In that case, thanks to the description of the space
of global sections of a linearized line bundle on a homogeneous space in Remark 1.1,
we can also rephrase conditions iii) and iii’) of Theorem 2.8 in more representation
theoretical terms.

Theorem 2.12. Let H ⊂ G be a closed subgroup, then the following are equivalent:

i) G/H is spherical;

ii) For all χ ∈ X (H), the G-module k[G]
(H)
χ is multiplicity-free;

iii) For all λ ∈ X (T )+ and for all χ ∈ X (H), we have dimV ∗(λ)
(H)
χ 6 1;

iii’) If G/H is quasi-affine: for all λ ∈ X (T )+, we have dimV ∗(λ)H 6 1.

Proof i) ⇔ ii). This is just a restatement of the equivalence i) ⇔ iii) of Theorem
2.8, by making use of Remark 1.1.

i) ⇔ iii). If kχ denotes the one-dimensional vector space with the action given
by χ, then by the Frobenius reciprocity together with Remark 1.1 we have

HomG(V (λ), IndGH(χ)) ' HomH(V (λ), kχ) = V ∗(λ)
(H)
−χ .

Therefore the claim follows again by the equivalence i)⇔ iii) of Theorem 2.8, thanks

to the isomorphism Γ(G/H,Lχ) ' IndGH(χ).
i) ⇔ iii’). This follows as the previous equivalence by Theorem 2.8, by making

use of the equality k[G/H] = k[G]H .

Definition 2.13. Given a G-variety X, define the weight lattice and the weight
monoid of X respectively as

Λ(X) = {λ ∈ X (T ) | λ is the weight of a function in k(X)(B)},

Λ+(X) = {λ ∈ X (T )+ | λ is the weight of a function in k[X](B)}.

The rank of Λ(X) is called the rank of X, denoted by rkX. For later use, we
also denote Q(X) = Λ(X)∨Q.

Remark 2.14. Suppose that X is a multiplicity-free affine G-variety. Then Λ+(X)
is a finitely generated monoid by Theorem 2.4, and Λ(X) = ZΛ+(X): indeed the
argument used to prove the implication iii’) ⇒ ii) in Theorem 2.8 shows that every
f ∈ k(X)(B) can be written as the ratio of two elements p, q ∈ k[X](B). ♦

Notice that, if X is spherical, then every function in k(X)(B) is uniquely deter-
mined by its weight up to a constant: if indeed f1, f2 ∈ k(X)(B) have the same
weight, then f1f

−1
2 ∈ k(X)B = k. Given f ∈ k(G/H)(B), we denote by λf ∈ Λ(X)

the corresponding weight. In particular we get an exact sequence

1 −→ k∗ −→ k(X)(B) −→ Λ(X) −→ 0 (2.1)

Given a submonoid Γ ⊂ ΛQ, define the saturation of Γ as the monoid Γ̃ =

cone(Γ) ∩ ZΓ, and say that Γ is saturated if Γ̃ = Γ.

Proposition 2.15. Let X be a multiplicity-free affine G-variety and let X̃ be its

normalization, then Λ̃+(X) = Λ+(X̃).

Proof Let λ ∈ Λ(X) be such that nλ ∈ Λ+(X) for some n ∈ N, and let f ∈ k(X)(B)

of weight λ: then fn ∈ k(X)(B) = k(X̃)(B) has weight nλ. Since fn ∈ k[X], it

follows that f ∈ k[X̃], hence λ ∈ Λ+(X̃).
To show the other inclusion, we follow the argument given in [6, Proposition 2.8].

Let I = {f ∈ k[X] | fk[X̃] ⊂ k[X]}: since k[X̃] is finitely generated over k[X], it
follows that I is a nonzero G-stable ideal, and IU 6= 0 by the Lie-Kolchin theorem.

Let F ∈ IU r {0}, then Fk[X̃]U is an ideal in k[X]U , which is a finitely generated

k-algebra by Theorem 2.4. Hence Fk[X̃]U is a finitely generated k[X]U -module.
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On the other hand as k[X]U -modules we have an isomorphism k[X̃]U ' Fk[X̃]U ,

therefore k[X]U ⊂ k[X̃]U is an integral extension.

Let now λ ∈ Λ+(X̃) and let f ∈ k[X̃]
(B)
λ . Then they exist a1, . . . an ∈ k[X]U such

that
fn + a1f

n−1 + . . .+ an−1f + an = 0.

Projecting on the weight space k[X]
(B)
nλ , we may assume that am ∈ k[X]

(B)
mλ for all

m 6 n. On the other hand some am must be nonzero, therefore mλ ∈ Λ+(X).

Let X be a multiplicity-free affine G-variety and let X̃ be its normalization. If

char(k) = 0, notice that theG-stable subalgebra k[X] ⊂ k[X̃] is uniquely determined

by the weight monoid of X: indeed k[X̃] is a multiplicity-free G-module, and we can
consider its decomposition into simple G-modules. Therefore we get the following
corollary.

Corollary 2.16. Let X be a multiplicity-free affine G-variety.

i) If X is normal, then Λ+(X) is a saturated monoid.
ii) If char(k) = 0, then X is normal if and only if Λ+(X) is saturated.

For later use, we also recall the following fact (see e.g. [34, Theorem 3.5]).

Theorem 2.17. Let K be a solvable linear algebraic group and K ′ ⊂ K a closed
subgroup, then K/K ′ is an affine variety.

Remark 2.18. In the notation of the previous theorem, notice that the following
holds (see the proof of [34, Theorem 3.5] for more details): let S ⊂ K and S′ ⊂ K ′ be
maximal diagonalizable subgroups and suppose that S′ ⊂ S, then the multiplication
induces a S-equivariant isomorphism

S ×S
′
Ku/K

′
u
∼−→ K/K ′.

Therefore K/K ′ is affine because S ×Ku/K
′
u is affine, and

S ×S
′
Ku/K

′
u = (S ×Ku/K

′
u)//S′

is the categorical quotient of an affine variety by a reductive group. Moreover,
notice that k(K/K ′)(K) = k(S/S′)(S): indeed every f ∈ k(K/K ′)(K) is constant on

the fiber Ku/K
′
u, and the projection S ×S′ Ku/K

′
u → S/S′ induces an inclusion

k(S/S′)(S) ⊂ k(K/K ′)(K).
We can apply previous discussion in the case of a spherical variety as follows.

Suppose that X is a spherical G-variety with open B-orbit Bx0 and let K be the
stabilizer of x0 in B. Then k(X)(B) = k(Bx0)(B) = k(B/K)(B), therefore Λ(X)
is naturally identified with X (T/S), where S ⊂ K is any maximal diagonalizable
subgroup and T ⊂ B is any maximal torus containing S. ♦

Let X be a spherical G-variety and denote

D(X) = {B-stable prime divisors of X},
∆(X) = {D ∈ D(X) | D is not G-stable}.

If moreover Y ⊂ X is a G-orbit, then we denote

DY (X) = {D ∈ D(X) | Y ⊂ D},
∆Y (X) = ∆(X) ∩ DY (X).

Definition 2.19. The elements of ∆(X) are called the colors of X.

Proposition 2.20. D(X) is the set of the irreducible components of X rBx0. In
particular D(X) is a finite set, and

∆(X) = {D ∈ D(X) | D ∩Gx0 6= ∅}.
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Proof By Theorem 2.17, the open B-orbit of X is an affine variety, thus its com-
plement has pure codimension one (see [12, Exercise 12.18] or [14, Proposition
II.3.1]).

Thanks to the sequence (2.1), every D ∈ D(X) defines a homomorphism ρX(D) :
Λ(X)→ Z by setting

〈ρX(D), λ〉 = νD(fλ)

where fλ ∈ k(X)(B) is any eigenfunction of weight λ and where νD(fλ) is the order
of vanishing of f along D. Therefore we get a map

ρX : ∆(X) −→ Q(X).

(when the variety X is clear from the context, we will often drop the index).

3. Examples

We present in this section some examples of spherical varieties, and compute the
corresponding weight lattices, weight monoids and sets of colors. Even if not always
needed, throughout this section we will assume for convenience that char(k) = 0: in
particular, this will allow us to use the Peter-Weyl theorem (see e.g. [11, Theorem
4.2.3]), namely the decomposition into G×G-modules

k[G] '
⊕

λ∈X (T )+

V (λ)⊗ V ∗(λ),

which fails in positive characteristic.

Example 3.1. Suppose that X is a toric T -variety, where T is an algebraic torus of
dimension n. Then X contains an open T -orbit isomorphic to T , and if n = dim(X)
then Λ(X) ' Zn. Notice that in this case there are no colors: indeed T = B = G,
therefore every B-stable divisor is G-stable. 4

Example 3.2. Suppose that G/P is a flag variety, then Λ(G/P ) = 0. Indeed, U
has an open orbit in G/P . Moreover, every rational B-eigenfunction on G/P is
U -invariant, hence it must be constant. Suppose for simplicity that P = B: then
the B-orbits in G/B are the Schubert cells, and by the Bruhat decomposition they
are in correspondence with the elements of the Weyl group of G. The colors are the
Schubert divisors, and they are in correspondence with the simple roots of G. 4

Example 3.3. Let T ⊂ SL2 be the subgroup of diagonal matrices, let B ⊂ SL2 be
the subgroup of upper triangular matrices and let α = 2ωα be the corresponding
positive root. Set ṡα =

(
0 1
−1 0

)
and uα = ( 1 1

0 1 ), then SL2 decomposes into double
cosets with respect to the action of B × T as follows:

SL2 = B ∪Bṡα ∪BṡαuαT.
Therefore SL2/T is spherical, since it decomposes into three B-orbits: the open
orbit BṡαuαT/T , and the two B-stable divisors D+ = B/T and D− = Bṡα/T .

To compute the weight lattice, by the Peter-Weyl theorem it follows

k[SL2/T ] = k[SL2]T =
⊕
m∈N

V (mωα)⊗ V ∗(mωα)T =
⊕
m∈N

V (mα).

Therefore Λ+(SL2/T ) = Nα, and since SL2/T is affine we get by Remark 2.14 that
Λ(SL2/T ) = Zα.

We now compute the map ρ : ∆(SL2/T ) → Q(SL2/T ). For 1 6 i, j 6 2,
let aij ∈ k[SL2] be the corresponding matrix coefficient, then B = div(a21) and
Bṡα = div(a22). Let V = k[x, y]2 be the space of homogeneous polynomials in x, y
of degree 2, regarded as a SL2-module with the linear action on the coordinates
given by g. ( xy ) 7→ g−1 ( xy ). Fix the basis x2, xy, y2 and let e20, e11, e02 be the
dual basis in V ∗. Since xy ∈ V T we obtain a function f ∈ k[SL2/T ] by setting
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f(g) = 〈e20, g.xy〉. Notice that div(f) = D+ + D−: indeed, regarding f as a
function on SL2, we have f = −a21a22. On the other hand e20 ∈ (V ∗)(B) is a
highest weight function of weight α, therefore f ∈ k[SL2/T ](B) also has weight
α and we get 〈ρ(D+), α〉 = νD+(f) = 1 and 〈ρ(D−), α〉 = νD+(f) = 1. Since
Λ(SL2/T ) = Zα, in particular we get the equalities

ρ(D+) = ρ(D−) = 1
2α
∨. 4

Example 3.4 (Symmetric matrices, part II). Let X = Symn be the space of
symmetric matrices of order n with the action of G = GLn, and keep the notation
of Example 2.2 v).

By the classification of the quadratic forms up to congruence, the G-orbits in X
are parametrized by the rank. More precisely, for i 6 n, let Xi = {x ∈ X | rk(x) 6
i} and let xi ∈ Xi be the rank i diagonal matrix which is the identity in the upper
left block and zero everywhere else. Then the G-orbits are precisely Gx0, . . . , Gxn,
and Xi = Gxi for all i 6 n. Therefore we have the following inclusions of G-orbit
closures:

0 = Gx0 ⊂ Gx1 ⊂ . . . ⊂ Gxn.
Let dk be the determinant of the upper left square block of order k, and notice

that dk ∈ k[X]U . Moreover dk ∈ k[X](T ), where T ⊂ GLn is the torus of diagonal
matrices, and for t = (t1, . . . , tn) ∈ T it holds

(t.dk)([aij ]) = dk(t−1.[aij ]) = dk([titjaij ]) = t21 · · · t2kdk([aij ]).

If εi ∈ X (T ) denotes the projection on the i-th coordinate of T and ωi denotes the
highest weight of GLn in Λikn, we get then

λdk = 2ε1 + . . .+ 2εk = 2ωk.

On the other hand, notice that Λ+(X) ⊂ 2X (T )+. Let indeed χ ∈ Λ+(X),
write χ =

∑
aiεi and let t(i) = diag(1, . . . , 1,−1, 1, . . . , 1) be the diagonal matrix

whose unique negative entry is in position i: then t(i)−1.xn = xn. Since Bxn
is open in X, it follows −1ai = χ(t(i)) = 1, hence ai is even. It follows that
Λ+(X) = 2X (T )+, and by Remark 2.14 we get the equality Λ(X) = 2X (T ). Since
k[X] is a multiplicity-free G-module and Λ+(X) is a free monoid, it follows moreover
that k[X]U = k[d1, . . . , dn] is a polynomial ring, and k[X](B) is the set of monomials
therein.

Since dk ∈ k[X](B) and dk(xn) = 1, we have Bxn ⊂ {x ∈ X | dk(x) 6= 0} for all
i 6 n. On the other hand one can actually check that

Bxn =

n⋂
i=1

{x ∈ X | dk(x) 6= 0},

and being determinants the polynomials dk are irreducible. Therefore X rBxn is
the union of the irreducible hypersurfaces D1, . . . , Dn defined by d1, . . . , dn, namely
D(X) = {D1, . . . , Dn}. On the other hand dn is the determinant, therefore Dn =
Xn−1 is the unique G-stable divisor and we get ∆(X) = {D1, . . . , Dn−1}.

By the irreducibility of the dk, it follows that νDk(dh) = δhk is the Kronecker
delta whenever 1 6 h, k 6 n. Therefore we get ρ(Dk) = 1

2α
∨
k for all k < n and

ρ(Dn) = 1
2ω
∗
n, where {α∨1 , . . . , α∨n−1, ω

∗
n} ⊂ X (T )∨ is the dual basis of {ω1, . . . , ωn}.

4

Example 3.5 (Determinantal varieties, part II). Keep the notation of Example
2.2 vi), and denote by U−m (resp. Un) the unipotent subgroup of lower triangular
(resp. upper triangular) matrices in GLm (resp. in GLn) and denote U = U−m×Un.
As in the previous example, the G-orbits in Mm,n,r are parametrized by the rank.
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By the dimension formula of a determinantal variety, notice that Mm,n,r contains
a G-stable divisor if and only if m = n = r.

Given x ∈ Mm,n,r and k 6 r, we denote by dk the determinant of the upper
left square block of order k. It is easily seen that d1, . . . , dr ∈ k[Mm,n,r]

U . We now
show the equality

k[Mm,n,r]
U = k[d1, . . . , dr]

by showing that Λ+(Mm,n,r) is freely generated by the weights ω′1−ω1, . . . , ω
′
r−ωr.

Let Tm (resp. Tn) be the maximal torus of B−m (resp. of Bn) and set T = Tm×Tn.
Let t = (t1, . . . , tm, s1, . . . , sn) ∈ T , then dk ∈ k[Mm,n,r]

(T ) and we have

((t, s).dk)([aij ]) = dk((t−1, s−1).[aij ]) = dk([t−1
i sjaij ]) = t−1

1 s1 · · · t−1
k skdk([aij ]).

If εi ∈ X (Tm) (resp. ε′i ∈ X (Tn)) denotes the projection on the i-th coordinate of
Tm (resp. of Tn) and if ωi (resp. ω′i) denotes the highest weight of GLm in Λikm

(resp. of GLn in Λikn), we get then

λdk = ε′1 − ε1 + . . .+ ε′k − εk = ω′k − ωk.

Decompose Tm = Tr × Tm−r and Tn = Tr × Tn−r, and notice that diag(Tr) ×
Tm−r × Tn−r fixes x0. If f ∈ k[Mm,n,r]

(B) has weight λf = (λ1, λ2, λ3, λ4) ∈
X (Tr)×X (Tm−r)×X (Tr)×X (Tn−r), it follows that (λ1+λ3)| diag(Tr) = λ2 = λ4 = 0,
consequently

Λ+(Mm,n,r) ⊂ 〈ε′1 − ε1, . . . , ε
′
r − εr〉Z

On the other hand every weight in Λ+(Mm,n,r) is dominant with respect to B−m×Bn,
and since dk is not invertible of weight ω′k − ωk it follows that

Λ+(Mm,n,r) = 〈ω′1 − ω1, . . . , ω
′
r − ωr〉N.

Finally, by Remark 2.14 we get the equality

Λ(Mm,n,r) = 〈ω′1 − ω1, . . . , ω
′
r − ωr〉Z.

Notice that the weight monoid Λ+(Mm,n,r) is saturated, thus Mm,n,r is a normal
variety by Corollary 2.16 (this holds true in all characteristics, see [8, Proposition
1.4c]). Therefore Mm,n,r is an affine spherical variety. 4

Example 3.6 (Reductive groups, part I). Recall from Example 2.2 iv) that G is
a spherical (G × G)-variety, and fix B− × B as a Borel subgroup of G × G. Let

f ∈ k[G](B
−×B) and write λf = (λ1, λ2) with λ1, λ2 ∈ X (T ): since diag(G) fixes the

identity of G and since B−B ⊂ G is open, it follows that λ1 + λ2 = 0. Conversely,
recall that the multiplication induces an isomorphism B−B ' U−×T ×U (see [31,
Theorem 6.3.5 and Lemma 8.3.6]. Therefore, for all λ ∈ X (T ), we get a function

fλ ∈ k(G)(B−×B) = k(B−B)(B−×B) of weight (−λ, λ) by setting fλ(utu′) = λ(t)
for all t ∈ T , u ∈ U− and u′ ∈ U . Hence we have the following description:

Λ(G) = {(−λ, λ) | λ ∈ X (T )}.

When λ ∈ X (T )+, we can also give a more representation theoretical description

of the function fλ. Let vλ ∈ V (λ)(B) be a highest weight vector and ϕλ ∈ V ∗(λ)(B−)

be a lowest weight vector, and define fλ(g) = 〈ϕλ, gvλ〉: then fλ ∈ k[G](B
−×B) has

weight (−λ, λ), and up to a normalization fλ(utu′) = λ(t) for all t ∈ T , u ∈ U−
and u′ ∈ U .

We now describe the colors of G, and the map ρ : ∆(G)→ Λ(G). By the Bruhat

decomposition, the colors coincide with the Schubert divisors Dα = B−ṡαB, where
α is a simple root and where ṡα ∈ NG(T ) is a representative for the corresponding
simple reflection sα ∈W . Therefore ∆(G) is identified with the set of simple roots
of G. Up to replacing G with a finite covering, we can assume that Pic(G) = 0 (see
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[20, Proposition 4.6]). In particular, every divisor on G is principal, or equivalently
k[G] is a factorial ring (see [12, Proposition B.72]).

Notice thatDα has an equation in k[G] which is (B−×B)-semi-invariant of weight
(−ωα, ωα), where ωα denotes the fundamental weight associated to α. Indeed,
let Pα ⊂ G be the maximal parabolic subgroup containing B associated to α
and let Xα = B−sαPα/Pα be the unique Schubert divisor of G/Pα. Then the
line bundle O(Xα) ∈ Pic(G/Pα) is very ample and induces a closed equivariant
embedding G/Pα ⊂ P(V (ωα)), and the lowest weight vector ϕωα is the canonical
section of Xα in Γ(G/Pα,O(Xα)) = V ∗(ωα). In particular, composing with the
projection G→ G/Pα, it follows that the function fωα that we defined above is an
equation for Dα. Finally, notice that ρ(Dα) = (−α∨, α∨), where α∨ is the coroot
associated to α. Indeed, k[G] is a factorial ring and a multiplicity-free (G × G)-
module, therefore, up to a scalar factor, for all λ ∈ X (T ) we have an equality of

the shape fλ = λ0

∏
f
〈λ,α∨〉
ωα for some λ0 ∈ X (G). 4

Example 3.7. Recall from Example 2.2 ii) that G/U is a spherical variety. Then
k[G/U ]U = k[G]U×U , thus by the Peter-Weyl theorem

k[G/U ]U '
⊕

λ∈X (T )+

V (λ)U ⊗ V ∗(λ)U

and we get Λ+(G/U) = X (T )+. Since Λ(G/U) is a lattice containing Λ+(G/U), it
follows that Λ(G/U) = X (T ).

As in Examples 3.2 and 3.6, the B-orbits and the colors in G/U are described
in terms of Weyl group elements by making use of the Bruhat decomposition. In
particular, the colors are parametrized by the simple roots of G associated to B:
if w0 ∈ W is the longest element, then the colors are the orbit closures of the
shape Dα = Bṡαw0B/U , where α is a simple root and where ṡα ∈ NG(T ) is a
representative for the corresponding simple reflection sα ∈ W . Reasoning as in
Example 3.6, one checks that ρ(Dα) = α∨. 4

4. Invariant valuations on a spherical homogeneous space

Definition 4.1. Let X be a normal variety. A valuation on X is a map ν : k(X)→
Q ∪ {+∞} with the following properties, whenever f1, f2 ∈ k(X):

i) ν(f1 + f2) > min{ν(f1), ν(f2)} ;
ii) ν(f1f2) = ν(f1) + ν(f2);

iii) ν|k∗ = 0, ν(0) = +∞ and ν(k(X)∗) ⊂ Q.

If moreover X is a G-variety, then a valuation ν is called invariant if ν(g.f) = ν(f)
for all g ∈ G.

We denote by V(X) the set of invariant valuations on a normal G-variety X.

Example 4.2. Let D be a prime divisor on a normal variety X, then D defines
a valuation νD, which associates to any function f ∈ k(X) its order along D (for
a detailed treatment, we refer to [12, Section 11.3]). Indeed, since it is normal, X
is smooth in codimension one, and the local ring OX,D of the rational functions
defined on D is a discrete valuation ring with quotient field k(X). In particular, the
maximal ideal mX,D ⊂ OX,D of the rational functions vanishing identically on D is
principal, generated by any irreducible element z ∈ mX,D. Therefore every function

f ∈ k(X) can be written in the form zn f1f2 with n ∈ Z and f1, f2 ∈ OX,D r mX,D.

By definition νD(f) = n. 4

Given a valuation ν of a normal variety X, we define

Oν = {f ∈ k(X) | ν(f) > 0}, mν = {f ∈ k(X) | ν(f) > 0}.
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Notice that Oν is a local ring with maximal ideal mν . We say that a closed subva-
riety Y ⊂ X is a center of ν if OX,Y ⊂ Oν and mX,Y ⊂ mν .

Proposition 4.3. Let ν be a valuation on a normal variety X.

i) If X is affine, then ν has a center on X if and only if ν|k[X] > 0. In this
case the center is unique, defined by the ideal mν ∩ k[X].

ii) The center of ν is unique, if it exists.
iii) If X is a G-variety and ν ∈ V(X), then the center of ν is G-stable.

Proof i) Suppose that Y is a center for ν, then k[X] ⊂ OX,Y ⊂ Oν , therefore
ν|k[X] > 0. Suppose conversely that ν|k[X] > 0, and let Y be the subvariety of X
defined by the prime ideal mν ∩k[X]. This is clearly a center for ν, suppose that Y ′

is another center. Then the ideal of Y ′ in k[X] is contained mν , hence in the ideal
of Y and it follows that Y ′ ⊂ Y . Suppose that f ∈ k[X] vanishes on Y ′, but not
on Y : then f is invertible in OX,Y ⊂ Oν , but f ∈ mX,Y ′ ⊂ mν , absurd. Therefore
Y = Y ′ must hold.

ii) Suppose that Y, Y ′ are both centers for ν. Then for every affine open subset
U ⊂ X the intersections Y ∩U and Y ′ ∩U are both centers for ν on U , hence they
coincide by i). Therefore Y = Y ′ since we can cover X with affine open subsets.

iii) Let Y be the center of ν. Since ν is invariant it follows that g.Y is also a
center of ν, therefore g.Y = Y because the center is unique by ii).

Remark 4.4. Let X be a normal variety, then every subvariety Y ⊂ X is the center
of a valuation on X. This is clear if Y is a divisor, so we can assume codim(Y ) > 1.

Let p : X̃Y → X be the normalization of the blow up of X along Y , then we
can consider any irreducible component Z ⊂ p−1(Y ) of the exceptional divisor,

and since k(X̃Y ) = k(X) the corresponding valuation νZ is a valuation on X with
center Y . Notice that νZ is invariant if Y is G-stable: therefore every G-invariant
subvariety of X is the center of an invariant valuation. ♦

The following proposition is due to Sumihiro (see [32, Lemma 10 and 11])

Proposition 4.5 ([24, Lemma 3.2], [17, Lemma 2.4]). Let ν be a valuation on G,
then there exists a unique ν ∈ V(G) such that ν(f) = ν(g.f) for all f ∈ k(G) and
for all g in a nonempty open subset Uf ⊂ G.

Proof We show that, for all f ∈ k(G), the value ν(g.f) is constant for g in a
nonempty open subset Uf ⊂ G. Once this will be proved, the claim will follow
because we can define ν(f) = ν(g.f), where g ∈ Uf . This actually defines a
valuation on G: if indeed g ∈ Uf1 ∩ Uf2 ∩ Uf1+f2 (which is not empty) then we get

ν(f1 + f2) = ν(g.f1 + g.f2) > min(ν(g.f1), ν(g.f2)) = min(ν(f1), ν(f2)),

ν(f1f2) = ν((g.f1)(g.f2)) = ν(g.f1) + ν(g.f2) = ν(f1) + ν(f2).

Moreover ν ∈ V(G), because for g ∈ G we can take Ug.f = Ufg
−1.

To show that ν(g.f) is constant on a nonempty open subset of G, we may
assume that f ∈ k[G]. For n ∈ Q define V (n) = {f ′ ∈ k(G) | ν(f ′) > n}. By
Lemma 2.3, the orbit Gf generates a finite dimensional submodule M ⊂ k[G]. Let
f1, . . . , fm be a basis of M , and denote n0 = mini ν(fi). Then M ⊂ V (n0), and
M ′ = {f ′ ∈M | ν(f ′) > n0} is a proper subspace of M . Denote

Uf = {g ∈ G | g.f 6∈M ′} :

then Uf is a nonempty open subset of G, and ν(g.f) = n0 for all g ∈ Uf .

Corollary 4.6 ([17, Corollary 2.5]). Let H ⊂ G be a closed subgroup. If ν ∈
V(G/H), then there exists ν ∈ V(G) whose restriction to k(G/H) is ν.
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Proof By a general result in valuation theory (see e.g. [12, Proposition B.69]), we
can extend ν to a valuation ν′ of G. Then by Proposition 4.5 there exists ν ∈ V(G)
such that ν(f) = ν′(g.f) for all g in a nonempty open subset of G, and the claim
follows because ν′(g.f) = ν(f) for all f ∈ k(G/H).

Let now G/H be a spherical homogeneous space, and assume that BH ⊂ G is
open. Given a subspace M ⊂ k[G], let Mn be the subspace generated by all the
possible products of n elements of M .

Proposition 4.7 ([17, Theorem 2.6]). Let ν ∈ V(G/H), let f ∈ k(G/H) and let
f0 ∈ k(G)(B×H). Suppose that ff0 ∈ k[G], and let M ⊂ k[G] be the G-submodule
generated by ff0. Then the following hold:

i) Mnf−n0 ⊂ k(G/H), for all n ∈ N.

ii) ν(f) = min{ 1
nν(f ′f−n0 ) | n ∈ N, f ′ ∈ (Mn)(B)}.

Proof i) Let χ ∈ X (H) be the weight of f0 with respect to the right action of H.
Since the action of G commutes with the action of H, all elements of Mn are H-
eigenvectors of weight nχ. Therefore Mnf−n0 ⊂ k(G)H , and by the basic properties
of homogeneous spaces the latter coincides with k(G/H).

ii) Let ν ∈ V(G) be a lifting of ν, which exists by Corollary 4.6, and set q =
ν(ff0). Define V (q) = {f ′ ∈ k[G] | ν(f ′) > q}: since ν is a G-invariant valuation,
V (q) is a G-submodule of k[G]. Since ff0 ∈ V (q), by the very definition of invariant
valuation we get Mn ⊂ V (nq). Let f ′ ∈Mn: then

ν(f ′) > nq = n ν(ff0), (4.1)

hence

ν(f) = ν(f) 6 1
nν(f ′f−n0 ) = 1

nν(f ′f−n0 ),

where we used i) in the last equality.
To show that ν(f) is actually the minimum of such expressions, consider the

integral graded k-algebra R =
⊕

i>0M
i with the inherited G-action, and let X be

the corresponding affine G-variety. If r ∈ R, we denote by ri its component in M i.
If r 6= 0, define

ν′(r) = min
i∈N
{ν(ri)− iq}.

One checks that ν′ defines a G-invariant valuation on (the normalization of) X, and
by (4.1) we have ν′|R > 0. Therefore ν′ has a center Y ⊂ X, corresponding to the

G-stable homogeneous prime ideal p = {r ∈ R | ν′(r) > 0} ⊂ R. Since ff0 ∈ M
and ν′(ff0) = 0, it follows that M/M ∩ p 6= 0 is a nonzero finite dimensional
G-submodule of k[Y ], therefore by the Lie-Kolchin theorem there exists a nonzero
element a ∈ (M/M ∩ p)(B). Applying Corollary 2.6 to X and Y , there exist n ∈ N
and f ′ ∈ R(B) such that f ′|Y = an. Since p is homogeneous, we can assume that
f ′ ∈ (Mn)(B). Since a 6= 0, we have f ′ ∈ R r p, hence ν′(f ′) = 0. Therefore
ν(f ′) = nq = nν(f) + ν(fn0 ) and we get ν(f) = 1

nν(f ′f−n0 ), which shows the claim.

Corollary 4.8 ([17, Corollary 2.7]). Let f ∈ k[BH/H] and let ν0 ∈ V(G/H). Then
there exist n ∈ N and f0 ∈ k(G/H)(B) such that

i) ν0(f0) = ν0(fn),
ii) ν(f0) > ν(fn) for all ν ∈ V(G/H),

iii) νD(f0) > νD(fn) for all D ∈ ∆(G/H).

Proof Up to replacing G by a finite covering, we may assume that Pic(G) = 0 (see
[20, Proposition 4.6]), which means that k[G] is a factorial ring (see [12, Proposition
B.72]). In particular, every divisor δ on G is the divisor of a function h ∈ k(G), and
if moreover δ is stable under B×H then h ∈ k(G)(B×H). Let π : G→ G/H be the
projection, and denote by δ the B-stable part of div(f−1), where f−1 is regarded
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as a rational function on G/H. Let h ∈ k(G)(B×H) be such that π∗(δ) = div(h):
then fh ∈ k[G], hence by Proposition 4.7 there exist n ∈ N and f ′ ∈ k[G](B)

with f ′h−n ∈ k(G/H) such that ν0(f ′h−n) = ν0(fn) and ν(f ′h−n) > ν(fn) for all
ν ∈ V(G/H). If moreover D ∈ ∆(G/H) and D′ is an irreducible component of
π−1(D), then νD(fn) = νD′(h

−n) 6 νD′(f ′h−n) = νD(f ′h−n).
Thanks to the sequence (2.1), every valuation ν ofG/H induces a homomorphism

ρ̂G/H(ν) : Λ(G/H) −→ Q, defined by setting 〈ρ̂G/H(ν), λ〉 = ν(f) where f ∈
k(G/H)(B) is any eigenfunction of weight λ. Therefore we get a map

ρ̂G/H : {valuations on G/H} −→ Q(G/H)

Corollary 4.9 ([17, Corollary 2.8], [24, Proposition 7.4]). The restriction of ρ̂G/H
to V(G/H) is injective.

Proof Let Bx0 ⊂ G/H be the open B-orbit, then k(G/H) = k(Bx0), so that every
valuation on G/H is uniquely determined by its restriction to k[Bx0]. Let ν, ν′ ∈
V(G/H), suppose that ν 6= ν′ and let f ∈ k[Bx0] be such that ν(f) 6= ν′(f). Assume
that ν(f) < ν′(f): then by Corollary 4.8 there exist n ∈ N and F ∈ k(G/H)(B)

such that ν(F ) = ν(fn) and ν′(F ) > ν′(fn). Therefore ν′(F ) > ν(fn) = ν(F ) and
it follows ρ̂G/H(ν) 6= ρ̂G/H(ν′).

From now on, we will regard V(G/H) as a subset of Q(G/H) via the map ρ̂G/H .

5. The B-stable affine open subset associated to a G-orbit

Given a spherical variety X and a G-orbit Y ⊂ X, in this section we show the
existence of a canonical B-stable affine open subset of X intersecting Y . This will
be a main object in the classification of spherical embeddings. Our main tools will
be Corollary 2.6 and Corollary 4.8.

Proposition 5.1 ([17, Theorem 2.3]). Let X be a normal G-variety X and let Y ⊂
X be a G-orbit. Then there exists a B-stable affine open subset X0 ⊂ X intersecting
Y such that, for all f ∈ k[X0 ∩ Y ](B), there exist n ∈ N and f ′ ∈ k[X0](B) with
f ′|X0∩Y = fn.

Proof By a theorem of Sumihiro (see [20, Theorem 1.1]) there exists a finite
dimensional G-module V and a G-stable open subset U ⊂ X containing Y such
that U embeds G-equivariantly in P(V ). Therefore, up to replacing X with U , we
may assume that X is equivariantly embedded in the projective space of a finite
dimensional G-module V .

Let X be the closure of X in P(V ) and set Z = XrX. Let I(Z) and I(Y ) be the
homogeneous ideals in k[V ] respectively of Z and of Y , the closure of Y in P(V ).
Then I(Z) and I(Y ) are G-stable, and since Y 6⊂ Z we have I(Z) 6⊂ I(Y ). Let
f ∈ I(Z)r I(Y ) and let M ⊂ I(Z) be the (finite dimensional) G-module generated
by f and denote R =

⊕
n>0M

n. Then by the Lie-Kolchin theorem M/M ∩ I(Y )

contains a nonzero B-eigenvector v. By Corollary 2.6 applied to Spec(R) and its
subvariety defined by I(Y ), there exists n ∈ N such that vn ∈ R/R ∩ I(Y ) lifts to
an element f0 ∈ R(B). Since the ideal I(Y ) is homogeneous, we can assume that
f0 is homogeneous, therefore we can define a B-stable affine open subset of X by
setting X0 = {x ∈ X | f0(x) 6= 0}. Since v ∈ M/M ∩ I(Y ) is nonzero, notice that
f0 ∈ I(Z) r I(Y ), hence X0 ∩ Y 6= ∅ and X0 ⊂ X.

Let now f ∈ k[X0 ∩ Y ](B). If Ŷ ⊂ V is the affine cone over Y , let d ∈ N be

such that fd0 f ∈ k[Ŷ ] is homogeneous. If X̂ denotes the affine cone over X, then by

Corollary 2.6 there exists n ∈ N such that (fd0 f)n lifts to an element f ′′ ∈ k[X̂](B)

which we can choose to be homogeneous, and we conclude by setting f ′ = f ′′f−dn0 .
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If Y ⊂ X is a G-orbit, define

XY,B = X r
⋃

D(X)rDY (X)

D and XY,G = GXY,B .

Theorem 5.2 ([17, Theorem 3.1]). Let X be a spherical G-variety and let Y ⊂ X
be a G-orbit.

i) XY,B is the minimal B-stable affine open subset of X which intersects Y ;
ii) Y is the unique closed G-orbit in XY,G, and

XY,G = {x ∈ X | Y ⊂ Gx};

iii) XY,B ∩ Y is a single B-orbit.

Proof Let X0 be a B-stable affine open subset intersecting Y as in Proposition
5.1, and let ν0 ∈ V(X) be a valuation with center Y (which exists by Remark 4.4).
Let f0 ∈ k[X0] be a function not vanishing on Y ∩ X0 such that νD(f0) > 0 for
all D ∈ D(X) r DY (X) with D ∩ X0 6= ∅. Then ν0(f0) = 0, and by Corollary
4.8 we can assume that f0 ∈ k[X0](B): if f ′0 ∈ k(X)(B) satisfies νD(f ′0) > 0 for all
D ∈ D(X) with D ∩ X0 6= ∅, then f ′0 is defined on all divisors of X0, therefore
f ′0 ∈ k[X0] because X is normal.

i) Clearly XY,B is a B-stable open subset of X, and by [12, Exercise 12.18] it is
contained inside every B-stable affine open subset which intersects Y . In particular,
we have XY,B ⊂ X0, and by the definition of f0 we get XY,B = {x ∈ X0 | f0(x) 6=
0}.

ii) Let Z ⊂ X be a G-orbit which intersects X0 and suppose that Y 6⊂ Z. We
may in addition assume that the function f0 defining XY,B vanishes on Z. Hence
XY,B ∩ Z = ∅ and Y is the unique closed G-orbit in XY,G. Set X ′Y,G = {x ∈
X | Y ⊂ Gx}, then we have inclusions XY,B ⊂ XY,G ⊂ X ′Y,G. Let x ∈ X ′Y,G
and suppose by contradiction that Gx ∩XY,B = ∅: then Gx is contained in some

D ∈ D(X) rDY (X), hence Y 6⊂ Gx, a contradiction.
iii) The claim follows if we prove that every nonzero function f ∈ k[XY,B∩Y ](B) is

invertible: indeed, if Z ( XY,B∩Y is a closed B-orbit and I(Z) ⊂ k[XY,B∩Y ] is the

corresponding ideal, then by the Lie-Kolchin theorem I(Z)(B) 6= 0, and any element
therein is a non-invertible B-eigenfunction. Suppose that f ∈ k[XY,B ∩ Y ](B) is

nonzero. For some d ∈ N we have fd0 f ∈ k[X0 ∩ Y ](B), hence by the definition of
X0 there exist n ∈ N and f ′ ∈ k[X0](B) such that f ′|X0∩Y = (fd0 f)n. It follows that

f ′|XY,B is invertible: indeed νD(f ′) = 0 for all D ∈ DY (X) because f ′|X0∩Y 6= 0,

hence f ′ does not vanish on any divisor of XY,B . Therefore f ′|XY,B∩Y is invertible,

and f is invertible as well.

Corollary 5.3 ([24, Proposition 7.5], [17, Corollary 3.2]). Let X be a multiplicity-
free G-variety, then X possesses finitely many G-orbits, and all of them are spher-
ical.

Proof Up to replacing X with its normalization, we may assume that X is spher-
ical. By Theorem 5.2 ii), every G-orbit Y ⊂ X is uniquely determined by the
corresponding B-stable affine open subset XY,B . On the other hand D(X) is a
finite set by Proposition 2.20, hence there are finitely many possibilities for XY,B

and for Y as well. This show the first claim, and the second one follows by Theorem
5.2 iii).

Remark 5.4. Suppose that char(k) = 0. Then we have the equality

XY,B = {x ∈ X | Y ⊂ Bx},
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namely Y ∩XY,B ⊂ XY,B is the unique closed B-orbit. Indeed, denote P = {g ∈
G | gXY,B = XY,B}. Then P is a parabolic subgroup of G, and if P = LPu is the
Levi decomposition of P then by the local structure theorem (see e.g. [26, Theorem
3.2.2]) there exists a L-stable closed subvariety SY ⊂ XY,B which is L-spherical and
such that the P -action gives rise to a P -equivariant isomorphims XY,B ' P ×L SY .
Since it is affine and it possesses an open L-orbit, we have k[SY ]L = k, thus the
categorical quotient SY //L is a single point and there exists a unique closed L-orbit
in SY . By Theorem 5.2, this L-orbit must be SY ∩ Y : indeed Y is the unique
closed G-orbit in XY,G, and XY,B ∩ Y is a single B-orbit. Let now Z ⊂ XY,B be a
closed B-orbit and let x ∈ SY be such that Z = Bx: then Z ∩ SY = (B ∩ L)x is a
closed (B ∩ L)-orbit in SY . It follows that Lx is a closed orbit in SY : indeed, the
L-action induces a morphism L×B∩LSY → SY which is proper because L/B∩L is
projective (see e.g. [34, Proposition 2.7]), and Lx is the image of the closed subset
L×B∩L (B ∩ L)x. It follows that Lx = SY ∩ Y , and therefore Z = XY,B ∩ Y . ♦

Definition 5.5. A spherical G-variety X is called simple if it contains a unique
closed G-orbit. A spherical embedding G/H ↪→ X is called simple if X is simple.

By Theorem 5.2 and Corollary 5.3, every spherical G-variety can be covered with
finitely many simple spherical G-varieties, namely those of the shape XY,G, where
Y runs among the G-orbits of X.

Fix now a spherical G-variety X, let Bx0 ⊂ X be the open B-orbit and let
H ⊂ G be the stabilizer of x0. Assume moreover that the orbit morphism G→ Gx0

is separable (e.g. if char(k) = 0). Then we can identify Gx0 ' G/H, and we may
regard X as a spherical embedding of G/H. Since Gx0 ⊂ XY,G for all G-orbits
Y ⊂ X, we can regard all the simple spherical varieties XY,G as embeddings of the
same homogeneous space G/H.

Every G-stable prime divisor D ⊂ X is either B-stable (in which case D ∈ ∆(X))
or G-stable (in which case D ∈ D(X) r ∆(X)). Notice that we can canonically
identify ∆(X) and ∆(G/H). On the other hand every D ∈ D(X)r∆(X) defines a
an invariant valuation νD ∈ V(X), and if Y ⊂ X is a G-orbit we can define a finite
set of G-invariant valuations by setting

VY (X) = {νD | D ∈ DY (X) r ∆(X)} ⊂ V(X).

Since ∆(X) = ∆(G/H), Λ(X) = Λ(G/H) and V(X) = V(G/H) are all birational
invariants of X, it follows that to every G-orbit Y ⊂ X we may associate the
following data on G/H:

i) ∆Y (X), a subset of the finite set ∆(G/H);
ii) VY (X), a finite subset of V(G/H).

These will be the main objects that will allow us to classify the spherical embeddings
of G/H.

6. Simple spherical embeddings and colored cones

Let G/H be a spherical homogeneous space, we keep the notation of previous
sections. In particular, we assume that BH is open in G.

In this section, we will show that every simple spherical embedding G/H ↪→ X
is uniquely determined by a strictly convex cone in Q(G/H) together with the
set of colors ∆Y (X) ⊂ ∆(G/H). Conversely, we will also give a combinatorial
characterization of the admissible pairs (C,F) with C a strictly convex cone in
Q(G/H) and F ⊂ ∆(G/H) which give rise to a simple spherical embedding of
G/H, leading to the notion of colored cone. This generalizes the fact that in the
theory of toric varieties (where colors do not exist) affine toric varieties with an
effective action of a torus T are classified by strictly convex cones in X (T ).
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Let CY (X) ⊂ Q(X) be the cone generated by ρ(∆Y (X)) together with VY (X).

Theorem 6.1 ([24, Proposition 8.3], [17, Theorem 3.3]). Let G/H ↪→ X be a
simple spherical embedding with closed orbit Y ⊂ X. As a spherical embedding of
G/H, X is uniquely determined up to G-isomorphism by the pair (CY (X),∆Y (X)).

Proof We first show that, among the spherical embeddings of G/H, X is uniquely
determined by the pair (VY (X),∆Y (X)). Let

U = G/H ∩XY,B = G/H r
⋃

D∈∆(G/H)r∆Y (X)

D.

By the algebraic version of Hartogs’ theorem (see [12, Theorem 6.45]), regular
functions on a normal variety always extend in codimension two. Therefore a
function f ∈ k[U ] extends to XY,B if and only if ν(f) > 0 for all D ∈ DY (X)r∆(X),
namely

k[XY,B ] = {f ∈ k[U ] | ν(f) > 0 ∀ν ∈ VY (X)}.
Thus XY,B is uniquely determined by G/H together with (VY (X),∆Y (X)).

Notice that, up to G-isomorphism, the spherical embedding G/H ↪→ X is
uniquely determined by the pair (VY (X),∆Y (X)). Indeed, let G/H ↪→ X ′ be
another simple spherical embedding with closed orbit Y ′ ⊂ X ′, and suppose that
(VY ′(X ′),∆Y ′(X

′)) = (VY (X),∆Y (X)). Let x0 ∈ X and x′0 ∈ X ′ be the base
points fixed by H, then by the previous discussion the G-equivariant birational
morphism ϕ : X 99K X ′ defined by the isomorphism Gx0 → Gx′0 induces an iso-
morphism XY,B → X ′Y ′,B . Since X is simple, Theorem 5.2 shows that X = GXY,B .

Therefore ϕ is defined everywhere, and since X ′ = GX ′Y ′,B it follows that ϕ is sur-

jective. On the other hand ϕ is a local isomorphism, therefore X and X ′ are
G-equivariantly isomorphic.

We now show that VY (X) can be recovered by the pair (CY (X),∆Y (X)). Let
ν0 ∈ VY (X) and let D0 ∈ DY (X) r ∆(X) be the corresponding G-stable divisor.
Let f ∈ k[XY,B ] be a function vanishing on all D ∈ DY (X) except D0. Then
ν0(f) = 0 and ν(f) > 0 for all ν ∈ VY (X) different from ν0. By Corollary 4.8
there exists f ′ ∈ k(G/H)(B) with the same properties, and such that νD(f ′) > 0
for all D ∈ ∆Y (X). Therefore λf ′ ∈ CY (X)∨, and λ⊥f ′ ∩ CY (X) = Q+ν0. Hence

the half-lines Q+ν with ν ∈ VY (X) are exactly the extremal rays of CY (X) which
do not contain any element of ρ(∆Y (X)), and they are uniquely determined by
the pair (CY (X),∆Y (X)). To conclude the proof, it is enough to notice that every
ν ∈ VY (X) is uniquely determined by its ray Q+ν: indeed, since ν is the valuation
defined by a divisor, its image is precisely Z.

Proposition 6.2 ([17, Theorem 3.5]). Let G/H ↪→ X be a simple spherical em-
bedding with closed orbit Y ⊂ X and let ν ∈ V(G/H). Then the following hold:

i) k[XY,B ](B) = {f ∈ k(G/H)(B) | λf ∈ CY (X)∨};
ii) ν has center on X if and only if ν ∈ CY (X);

iii) the center of ν is Y if and only if ν ∈ CY (X)◦.

Proof i) Let Bx0 ⊂ X be the open B-orbit. By definition the B-stable prime
divisors of XY,B correspond to the elements of DY (X). Since XY,B is normal, it

follows that a function f ∈ k[Bx0](B) extends to XY,B if and only if νD(f) > 0 for

all D ∈ DY (X). On the other hand every function in k(G/H)(B) is regular when
restricted to Bx0, therefore f extends to XY,B if and only if λf ∈ CY (X)∨.

ii) Since ν is G-invariant and since X = GXY,B , it follows that ν has center on
X if and only if it has center on XY,B . By Proposition 4.3 the latter holds if and
only if ν(f) > 0 for all f ∈ k[XY,B ]. On the other hand by Corollary 4.8 for all
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f ∈ k[XY,B ] there exist f ′ ∈ k[XY,B ](B) and n ∈ N such that ν(f ′) = ν(fn). It
follows from i) that ν has center on X if and only if ν ∈ CY (X).

iii) Given ν ∈ V(G/H) ∩ CY (X), notice that ν ∈ CY (X)◦ if and only if ν⊥ ∩
CY (X)∨ = CY (X)⊥. Suppose that Y is the center of ν. Since Y is contained in
every B-stable divisor of XY,B , it follows that every function f ∈ k[XY,B ](B) with
ν(f) = 0 is invertible. Therefore ν⊥ ∩CY (X)∨ = CY (X)⊥ by i), hence ν ∈ CY (X)◦.

Let now ν ∈ V(G/H)∩CY (X) with center Z, and assume Z 6= Y . Let f ∈ k[XY,B ]
be a function vanishing on Y and not on Z, by Corollary 4.8 we may assume that
f ∈ k[XY,B ](B). If ν0 ∈ V(G/H) is a valuation with center Y , it follows that
〈ν, λf 〉 = 0 and 〈ν0, λf 〉 > 0, therefore λf ∈ ν⊥ r CY (X)⊥ and ν 6∈ CY (X)◦.

We come now to the main definition of this section, and to the corresponding
classification theorem.

Definition 6.3. A colored cone for G/H is a pair (C,F) where C ⊂ Q(G/H) and
F ⊂ ∆(G/H) satisfy the following conditions:

(CC1) C is a convex cone generated by ρ(F) and by finitely many elements of
V(G/H).

(CC2) The intersection C◦ ∩ V(G/H) is nonempty.

A colored cone (C,F) is called strictly convex if the following condition holds:

(SCC) C is strictly convex, and 0 6∈ ρ(F).

Proposition 6.4. Let G/H ↪→ X be a simple spherical embedding with closed
orbit Y ⊂ X, then (CY (X),∆Y (X)) is a strictly convex colored cone, and up to G-
isomorphism X is uniquely determined by such a pair among the simple spherical
embeddings of G/H.

Proof To show that (CY (X),∆Y (X)) is a colored cone, notice that (CC1) holds by
definition, whereas (CC2) holds by Remark 4.4 together with Proposition 6.2. To
show (SCC), let f ∈ k[XY,B ] be a function vanishing on every B-stable prime divisor

of XY,B . By Corollary 4.8 we may assume f ∈ k[XY,B ](B): therefore νD(f) > 0 for
all D ∈ DY (X), and 0 6∈ ρ(∆Y (X)). Moreover λf ∈ CY (X)∨ and λ⊥f ∩ CY (X) = 0,

hence we get (SCC). The last claim was already proved in Theorem 6.1.

Theorem 6.5 ([24, Theorem 8.10], [17, Theorem 4.1]). Up to G-isomorphism, the
map which associates to a simple spherical embedding G/H ↪→ X the corresponding
colored cone is a bijection between the G-isomorphism classes of simple spherical
embeddings of G/H and the strictly convex colored cones for G/H.

The rest of the section will be devoted to the proof of previous theorem. We
will split the proof in several partial results. For simplicity,we will denote ∆(G/H),
Λ(G/H), V(G/H), Q(G/H) and ρG/H simply by ∆, Λ, V,Q and ρ.

We already showed the uniqueness part of the theorem. So we are left to show
that every strictly convex colored cone corresponds to a simple spherical embedding
of G/H. Let (C,F) be a strictly convex colored cone. By (CC1) the cone C is finitely
generated, therefore C∨ ∩ Λ is a finitely generated semigroup by Gordan’s Lemma.
Let λ1, . . . , λm ∈ C∨ ∩ Λ be a set of generators, and let F1, . . . , Fm ∈ k(G/H)(B)

with weights λ1, . . . , λm. Let D0 be the union of the colors D ∈ ∆ r F , then the
poles of F1, . . . , Fm on G/H are contained inside D0. Let π : G → G/H be the
projection, and let f0 ∈ k[G](B×H) be a function vanishing precisely on π−1(D0)
and such that fi := f0Fi ∈ k[G] for all i 6 m. Let χ ∈ X (H) be the weight of f0

with respect to the right action of H, and notice that fi ∈ k[G]
(H)
χ for all i 6 m.

Let V ⊂ k[G] be the G-module generated by f0, . . . , fm, then the evaluation of
functions (g, f) 7→ f(g−1) defines an equivariant morphism G → V ∗. Since V is
G-stable, the image of G does not contain 0: indeed if g′ ∈ G is such that f(g′) = 0
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for all f ∈ V , then f(g) = (g′g−1.f)(g′) = 0 for all g ∈ G, hence f = 0. Since

V ⊂ k[G]
(H)
χ , we get then an equivariant morphism ϕ : G/H → P(V ∗). Let

X ′0 = {x ∈ ϕ(G/H) | f0(x) 6= 0}

and define X ′ = GX ′0. Notice that X ′ is a multiplicity-free G-variety (because
G/H is so) and that X ′0 is a B-stable affine open subset in X ′ containing the open
B-orbit Bx′0, where x0 ∈ X ′ denotes the image of the base point of G/H.

Lemma 6.6. In the above notation, the following equality holds:

k[X ′0](B) = {f ∈ k(G/H)(B) | λf ∈ C∨}.

In particular, if Υ ⊂ Λ is the semigroup of the weights of B occurring in k[X ′0](B),
then C = cone(Υ)∨.

Proof Observe first of all that k[X ′0] is the subalgebra of k(G/H) generated by
the functions f ′/f0 with f ′ ∈ V . Let f ∈ k(G/H)(B) and suppose that λf ∈ C∨,
then by construction λf =

∑
aiλi is a linear combination with integral coefficients

of λ1, . . . , λm. Therefore the function

(f1/f0)a1 · · · (fm/f0)am ∈ k[X ′0](B)

has weight λf , hence up to a scalar factor this function is precisely f .

Conversely, let f ∈ k[X ′0](B) and let ν ∈ C be an element generating an extremal
ray. By (CC1), up to rescaling we may assume that ν ∈ ρ(F) ∪ V. Since the poles
of f are all contained in D0, it follows that ν(f) > 0 if ν ∈ ρ(F). Suppose that

ν ∈ C∩V and notice that by construction we have ν(f) > 0 if f = fi
f0

= Fi for some

i with 1 6 i 6 m. For a general f , write f = f ′/fn0 with f ′ ∈ SnV , and extend ν to
an invariant valuation ν ∈ V(G) as in Corollary 4.6. Write f ′ =

∏n
i=1

∑
j aijgij .fkij

with aij ∈ k and gij ∈ G for some choice of the indices 0 6 kij 6 m, then we get

ν(f) >
n∑
i=1

min
j
{ν(fkij )− ν(f0)} > min{ν(1), ν(F1), . . . , ν(Fm)} > 0.

Lemma 6.7. The morphism ϕ : G/H → X ′ has finite fibers.

Proof We show that the fibers of ϕ are both affine and complete.
To show that the fibers of ϕ are affine, it is enough to show that ϕ−1(Bx′0) =

BH/H: indeed BH/H is an affine variety by Theorem 2.17, and we can cover G/H
by its translates. If D ∈ ∆rF , then by construction f0 vanishes on π−1(D), hence
ϕ(D) ⊂ X ′rX0, and in particular ϕ(D)∩Bx′0 = ∅. If D ∈ F , then ρ(D)⊥∩C∨ is a
proper face of C∨ by (SCC). Hence there exists λ ∈ C∨ ∩Λ such that 〈ρ(D), λ〉 > 0,
and by Lemma 6.6 there exists a nonzero function h ∈ k[X ′0](B) vanishing on D.
Therefore ϕ(D) ∩ Bx′0 = ∅ for all D ∈ ∆. On the other hand by Proposition
2.20 ∆ is the set of irreducible components of G/H r BH/H, therefore we get
ϕ−1(Bx′0) = BH/H.

Let now X ′′ be any complete embedding of G/H (which exists for instance
by Chevalley’s theorem [31, Theorem 5.5.3]). Let X ′′′ be the normalization of the
closure of G/H diagonally embedded in X ′×X ′′. Then the projection ϕ : X ′′′ → X ′

is a proper morphism which extends ϕ, and to show that the fibers of ϕ are complete
it is enough to show that ϕ−1(Gx′0) = G/H. Suppose that Z ⊂ X ′′′ r G/H is
a G-stable subvariety mapping dominantly on X ′, by Remark 4.4 there exists a
valuation ν ∈ V having center Z on X ′′′. Then ν vanishes identically on k(X ′),
hence on its subset k[X ′0](B). On the other hand C is strictly convex by (SCC),
hence C∨ has maximal dimension and Λ is generated by C∨ ∩ Λ. It follows that
k(G/H)(B) is generated as a multiplicative group by k[X0](B), therefore ν(f) = 0
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for all f ∈ k(G/H)(B). Since ν is not the trivial valuation, we get a contradiction
by Corollary 4.9.

Since ϕ has finite fibers, it follows by a version of Zariski’s main theorem (see [12,
Corollary 12.87]) that there exists a variety X such that ϕ factors through an open
embedding ι : G/H ↪→ X and a finite morphism ψ : X → X ′. Since G/H is normal,
we can take X to be the normalization of X ′ in k(G/H) (see [12, Section 12.11] for
the definition of the latter). In particular, considering the morphism given by the
G-actions α : G×G/H → G/H and β′ : G×X ′ → X ′, by the universal property
of the normalization we get a canonical morphism β : G × X → X which makes
the following diagram commute:

G×G/H id×ι //

α

��

G×X
id×ψ //

β

��

G×X ′

β′

��
G/H

ι // X
ψ // X ′

Notice that β makesX into aG-variety, in such a way that ι and ψ areG-equivariant
morphisms. In particular, we get a spherical embedding G/H ↪→ X.

Denote X0 = ψ−1(X ′0), since ψ is a finite morphism X0 is a B-stable affine open
subset of X, which contains the open B-orbit Bx0, where x0 ∈ X denotes the
image of the base point of G/H. Since ψ induces an inclusion k[X ′0] ⊂ k[X0], for
all B-stable prime divisors D ⊂ X0 and for all f ∈ k[X ′0](B) we have νD(f) > 0. In
particular by Lemma 6.6 it follows that ρ(νD) ∈ cone(Υ)∨ = C for all D ∈ D(X)
such that D ∩X0 6= ∅. Since X0 is normal and k(G/H)(B) = k[Bx0](B),

k[X0](B) = {f ∈ k(G/H)(B) | νD(f) > 0 for all B-stable prime divisor of X0},

therefore k[X0](B) ⊂ {f ∈ k(G/H)(B) | λf ∈ C∨}, and again by Lemma 6.6 we get

the equality k[X0](B) = k[X ′0](B).

Proposition 6.8. The morphism G/H ↪→ X is a simple embedding, and if Y is
the closed G-orbit of X then XY,B = X0 and (CY (X),∆Y (X)) = (C,F).

Proof By (CC2), there exists an element ν0 ∈ V ∩ C◦. Thus ν0 is nonnegative on
k[X0](B) by the previous discussion, hence it is nonnegative on k[X0] by Corollary
4.8. By Proposition 4.3 it follows that ν0 has a center on X0, whose closure Y ⊂ X
is G-stable since ν0 is G-invariant.

Let Z ⊂ X be a G-stable closed subvariety, and let ν ∈ V be a valuation with
center Z. By the construction of X ′ and X, we have Z ∩X0 6= ∅. Therefore ν has
a center on X0 and it follows ν|k[X0] > 0, hence ν ∈ C. Suppose that Y 6⊂ Z and let
f ∈ k[X0] be a function which vanishes on Z and not on Y , so that ν0(f) = 0 and
ν(f) > 0. On the other hand by Corollary 4.8 we may assume that f ∈ k[X0](B),
therefore 〈ν0, λf 〉 = 0. Since ν0 ∈ C◦, it follows that λf = 0, a contradicition since
〈ν, λf 〉 > 0. Therefore Y ⊂ Z and G/H ↪→ X is a simple spherical embedding,
with closed orbit Y .

Since ρ(F) ⊂ C, notice that the same argument works if ν = νD for some D ∈ F :
therefore F ⊂ ∆Y (X). The same argument also shows that Y is contained in all
B-stable prime divisors of X0, which gives us that X0 ⊂ XY,B , thus X0 = XY,B by
the minimality of XY,B in Theorem 5.2. By Proposition 6.2 we get then C∨ ∩ Λ =
CY (X)∨ ∩ Λ, thus C = CY (X). Finally, by construction every D ∈ ∆ r F maps on
ψ(G/H) rX ′0, hence F = ∆Y (X).

Remark 6.9. If char(k) = 0, by making use of the local structure theorems (see
[26, Proposition 3.1.1 and Theorem 3.2.2]) it is possible to show that, in the previ-
ous notation, X ' X ′. Indeed if g ∈ G, then g.X0 = X0 if and only if g.X ′0 = X ′0,
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therefore we can write X ' P ×L SY and X ′ ' P ×L S′Y ′ , where Y ′ = ψ(Y )
and P = {g ∈ G | g.X0 = X0} and where SY ⊂ X0 and S′Y ′ ⊂ X ′0 are suitable
closed L-stable subvarieties, which are multiplicity-free. Moreover, ψ restricts to
a L-equivariant finite morphism SY → S′Y ′ , and Λ+(S′Y ′) = Λ ∩ C∨ = Λ+(S′Y ′).
Therefore, by decomposing the coordinate rings into irreducible L-modules, it fol-
lows that the inclusion k[S′Y ′ ] ⊂ k[SY ] is actually an equality. Therefore S′Y ′ ' SY
are L-equivariantly isomorphic, hence X0 ' X ′0 are isomorphic P -varieties, and
X ' X ′ are isomorphic G-varieties. ♦

Example 6.10. Regard A2 as a SL2-variety, then A2 r {0} is an open orbit, and
the stabilizer of (1, 0) is the maximal unipotent subgroup U of unipotent upper
triangular matrices. Therefore SL2/U ↪→ A2 is a spherical embedding. Let B the
Borel subgroup of upper triangular matrices. Notice that there are three B-orbits
in A2: the fixed point 0, the codimension one B-orbit D = {(a, 0) | a 6= 0} and
the open B-orbit {(a, b) | b 6= 0}. It follows that ∆0(A2) = ∆(SL2/U) = {D} and
A2

0,B = A2, therefore by Proposition 6.2 it follows that C0(A2) = cone(Λ+(A2))∨.

On the other hand k[x, y](B) = {yn | n ∈ N}, therefore Λ+(A2) = Λ+ and C0(A2) ⊂
Q = ΛQ ' Q is the positive half-line generated by the simple coroot α∨. Notice
that ρ(D) = α∨. As for all horospherical varieties, we will see in Corollary 11.7
that in this case V = Q.

Regard now A2 as a G2
m-variety, then there are four orbits: the open orbit

{(a, b) | a 6= 0, b 6= 0}, two codimension one orbits {(a, 0) | a 6= 0} and {(0, b) | b 6=
0}, and the fixed point 0. Again every G2

m-stable divisor contains the origin,

hence A2
0,B = A2 and C0(A2) = cone(Λ+(A2))∨. On the other hand k[x, y](G

2
m) =

{xmyn | m,n ∈ N}, therefore C0(A2) is the positive quadrant in Q ' Q2. 4

Example 6.11 (Symmetric matrices, part III). Consider the space X = Symn of
symmetric matrices with the action of G = GLn as in Example 3.4, and keep the
notation therein. Let Y ⊂ X be the unique closed G-orbit (namely the fixed point
x0 = 0). Since x0 ∈ Di for all i 6 n, it follows that ∆Y (X) = ∆(X) and XY,B = X.
Therefore by Proposition 6.2 we get

CY (X) = cone(1
2α
∨
1 , . . . ,

1
2α
∨
n−1,

1
2ω
∗
n). 4

Example 6.12 (The space of quadrics). Keep the notation of Example 3.4 and
consider now the space of quadrics Qn = P(Symn), which is spherical under the
action of G = PGLn with open orbit PGLn/PSOn. Denote by B (resp. by U , T )
the image of B (resp. of U , T ) in G, and for a subvariety Z ⊂ Symn denote by Z
its image in Qn. Then the G-orbits in Qn are the images of the nonzero G-orbits
in Symn, thus Xn−1 is the unique G-stable divisor and Y = X1 is the unique
closed G-orbit. Similarly, D(Qn) = {D1, . . . , Dn} and ∆(Qn) = {D1, . . . Dn−1},
hence ∆Y (Qn) = ∆(Qn) r {D1}. Therefore the B-stable affine open subset of Qn
associated to Y is Q0

n = Qn ∩ {d1 6= 0} and

k[Q0
n]U = {f/dm1 | f ∈ k[Symn]U has degree m}.

On the other hand k[Symn]U = k[d1, . . . , dn], and di is a T -eigenfunction of degree

i of weight 2ωi. Therefore k[Q0
n](B) is the set of monomials in the polynomial ring

k[d2
d21
, . . . , dndn1

].

Notice that for 1 < i 6 n the T -weight of did
−i
1 is

λdi − iλd1 = 2ωi − 2iω1 = −
(
(2i− 2)α1 + (2i− 4)α2 + . . .+ 2αi−1

)
.

In particular, Λ(Qn) = 2X (T ). Let $1, . . . , $n−1 be the fundamental weights of
PGLn (namely $i = ωi − i

nωn, where ω1, . . . , ωn are the fundamental weights of

GLn). As in Example 3.4, notice that νDi(djd
−j
1 ) = δij for all i > 1. Therefore



EMBEDDINGS OF SPHERICAL HOMOGENEOUS SPACES 23

{ρ(D2), . . . , ρ(Dn−1), νDn} is the dual basis of {2ωi − 2iω1 | i = 2, . . . , n}, and it

follows ρ(Di) = 1
2α
∨
i if 2 6 i < n and νDn = − 1

2$
∨
n−1 (where $∨1 , . . . , $

∨
n−1 are

the fundamental coweights). Thus we get

CY (Qn) = cone(1
2α
∨
2 , . . . ,

1
2α
∨
n−1,− 1

2$
∨
n−1).

One can see that in this case V(Qn) = cone(− 1
2$
∨
1 , . . . ,− 1

2$
∨
n−1) (see e.g. [35,

Proposition 2], where the general case of a symmetric variety is considered). There-
fore V(Qn) ⊂ CY (Qn), and (CY (Qn),∆Y (Qn)) is indeed a colored cone. 4

Remark 6.13. As already mentioned, the theory of spherical embeddings can be
adapted (and possibly simplified) in several situations which are interesting in their
own right. In particular, for the case of toric varieties we refer the reader to Fulton’s
book [10], for the case of symmetric spaces to Vust’s paper [35], for the case of group
embeddings to Timashev’s paper [33]. ♦

7. The classification of spherical embeddings

We keep the notation of the previous sections. In particular, G/H is a spherical
homogeneous space, and BH is open in G.

Definition 7.1. Let (C,F) be a colored cone. A face of (C,F) is a colored cone
(C0,F0) such that C0 is a face of C and F0 = F ∩ ρ−1(C0).

Notice that a face of a colored cone (C,F) is uniquely determined by the corre-
sponding face of C: the faces of (C,F) correspond to the faces of C which intersect
V(G/H) nontrivially in their relative interior. In particular, we can regard every
face of (C,F) as a face of C.

Proposition 7.2 ([17, Lemma 4.2]). Let G/H ↪→ X be a spherical embedding and
let Y ⊂ X be a G-orbit. Then the map Z 7→ (CZ(X),∆Z(X)) is a bijection between
G-orbits in X whose closure contain Y and faces of (CY (X),∆Y (X)).

Proof We may assume that X is simple with closed orbit Y . Let Z ⊂ X be a
G-orbit, and let f ∈ k[XY,B ] be a function vanishing on all D ∈ DY (X) r DZ(X)
and not vanishing on Z, then νD(f) = 0 for all D ∈ DZ(X) and νD(f) > 0
for all D ∈ DY (X) r DZ(X). Moreover, by Corollary 4.8 we may assume f ∈
k[XY,B ](B), therefore CZ(X) is the face of CY (X) defined by λf . As well, it fol-
lows that ∆Z(X) = ∆Y (X) ∩ ρ−1(CZ(X)), therefore (CZ(X),∆Z(X)) is a face of
(CY (X),∆Y (X)).

Let now (C,F) be a face of (CY (X),∆Y (X)) and let ν ∈ V(G/H) ∩ C◦. By
Proposition 6.2 it follows that ν has a center on X, which must be the closure of
a G-orbit Z because it is G-stable and there are finitely many orbits by Corollary
5.3. We already showed that (CZ(X),∆Z(X)) is a face of (CY (X),∆Y (X)). Since
ν has center Z, Proposition 6.2 implies that ν ∈ CZ(X)◦: therefore C = CZ(X) and
F = ∆Z(X).

In particular, the poset of orbit closures of a simple spherical variety X with
closed orbit Y is isomorphic to the poset of faces of CY (X) which intersect V(G/H)
nontrivially in their relative interior, with the reverse order.

Definition 7.3. A colored fan is a nonempty set F of colored cones with the
following properties:

(CF1) Every face of a colored cone in F belongs to F.
(CF2) For all ν ∈ V(G/H) there is at most one colored cone (C,F) ∈ F such that

ν ∈ C◦.
A colored fan F is strictly convex if all its elements are strictly convex, namely if
(0,∅) ∈ F.
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Given a spherical embedding G/H ↪→ X, we denote

F(X) = {(CY (X),∆Y (X)) : Y ⊂ X is a G-orbit}.

Theorem 7.4 ([17, Theorem 4.3]). Up to G-isomorphism, the map which associates
F(X) to G/H ↪→ X is a bijection between spherical embeddings of G/H and strictly
convex colored fans.

Proof Let G/H ↪→ X be a spherical embedding. Then (CF1) holds by Proposition
7.2, and F(X) is strictly convex by Theorem 6.5. Suppose that Y,Z ⊂ X are both
G-orbits such that ν ∈ V(G/H) ∩ CY (X)◦ ∩ CZ(X)◦: then ν has both center Y
and Z on X by Proposition 6.2, therefore Y = Z because the center is unique.
Therefore F(X) is a colored fan, which uniquely determines X thanks to Theorem
6.5.

Suppose that F is a strictly convex colored fan. For all colored cones (C,F) ∈ F,
let G/H ↪→ XC,F be the simple spherical embedding defined by the colored cone is
(C,F). Let X be the scheme obtained by glueing together all such varieties along
their maximal isomorphic open subsets corresponding to the intersection of cones.
Notice that X is a normal integral scheme of finite type. Since X contains G/H as
an open orbit, to conclude the proof we need to show that X is separated, namely
that the diagonal embedding ι : X → X × X is closed. Let Y ⊂ ι(X) r ι(X)
be a G-orbit, then Y ⊂ XC1,F1

× XC2,F2
for some colored cones in F(X) with

(C1,F1) 6= (C2,F2). We may assume that (C1,F1) and (C2,F2) are maximal with
this property. Let X ′ be the spherical variety obtained as the normalization of
the closure of G/H diagonally embedded in XC1,F1

× XC2,F2
and let Y ′ ⊂ X ′ be

an orbit mapping on Y . For i = 1, 2, let ϕi : X ′ → XCi,Fi be the projection,
and set Yi = ϕi(Y

′): then by the maximality of the correspondng colored cones
it follows that Yi ⊂ XCi,Fi is the unique closed orbit. Let ν ∈ V(G/H) be a

valuation with center Y ′ on X ′, then ν has center Y1 on XC1,F1
and Y2 on XC2,F2

.
Therefore Proposition 6.2 implies ν ∈ C◦1 ∩ C◦2 , hence (C1,F1) = (C2,F2) by (CF2),
a contradiction.

8. Morphisms between spherical embeddings

Let now G/H and G/H ′ be spherical homogeneous spaces, and assume that
H ⊂ H ′. As usual, we assume that BH is open in G. Then we have a surjective
equivariant morphism ϕ : G/H → G/H ′. The inclusion ϕ∗ : k(G/H ′) ↪→ k(G/H)
induces an injection ϕ∗ : Λ(G/H ′) ↪→ Λ(G/H), hence a surjection ϕ∗ : Q(G/H)�
Q(G/H ′). Notice that if we restrict ϕ∗ to the valuation cone, then by Corollary
4.6 we get a surjective map

ϕ∗ : V(G/H)� V(G/H ′).

Lastly, if ∆ϕ ⊂ ∆(G/H) is the set of colors which project dominantly onto G/H ′,
then we have a map (that we still denote by the same symbol)

ϕ∗ : ∆(G/H) r ∆ϕ � ∆(G/H ′)

Proposition 8.1. Suppose that H ⊂ H ′ ⊂ NG(H), then

Λ(G/H)/Λ(G/H ′) ' X (H ′/H).

Proof Notice that BH = BH ′: indeed for all g ∈ H ′ both BH and BHg−1 are
open in G and homogeneous under B×H, hence they coincide. On the other hand
as B-varieties we have BH/H ' B/B ∩ H and BH ′/H ′ ' B/B ∩ H ′, therefore
H ′/H ' B ∩H ′/B ∩H.

Fix maximal diagonalizable subgroups S ⊂ B ∩ H and S′ ⊂ B ∩ H ′ such that
S ⊂ S′, and let T ⊂ B be a maximal torus such that S ⊂ S′ ⊂ T . Remark 2.18
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shows that Λ(G/H) ' X (T/S) and Λ(G/H ′) ' X (T/S′). On the other hand,
the exact sequence 1 → S′/S → T/S → T/S′ → 1 induces an exact sequence
1 → X (T/S′) → X (T/S) → X (S′/S) → 1 (see [1, Proposition 8.2]), therefore
Λ(G/H)/Λ(G/H ′) ' X (S′/S).

Again, by Remark 2.18 it follows that X (S′/S) is the set of (B ∩ H ′)-weights

occurring in k(B ∩H ′/B ∩H)(B∩H′). Since B ∩H is normal in B ∩H ′, this set is
precisely X (B ∩H ′/B ∩H) ' X (H ′/H).

Corollary 8.2. Suppose that [H ′ : H] < ∞, then Λ(G/H ′) ⊂ Λ(G/H) is a sub-
lattice of finite index and V(G/H) = V(G/H ′) under the natural identification
Q(G/H) = Q(G/H ′).

Proof Notice that H and H ′ have the same identity component H0, which is a
spherical subgroup of G. Therefore we may assume that H is connected. Then H is
a normal subgroup of H ′, and by previous proposition we get Λ(G/H)/Λ(G/H ′) '
X (H ′/H).

We now define morphisms between colored cones.

Definition 8.3. i) Let (C,F) and (C′,F ′) be colored cones resp. for G/H
and G/H ′, then we say that ϕ∗ maps (C,F) to (C′,F ′) if the following
inclusions hold:

(CM1) ϕ∗(C) ⊂ C′,
(CM2) ϕ∗(F r ∆ϕ) ⊂ F ′.
ii) Let F and F′ be colored fans for G/H and G/H ′ respectively, then we say

that ϕ∗ maps F to F′ if every element of F maps to some element of F′.

Remark 8.4. Notice that, if F and F′ are colored fans for G/H, then F maps to
F′ if and only if every maximal element of F maps to some element of F′. ♦

Theorem 8.5 ([17, Theorem 5.1]). Let ϕ : G/H → G/H ′ be a surjective equivari-
ant morphism, and let G/H ↪→ X and G/H ′ ↪→ X ′ be spherical embeddings. Then
ϕ lifts to a morphism X → X ′ if and only if ϕ∗ maps F(X) to F(X ′).

Proof We may assume that both X and X ′ are simple embeddings, with closed
orbits resp. Y and Y ′. Suppose that ϕ extends to a morphism ϕ : X → X ′. Then
Y ′ ⊂ ϕ(Y ), therefore Y ′ ⊂ ϕ(D) for all D ∈ ∆Y (X), and we get (CM2). On the
other hand Y ′ is contained in every G-stable divisor of X ′, thus the same argument
as above shows that ϕ−1(X ′ r X ′Y ′,B) ⊂ X r XY,B . Therefore ϕ restricts to a

morphism XY,B → X ′Y ′,B , hence we get an inclusion k[X ′Y ′,B ](B) ↪→ k[XY,B ](B)

and (CM1) follows by Proposition 6.2.
Suppose now that (CY (X),∆Y (X)) maps to (CY ′(X ′),∆Y ′(X

′)) and define U0 =
G/H ∩ XY,B and U ′0 = G/H ′ ∩ X ′Y ′,B . Since ϕ(D) = BH ′/H ′ for all D ∈ ∆ϕ,

by (CM2) the restriction of ϕ gives a dominant morphism U0 → U ′0, hence an
inclusion k[U ′0] ↪→ k[U0]. On the other hand since X and X ′ are normal, a function
f ∈ k[U0] (resp. f ∈ k[U ′0]) extends to k[XY,B ] (resp. to k[X ′Y ′,B ]) if and only if

ν(f) > 0 for all ν ∈ V(G/H)∩CY (X) (resp. for all ν ∈ V(G/H ′)∩CY ′(X ′)). Since
ϕ∗(V(G/H)) = V(G/H ′), it follows by (CM1) that every f ∈ k[U ′0] which extends
to X ′Y ′,B extends to XY,B as well. Therefore ϕ induces an inclusion k[X ′Y ′,B ] ↪→
k[XY,B ], hence a morphism XY,B → X ′Y ′,B . Since X = GXY,B and X ′ = GX ′Y ′,B ,

it follows that ϕ extends to a morphism X → X ′.

8.1. Proper morphisms. We now turn to the characterization of proper mor-
phisms of spherical varieties.

Definition 8.6. Let F be a colored fan. The support of F is

suppF =
⋃

(C,F)∈F

C ∩ V(G/H).
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Notice that, if X is a spherical variety, then by Proposition 6.2 suppF(X) is
the set of the invariant valuations on X which have a center. Notice also that if
X → X ′ is an equivariant morphism between two spherical embeddings G/H ↪→ X
and G/H ′ ↪→ X ′, then by Theorem 8.5 we have ϕ∗(suppF(X)) ⊂ suppF(X ′).

Theorem 8.7 ([17, Theorem 5.2]). Let G/H ↪→ X and G/H ′ ↪→ X ′ be spherical
embeddings and suppose that ϕ : X → X ′ is an equivariant dominant morphism.
Then ϕ is proper if and only if

suppF(X) = V(G/H) ∩ ϕ−1
∗ (suppF(X ′)).

In particular, X is complete if and only if suppF(X) = V(G/H).

Proof Suppose that ϕ is proper, then by the valuative criterion of properness for
every valuation ring R with fraction field K and for every commutative diagram

SpecK //

��

X

ϕ

��
SpecR // X ′

there exists a unique morphism SpecR → X making the diagram commute. Let
ν′ ∈ suppF(X ′), let Y ′ ⊂ X ′ be the open G-orbit of the center of ν′ and let
ν ∈ V(G/H) be a valuation extending ν′. By Proposition 4.3 we have k[X ′Y ′,B ] ⊂
Oν′ ⊂ Oν , hence we get a morphism SpecOν → XY ′,B . Since ϕ is proper, we
get a morphism SpecOν → X. Therefore ν has a center on X as well, hence
ν ∈ suppF(X).

Suppose conversely that suppF(X) = V(G/H) ∩ ϕ−1
∗ (suppF(X ′)), by the fol-

lowing lemma there exists an equivariant open embedding X ⊂ X1 together with
a proper morphism ϕ1 : X1 → X ′ extending ϕ . Because ϕ1 is proper we have
suppF(X1) = V(G/H) ∩ (ϕ1)−1

∗ (suppF(X ′)), therefore by the assumption we get
suppF(X1) = suppF(X). In particular, for every G-orbit Y1 ⊂ X1 we must have
V(G/H)∩CY1(X1)◦ ∩CY (X) 6= ∅ for some G-orbit Y ⊂ X, hence CY1(X1) is a face
of (CY (X1),∆Y (X1)) and so Y ⊂ Y1. Since X1rX is closed, it follows that it must
be empty, hence X = X1 and ϕ is proper.

Lemma 8.8. Let ϕ : X → X ′ be an equivariant morphism of G-varieties, then
there exists a open embedding X ↪→ X1 into a normal G-variety X1 such that ϕ
extends to a proper equivariant morphism ϕ1 : X1 → X ′.

Proof Let X ↪→ X and X ′ ↪→ X ′ be two equivariant completions (which exist
after a theorem of Sumihiro, see [32, Theorem 3]), and let X2 be the normalization
of the closure of the image of X mapped diagonally in X × X ′. Then X2 is a
complete G-variety containing X as an open subset, and the second projection
gives a proper morphism ϕ2 : X2 → X ′ which extends ϕ. Therefore we get the
desired embedding of X by setting X1 = ϕ−1

2 (X ′) and ϕ1 = ϕ2|X1
.

We now introduce an important class of spherical embeddings. Their name is
due to the fact that, if char(k) = 0, their local structure reduces to that of a toric
variety (see [26, Theorem 3.4.1]) (in which case they are also toroidal in the sense
of [16]).

Definition 8.9. A spherical embedding G/H ↪→ X is called toroidal if ∆Y (X) = ∅
for every G-orbit Y ⊂ X.

Suppose that G/H ↪→ X is a toroidal embedding of a spherical homogeneous
space G/H and let Y ⊂ X be a closed orbit, then by definition we have CY (X) ⊂
V(G/H). If moreover X is complete and toroidal, then by Theorem 8.7 it follows



EMBEDDINGS OF SPHERICAL HOMOGENEOUS SPACES 27

that V(G/H) =
⋃
Y CY (X), where Y runs among the closed orbits of X. In partic-

ular, every complete toroidal embeddings corresponds to a subdivision of V(G/H)
into strictly convex cones, and a simple complete toroidal embedding exists if and
only if V(G/H) is a strictly convex cone. In general such an embedding need not
exist, on the other hand complete toroidal embeddings always do exist.

Proposition 8.10 ([7, §3.1], [17, Lemma 6.2]). Let G/H be a spherical homoge-
neous space, then G/H admits a complete toroidal embedding.

Proof Let π : G → G/H be the projection. Let f0 ∈ k[G](B×H) be a function
vanishing on π−1(D) for all D ∈ ∆(G/H) and let V ⊂ k[G] be the G-module
generated by f0. Since the left action of G commutes with the right action of H,
the evaluation of functions induces an equivariant morphism G/H → P(V ∗). Let
X ′ be the closure of the image of G/H and let ψ : G/H → X ′ be the corresponding
morphism. Let Z ⊂ X ′ be the zero locus of f0|X′ . Notice that by construction

ψ(D) ⊂ Z for all D ∈ ∆(G/H), and that Z contains no G-orbit: if indeed Y ⊂ Z
is a G-orbit, then (g.f0)|Y = 0 for all g ∈ G, hence f|Y = 0 for all f ∈ V .

Let now G/H ↪→ X ′′ be an arbitrary completion, and consider the diagonal
morphism ψ′ : G/H ↪→ X ′ ×X ′′. Then we get a complete and toroidal embedding

G/H ↪→ X by taking X the normalization of ψ′(G/H).
We will study more closely the structure of V(G/H) in Sections 10 and 11. There

we will se that V(G/H) is indeed a convex cone (Theorem 10.5), which is strictly
convex if and only if H has finite index in its normalizer (Theorem 11.1).

Example 8.11 (SL2/T , part II). We continue with Example 3.3. Consider the
natural left action of SL2 on P1, and consider the corresponding diagonal action
on P1 × P1. Let ([ a11a21 ] , [ a12a22 ]) be homogeneous coordinates on P1 × P1 and set
x0 = ([ 1

0 ] , [ 0
1 ]). Then the isotropy group of x0 is T , and the SL2-orbit of x0 is

O = {(p, q) ∈ P1 × P1 | p 6= q} ' SL2/T.

Notice that (P1 × P1) r O = diag(P1) is a single SL2-orbit of codimension one.
Therefore P1×P1 is a spherical embedding of SL(2)/T which is complete, simple and
toroidal. In particular it follows that V(SL2/T ) ⊂ Q(SL2/N) is a strictly convex
cone. Consider the rational function f ′ = a11a22−a12a22

a21a22
on P1 × P1: then f ′|O = 1

f ,

where f ∈ k[SL2/T ](B) is the function of weight α defined in Example 3.3. If
ν0 ∈ V(SL2/T ) is the SL2-invariant valuation associated to diag(P1), it follows then
〈ν0, α〉 = ν0(f) = ν0( 1

f ′ ) = −1. Since it is strictly convex and dimQ(SL2/T ) = 1,

the valuation cone V(SL2/T ) coincides with the cone generated by ν0, therefore

V(SL2/T ) = {ν ∈ Q(SL2/N) | 〈ν, α〉 6 0}.
As an immediate application of Theorem 7.4, notice that, up to equivariant isomor-
phism, P1 × P1 is the unique nontrivial equivariant embedding of SL2/T . Indeed,
since ρ(D+) = ρ(D−) = 1

2α
∨, by the description of V(SL2/T ) it follows that

(V(SL2/T ),∅) is the unique nontrivial colored cone for SL2/T . 4

Example 8.12 (SL2/N(T )). Keep the notation of the previous example. Let
N = T ∪ ṡαT be the normalizer of T ⊂ SL2 and consider the homogeneous space
SL2/N : since SL2/T is spherical, it follows that SL2/N is spherical as well. By
Proposition 8.1 it follows that Λ(SL2/N) ⊂ Λ(SL2/T ) is a sublattice of index two,
hence

Λ(SL2/N) = 2Λ(SL2/T ) = 2Zα.
By the discussion preceeding Proposition 8.1 the subset of invariant valuations
V(SL2/N) coincides with that of SL2/T , namely

V(SL2/N) = {ν ∈ Q(SL2/N) | 〈ν, α〉 6 0}.
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Notice that SL2/N decomposes in two B-orbits: indeed the two colors D+ and D−

of SL2/T have the same image in SL2/N , which therefore possesses a unique color
D = BN/N . Let f ∈ k[SL2/T ](B) be the function of weight α defined in Example
3.3. Then f2 ∈ k[SL2/N ](B) and 〈ρ(D), 2α〉 = νD(f2) = 2, namely ρ(D) = 1

2α
∨.

As in the previous example, we see that (up to equivariant isomorphisms) SL2/N
admits a unique nontrivial equivariant embedding, corresponding to the colored
cone (V(SL2/N),∅): indeed this is the unique nontrivial colored cone for SL2/N .
To construct it geometrically, consider the representation of SL2 on the vector space
V = k[x, y]2 considered in Example 3.3, consider the induced action on P2 = P(V )
and set x0 = [xy]. Then the stabilizer of x0 coincides with N and the orbit of x0 is

O = {[f ] ∈ P(V ) | δ(f) 6= 0},
where δ(f) denotes the discriminant of f . Since P2 rO ' P1, it follows that P2 is
a complete, simple, and toroidal embedding of SL2/N . 4

9. Co-connected inclusions and colored subspaces

Suppose thatH ⊂ H ′ ⊂ G are spherical subgroups, we say thatH is co-connected
in H ′ if H ′/H is connected. In this section we will classifiy co-connected inclusions
by means of colored data. Fix a co-connected inclusion H ⊂ H ′ and let ϕ : G/H →
G/H ′ be the projection. Denote the corresponding base points by x0 = H/H and
x′0 = H ′/H ′ (which are by assumption in the respective open B-orbits) and define

Cϕ = {ν ∈ Q(G/H) | 〈ν, λ〉 = 0 for all λ ∈ Λ(G/H ′)}.

Definition 9.1. A colored subspace for G/H is a colored cone (C,F) such that C
is a subspace of Q(G/H).

Notice that if C ⊂ Q(G/H) is a subspace and F ⊂ ∆(G/H), then (C,F) is a
colored subspace if and only if C is generated as a convex cone by ρ(F) and by
finitely many ν ∈ V(G/H).

Proposition 9.2 ([17, Lemma 5.3]). Let H ⊂ H ′ ⊂ G be a co-connected inclusion
of spherical subgroups and let ϕ : G/H → G/H ′ be the projection.

i) Denote U0 = G/H r
⋃
D∈∆(G/H)r∆ϕ

D, then

k[Bx′0] = {f ∈ k[U0] | ν(f) > 0 for all ν ∈ V(G/H) ∩ Cϕ}
ii) The pair (Cϕ,∆ϕ) is a colored subspace. Moreover, the colored data of

G/H is recovered from that of G/H ′ as follows: Λ(G/H ′) = Λ(G/H)∩C⊥ϕ ,
Q(G/H ′) = Q(G/H)/Cϕ, ∆(G/H ′) = ∆(G/H) r ∆ϕ.

Proof By Lemma 8.8, there exists a spherical embedding G/H ↪→ X such that ϕ
extends to a proper morphism ϕ : X → G/H ′. Let X0 = ϕ−1(Bx′0). Since H ′/H
is connected, by the Stein factorization (see [12, Theorem 12.69]) it follows that
ϕ∗OX = OG/H′ , hence k[Bx′0] = k[X0].

Notice that X0 intersects every G-orbit of X, therefore X0 rGx0 = X r Gx0.
Since X is normal, it follows that a function f ∈ k[U0] extends to X0 if and only
if ν(f) > 0 for all ν ∈ V(G/H) with center on X, namely for all ν ∈ suppF(X).
Since ϕ is proper, by Theorem 8.7 we have

suppF(X) = V(G/H) ∩ ϕ−1
∗ (0) = V(G/H) ∩ Cϕ,

hence k[X0] = {f ∈ k[U0] | ν(f) > 0 for all ν ∈ V(G/H) ∩ Cϕ}.
Notice that in the previous description we onky need finitely many inequalities

namely those coming from a G-stable divisor of X. On the other hand, since U0 is
normal we have

k[U0] = {f ∈ k[Bx0] | νD(f) > 0 for all D ∈ ∆ϕ},
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and since k[Bx′0] = k[X0] we get Λ(G/H ′) = Λ(G/H) ∩ C∨, where C ⊂ Q(G/H)
is the cone generated by ρ(∆ϕ) together with the valuations defined by the G-
stable divisors of X. Notice that ρ(∆ϕ) ⊂ Cϕ, therefore C ⊂ Cϕ. On the other
hand we have by definition Λ(G/H ′) ⊂ C⊥ϕ , therefore C∨ ⊂ C∨ϕ and it follows
Cϕ = C. Therefore (Cϕ,∆ϕ) is a colored subspace, and the other claims follow
straightforwardly.

Theorem 9.3 ([17, Theorem 5.4]). Let G/H be a spherical homogeneous space.
Then the map which associates to H ′ the colored subspace (Cϕ,∆ϕ) defined by ϕ :
G/H → G/H ′ is an order preseving bijection

{Co-connected inclusions H ′ ⊃ H} ←→ {Colored subspaces for G/H}.

Proof Arguing as in Theorem 6.1, by making use of Proposition 9.2 instead of
Proposition 6.2 one shows that, for all co-connected inclusion H ⊂ H ′, the projec-
tion ϕ : G/H → G/H ′ is uniquely determined up to equivariant isomorphism by
the colored subspace (Cϕ,∆ϕ). More precisely, if H ⊂ H ′′ is another co-connected
inclusion defining the same colored subspace, then one shows that H ′′ = gH ′g−1

for some g ∈ NG(H) with g.∆ϕ = ∆ϕ. On the other hand, if g ∈ NG(H) is such
an element and ψg is the corresponding equivariant automorphism of G/H, by the
first part of Proposition 9.2 we see that ψg induces an equivariant automorphism
ψ∗g : k[Bx′0] → k[Bx′0], hence an equivariant automorphism of the open B-orbit of
G/H ′. Since the latter extends to an equivariant automorphism of G/H ′, it follows
that g ∈ NG(H ′), hence H ′′ = H ′.

Conversely, arguing as in the proof of Theorem 6.5 one shows that for ev-
ery colored subspace (C,F) there exists a co-connected inclusion H ⊂ H ′ whose
colored subspace is precisely (C,F). Let indeed D0 be the union of the colors
D ∈ ∆(G/H) r F , and let π : G → G/H be the projection. Since (C,F) is a
colored cone and C is a vector space, the same construction produces a function
f0 ∈ k[G](B×H) vanishing precisely on π−1(D0), and a finite dimensional G-module
V ⊂ k[G] containing f0 with an equivariant morphism ϕ : G/H → P(V ∗), such
that, setting U0 = {x ∈ ϕ(G/H) | f0(x) 6= 0}, we have

k[U0](B) = {f ∈ k(G/H)(B) | λf ∈ C⊥}.
Let x0 ∈ G/H be the base point corresponding to H and set x′′0 = ϕ(x0). Then

O = Gx′′0 is a homogeneous spherical G-variety, and U0 is a B-stable affine open
subset therein. Notice that a color D ∈ ∆(G/H) projects dominantly to O if
and only if D ∈ F : if indeed D ∈ F , then νD(f) = 0 for all f ∈ k(G/H)(B),
therefore ϕ(D) contains the open B-orbit of O. On the other hand every color
D ∈ ∆(G/H) r F maps in the zero locus of f0, therefore U0 = Bx′′0 is the open
B-orbit of O.

Let H ′′ be the stabilizer of x′′0 , and set H ′ = H(H ′′)0. Then G/H → O factors
through G/H ′ as follows

G/H
ϕ′−→ G/H ′

ψ−→ O,
where ϕ′ has connected fibers and ψ has finite fibers. Moreover ∆ϕ′ = F , and

if x′0 = ϕ′(x0), then we get k[Bx′0](B) = k[Bx′′0 ](B): indeed we have inclusions
Λ(O) ⊂ Λ(G/H ′) ⊂ Λ(G/H), and since Λ(O) ⊂ Λ(G/H ′) is a sublattice of finite
index the equality Λ(O) = Λ(G/H) ∩ C⊥ implies Λ(O) = Λ(G/H ′). Therefore the
co-connected inclusion H ⊂ H ′ defines the prescribed colored subspace.

Combining Theorem 7.4 and Theorem 9.3, we can give a geometrical meaning
to all colored fans, even not strictly convex ones. Indeed, let G/H be a spherical
homogeneous space and let ϕ : G/H → X be a G-equivariant dominant morphism
to a G-variety X. Let x0 ∈ X be the corresponding base point and let H ′ ⊃ H be
its stabilizer, so that ϕ factors through G/H ′. Then the morphism G/H → G/H ′



30 JACOPO GANDINI

is surjective and separable, the morphism G/H ′ → X is injective and purely insep-
arable, and the schematic fiber ϕ−1(x0) is a subscheme of G/H whose underlying
reduced subscheme is H ′/H. Therefore the schematic fibers of ϕ are reduced if and
only if ϕ is separable, and they are irreducible if and only if H ′/H is connected.
This leads to the following definition.

Definition 9.4. An integral submersion of G/H is a normal variety X with a G-
equivariant dominant morphism ϕ : G/H → X of which all fibers are integral (that
is, they are reduced and irreducible).

Suppose that ϕ : G/H → X is an integral submersion, if Y ⊂ X is a G-orbit let
(C′Y (X),∆′Y (X)) be the strictly convex colored cone associated to Y with respect
to the spherical embedding ϕ(G/H) ↪→ X. Then we can attach to ϕ a colored fan
(which is strictly convex if and only if ϕ is birational) by setting

F(X) = {(CY (X),∆Y (X))}Y⊂X ,

where, for every G-orbit Y ⊂ X, we denote CY (X) = ϕ−1
∗ (C′Y (X)) and ∆Y (X) =

ϕ−1
∗ (∆′Y (X)). Therefore we can summarize Theorem 7.4, Theorem 8.5 and Theo-

rem 9.3 all together in the following theorem.

Theorem 9.5 ([17, Theorem 5.5]). The functor X 7→ F(X) is an equivalence
between the category of integral submersions of G/H and the category of colored
fans for G/H.

10. The valuation cone of a spherical homogeneous space

Let G/H be a spherical homogeneous space, we will prove in this section that
the set of invariant valuations V(G/H) ⊂ Q(G/H) is a convex cone of maximal
dimension. The set of equations defining V lead us to the definition of the root
monoid of G/H, which is a submonoid Γ+(G/H) ⊂ Λ(G/H) which plays the role
of the root monoid of the weight lattice of a root system.

To simplify the notation, we will denote Λ(G/H), V(G/H), Q(G/H) simply by
Λ, V and Q.

Let f1, . . . , fs ∈ k[G](H), and let Mi ⊂ k[G](H) be the G-submodule generated
by fi. We denote by M1 · · ·Ms ⊂ k[G] the G-module generated by all possibile
products g1 · · · gs with gi ∈Mi for i = 1, . . . , s.

Suppose that f ∈ M1 · · ·Ms. Then f ∈ k[G](H) has the same H-weight of the
product f1 · · · fs, hence f1 · · · fsf−1 ∈ k(G)H = k(G/H). Since f is a product of
linear combinations of the shape

∑
j gj .fi with gj ∈ G, if ν ∈ V(G) it follows that

ν(f) > ν(f1) + . . . + ν(fs). Since every ν ∈ V can be extended to V(G), keeping
the previous notation it follows that

ν(f1 · · · fsf−1) 6 0 ∀ν ∈ V, ∀f1, . . . , fs ∈ k[G](H), ∀f ∈M1 · · ·Ms

If moreover fi ∈ k[G](B×H) for all i = 1, . . . , s and f ∈ (M1 · · ·Ms)
(B), then

f1 · · · fsf−1 ∈ k(G/H)(B). If γ = γ(f1, . . . , fs, f) is the corresponding weight de-
fined by

γ = λf1 + . . .+ λfs − λf ,
we get that every ν ∈ V ⊂ Q satisfies the inequality 〈ν, γ〉 6 0.

Definition 10.1. Let Γ+
0 ⊂ Λ be the set of weights γ = γ(f1, . . . , fs, f), where

f1, . . . , fs, f run over all possible choices in k[G](B×H) as above. The root lattice
of G/H (denoted by Γ(G/H) or simply by Γ), is the sublattice Γ ⊂ Λ generated
by Γ+

0 . The root monoid of G/H (denoted by Γ+(G/H) or simply by Γ+) is the
monoid Γ ∩ cone(Γ+

0 ).
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Remark 10.2. Regard Λ as a sublattice of X (T ). Then Γ+ is contained in the
monoid generated by the positive roots: let indeed γ ∈ Γ+ and suppose that γ =
γ(f1, . . . , fs, f). Since f1, . . . , fs ∈ k[G](B), it follows that fi is a highest weight
vector in the corresponding G-module Mi: in particular, if λi is the B-weight of
fi and if µ is any T -weight in Mi, the difference λi − µ is a sum of positive roots.
Therefore for every T -weight µ occurring in Mn1

1 · · ·Mns
s the difference

∑
niλi−µ

is a sum of positive roots. ♦

Example 10.3. Suppose that H = B, then Λ = 0 therefore Γ+ = 0 as well. 4

Example 10.4 (Semisimple groups). We continue with Example 3.6, in particular
we will assume that char(k) = 0. Suppose that G is a semisimple group, and recall
that the weight lattice Λ of (G×G)/ diagG as a (G×G)-variety is identified with
X (T ). Similarly, the root monoid Γ ⊂ Λ is identified with the root monoid of X (T ),
namely with the monoid generated by the positive roots of G.

Notice that k[G×G](diagG) = k[G×G]diagG = k[G]. On the other hand by the
Peter-Weyl Theorem we have

k[G] '
⊕

λ∈X (T )+

EndV (λ),

and the multiplication of submodules inside of k[G] is described in terms of the
tensor product as follows:

EndV (λ) EndV (µ) =
⊕

V (ν)⊂V (λ)⊗V (ν)

EndV (ν).

Identifying Λ and X (T ), it follows that

Γ+ = {λ+ µ− ν | λ, µ, ν ∈ X (T )+ and V (ν) ⊂ V (λ)⊗ V (ν)},

namely Γ+ is the monoid generated by the positive roots of G. Thanks to the
following theorem, this implies that V = − cone(Γ+)∨ is the negative Weyl chamber
of X (T )∨. 4

Theorem 10.5 ([25, Proposition 2.1], [17, Lemma 6.1]). Regarding V as a subset
of Q, it holds

V = {ν ∈ Q | 〈ν, γ〉 6 0 for all γ ∈ Γ+}.
In particular, V is a convex cone in Q.

Proof We already noticed that every ν ∈ V satisfies the inequalities 〈ν, γ〉 6 0,
where γ ∈ Γ+. Suppose conversely that ν ∈ Q satisfies all such inequalities. We
proceed as in the proof of Theorem 6.5, applied to the pair (Q+ν,∅), and show
that it is indeed a colored cone.

Let λ1, . . . , λs ∈ Λ be generators of the semigroup {λ ∈ Λ | 〈ν, λ〉 > 0} and
let g1, . . . , gs ∈ k(G/H)(B) be functions whose weights are respectively λ1, . . . , λs.
Let f0 ∈ k[G](B×H) be a function vanishing on π−1(D) for all D ∈ ∆ such that
fi := f0gi ∈ k[G] for all i = 1, . . . , s. Let V ⊂ k[G](H) be the submodule generated
by f0, . . . , fs, as in the proof of Theorem 6.5 we have an equivariant morphism
ϕ : G/H → P(V ∗). Denote X ′0 = {x ∈ ϕ(G/H) | f0(x) 6= 0} and X ′ = GX ′0, then
by construction we have

k[X ′0](B) ⊃ {f ′ ∈ k(G/H)(B) | ν(f ′) > 0}.

For i = 0, . . . , s, let Mi ⊂ k[G](H) be the submodule generated by fi. Then
every element in k[X ′0](B) is of the shape f ′ = f/fN0 , where N =

∑s
i=0 ni and

f ∈ (Mn0
0 · · ·Mns

s )(B). By the definition of Γ+, we have

n1λ1 + . . .+ nsλs − λf ′ = n0λf0 + . . .+ nsλfs − λf ∈ Γ+
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Therefore 〈ν, λf ′〉 > n1〈ν, λ1〉+ . . .+ ns〈ν, λs〉 > 0, and it follows that

k[X ′0](B) = {f ′ ∈ k(G/H)(B) | ν(f ′) > 0}.
The same argument of Lemma 6.7 implies that ϕ : G/H → X ′ has finite fibers.
Therefore, reasoning as in the proof of Theorem 6.5, we get a normal G-variety
X such that ϕ factors through a spherical embedding G/H ↪→ X and a finite
morphism ψ : X → X ′, and denoting X0 = ψ−1(X ′0) we get k[X0](B) = k[X ′0](B).

Let x0 ∈ X be the base point of the embedding. Since ϕ(D)∩X ′0 = ∅ for all D ∈
∆, we have X0 ∩Gx0 = Bx0. On the other hand k[X0](B) 6= k(G/H)(B), therefore
X 6= Gx0 and there exists a closed G-orbit Y ⊂ X rGx0, hence Y ∩X0 6= ∅. Let
ν′ ∈ V be a valuation with center Y , then ν′ is nonnegative on k[X0](B), and since
it is nonzero it follows that ν ∈ Q+ν′.

Consider the antidominant chamber in the vector space generated by the coweights

C = {ν ∈ X (B)∨Q | 〈ν, α〉 6 0 for all positive root α}.
The inclusion Λ ⊂ X (T ) induces a surjective map X (T )∨Q � Q, and we denote by
CG/H the image of C in Q.

We denote by Lin(V) the linear part of V.

Corollary 10.6 ([7, §3.2], [17, Corollary 6.3]). V is a finitely generated convex
rational cone in Q which contains CG/H and whose dual cone is generated by −Γ+.

In particular, V generates Q as a vector space, and Lin(V) = Γ⊥.

Proof It follows by Theorem 10.5 that V is a convex rational cone in Q. On the
other hand by Proposition 8.10 we can cover V with finitely many finitely generated
convex cones, therefore V is finitely generated as well. We already noticed that
Γ+ ⊂ X (T ) is contained in the monoid generated by the positive roots of G. It
follows that 〈ν, γ〉 6 0 for all ν ∈ CG/H and for all γ ∈ Γ+, hence CG/H ⊂ V. Since
C generates X (B)∨Q as a vector space, it follows that V generates Q.

11. Equivariant automorphisms of a spherical homogeneous space

We now turn to the description of the group of the equivariant automorphism
AutG(G/H) of a spherical homogeneous space G/H, and to its connections with
the cone of invariant valuations V(G/H). Notice that AutG(G/H) is identified
with the quotient NG(H)/H, where NG(H) acts on G/H by right multiplication:
g.xH = xHg−1 = xg−1H for x ∈ G and g ∈ NG(H). We will denote Λ(G/H),
V(G/H), Q(G/H), ∆(G/H), ρG/H simply by Λ, V, Q, ∆, ρ.

Theorem 11.1 ([7, §5.2], [17, Theorem 7.1]). The equivariant autmorphism group
NG(H)/H of G/H is an extension of a diagonalizable group by a finite p-group,
and dim NG(H)/H = dim Lin(V). In particular, the connected component of the
identity is a central torus in NG(H)/H.

Proof Denote A = AutG(G/H) and let Bx0 ⊂ G/H be the open B-orbit (where
H is identified with x0). Notice that a ∈ A maps Bx0 to itself. If L ⊂ A0 is
a connected subgroup with preimage H ′ ⊂ NG(H), it follows that the colored
subspace defined by H ′ has no colors, namely it is of the shape (C,∅) for some
C ⊂ Lin(V).

Notice that a connected linear algebraic group is a torus if and only if all its one-
dimensional connected subgroups are tori: this is clear if the group is reductive,
whereas if it is non-reductive then its unipotent radical always contains a one-
dimensional subgroup isomorphic to Ga (see [31, Lemma 6.3.4]). Suppose that
L ⊂ A is a connected one-dimensional subgroup with colored subspace (C,∅).
Then C 6= 0, hence there exists f ∈ k(G/H)(B) such that λf 6∈ C⊥. By Proposition
9.2 it follows that λf 6∈ Λ(G/H ′): in particular f is not H ′-invariant, hence it is
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nonconstant on L = H ′/H ⊂ Bx0. It follows that L possesses nontrivial characters,
hence it is a torus.

Therefore A0 is a torus as well, and Au is a finite unipotent group. Since
NG(H)/H ⊂ AutB(Bx0), it follows that NG(H)/H is a subquotient of B, hence it
is an extension of a diagonalizable group by Au. Since A0 is connected and Au is
finite, it follows that A0 acts trivially on Au, which is a p-group since every unipo-
tent element is a p-element. Therefore we are left to show that dim NG(H)/H =
dim Lin(V).

Notice that dim NG(H)/H 6 dim Lin(V). Indeed, if H ′/H ⊂ NG(H)/H is
connected of dimension n and if (C,∅) is the corresponding colored subspace, since
H ′/H is a torus we can find a sequence of subgroups

H = H0 ⊂ H1 ⊂ . . . ⊂ Hn = H ′

such that Hi/H0 is connected of dimension i. Correspondingly, we get a strictly
increasing sequence of colored subspaces (Ci,∅), and since C ⊂ Lin(V) it follows
dim NG(H)/H 6 dim Lin(V).

To show the equality dim NG(H)/H = dim Lin(V) we proceed by induction on
the codimension of H. Let ν ∈ Lin(V) be a nontrivial element, then by Theorem 9.3
there exists a co-connected inclusion H ⊂ H ′ with colored subspace is (Qν,∅). Let
f ∈ k(G/H)(B) be such that ν(f) 6= 0, then f 6∈ k(G/H ′). Since the corresponding
colored subspace has no colors, it follows that BH ′ = BH, hence we can define an
invertible function on H ′ by composing f with the morphism H ′ → H ′x0 ⊂ Bx0.
This function is a multiple of a character χ ∈ X (H ′) (see [21, Proposition 1.2]).
Denote K = kerχ, then H ⊂ K and K0 ⊂ H ′ is a normal subgroup, hence H ′′ :=
HK0 ⊂ H ′ is a subgroup containing H. On the other hand H ′′/H ' K0/K0 ∩H
is connected, and by Theorem 9.3 it defines a proper colored subspace of (Qν,∅).
Hence H ′′ = H, and it follows K0 = H0.

Notice that K is a spherical subgroup of G, and Λ(G/K) ⊂ Λ is a sublat-
tice of finite index by Corollary 8.2. Therefore Q = Q(G/K) and V = V(G/K).
By construction we have H ′ ⊂ NG(K). Moreover, since X (H ′) is discrete, the
connected group NG(H ′)0 acts trivially on X (H ′), hence it fixes χ. Therefore
NG(H ′)0 ⊂ NG(K), and by the first part of the proof together with the induction
hypothesis it follows

dim Lin(V) > dim NG(K)/K > dim NG(H ′)/H ′ + 1 =

= dim Lin(V(G/H ′)) + 1 = dim Lin(V).

This proves dim NG(K)/K = dim Lin(V). On the other hand NG(K) acts on the
connected components of K, and H is a union of such components. Since it is
connected, NG(K)0 acts trivially on the components of K, therefore it normalizes
H. Thus the claim follows thanks to the inequalities

dim Lin(V) = dim NG(K)/K 6 dim NG(H)/H 6 dim Lin(V).

The argument in the first paragraph of the proof of Theorem 11.1 shows the
following.

Corollary 11.2. Let G/H be a spherical homogeneous space. Let H ⊂ H ′ be a
co-connected inclusion, then H ′ ⊂ NG(H) if and only if the corresponding colored
subspace has no colors. Moreover, the correspondence of Theorem 9.3 induces a
bijection

{H ⊂ H ′ ⊂ NG(H) | H ′/H is connected} ←→ {subspaces of Lin(V)}.

An important consequence of of Theorem 11.1 concerns the existence of canonical
embeddings.
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Corollary 11.3. There exists a simple and complete spherical embedding G/H ↪→
X if and only if NG(H)/H is finite.

Definition 11.4. A homogeneous spherical variety G/H (resp. a spherical sub-
group H ⊂ G) is called sober if NG(H)/H is finite. A spherical embedding
G/H ↪→ X is called canonical if X is complete, simple and toroidal.

Notice that a canonical embedding for G/H exists if and only if G/H is sober,
if and only if V is a strictly convex cone, in which case its colored cone is (V,∅).
In particular, if it exists the canonical embedding of G/H is uniquely determined
up to equivariant automorphisms by Theorem 6.5. By Theorem 8.5, the canonical
embedding dominates every other simple and complete embedding of G/H, and it
is dominated by all toroidal embeddings of G/H.

Corollary 11.5. The homogeneous space G/NG(H) is sober.

Proof Denote H ′ = NG(H)0H. Then H ′ is a spherical subgroup of G containing
H, and H ′/H is connected. Moreover dimH ′/H = dim NG(H)/H, therefore H ′/H
is the identity component of NG(H)/H and it follows as in the proof of Theorem 11.1
that the colored subspace ofH ′ is (Lin(V),∅). Therefore V(G/NG(H)) = V/Lin(V)
is strictly convex and NG(H) is sober.

We now consider the other extremal case, namely when V = Q.

Definition 11.6. The variety G/H is called horospherical if H contains a maximal
unipotent subgroup of G.

Corollary 11.7 ([17, Corollary 7.2]). The spherical variety G/H is horospherical
if and only if V = Q.

Proof Consider first the case H = U . In this case Λ = X (T ), and since NG(U) =
B by Theorem 11.1 it follows dim Lin(V) = rkG = rk Λ. Therefore V = Q. Suppose
now that U ⊂ H, then we have a surjective equivariant morphism G/U → G/H
which induces a surjective map V(G/U)� V. Since V(G/U) = Q(G/U), it follows
that V = Q.

Suppose now that V = Q. Let P ⊂ NG(H) be the preimage of the identity
component of NG(H)/H. By Corollary 11.2, P corresponds to the colored subspace
(Q,∅). Therefore rk(G/P ) = 0 and by the completeness criterion it follows that P
is a parabolic subgroup of G. On the other hand P/H is a torus by Theorem 11.1,
therefore H contains a maximal unipotent subgroup of G.

11.1. Lifting of equivariant automorphisms. Consider the right action of NG(H)
on G/H defined by g.xH = xg−1H, where x ∈ G and g ∈ NG(H). For g ∈ NG(H),
let ϕg ∈ AutG(X) be the corresponding automorphism. This induces an isomor-
phism AutG(G/H) ' NG(H)/H (see [34, Proposition 1.8]).

Remark 11.8. Notice that the action of NG(H) on G/H induces an action of
NG(H) on the set of colors ∆(G/H). Similarly, we have an induced action of
NG(H) on the weight lattice Λ(G/H), which is trivial: if indeed f ∈ k(G/H)(B)

has weight λ, then g.f ∈ k(G/H)(B) has also weight λ. It follows that NG(H)
preserves the fibers of the map ρ : ∆(G/H) → Q(G/H). In particular, if ρ is
injective, then NG(H) acts trivially on ∆(G/H) as well. ♦

Definition 11.9. Let X be a spherical G-variety. A color D ∈ ∆(X) is called
undetermined if the fiber ρ−1

X (ρX(D)) has cardinality greater than one.

The basic example of undetermined colors comes from SL2/T : in that case we
have ∆ = {D+, D−}, and ρ(D+) = ρ(D−) (see Example 3.3).

Applying Theorem 8.5 to ϕg ∈ AutG(G/H) we get the following description.
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Corollary 11.10. Let G/H ↪→ X be a spherical embedding. Then

AutG(X) = {ϕg ∈ AutG(G/H) | g.∆Y (X) = ∆Y (X) for every closed G-orbit Y ⊂ X}

In particular, if no undetermined color of X contains a G-orbit, then AutG(X) '
NG(H)/H.

Proof Let g ∈ NG(H). By Remark 11.8, it follows that (ϕg)∗ : Λ(G/H) →
Λ(G/H) is the identity. Therefore, by Theorem 8.5, ϕg extends to an equivariant
automorphism of X if and only if g.∆Y (X) = ∆Y (X) for every G-orbit Y ⊂ X,
and the claim follows by Remark 8.4.

We now introduce a remarkable subgroup of NG(H) containing H.

Definition 11.11. The spherical closure of H, denoted by H, is the kernel of the
action of NG(H) on X (H). If H = H, then H is called spherically closed.

Notice that H contains the center of G, and it has finite index in NG(H): indeed
X (H) is discrete, therefore NG(H)0 acts trivially on X (H).

Proposition 11.12. The spherical closure H is the kernel of the action of NG(H)
on ∆(G/H). In particular, if ρ : ∆(G/H) → Q(G/H) is injective, then H =
NG(H).

Proof Let p : G0 → G be a finite cover such that Pic(G0) = 0 (see [20, Proposition
4.6]). Let Γ ⊂ Z(G0) be the kernel of p and set H0 = p−1(H). Notice that
NG(H) = NG0

(H0)/Γ and H = H0/Γ. Thus we can assume that Pic(G) = 0,
namely that k[G] is a factorial ring (see [12, Proposition B.72]).

Let π : G → G/H be the projection. For D ∈ ∆(G/H), let fD ∈ k[G](B×H) be
a defining function for the divisor π−1(D). By [21, Proposition 1.2] every function
f ∈ k[G] which is nowhere vanishing is a multiple of a character of G. On the
other hand by Proposition 2.20 the irreducible components G r BH are precisely
the divisors π−1(D) ⊂ G, thus up to a scalar factor every f ∈ k(G)(B×H) is the
product of a Laurent monomial in the functions fD and a character of G.

Since BH is open in G, notice that

k(G)(B×H) = k[BH](B×H) = k[(B ×H)/ diag(B ∩H)](B×H).

Therefore the set of weights occurring in k(G)(B×H) is X (B) ×X (B∩H) X (H). If
(ωD, χD) ∈ X (B)×X (H) is the weight of fD, it follows that X (B)×X (B∩H) X (H)
is generated by the weights (ωD, χD) together with the image of the restriction
X (G) → X (B) × X (H). On the other hand the restriction X (B) → X (B ∩H) is
surjective (see [1, Proposition 8.2]), therefore the projection

X (B)×X (B∩H) X (H)→ X (H)

is surjective as well, and X (H) is generated by the characters χD with D ∈ ∆(G/H)
together with the image of the restriction X (G)→ X (H).

Since NG(H) acts trivially on the image of X (G) → X (H), it follows that an
element g ∈ NG(H) acts trivially on X (H) if and only if it acts trivially on the
characters χD with D ∈ ∆(G/H). Consider now the action of NG(H) on ∆(G/H),
and notice that

(ωg.D, χg.D) = (ωD, g.χD).

Thus g.D = D if and only if g.χD = χD, and g acts trivially on ∆(G/H) if and
only if it acts trivially on X (H).

The last claim follows by Remark 11.8.

Corollary 11.13. Let G/H ↪→ X be a spherical embedding, then H/H ⊂ AutG(X).
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Suppose now that X is an affine spherical variety. Since X has an open G-orbit,
it follows that k[X]G = k: therefore X//G is a single point and X is a simple
spherical variety. More precisely, affine spherical varieties can be characterized as
follows.

Theorem 11.14 ([17, Theorem 6.7]). Let X be a simple spherical variety, with
closed G-orbit Y . Then X is affine if and only if there exists λ ∈ Λ(X) such that:

ii) λ ∈ CY (X)⊥;
i) 〈ν, λ〉 6 0 for all ν ∈ V(X);
ii) 〈ρ(D), λ〉 > 0 for all D ∈ ∆(X) r ∆Y (X).

In particular we get the following corollary, which holds in much greater gener-
ality (see [18, Lemma 6.6] and its remark).

Corollary 11.15. Let G/H ↪→ X be a spherical embedding and assume that X is
quasi-affine, then AutG(X) = AutG(G/H).

Proof Suppose that X is affine, with closed G-orbit Y . By Remark 8.4 together
with Corollary 11.10 it is enough to check that g.∆Y (X) = ∆Y (X) for all g ∈
NG(H). By the previous theorem we have 〈ρ(D), λ〉 = 0 for all D ∈ ∆Y (X), and
〈ρ(D), λ〉 > 0 for all D ∈ ∆(X) r ∆Y (X). It follows that ρ−1(ρ(D)) ⊂ ∆Y (X) for
all D ∈ ∆Y (X), therefore AutG(X) = AutG(G/H) by Remark 11.8.

Suppose now that X is quasi-affine. The claim follows if we show that there
exists an equivariant open embedding X ↪→ Z for some normal affine G-variety Z.
Suppose that ι′ : X ↪→ Z ′ is an open embedding of X inside an affine variety Z ′, and
denote A′ = k[Z ′]. Then A′ identifies with a finitely generated subalgebra of k[X],
and by Lemma 2.3 there exists a G-stable finitely generated subalgebra A ⊂ k[X]
containing A′. Since X is normal, we may also assume that A is integrally closed.
Therefore Z = Spec(A) is a normal affine G-variety with an equivariant dominant
morphism ι : X → Z. Since ι′ factors through ι, the latter is an open embedding
as well.

12. Wonderful embeddings and spherical roots

We now report without proof a deep theorem concerning the structure of the
valuation cone of a spherical homogeneous space, due to Brion [4] when char(k) = 0
and to Knop [19] in arbitrary characteristic. We keep the notation of the previous
section: G/H is a spherical homogeneous space, and we denote Λ(G/H), V(G/H),
Q(G/H) simply by Λ, V, Q.

Let WG/H ⊂ GL(Q) be the group generated by the reflections about the codi-
mension one faces of V.

Theorem 12.1 ([4, Théorème 3.5], [19, Theorem 4.6]). WG/H is a finite reflection
group. If moreover char(k) 6= 2, then V is a fundamental domain for its action on
Q.

Remark 12.2. The last claim of the previous theorem is false if char(k) = 2: in
that case V is only a union of Weyl chambers for WG/H . For example, if G/H =
PGL2/SO3, then V is the union of two Weyl chambers (see [30] and [19, Remark
4.4]). ♦

Let ΣG/H be the set of the primitive elements in Λ which generate an extremal
ray of −V∨. In particular, we get the following corollary.

Corollary 12.3. Suppose that char(k) 6= 2. Then V is a cosimplicial cone, and
ΣG/H is the basis of a root system with Weyl group WG/H .
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Definition 12.4. The elements of ΣG/H are called the spherical roots of G/H, and
WG/H is called the little Weyl group of G/H.

To unburden the notation, from now on we will denote ΣG/H simply by Σ.

Remark 12.5. Let Γ+ be the root monoid of G/H introduced in Definition 10.1.
Notice that by definition we have cone(Γ+) = −V∨ = cone(Σ). If char(k) = 0
and H is spherically closed, then Γ+ = NΣ (see Corollary 12.14 and the discussion
preceding it). However, as illustrated by the following examples, in general it might
be Σ 6⊂ Γ+: for instance, by Remark 10.2, this happens whenever Σ is not contained
in the sublattice of X (T ) generated by the roots of G. ♦

Example 12.6. Assume that char(k) = 0. Let G = SL2×SL2 and H = diag(SL2):
then by Examples 3.6 and 10.4 we have identifications Λ = Zω and Γ+ = Nα (where
ω is the fundamental weight of SL2 and α = 2ω is the corresponding simple root),
thus Σ = {ω} is not contained in Γ+. Suppose now G = SO2n+1 and H = SO2n

with n > 2: then G/H is spherical, and if α1, . . . , αn denote the simple roots of
SO2n+1 we have the equalities Σ = {α1 + . . .+αn} and Γ+ = 2N(α1 + . . .+αn). 4

From now on we will assume that char(k) = 0.
In this case there is a much more explicit description of the automorphism group

NG(H)/H. Denote by ΛN the weight lattice of G/NG(H). The following is an
immediate corollary of Theorem 11.1.

Corollary 12.7. The automorphism group NG(H)/H is diagonalizable, and

NG(H)/H ' HomZ(Λ/ΛN,Gm).

Proof The first claim follows by Theorem 11.1, and the second one follows by
noticing that X (NG(H)/H) = Λ/ΛN thanks to Proposition 8.1.

Definition 12.8. If the canonical embedding G/H ↪→ X exists and is smooth,
then it is called a wonderful embedding, and H is called a wonderful subgroup of G.

Suppose that G/H ↪→ X is the wonderful embedding of a spherical homogeneous
space. Then X has several remarkable properties:

i) X is smooth and projective, with an open orbit Gx0;
ii) Let XrGx0 =

⋃r
i=1Xi be the decomposition into irreducible components,

then every Xi is a G-stable smooth prime divisor;
iii) The divisors X1, . . . , Xr intersect transversally, and their common intersec-

tion is a single G-orbit;
iv) For all x ∈ X rGx0, we have the equality Gx = ∩x∈XiXi .

A G-variety satisfying the previous properties is called wonderful. Every won-
derful G-variety is spherical (see [23]), and a spherical embedding G/H ↪→ X is
wonderful if and only if X is a wonderful G-variety (see e.g. [27, 3.3.1]). For more
on wonderful varieties, we refer to [27] and [28].

Proposition 12.9. The homogeneous space G/H admits a wonderful embedding if
and only if Σ is a basis of Λ.

Proof By Corollary 11.3, G/H admits a canonical embedding if and only if V
is a strictly convex cone. On the other hand, by the local structure theorem for
toroidal varieties (see [26, Theorem 3.4.1]), the canonical compactification of G/H
is smooth if and only if Σ is a basis for Λ.

Theorem 12.10 ([18, Corollaries 6.5 and 7.2]). The canonical embedding of G/NG(H)
is smooth. In particular, G/NG(H) admits a wonderful embedding.

Equivalently, by Proposition 12.9, the previous theorem can be stated as follows:
let ΣN ⊂ ΛN be the set of spherical roots of G/NG(H), then ΛN = ZΣN.
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Remark 12.11. The set ΣN was explicity described by Losev [22, Theorem 2]. His
description implies that ΣN ⊂ Σ ∪ 2Σ. In particular, if H is a wonderful subgroup
of G, by Corollary 12.7 we get that NG(H)/H ' (Z/2Z)m for some m 6 rk(G/H).
For example, if G = SL2 and H = T , as we have seen in Examples 8.11 and 8.12
we have Σ = {α} and ΣN = {2α}, and NSL2

(T )/T ' Z/2Z. ♦

The set of spherical roots ΣN arises naturally when considering the multiplica-
tion of regular functions on a quasi-affine spherical homogeneous space G/H (e.g.,
when H is reductive), in a very similar manner as we introduced the root monoid
Γ+ in Definition 10.1. Indeed, keeping the notation therein, we can consider the
multiplication of B-eigenfunctions in k[G]H = k[G/H] instead of k[G](H) and define
a sublattice ΓN ⊂ Γ as the lattice generated by the elements γ(f1, f2, f) such that
f1, f2, f ∈ k[G/H](B), and a monoid Γ+

N ⊂ Γ+ by setting Γ+
N = ΓN ∩ cone(Γ+).

Theorem 12.12 ([18, Theorem 1.3]). We have equalities ΓN = ZΣN and Γ+
N =

NΣN.

Consider now the spherical closure H introduced in Definition 11.11. Notice that
H is a sober spherical subgroup of G: indeed it has finite index in NG(H), therefore
V(G/H) = V(G/NG(H)), hence H is sober by Corollary 11.5. For more properties
of the spherical closure, see [3, Section 2.4].

Theorem 12.13 ([18, Theorem 7.5 and Corollary 7.6]). The canonical embedding
of G/H is smooth. In particular, G/H admits a wonderful embedding.

Denote by Λsc ⊂ Λ the weight lattice of G/H, and by Σsc ⊂ Λsc the set of spher-
ical roots of G/H. Then by Proposition 12.9 the previous theorem is equivalent to
the equality Λsc = ZΣsc. Notice that, by the definition of H, we have

k[G](B×H) = k[G](B×H).

Therefore G/H and G/H have the same root monoid Γ+, and by Remark 12.5 we
get Γ+ ⊂ Λsc ∩ cone(NΣsc) = NΣsc. On the other hand it is possible to check that
Σsc ⊂ Γ+ (see e.g. [2, Proposition 5]), so that Γ+ = NΣsc and Γ = Λsc: that is, the
root lattice of G/H is the weight lattice of G/H. Reasoning as in Corollary 12.7,
we get then the following description.

Corollary 12.14. We have an isomorphism H/H ' HomZ(Λ/Γ,Gm).
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