
19 October 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Alessi N., Caini C., Ciliberti A., De Cola T. (2020). HSLTP - An LTP Variant for High-Speed Links and
Memory Constrained Nodes. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 56(4),
2922-2933 [10.1109/TAES.2019.2958190].

Published Version:

HSLTP - An LTP Variant for High-Speed Links and Memory Constrained Nodes

Published:
DOI: http://doi.org/10.1109/TAES.2019.2958190

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/776616 since: 2020-10-29

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TAES.2019.2958190
https://hdl.handle.net/11585/776616

1

— Delay-/Disruption-Tolerant Networking

architecture relies on the use of Licklider Transmission Protocol

(LTP) on interplanetary links. LTP loss recovery is based on

ARQ retransmissions, which, when the propagation delay is very

long, are costly. Alternatively, losses could be recovered by using

Packet Layer Forward Error Correcting codes, as done by the

authors in ECLSA (Erasure Coding Link Service Adapter),

recently presented in a companion paper, where LTP segment

retransmissions are limited to the unlikely case of decoding

failures. However, on high bandwidth-delay-product links, the

very possibility of segment retransmission requires that a huge

number of Rx buffers be available. To resolve this problem,

High-Speed LTP (HSLTP), presented here, has a more disruptive

approach than ECLSA: it enforces almost one-to-one

correspondence between LTP blocks and FEC codewords, and

never requires LTP segment retransmissions. In the unlikely case

of a FEC failure, the partially received block is discarded and its

bundles are resent directly by the Bundle Protocol. The

advantages and disadvantages of this approach are explored in

the paper. On nodes limited in memory the results are

significantly improved.

Index Terms— IPN, DTN, LTP, ARQ, PL-FEC, LDPC, ECLSA.

I. INTRODUCTION

PACE networks are affected by long delays, link

intermittency, link losses and asymmetric bandwidth.

Some twenty years ago, researchers at NASA JPL, under

Vinton Cerf’s guide, realized that these challenges required

the definition of a new architecture, the IPN (InterPlanetary

Networking). IPN was soon renamed DTN (Delay-

/Disruption-Tolerant Networking), when it appeared clear that

many of the space challenges are actually common to

terrestrial “challenged networks” (wireless sensor networks,

underwater networks, emergency networks, and

communications in remote or hostile environments) [1]. Space

communications, however, are still the driver for DTN

research and standardization. The latter started under the IRTF

umbrella, but now is carried on in parallel by IETF [2] and for

space applications by CCSDS [3].

DTN architecture [4], [5] is based on the insertion of a new

layer, the Bundle Layer, between Application and other lower

layers, usually Transport [6], [7]. This new layer acts as an

overlay and splits the path between sender and destination into

 Manuscript received XX, 2019.
 Nicola Alessi, Carlo Caini and Azzurra Ciliberti are with the University

of Bologna, Italy, and may be contacted at nicola.alessi@studio.unibo.it,

carlo.caini@unibo.it, azzurra.ciliberti@studio.unibo.it. Tomaso de Cola is
with DLR and can be contacted at tomaso.decola@dlr.it.

multiple DTN hops. DTN nodes can store “bundles” (packets

at the homonymous layer) for long periods, to cope with link

intermittency and network partitioning. Moreover,

transmission reliability can be enhanced at bundle layer by

means of the custody transfer option, which consists in bundle

retransmission upon timer expiration. This option is

particularly appealing when the underlying Transport protocol

is unreliable (e.g., UDP) [8], [9] at least on one DTN hop.

delays, losses, link intermittency and bandwidth asymmetry

are be tackled inside each DTN hop by specialized protocols,

such as LTP (Licklider Transmission Protocol) in

interplanetary links [10], [11], [12]. In this respect, the

scientific community has dedicated quite some attention to the

performance modeling of LTP [13], [14], [15] and also

elaborated significant theoretical models to getter deep insight

into LTP dynamics as discussed in [16] and [17].

LTP can provide both a reliable and an unreliable service

with red and green parts, respectively. Focusing on the former,

loss recovery of LTP segments is based on an ARQ

(Automatic Repeat Request) scheme [18]. Thanks to its

ingenious design, loss recovery of an entire LTP session (the

transmission of one LTP block) can often be completed in one

RTT, if there are no further losses on retransmitted segments.

However, on interplanetary links even a single RTT greatly

penalizes delivery time, because the propagation delay is long

(from 3 to 20 min, from Earth to Mars). This makes the use of

Packet Layer FEC coding (PL-FEC) very appealing, as it

could limit the need for LTP segment retransmissions to the

rare case of decoding failure.

There is abundant literature and some RFCs [19], [20] on

the use of erasure codes at packet layer for different purposes.

PL-FEC must be considered complementary and not

alternative to the almost ubiquitous physical layer channel

coding: PL-FEC is used to recover the datalink frame losses

resulting from residual bit errors after channel FEC decoding

(a frame that does not pass the parity check is entirely

discarded). On space channels, the first studies on PL-FEC

date back to 2007 ([21], then extended in [22]). Their use in

combination with LTP was first examined in [23], by

comparing this choice to other solutions, then proposed in the

CCSDS Orange Book [24] and then in [25] and [26].

Dealing with LTP and PL-FEC, two approaches are

possible: segment oriented or block oriented. In both LTP

segments are treated as information symbols of a codeword, in

the former the PL-FEC encoder is unaware of LTP block

boundaries and thus it can naturally treat all LTP segments,

either data or signaling, in the same way. The disadvantage is

S

HSLTP - An LTP Variant for High Speed Links

and Memory Constrained Nodes

Nicola Alessi, Carlo Caini, Azzurra Ciliberti, Tomaso de Cola,

mailto:nicola.alessi@studio.unibo.it
mailto:carlo.caini@unibo.it
mailto:azzurra.ciliberti@unibo.it
mailto:tomaso.decola@dlr.it

2

that having no notion of LTP blocks, it needs the introduction

of aggregation timers (with related delays and complex

settings) to stop filling a codeword in the absence of new data.

An extensive description of this approach was given by the

present authors in a previous companion paper, devoted to

ECLSA (Error Correcting Link Service Adapter) [27]. The

block oriented approach, by contrast, preserves the boundaries

of LTP blocks, coding each LTP block into a new codeword,

as done in [25], [26]. One significant advantage is that

aggregation timers are no longer necessary, but there are also

two disadvantages. First, mapping one LTP block into one

codeword requires the use of a FEC code that can fit the

variable dimension of blocks. Second, the treatment of LTP

signaling segments is an issue, as they need to be protected

against losses even more than data segments do, but they are

often transmitted apart (e.g. in case of retransmissions, or

confirmations), or in the reverse direction.

The idea behind High-Speed LTP (HSLTP), presented in

this paper, is that of going further with the link between LTP

blocks and codewords pursued by the block-oriented

approach, by interpreting the binary result of a codeword

decoding (success or failure), as the result of the

corresponding LTP block transfer (completed or canceled). In

HSLTP retransmissions of single segments are no longer

necessary, because in the unlikely event of a decoding failure,

the partially received block is discarded and reliability is

delegated to bundle retransmissions. As it will be shown in the

paper, the biggest advantage is that by having eliminated the

reception of incomplete blocks it possible to eliminate all LTP

Rx buffers but one. This may be of paramount importance on

high bandwidth delay product links, such as optical links in

space, especially when the receiver node is memory-

constrained, as often in space assets.

Despite its disruptive content (all LTP segment

retransmissions are eliminated), HSLTP has been

implemented in an evolutionary way, as an optional extension

of the ECLSA code already present in ION (the NASA JPL

implementation of DTN protocols [28]). Numerical results,

obtained on a GNU/Linux testbed, are presented at the end of

the paper to compare HSLTP performance with that

achievable using ECLSA (below LTP) or LTP alone. They

confirm the validity of the proposed approach.

II. THE LICKLIDER TRANSMISSION PROTOCOL (LTP)

A key element of DTN architecture is that the introduction

of the Bundle layer confines the Transport layer scope to one

DTN hop. This is essential in space and in other

heterogeneous networks as it permits the use of different

transport protocols on different DTN hops, in order to tackle

different channel impairments (Figure 1). While on Earth and

likely on other planets (e.g. Mars) TCP could still be used, on

interplanetary links it must be replaced by a specialized

protocol, such as LTP. The interfaces between BP and the

lower layer (usually Transport) are called “Convergence Layer

Adapters”, (CLAs) as the name “Convergence layer” is

commonly used to define the protocol below the BP (e.g. LTP,

TCP etc.).

Figure 1: DTN architecture protocol stack.

A. LTP main features

LTP is the convergence layer of choice on interplanetary

links [10], [11], [12], as it minimizes interaction (“chattiness”)

between transmitting and receiving engines. LTP runs on top

of UDP in test beds or on CCSDS space protocols in real

deployments. In the following, we will assume UDP below

LTP for the sake of exposition clarity, without loss of

generality. LTP can offer both reliable and unreliable services,

with “red” and “green” parts respectively. Let us focus on red

parts and list the key features that differentiate LTP from TCP

[29], most of which aim to minimize chattiness.

 No connection-establishment phase, such as TCP 3-way
handshake.

 Rate based transmission speed.

 Unidirectional data flow (the reverse channel is used
only for signaling) to cope with possible channel
asymmetry.

 One or more bundles may be aggregated by LTPCL [7]
in one LTP “block”; blocks are transmitted by
independent LTP “sessions” running in parallel to fill the
Bandwidth Delay Product (BDP).

 An LTP block is usually split into a number of smaller
LTP “segments”, each passed to UDP, or other CCSDS
space protocol;

 In contrast to TCP, segment acknowledgments (LTP
“report segments”) are triggered only by data segments
flagged as “checkpoints”, usually at the end of a block.

B. LTP sessions without losses

For a better description of LTP session mechanisms, it is

necessary to introduce some examples. Let us begin with the

simplest one, which considers a session without any loss

(Figure 1). When the export session starts, all the segments of

the LTP block are sent; the last data segment plays a double

role, because it also carries signaling information, being

flagged as EORP (End Of Red Part), EOB (End Of Block),

and CP (Checkpoint) [11]. The arrival of the first segment

opens the import session, while the arrival of the last, flagged

as CP, triggers a Report Segment (RS), confirming data

received, i.e. the full block in this case. As the block is

completed, the bundles contained in it are delivered to BP

(multiple small bundles can be aggregated into one LTP block

by LTPCL to reduce overheads) and the Rx buffer is

deallocated (in the latest ION versions, 3.6.x). RS reception

confirms the CP and is in turn confirmed by a RA (Report-

Application

Bundle Protocol

Transport Protocol A

Network Protocol A

Bundle Protocol

Transport

Protocol A

Network

Protocol A

Transport

Protocol B

Network

Protocol B

Bundle Protocol

Transport

Protocol B

Network

Protocol B

Transport

Protocol C

Network

Protocol C

Application

Bundle Protocol

Transport Protocol C

Network Protocol C

Network A

Convergence Layer

Adapter A

Conv. Layer

Adapter A

Conv. Layer

Adapter B

Conv. Layer

Adapter B

Conv. Layer

Adapter C

Convergence Layer

Adapter A

Network B Network C

Application

Bundle Protocol

Transport Protocol A

Network Protocol A

Bundle Protocol

Transport

Protocol A

Network

Protocol A

Transport

Protocol B

Network

Protocol B

Bundle Protocol

Transport

Protocol B

Network

Protocol B

Transport

Protocol C

Network

Protocol C

Application

Bundle Protocol

Transport Protocol C

Network Protocol C

Network A

Convergence Layer

Adapter A

Conv. Layer

Adapter A

Conv. Layer

Adapter B

Conv. Layer

Adapter B

Conv. Layer

Adapter C

Convergence Layer

Adapter A

Network B Network C

3

ACK). As all segments are confirmed, the Export session is

closed. When the RA arrives at receiver, the import session is

closed.

If the RTT is long, as in space links, block transmission and

processing times are dominated by the propagation delay. In

this case, the delivery time is roughly equal to one-half RTT,

and both the export and import session lifetimes equal to 1

RTT. This proves that LTP is ideal in the absence of losses,

because both delivery time and the minimum time for reliable

delivery (i.e. for receiving an acknowledgment of the

transmitted data), coincide with their theoretical minima.

Figure 2: Example of LTP session (red-data only) in ideal conditions (absence
of losses).

C. LTP sessions with losses

Now we are ready to examine a second example (Figure 3),

which considers losses on both data and signaling segments to

highlight their different impact on delivery time. The loss of

the CP piggybacked on the last segment (#N) stalls the

communication until the corresponding Retransmission Time

Out (RTO) expires, forcing a new sending (CPs, RSs, and

other signaling segments are always retransmitted unless

confirmed in time). CP reception triggers a partial RS,

confirming all data but segments #2 and #3, which were lost

as well but the sender could not know. These two segments

are retransmitted, #3 being flagged as CP. Their arrival

completes the block, and everything goes on as in the ideal

case.

A key difference from TCP is that pure data segments (i.e.

those not flagged as CP) when lost (#2 and #3) are

retransmitted together, in one retransmission cycle. As a

result, the overall time penalty is one RTT, independently

from the number of losses. One RTT for all losses is an

excellent result for LTP, as it is the theoretical minimum for

ARQ based recovery. Of course, if any retransmitted segment

is lost, a further round of retransmission is necessary, with an

additional RTT, and so on, but this should happen rarely, at

least for low Packet Loss Rates (PLR).

Considering “pure” signaling segments, such as RSs or

RAs, or mixed segments, i.e. CPs, the impact of losses is

worse. This because their penalty time, one RTO (just a little

longer than one RTT), adds to the delay due to retransmission

of other segments, as in Figure 3. This has led to the

development of an enhanced version of LTP [29], where the

user can introduce a variable amount of replication to protect

signaling segments against losses. This enhanced LTP version

has now become the standard in current ION releases.

Figure 3: Example of LTP session (red-data only) in the presence of mixed

losses (#2, #3 and #N). The loss of the CP piggybacked on #N stalls the

communication until the corresponding RTO expires. The time penalty (one
RTO) adds to the delay due to retransmission of other segments.

D. LTP sessions and buffers

Each LTP block is independently transmitted during a

single LTP session, and to fill the BDP more concurrent

sessions are allowed and also necessary. For blocks sent as

“red”, it is necessary to have one Tx buffer and one Rx buffer

for each on-going session. The former is necessary to resend

missing segments, the latter to store received segments until

the whole block is received. It is necessary to examine the

ION implementation in detail, because there are important

differences between Tx and Rx buffers, concerning the actual

use of memory.

1) Tx buffers

At sender side the Tx buffer cannot be released until the

associated session ends, i.e. when the final RS arrives,

signaling the successful arrival of the whole block. It is worth

noting that thanks to ION’s “zero-copy” feature [28], which

makes it possible to rebuild lost LTP data segments directly

from the original bundle(s) still stored by BP, only one small

subset of segments sent is actually saved in the Tx buffer,

namely only those subjected to retransmissions caused by

RTO timer expirations, i.e. signaling segments and CPs. This

clever mechanism of ION greatly alleviates memory

consumption at Tx side.

2) Rx buffers

This time all segments must be stored, as it is clearly

impossible to make use of the zero-copy mechanism at Rx

side, as by definition the bundles contained in the block are

yet not available. The Rx buffer of a session can be released

when all segments have arrived, i.e. before the end of the

4

import session, which requires the final RS to be confirmed by

its RA, i.e. an additional RTT (see Figure 2). Old versions of

ION did not exploit this, and Rx buffers were released only at

the end of a session, as at Tx side. In contrast, the latest ION

versions (3.6.x) release the Rx buffer as soon as a block is

completed to counteract the possible loss of the last RA [29].

With this enhancement, the Rx buffer can be immediately

reused by following blocks if any (original blocks are sent

sequentially, only retransmitted segments).

E. BDP and buffers

The number of parallel sessions should be set according to

the bandwidth delay product (BDP) of the link (plus other

parameters, such as loss probability). The larger the BDP, the

higher the number of parallel sessions necessary to “fill the

channel” (calculating the optimal number, however, is far

from easy, especially with losses, see ION documentation

[28]). On interplanetary links the delay is huge with available

bandwidth continuously increasing thanks to technology, thus

memory at Rx side (especially on space assets which are more

easily memory constrained because of the higher cost of

memory robust against space radiations) can become a

limiting factor if not properly counteracted. To have an idea of

the problem, consider that on an Earth-Mars link, with 46min

of RTT (the worst case) and 500Mbit/s (optical link) we

would have a BDP of 172 GB. ION alleviates this problem by

not requiring Rx buffer to be entirely kept in RAM, but on the

other hand disk access is slower. In spite of this optimization,

it is clear that the Rx buffers still pose a serious challenge to

future high-speed links when the receiver is memory-

constrained.

III. ECLSA ESSENTIALS

This section aims to provide the reader with a concise

description of ECLSA, from which HSLTP derives. For

clarity of exposition, we will assume here and in the rest of the

paper that ECLSA is put below LTP, although it could

theoretically work also with other upper protocols. For a

comprehensive treatment, see [27].

A. ECLSA as a Link Service Adapter

ECLSA, like all other link service adapters fits between

LTP and lower protocols, such as UDP. However, ECLSA is

not just a mere interface, but a true intermediate protocol that

provides PL-FEC service to LTP. In Figure 4 the protocol

stack of two DTN node using LTP with ECLSA is shown. On

top we have the BP application that provides the message to

be sent; this message is encapsulated in one bundle, then the

bundle is possibly aggregated with other bundles into one LTP

block. The block is then segmented and LTP segments are

passed to ECLSA, which adds redundancy segments; all

segments are eventually passed to UDP, which encapsulates

each segment into one packet and so on towards lower layers;

vice versa at receiving side.

Bundle Protocol

LTP

ECLSA

UDP

Lower layers

Bundle Protocol

LTP

ECLSA

UDP

Lower layers

BP ApplicationBP Application

Figure 4: The protocol stack of two DTN nodes sing ECLSA on top of UDP

(From [27]).

B. PL-FEC in ECLSA

The core of ECLSA is the PL-FEC encoding. A schematic

description of the process is shown in Figure 5 (see [27] for a

more rigorous treatment). We assume the use of a (N, K) code

(N is the number of symbols of a codeword, i.e. is length, K

the number of information symbols, Rc= K/N the code rate).

At Tx side, each LTP segment is essentially treated as an

information symbol of a codeword. In details (not reported in

the figure), after adding a 2B header, it is inserted into arrow

of an N x T “coding matrix”, where T-2 is the maximum

length in B of an LTP segment (if the LTP segment is shorter,

a few padding bytes are added). The K information symbols

(matrix rows) are then coded, by means of a PL-FEC coder,

which calculates the M=N-K redundancy (or “repair”)

symbols. Each symbol is then passed to a lower layer, such as

UDP. On the Rx side, because of losses on the channel, L

symbols are missing (crossed packets); the PL-FEC decoder

tries to recover all K information symbols from the N-L

arrived symbols. On ideal codes, i.e. Maximum Distance

Separable (MDS) codes , the condition for a successful

decoding is that losses are no more than redundancy symbols

(i.e. it is enough that at least K segments arrive, whether of

information or redundancy) [30], while on most real codes,

e.g. LDPC, a small margin is required. If the decoding is

successful, all K information symbols are recovered and

passed to LTP (after removing the 2B header and padding

bytes if present), otherwise only a subset. In this latter case, as

ECLSA is transparent to LTP, the missing segments will be

recovered by LTP usual mechanisms.

5

K Info
packets

Encoder

K Info
Packets

M
Redundancy

Packets

Lower layers Lower layers

Packet Erasure Channel

Decoder

Figure 5: Simplified picture of PL-FEC logical process in ECLSA (From

[27]). Tx side steps, on the left, are performed by ECLSO, those on Rx side,
on the right, by ECLSI.

ECLSA makes use of alternative external libraries to

perform erasure coding and decoding, LibecDLR and

OpenFEC [32]. LibecDLR uses the LDPC Irregular-Repeat-

Accumulate (IRA) family (see the CCSDS Orange book [24]),

while OpenFEC relies on LDPC Staircase and LDPC Triangle

codes (see RFC 5170 [19]). Although they use different LDPC

codes, both of them can support the N and K values specified

in the CCSDS Orange book.

C. ECLSA implementation

Our ECLSA implementation in ION consists of two

processes, ECLSO and ECLSI, corresponding to Outduct and

Induct channels (left and right sides of Figure 5). Each

consists of three threads, as shown in Figure 6: ECLSA

implementation: ECLSO (left) and ECLSI (right) threads.

a) ECLSO threads

The first thread of ECLSO (left) is “matrix filling from

LTP”. Its task is to put each segment passed by LTP into a

new row of the coding matrix. This filling process stops (i.e.

the matrix is “closed”) when either the matrix is full (K

information segments have arrived), or when an aggregation

time expires. In the latter case the number of segments arrived,

I, i.e. of rows filled, is less than the nominal K. An option (“K

continuous”) allows a code with K=I to be created on the spot.

In ECLSA the filling process is transparent to LTP and block

boundaries are not considered at all. Once the matrix is

“closed”, the “Matrix Encoding” thread adds the redundancy

symbols in the last N-K rows, thus forming the (N,K)

codeword. Finally, the “Matrix Passing to UDP” adds an

ECLSA header to each symbol then passes it to UDP.

b) ECLSI threads

On the receiving side (right) ECLSI performs dual

operations. From the bottom, the “matrix filing from UDP”

thread for each ECLSA packet received from UDP removes

the ECLSA header and fills it in the correct coding matrix.

Once “closed” the matrix is passed to the “Decoding Matrix

process”, which tries to fill in any gaps in the K information

rows; finally, the “Matrix passing to LTP” thread delivers all

information symbols available (either received or recovered)

to LTP.

Many other aspects ECLSA, although significant, are

beyond our scope and, again, the interested reader is referred

to [27] and [31].

Matrix filling from LTP

ECLSO

Packet Erasure Channel

LTP

Matrix encoding

Matrix passing to UDP

UDP (or CCSDS)

Matrix passing to LTP

LTP

Matrix decoding

Matrix filling from UDP

UDP (or CCSDS)

ECLSI

Figure 6: ECLSA implementation: ECLSO (left) and ECLSI (right) threads.

D. ECLSA: advantages and limits

In brief, the ECLSA link service adapter protects LTP

segments using a systematic FEC code: if decoding succeeds,

all losses on the K information symbols are recovered;

otherwise, residual losses are left to LTP to recover.

ECLSA is segment-oriented, thus it is conscious of

segments but has no concept of LTP block boundaries (it

could in fact be used with other protocols as well). An obvious

advantage of the segment-oriented approach is that signaling

and retransmitted segments are naturally inserted into an

ECLSA matrix together with data segments from successive

blocks, so they are naturally protected by FEC. As detailed in

section II.C and in [29], losses on signaling segments are

worse than on ordinary data segments, thus FEC protection is

essential. The same holds true for retransmitted segments.

To summarize, on an erasure channel with significant

Packet Loss rate (PLR), ECLSA offers these advantages:

a) It greatly reduces delivery time by making

retransmissions unlikely.

b) It eliminates delivery time dependency on LTP block

dimensions (for a given PLR, the greater the block, the longer

the expected delivery time, due to the higher probability of

multiple retransmission cycles).

c) It almost eliminates block delivery time variability

caused by random losses. In LTP, “lucky” blocks with no

losses can be delivered in 0.5 RTT, “unlucky” ones require

one additional RTT for each retransmission round. When RTT

is in the order of minutes, this sort of “jitter” is a significant

disadvantage, as it cannot be easily compensated by buffering,

as on Earth.

The disadvantages are:

a) First, on high-speed interplanetary links the Rx buffer

problem remains unresolved.

b) ECLSA aggregation timers are rather complex to set, as

proper settings depend on matrix dimensions and link

characteristics [33]. They also contribute to FEC processing

time.

6

IV. HIGH-SPEED LTP (HSLTP)

A. Motivation

The principal aim of HSLTP is to reduce LTP buffering

needs, and so allow full exploitation of bandwidth available on

high-speed interplanetary links (this justifies the “high-speed”

prefix).

HSLTP abandons the segment-oriented approach of ECLSA

in favor of a block-oriented one. It enforces almost one-to-one

correspondence between LTP blocks and ECLSA coding

matrixes: each LTP block is now fully contained in one matrix

and each matrix cannot contain more than one LTP block (but

signaling segments can still be aggregated to a block and also

matrixes of signaling segments only can exist). This has two

key advantages:

1) Decoding state interpreted as state of the session

The decoding state (success or failure) of a matrix

containing a block can now be interpreted as the state of the

session (successful closing or cancellation). If successful, as

likely, the whole block is passed to LTP with no need for

retransmission; otherwise, HSLTP immediately cancels the

session. In this case, to ensure reliability, HSLTP uses a

mechanism already present in ION, by which once BP is

informed of a convergence layer failure, it immediately

retransmits all bundles involved. In our case, the session

cancellation triggered by the decoding failure will force BP to

retransmit all bundles contained in the canceled-session block

from scratch (i.e. by building a new block a starting a new

session). The first key advantage of HSLTP is that

independently of decoding state it never retransmits single

LTP segments, thus one Rx buffer is sufficient, which solves

the problem of Rx buffers. The disadvantage is that in case of

decoding failure, an entire (new) block has to be transmitted

(in a new LTP session) instead of a few segments (in the still

on-going LTP session). FEC failures, however, should be rare,

and as HSLTP is designed for high-speed links, where

bandwidth should be relatively abundant, the price could be

well worth paying, especially when the receiver is memory-

limited.

2) Processing time reduction, simplification of settings

The second significant advantage of HSLTP is the

simplification of ECLSO timer settings and the related

reduction of processing time, as it is no longer necessary either

to wait for a (potentially large) fixed-dimension matrix to be

completely filled, or for the ECLSA aggregation timer to

expire. In HSLTP the coding matrix is immediately closed as

soon as the last segment of the block is passed by LTP and a

codeword of the right dimension is built on the spot (see “K

Continuous Mode”, in [31][31]).

B. An example of HSLTP flow

A successful block transfer is presented at the top of Figure

7. LTP block 1 (containing bundles a and b) is sent and the

corresponding codeword is correctly decoded at Rx side in

spite of the possible loss of a few segments; all K information

segments of the block are immediately passed to LTP. The

newly opened import session, is immediately closed after a

final RS is sent, confirming successful arrival of the full block,

without waiting for the corresponding RACK, which

immediately allows HSLTP to reuse the Rx buffer in all ION

versions. At Tx side, the export session is closed on arrival of

the final RS and BP is notified by the LTPCL of the successful

transfer of bundles in block 1 (i.e. bundles a and b). This is

what usually happens. Then a case of failure is shown, with

bundle retransmission by BP, using a new LTP block and a

new session. In detail, LTP block 2 (containing bundles c and

d) is sent but decoding fails because there are too many losses.

The new import session is immediately canceled and a Cancel

Segment (CS) is sent back. The Rx buffer is immediately

released in this case too. On Tx side CS reception triggers the

cancellation of the export session and LTPCL notifies the BP

of the transmission failure of all bundles that were aggregated

in block 2 (bundles c and d). In response, BP immediately

resends these bundles to LTPCL: they are aggregated in block

3 and a new export session is opened. This time decoding is

successful and all continues as for block 1.

Note that in HSLTP the RS triggered by the CP at the end

of a block is always “final”, i.e. it always acknowledges all

segments, as it is sent only in case of successful decoding of a

full block.

In case of decoding failure and consequent bundle

retransmission, the bundle delivery time increases by one RTT

(Figure 7), as with ECLSA. As said, the main advantage of

HSLTP is that, success or failure, the Rx buffer is immediately

available for subsequent sessions. Finally, note that in both

HSLTP and ECLSA an optional feedback mechanism

temporarily increases redundancy in response to a decoding

failure. This considerably reduces the chances of consecutive

failures on the same blocks.

Figure 7: An example of HSLTP flow. LTP block 1 decoding is successful;

the new import session opens and closes immediately, while the export
session closes after the arrival of RS confirming reception of all segments.

Block 2 decoding fails, however, due to too many losses causing closure of

new import session. Export session canceled on arrival of CS. Block 2’s
bundles are resent by BP after aggregation in block 3, a new session starts and

terminates successfully. Bundle retransmission increases total delivery time

by just one RTT.

7

V. AN EVOLUTIONARY APPROACH TO HSLTP

IMPLEMENTATION

HSLTP can be seen in two ways: either as a new protocol,

derived from LTP but no more compliant with LTP specs (e.g.

segment retransmissions are eliminated), or as a derivative of

ECLSA. As the former, it could be implemented as a brand-

new integrated module; as the latter, it could be implemented

incrementally, to exploit the existing code of both LTP and

ECLSA as much as possible. As HSLTP is an experimental

protocol, we preferred this evolutionary approach and

managed to implement HSLTP by modifying only two threads

of ECLSA (the interfaces from and to LTP). In this way we

left LTP code totally unaltered, which facilitates both code

maintenance and protocol configurations. In our

implementation, HSLTP can be activated simply by setting the

“HSLTP enabling interface” option of ECLSA. More

generally, the user can easily switch between LTP alone, or

LTP with ECLSA, or HSLTP simply by modifying very few

essential settings.

The modifications introduced to ECLSA interface to LTP

are shown below. As will be evident, they required an in-depth

study of both LTP standard and ION implementation.

A. Block-aware modifications

On the transmitting side, the main difference between

HSLTP and ECLSA is that HSLTP is block-aware and needs

an almost one-to-one correspondence between LTP blocks and

FEC codewords. To this end, is necessary to modify the

“matrix filling from LTP” thread of ECLSO, to stop the matrix

filling of a coding matrix at the end of a block. This however,

is not sufficient, because LTP signaling segments (RS, RA,

CS, CAS etc. [11]) belong to a session but not to a block; they

too need to be inserted into a coding matrix, and possibly sent

alone, i.e. in a codeword that does not contain any block, if

necessary.

Our solution consists in reading the “type” [11], of the LTP

segment passed by LTP: to infer if the segment is the last of a

block (flagged as EOB); to infer if it is a normal data segment,

or is a pure signaling segment. The segment tagged as EOB

always stops the filling process. The other types are used to

distinguish whether a coding matrix contains either only

signaling segments, or only data, or signaling segments

followed by data. In the first case, a “signal only aggregation”

timer is necessary to avoid waiting for a block (and its EOB)

that may never arrive. This timer setting must be short, to

avoid excessive delay on signaling segments. Setting is easy,

at it is completely independent of code or channel

characteristics.

The old conditions for matrix closure are preserved (matrix

full and data aggregation timer elapsed), for safety reasons

only, as they should normally never be enforced in HSLTP.

An option can be activated to enable proactive fragmentation

of bundles, to prevent the block from being so large as not to

fit in the maximum K allowed by ECLSA settings.

B. Decoding failure: cancellation of import session

On the receiver side, HSLTP needs the success/failure of

FEC decoding of a codeword to correspond with the

successful closure/cancellation of the corresponding LTP

session. For convenience, we will start from unsuccessful

decoding, assuming for the sake of generality that there are

some signaling segments followed by a full block in the

codeword.

A decoding failure means that there will be residual gaps in

the K information symbols of the received codeword. As

mentioned, in HSLTP there is no attempt to recover these

residual losses using the usual LTP mechanisms. What

HSLTP does is as follows: first, all signaling segments

(always from previous sessions) must be passed to LTP. Then,

it is necessary to make LTP cancel the newly opened import

session, instrumental so as not to keep engaged the Rx buffer.

To trigger immediate cancellation without modifying the LTP

code, we decided to disguise LTP by inserting a locally

generated “miscolored” segment. Details below for the benefit

of readers expert in LTP.

a) Implementation details

On receiving the first data segment of a codeword when

decoding has failed, the “passing matrix to LTP” thread of

ECLSI (when the “HSLTP enabling interface” is on) triggers

session cancellation by passing the received segment to LTP

as usual, but followed by a locally generated clone with the

LTP “color” inverted (“green” instead of “red”). This second

segment is recognized by LTP as “miscolored”, which causes

immediate cancellation of the newly opened import session.

This cancellation is notified to the sender LTP engine by the

usual LTP mechanisms, i.e. by means of a CS that triggers the

export session cancellation at its arrival (see Figure 3).

C. Decoding success: immediate closure of the import session

Let us now consider successful decoding. Signaling

segments, if any, are passed to LTP, then the first data

segment causes the opening of a new import session as before,

but this time the session is not canceled and all data segments

are stored one-by-one in a new Rx buffer. As successful

decoding means no gaps in the received block, the bundles

contained can be passed to BP and the Rx session closed

immediately, after sending the final RS, confirming the

successful arrival of the block to the sending engine, without

waiting for the final RA. This is instrumental to immediate

release of Rx buffer, even in old ION versions. To trigger the

immediate closure of the import session, without modifying

the LTP code, we decided to disguise LTP by inserting a

locally generated fake RA. Details below for expert readers.

a) Implementation details

When the HSLTP enabling interface is set, the “matrix

filling from LTP thread” of ECLSO intercepts the final RS,

which acknowledges successful reception of the full block.

This RS is still sent back to confirm the full block arrival, but

also triggers the local insertion of a fake RA. For LTP this

appears to be a genuine RA and consequently it closes the

session.

As RAs are no longer necessary in HSLTP, their dispatch

can be disabled by a debug feature introduced in LTP

enhanced.

8

Finally, to protect the final RS against possible losses (its

arrival is necessary to confirm successful delivery of the block

and consequent export session closure, see Figure 3), it can be

adequately protected by replication, as shown in [29]. In the

theoretical case that all copies are lost, HSLTP triggers

cancellation of the export session when the RTO of the

unconfirmed CP expires. The same remarks apply to the CS

sent to the Tx engine in case of FEC failure, considered above.

VI. PERFORMANCE EVALUATION

We evaluated performance of HSLTP and other benchmark

techniques (ECLSA [27] and LTP enhanced [29]) using a

GNU/Linux virtual testbed, built and managed by

Virtualbricks [33]. ION 3.6.2 [28] was installed on all virtual

machines and DTNperf was [34] used to generate series of

bundles of desired dimensions (100 kB). The codes used here

are the LDPC Scalar provided by OpenFEC [32]. The LTP

maximum segment size is of 1022, which leads to a coding

matrix row length of T=1024, by allowing 2B to insert the

actual LTP segment length [27]). As pointed out in the

previous sections, LTP segments are in turn encapsulated into

UDP/IP datagrams. As to physical layer processing operations,

it is assumed that LDPC channel coding is applied to a stream

of sync-marked transfer frames according to the CCSDS TM

[36] specifications, similarly to what also taken as reference in

the companion paper [27].

Finally, a data rate of 10 Mbit/s is considered and packet

error rates (PER) of 10% and 15% have been taken into

account in the performance analysis for the sake of the

exemplification. A more detailed investigation about ECLSA

performance with different codes (LDPC IRA provided by

LibecDLR) and against different values of PER is provided in

[27], which the interested is referred to.

A. Immediate closing of LTP import session

This scenario aims to evaluate the HSLTP performance

improvement that may derive from immediately releasing the

Rx buffer. This is particularly important on nodes with

memory constraints, like most nodes in space.

As an extreme example, we assumed that there is only one

buffer at Rx side. In LTP (and in ECLSA) the maximum

number of export sessions is obliged to be the same as the

number of Rx buffers available on the receiver, thus we can

have only one export session. This means that we can send

bundles only one by one, after the previous import session has

closed, which ideally, with no losses, takes one RTT. By

contrast, in HSLTP this symmetry constraint is released. The

import session is always opened and closed immediately (what

is more, independently of decoding success or failure), which

allows the unconditional reuse of the sole Rx buffer, and thus

the transmission of multiple blocks in sequence.

With no symmetry constraint, we set a maximum of 15

export sessions for HSLTP, instead of only one for LTP and

ECLSA.

Of the many experiments done, only the two most

significant are reported here.

1) One Rx-buffer, PLR=10%

The first experiment (Figure 8), considers the transfer of ten

bundles generated simultaneously. The PLR is high (10%), but

below the recovery capabilities of the FEC code used (about

11% with Rc=8/9 assuming ideal performance). The elapsed

time is normalized to RTT for analysis convenience (here

RTT=6s). We have four series: the first, on the y-axis, refers

to bundle generation, the other three to the delivery times

achieved by HSLTP, ECLSA and LTP. The superiority of

HSLTP is immediately evident; its delivery time is only

marginally longer than one-half RTT, the theoretical minimum

without retransmissions. This proves that HSLTP processing

time is already negligible for a propagation delay of only 3 s

and that, more importantly, that all LTP blocks have been

successfully recovered by the FEC mechanism, as expected.

The same perfect recovery is also present in the ECLSA

series, as shown by the regular intervals between consecutive

markers, here almost equal to one RTT, i.e. the minimum

duration of a Tx/Rx session. Last, in the LTP case, delivery

time is further penalized by retransmission cycles of lost LTP

segments (at least one RTT penalty for each additional

retransmission cycle). In conclusion, in the presence of

significant memory constraints, which could severely limit the

number of Rx buffers, the advantage of HSLTP is outstanding.

Figure 8: Performance comparison between HSLTP, ECLSA and LTP

enhanced (with signal replication burst=3). Delivery series as a function of
time elapsed. PLR=10% (on the forward link only); Rc=8/9; #Rx buffers=1;

#Tx buffers=15 for HSLTP, 1 for others]. In HSLTP all bundles are delivered

after about one-half RTT (no bundle retransmissions).

2) One RX buffer, PLR=15%

The second experiment (Figure 9) is the same, but with

PLR=15%, which is deliberately a little higher (+2.5%) than

code recovery capabilities. As a result, decoding may

occasionally fail, as happens in HSLTP for blocks containing

bundles 4 and 9. Each failure triggers session cancellation and

bundle retransmission in a new successful session. The

delivery time becomes only marginally longer than 1.5 RTTs,

the theoretical minimum in case of retransmissions. By

contrast, for ECLSA decoding fails for bundles 7 and 9, but in

this case single LTP segments are retransmitted (those not

previously recovered by FEC). The retransmission cycle

requires about one RTT as before. Last, for enhanced LTP,

segments lost are no longer protected by FEC so must all be

retransmitted. The PLR is high, so the average number of

9

retransmission cycles, is greater than with ECLSA, and this

accounts for much longer bundle deliveries (Figure 9).

In conclusion, the comparative advantage of HSLTP over

ECLSA and LTP is outstanding in this case too.

Figure 9: The same as Figure 8, but with PLR=15% (deliberately beyond the

margin for Rc=8/9). For HSLTP note that the delivery time of #4 and #9 is

now of about 1.5 half RTTs, due to FEC failure and consequent automatic
bundle retransmission. For the other techniques, the higher PLR results in a

much longer delivery time penalty.

B. Reduction of ECLSA waiting time

In Figure 10 the time necessary to transmit an ECLSA

matrix (a codeword) is shown as a function of the number of

its information symbols, K, for Rc=8/9 and a Tx rate of 10

Mbit/s. This time also represents the minimum value of the

ECLSO “aggregation timer”, after which a partially filled

matrix is closed by ECLSO and then coded and sent. This

timer has been eliminated in HSLTP as when LTP passes a

segment flagged as EOB the matrix is immediately closed. It

is worth noting that in ECLSA the corresponding delay can

occur twice in the worst case. To illustrate this, let us consider

the case of a small LTP block inserted into a new matrix,

which is then almost filled up with subsequent blocks. The

small block has to wait first for the aggregation timer to

expire, then because decoding cannot start at Rx side until the

coded matrix is completely received, which takes roughly the

same time again.

These waiting times are almost eliminated in HSLTP as

each block is contained in one matrix, which is decoded and

delivered independently. This also leads to a simplification of

HSLTP settings, now easier than in ECLSA. On the other

hand, the immediate closure of the matrix at the end of a block

can lead to inferior FEC performance with very small blocks,

because of the reduced length of the codeword. It is however

easily possible to reduce the likelihood of very small blocks

by proper setting of LTP aggregation size and time. In

addition, in HSLTP, as in ECLSA with the “K continuous”

option, we set a threshold on the minimum number of

redundancy symbols in a codeword, to cope with very small

blocks.

Figure 10: Transmission time of an ECLSA matrix as a function of its

dimension. Rc=8/9 and T=1024B, Tx speed=10Mbit/s.

VII. CONCLUSIONS

HSLTP can be considered a variant of LTP designed for

high-speed links, where the bandwidth is high and buffering

requirements may become the performance-limiting factor.

HSLTP is based on upper layer coding FEC, like ECLSA,

with two main differences. First, while ECLSA is designed to

be transparent to LTP, and thus is unaware of LTP block

boundaries, HSLTP is not, as it imposes an almost one-to-one

correspondence between LTP blocks and codewords. Second,

by contrast to ECLSA, in HSLTP LTP blocks are either

entirely received (FEC success) or entirely dropped (FEC

failure). This binary result eliminates by root the need of LTP

data segment retransmissions in HSLTP. In fact, in HSLTP it

is BP that takes responsibility of loss recovery by immediately

retransmitting bundles contained in the discarded LTP block.

The most important advantage of this more radical approach

is the possibility of using only one Rx buffer, even in the

presence of high PLR, which makes the use of HSLTP very

appealing in very high bandwidth-delay- product links, such as

optical links in space, especially when the receiver has

significant memory constraints.

The numerical results presented in the paper, achieved on a

GNU/Linux testbed running the latest version of ION, confirm

the validity of the approach. HSLTP is released as free

software and is already included in ION as an optional

extension of the ECLSA code.

ACKNOWLEDGEMENTS

The authors would like to thank maintainers of OpenFEC

for their open source codecs. A special thanks to Scott

Burleigh for ECLSA and HSLTP inclusion in ION as

“contrib” code and for his valuable and continuous support to

our research.

REFERENCES

[1] S. Burleigh, A. Hooke,, L. Torgerson, K. Fall, V. Cerf, R. Durst, K.
Scott H. Weiss, “Delay-tolerant networking: An approach to inter-

planetary Internet,” IEEE Communications Magazine, vol. 41, No. 6,

Jun. 2003, pp. 128–136.

10

[2] Internet Engineering Task Force DTN Working Group (DTNWG) web

site: https://datatracker.ietf.org/group/dtn/documents/ Accessed on: June
26, 2019.

[3] CCSDS DTN Working Group web site: http://cwe.ccsds.org/sis/

Accessed on: June 26, 2019.
[4] V. Cerf , A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall, H. Weiss

“Delay-Tolerant Networking Architecture,” Internet RFC 4838, Apr.

2007.http://www.rfc-editor.org/rfc/rfc4838.txt Accessed on: June 26,
2019.

[5] CCSDS 734.0-G-1, "Rationale, Scenarios, and Requirements for DTN in

Space,” 2010, https://public.ccsds.org/Pubs/734x0g1e1.pdf Accessed
on: June 26, 2019

[6] K. Scott, S. Burleigh, “Bundle Protocol Specification,” Internet RFC

5050, Nov. 2007, http://www.rfc-editor.org/rfc/rfc5050.txt Accessed on:
June 26, 2019.

[7] CCSDS 734.2-B-1, “Bundle Protocol Specification,” 2015.

https://public.ccsds.org/Pubs/734x2b1.pdf Accessed on: June 26, 2019
[8] A. Sabbagh, R. Wang, S. Burleigh, and K. Zhao, "Analytical Framework

for Effect of Link Disruption on Bundle Protocol in Deep-Space

Communications," IEEE Journal on Selected Areas in Communications
special issue on Advances in Satellite Communications, vol. 36, No. 5,

May 2018, pp. 1086-1096.

[9] G. Yang, R. Wang, A. Sabbagh, K. Zhao, and X. Zhang, "Modeling
Optimal Retransmission Timeout Interval for Bundle Protocol," IEEE

Transactions on Aerospace and Electronic Systems, vol. 54, No. 5,

October 2018, pp. 2493-2508.
[10] M. Ramadas, S. Burleigh and S. Farrell, “Licklider Transmission

Protocol – Motivation,” Internet RFC 5326, Sept. 2008. http://www.rfc-
editor.org/rfc/rfc5325.txt Accessed on: June 26, 2019.

[11] M. Ramadas, S. Burleigh and S. Farrell, "Licklider Transmission

Protocol – Specification,” Internet RFC 5326, Sept. 2008,
http:/www.rfc-editor.org/rfc/rfc5326.txt Accessed on: June 26, 2019.

[12] CCSDS 734.1-B-1, "Licklider Transmission Protocol (LTP) for

CCSDS”. 2015. https://public.ccsds.org/Pubs/734x1b1.pdf Accessed on:
June 26, 2019.

[13] Q. Yu, S. C. Burleigh, R. Wang and K. Zhao, "Performance modeling of

Licklider transmission protocol (LTP) in deep-space communication," in
IEEE Transactions on Aerospace and Electronic Systems, vol. 51, no. 3,

pp. 1609-1620, July 2015.

[14] Z. Yang et al., "Analytical characterization of Licklider transmission
protocol (LTP) in cislunar communications," in IEEE Transactions on

Aerospace and Electronic Systems, vol. 50, no. 3, pp. 2019-2031, July

2014.
[15] R. Wang, Z. Wei, Q. Zhang and J. Hou, "LTP Aggregation of DTN

Bundles in Space Communications," in IEEE Transactions on Aerospace

and Electronic Systems, vol. 49, no. 3, pp. 1677-1691, July 2013.
[16] R. Lent, "Analysis of the Block Delivery Time of the Licklider

Transmission Protocol," in IEEE Transactions on Communications, vol.

67, no. 1, pp. 518-526, Jan. 2019.
[17] G. Yang, R. Wang, S. C. Burleigh and K. Zhao, "Analysis of Licklider

Transmission Protocol for Reliable File Delivery in Space Vehicle

Communications With Random Link Interruptions," in IEEE
Transactions on Vehicular Technology, vol. 68, no. 4, pp. 3919-3932,

April 2019.

[18] S. Lin, D. Costello, M. Miller, “Automatic-Repeat-Request Error-
Control Schemes,” IEEE Commun. Mag., Vol.22, No.12, p5-17, Dec.

1984.

[19] V. Roca, C. Neumann and D. Furodet, "Low Density Parity Check
(LDPC) Staircase and Triangle Forward Error Correction (FEC)

Schemes,” Internet RFC 5170, June 2008. http://www.rfc-editor.org/

rfc/rfc5170.txt Accessed on: June 26, 2019.
[20] V. Roca, M. Cunche and J. Lacan, "Simple Low-Density Parity Check

(LDPC) Staircase Forward Error Correction (FEC) Scheme for

FECFRAME,” Internet RFC 6816, Dec. 2012. http://www.rfc-
editor.org/rfc/rfc6816.txt Accessed on: June 26, 2019

[21] T. de Cola, H. Ernst, and M. Marchese, “Performance analysis of

CCSDS File Delivery Protocol and erasure coding techniques in deep
space environments”, Comput. Netw. Vol.51, no.14, pp. 4032-4049,

Oct. 2007.

[22] T. de Cola and M. Marchese, "Reliable data delivery over deep space
networks: Benefits of long erasure codes over ARQ strategies," in IEEE

Wireless Communications, vol. 17, no. 2, pp. 57-65, April 2010.

[23] T. d. Cola, E. Paolini, G. Liva and G. P. Calzolari, "Reliability Options
for Data Communications in the Future Deep-Space Missions,"

Proceedings of the IEEE, vol. 99, no. 11, p. 2069, 2011.

[24] CCSDS, "131.5-O-1, “Erasure Correcting Codes for Near Earth and

Deep Space communications,” 2014. https://public.ccsds.org/Pubs/
131x5o1.pdf Accessed on: June 26, 2018.

[25] L. Shi et al., "Integration of Reed-Solomon codes to Licklider

transmission protocol (LTP) for space DTN," in IEEE Aerospace and
Electronic Systems Magazine, vol. 32, no. 4, pp. 48-55, April 2017.

[26] J. Jiao et al., "Reliable Deep-Space File Transfers: How Data Transfer

Can Be Ensured Within a Single Round-Trip Interval," in IEEE
Vehicular Technology Magazine, vol. 12, no. 4, pp. 86-94, Dec. 2017.

[27] N. Alessi, C. Caini, T. de Cola, M. Raminella, “Packet Layer Erasure

Coding in Interplanetary Links: the LTP Erasure Coding Link Service
Adapter”, accepted for publication in IEEE Transactions on Aerospace

and Electronic Systems, pre-print DOI: 10.1109/TAES.2019.2916271

[28] Sourceforge, "ION-DTN Delay-Tolerant Networking suitable for use in
spacecraft”, [Online]. Available: https://sourceforge.net/projects/ion-

dtn/. Accessed on: June 26, 2018..

[29] N. Alessi, S. Burleigh, C. Caini, T. De Cola, “Design and Performance
Evaluation of LTP Enhancements for Lossy Space Channels,” Wiley,

International J. of Sat. Commun. and Networking, pp.1-12 March 2018.

[30] G. Liva, E. Paolini and M. Chiani, "Bounds on the Error Probability of
Block Codes over the q-Ary Erasure Channel," in IEEE Transactions on

Communications, vol. 61, no. 6, pp. 2156-2165, June 2013.

[31] M.Raminella,“ECLSA enhancements to support the OpenFEC codec
library and to take advantage of it characteristic features,” undergraduate

thesis, University of Bologna, Italy, Feb. 2016. An excerpt is included in

the /contrib/ECLSAv2 directory in ION.
[32] INRIA, ISAE, OpenFEC web site: http://openfec.org/. Accessed on:

June 26, 2019.
[33] P. Apollonio, C. Caini, M. Giusti and D. Lacamera, "Virtualbricks for

DTN satellite communications research and education”, in Proc. of

PSATS 2014, Genoa, Italy, July 2014, pp. 1-14.
[34] C. Caini, A. d'Amico and M. Rodolfi, "DTNperf_3: A further enhanced

tool for Delay-/Disruption- Tolerant Networking Performance

evaluation," in Proc. GLOBECOM 2013, Atlanta, GA, US, 2013, pp.
3009-3015.

[35] CCSDS 132.0-B-2, TM Space Data Link Protocol, CCSDS Blue Book,

Issue 2, September 2015.
[36] CCSDS 131.0-B-3, TM Synchronization and Channel Coding, CCSDS

Blue Book, Issue 3, September 2017.

https://datatracker.ietf.org/group/dtn/documents/
http://cwe.ccsds.org/sis/
http://www.rfc-editor.org/rfc/rfc4838.txt
https://public.ccsds.org/Pubs/734x0g1e1.pdf
http://www.rfc-editor.org/rfc/rfc5050.txt
https://public.ccsds.org/Pubs/734x2b1.pdf
http://www.rfc-editor.org/rfc/rfc5325.txt
http://www.rfc-editor.org/rfc/rfc5325.txt
http://www.rfc-editor.org/rfc/rfc5326.txt
https://public.ccsds.org/Pubs/734x1b1.pdf
http://www.rfc-editor.org/rfc/rfc5170.txt
http://www.rfc-editor.org/rfc/rfc5170.txt
http://www.rfc-editor.org/rfc/rfc6816.txt
http://www.rfc-editor.org/rfc/rfc6816.txt
https://public.ccsds.org/Pubs/131x5o1.pdf
https://public.ccsds.org/Pubs/131x5o1.pdf
https://sourceforge.net/projects/ion-dtn/
https://sourceforge.net/projects/ion-dtn/
http://openfec.org/

