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— Delay-/Disruption-Tolerant Networking 

architecture relies on the use of Licklider Transmission Protocol 

(LTP) on interplanetary links. LTP loss recovery is based on 

ARQ retransmissions, which, when the propagation delay is very 

long, are costly. Alternatively, losses could be recovered by using 

Packet Layer Forward Error Correcting codes, as done by the 

authors in ECLSA (Erasure Coding Link Service Adapter), 

recently presented in a companion paper, where LTP segment 

retransmissions are limited to the unlikely case of decoding 

failures. However, on high bandwidth-delay-product links, the 

very possibility of segment retransmission requires that a huge 

number of Rx buffers be available. To resolve this problem, 

High-Speed LTP (HSLTP), presented here, has a more disruptive 

approach than ECLSA: it enforces almost one-to-one 

correspondence between LTP blocks and FEC codewords, and 

never requires LTP segment retransmissions. In the unlikely case 

of a FEC failure, the partially received block is discarded and its 

bundles are resent directly by the Bundle Protocol. The 

advantages and disadvantages of this approach are explored in 

the paper. On nodes limited in memory the results are 

significantly improved. 

 

Index Terms— IPN, DTN, LTP, ARQ, PL-FEC, LDPC, ECLSA. 

I. INTRODUCTION 

PACE networks are affected by long delays, link 

intermittency, link losses and asymmetric bandwidth. 

Some twenty years ago, researchers at NASA JPL, under 

Vinton Cerf’s guide, realized that these challenges required 

the definition of a new architecture, the IPN (InterPlanetary 

Networking). IPN was soon renamed DTN (Delay-

/Disruption-Tolerant Networking), when it appeared clear that 

many of the space challenges are actually common to 

terrestrial “challenged networks” (wireless sensor networks, 

underwater networks, emergency networks, and 

communications in remote or hostile environments) [1]. Space 

communications, however, are still the driver for DTN 

research and standardization. The latter started under the IRTF 

umbrella, but now is carried on in parallel by IETF [2] and for 

space applications by CCSDS [3]. 

DTN architecture [4], [5] is based on the insertion of a new 

layer, the Bundle Layer, between Application and other lower 

layers, usually Transport [6], [7]. This new layer acts as an 

overlay and splits the path between sender and destination into 
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multiple DTN hops. DTN nodes can store “bundles” (packets 

at the homonymous layer) for long periods, to cope with link 

intermittency and network partitioning. Moreover, 

transmission reliability can be enhanced at bundle layer by 

means of the custody transfer option, which consists in bundle 

retransmission upon timer expiration. This option is 

particularly appealing when the underlying Transport protocol 

is unreliable (e.g., UDP) [8], [9] at least on one DTN hop. 

delays, losses, link intermittency and bandwidth asymmetry 

are be tackled inside each DTN hop by specialized protocols, 

such as LTP (Licklider Transmission Protocol) in 

interplanetary links [10], [11], [12]. In this respect, the 

scientific community has dedicated quite some attention to the 

performance modeling of LTP [13], [14], [15] and also 

elaborated significant theoretical models to getter deep insight 

into LTP dynamics as discussed in [16] and [17].  

LTP can provide both a reliable and an unreliable service 

with red and green parts, respectively. Focusing on the former, 

loss recovery of LTP segments is based on an ARQ 

(Automatic Repeat Request) scheme [18]. Thanks to its 

ingenious design, loss recovery of an entire LTP session (the 

transmission of one LTP block) can often be completed in one 

RTT, if there are no further losses on retransmitted segments. 

However, on interplanetary links even a single RTT greatly 

penalizes delivery time, because the propagation delay is long 

(from 3 to 20 min, from Earth to Mars). This makes the use of 

Packet Layer FEC coding (PL-FEC) very appealing, as it 

could limit the need for LTP segment retransmissions to the 

rare case of decoding failure. 

There is abundant literature and some RFCs [19], [20] on 

the use of erasure codes at packet layer for different purposes. 

PL-FEC must be considered complementary and not 

alternative to the almost ubiquitous physical layer channel 

coding: PL-FEC is used to recover the datalink frame losses 

resulting from residual bit errors after channel FEC decoding 

(a frame that does not pass the parity check is entirely 

discarded). On space channels, the first studies on PL-FEC 

date back to 2007 ([21], then extended in [22]). Their use in 

combination with LTP was first examined in [23], by 

comparing this choice to other solutions, then proposed in the 

CCSDS Orange Book [24] and then in [25] and [26]. 

Dealing with LTP and PL-FEC, two approaches are 

possible: segment oriented or block oriented. In both LTP 

segments are treated as information symbols of a codeword, in 

the former the PL-FEC encoder is unaware of LTP block 

boundaries and thus it can naturally treat all LTP segments, 

either data or signaling, in the same way. The disadvantage is 
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that having no notion of LTP blocks, it needs the introduction 

of aggregation timers (with related delays and complex 

settings) to stop filling a codeword in the absence of new data. 

An extensive description of this approach was given by the 

present authors in a previous companion paper, devoted to 

ECLSA (Error Correcting Link Service Adapter) [27]. The 

block oriented approach, by contrast, preserves the boundaries 

of LTP blocks, coding each LTP block into a new codeword, 

as done in [25], [26]. One significant advantage is that 

aggregation timers are no longer necessary, but there are also 

two disadvantages. First, mapping one LTP block into one 

codeword requires the use of a FEC code that can fit the 

variable dimension of blocks. Second, the treatment of LTP 

signaling segments is an issue, as they need to be protected 

against losses even more than data segments do, but they are 

often transmitted apart (e.g. in case of retransmissions, or 

confirmations), or in the reverse direction. 

The idea behind High-Speed LTP (HSLTP), presented in 

this paper, is that of going further with the link between LTP 

blocks and codewords pursued by the block-oriented 

approach, by interpreting the binary result of a codeword 

decoding (success or failure), as the result of the 

corresponding LTP block transfer (completed or canceled). In 

HSLTP retransmissions of single segments are no longer 

necessary, because in the unlikely event of a decoding failure, 

the partially received block is discarded and reliability is 

delegated to bundle retransmissions. As it will be shown in the 

paper, the biggest advantage is that by having eliminated the 

reception of incomplete blocks it possible to eliminate all LTP 

Rx buffers but one. This may be of paramount importance on 

high bandwidth delay product links, such as optical links in 

space, especially when the receiver node is memory-

constrained, as often in space assets. 

Despite its disruptive content (all LTP segment 

retransmissions are eliminated), HSLTP has been 

implemented in an evolutionary way, as an optional extension 

of the ECLSA code already present in ION (the NASA JPL 

implementation of DTN protocols [28]). Numerical results, 

obtained on a GNU/Linux testbed, are presented at the end of 

the paper to compare HSLTP performance with that 

achievable using ECLSA (below LTP) or LTP alone. They 

confirm the validity of the proposed approach. 

II. THE  LICKLIDER TRANSMISSION PROTOCOL (LTP) 

A key element of DTN architecture is that the introduction 

of the Bundle layer confines the Transport layer scope to one 

DTN hop. This is essential in space and in other 

heterogeneous networks as it permits the use of different 

transport protocols on different DTN hops, in order to tackle 

different channel impairments (Figure 1). While on Earth and 

likely on other planets (e.g. Mars) TCP could still be used, on 

interplanetary links it must be replaced by a specialized 

protocol, such as LTP. The interfaces between BP and the 

lower layer (usually Transport) are called “Convergence Layer 

Adapters”, (CLAs) as the name “Convergence layer” is 

commonly used to define the protocol below the BP (e.g. LTP, 

TCP etc.).  

 
Figure 1: DTN architecture protocol stack. 

A. LTP main features 

LTP is the convergence layer of choice on interplanetary 

links [10], [11], [12], as it minimizes interaction (“chattiness”) 

between transmitting and receiving engines. LTP runs on top 

of UDP in test beds or on CCSDS space protocols in real 

deployments. In the following, we will assume UDP below 

LTP for the sake of exposition clarity, without loss of 

generality. LTP can offer both reliable and unreliable services, 

with “red” and “green” parts respectively. Let us focus on red 

parts and list the key features that differentiate LTP from TCP 

[29], most of which aim to minimize chattiness. 

 No connection-establishment phase, such as TCP 3-way 
handshake. 

 Rate based transmission speed. 

 Unidirectional data flow (the reverse channel is used 
only for signaling) to cope with possible channel 
asymmetry. 

 One or more bundles may be aggregated by LTPCL [7] 
in one LTP “block”; blocks are transmitted by 
independent LTP “sessions” running in parallel to fill the 
Bandwidth Delay Product (BDP). 

 An LTP block is usually split into a number of smaller 
LTP “segments”, each passed to UDP, or other CCSDS 
space protocol; 

 In contrast to TCP, segment acknowledgments (LTP 
“report segments”) are triggered only by data segments 
flagged as “checkpoints”, usually at the end of a block. 

B. LTP sessions without losses 

For a better description of LTP session mechanisms, it is 

necessary to introduce some examples. Let us begin with the 

simplest one, which considers a session without any loss 

(Figure 1). When the export session starts, all the segments of 

the LTP block are sent; the last data segment plays a double 

role, because it also carries signaling information, being 

flagged as EORP (End Of Red Part), EOB (End Of Block), 

and CP (Checkpoint) [11]. The arrival of the first segment 

opens the import session, while the arrival of the last, flagged 

as CP, triggers a Report Segment (RS), confirming data 

received, i.e. the full block in this case. As the block is 

completed, the bundles contained in it are delivered to BP 

(multiple small bundles can be aggregated into one LTP block 

by LTPCL to reduce overheads) and the Rx buffer is 

deallocated (in the latest ION versions, 3.6.x). RS reception 

confirms the CP and is in turn confirmed by a RA (Report-
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ACK). As all segments are confirmed, the Export session is 

closed. When the RA arrives at receiver, the import session is 

closed. 

If the RTT is long, as in space links, block transmission and 

processing times are dominated by the propagation delay. In 

this case, the delivery time is roughly equal to one-half RTT, 

and both the export and import session lifetimes equal to 1 

RTT. This proves that LTP is ideal in the absence of losses, 

because both delivery time and the minimum time for reliable 

delivery (i.e. for receiving an acknowledgment of the 

transmitted data), coincide with their theoretical minima. 

 

Figure 2: Example of LTP session (red-data only) in ideal conditions (absence 
of losses). 

C. LTP sessions with losses 

Now we are ready to examine a second example (Figure 3), 

which considers losses on both data and signaling segments to 

highlight their different impact on delivery time. The loss of 

the CP piggybacked on the last segment (#N) stalls the 

communication until the corresponding Retransmission Time 

Out (RTO) expires, forcing a new sending (CPs, RSs, and 

other signaling segments are always retransmitted unless 

confirmed in time). CP reception triggers a partial RS, 

confirming all data but segments #2 and #3, which were lost 

as well but the sender could not know. These two segments 

are retransmitted, #3 being flagged as CP. Their arrival 

completes the block, and everything goes on as in the ideal 

case. 

A key difference from TCP is that pure data segments (i.e. 

those not flagged as CP) when lost (#2 and #3) are 

retransmitted together, in one retransmission cycle. As a 

result, the overall time penalty is one RTT, independently 

from the number of losses. One RTT for all losses is an 

excellent result for LTP, as it is the theoretical minimum for 

ARQ based recovery. Of course, if any retransmitted segment 

is lost, a further round of retransmission is necessary, with an 

additional RTT, and so on, but this should happen rarely, at 

least for low Packet Loss Rates (PLR). 

Considering “pure” signaling segments, such as RSs or 

RAs, or mixed segments, i.e. CPs, the impact of losses is 

worse. This because their penalty time, one RTO (just a little 

longer than one RTT), adds to the delay due to retransmission 

of other segments, as in Figure 3. This has led to the 

development of an enhanced version of LTP [29], where the 

user can introduce a variable amount of replication to protect 

signaling segments against losses. This enhanced LTP version 

has now become the standard in current ION releases. 

 

Figure 3: Example of LTP session (red-data only) in the presence of mixed 

losses (#2, #3 and #N). The loss of the CP piggybacked on #N stalls the 

communication until the corresponding RTO expires. The time penalty (one 
RTO) adds to the delay due to retransmission of other segments. 

D. LTP sessions and buffers 

Each LTP block is independently transmitted during a 

single LTP session, and to fill the BDP more concurrent 

sessions are allowed and also necessary. For blocks sent as 

“red”, it is necessary to have one Tx buffer and one Rx buffer 

for each on-going session. The former is necessary to resend 

missing segments, the latter to store received segments until 

the whole block is received. It is necessary to examine the 

ION implementation in detail, because there are important 

differences between Tx and Rx buffers, concerning the actual 

use of memory.  

1) Tx buffers 

At sender side the Tx buffer cannot be released until the 

associated session ends, i.e. when the final RS arrives, 

signaling the successful arrival of the whole block. It is worth 

noting that thanks to ION’s “zero-copy” feature [28], which 

makes it possible to rebuild lost LTP data segments directly 

from the original bundle(s) still stored by BP, only one small 

subset of segments sent is actually saved in the Tx buffer, 

namely only those subjected to retransmissions caused by 

RTO timer expirations, i.e. signaling segments and CPs. This 

clever mechanism of ION greatly alleviates memory 

consumption at Tx side. 

2) Rx buffers 

This time all segments must be stored, as it is clearly 

impossible to make use of the zero-copy mechanism at Rx 

side, as by definition the bundles contained in the block are 

yet not available. The Rx buffer of a session can be released 

when all segments have arrived, i.e. before the end of the 
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import session, which requires the final RS to be confirmed by 

its RA, i.e. an additional RTT (see Figure 2). Old versions of 

ION did not exploit this, and Rx buffers were released only at 

the end of a session, as at Tx side. In contrast, the latest ION 

versions (3.6.x) release the Rx buffer as soon as a block is 

completed to counteract the possible loss of the last RA [29]. 

With this enhancement, the Rx buffer can be immediately 

reused by following blocks if any (original blocks are sent 

sequentially, only retransmitted segments). 

E. BDP and buffers 

The number of parallel sessions should be set according to 

the bandwidth delay product (BDP) of the link (plus other 

parameters, such as loss probability). The larger the BDP, the 

higher the number of parallel sessions necessary to “fill the 

channel” (calculating the optimal number, however, is far 

from easy, especially with losses, see ION documentation 

[28]). On interplanetary links the delay is huge with available 

bandwidth continuously increasing thanks to technology, thus 

memory at Rx side (especially on space assets which are more 

easily memory constrained because of the higher cost of 

memory robust against space radiations) can become a 

limiting factor if not properly counteracted. To have an idea of 

the problem, consider that on an Earth-Mars link, with 46min 

of RTT (the worst case) and 500Mbit/s (optical link) we 

would have a BDP of 172 GB. ION alleviates this problem by 

not requiring Rx buffer to be entirely kept in RAM, but on the 

other hand disk access is slower. In spite of this optimization, 

it is clear that the Rx buffers still pose a serious challenge to 

future high-speed links when the receiver is memory-

constrained. 
 

III. ECLSA ESSENTIALS 

This section aims to provide the reader with a concise 

description of ECLSA, from which HSLTP derives. For 

clarity of exposition, we will assume here and in the rest of the 

paper that ECLSA is put below LTP, although it could 

theoretically work also with other upper protocols. For a 

comprehensive treatment, see [27]. 

A. ECLSA as a Link Service Adapter 

ECLSA, like all other link service adapters fits between 

LTP and lower protocols, such as UDP. However, ECLSA is 

not just a mere interface, but a true intermediate protocol that 

provides PL-FEC service to LTP. In Figure 4 the protocol 

stack of two DTN node using LTP with ECLSA is shown. On 

top we have the BP application that provides the message to 

be sent; this message is encapsulated in one bundle, then the 

bundle is possibly aggregated with other bundles into one LTP 

block. The block is then segmented and LTP segments are 

passed to ECLSA, which adds redundancy segments; all 

segments are eventually passed to UDP, which encapsulates 

each segment into one packet and so on towards lower layers; 

vice versa at receiving side. 

Bundle Protocol 

LTP

ECLSA

UDP

Lower layers

Bundle Protocol 

LTP

ECLSA

UDP

Lower layers

BP ApplicationBP Application

 
Figure 4: The protocol stack of two DTN nodes sing ECLSA on top of UDP 

(From [27]). 

B. PL-FEC in ECLSA 

The core of ECLSA is the PL-FEC encoding. A schematic 

description of the process is shown in Figure 5 (see [27] for a 

more rigorous treatment). We assume the use of a (N, K) code 

(N is the number of symbols of a codeword, i.e. is length, K 

the number of information symbols, Rc= K/N the code rate). 

At Tx side, each LTP segment is essentially treated as an 

information symbol of a codeword. In details (not reported in 

the figure), after adding a 2B header, it is inserted into arrow 

of an N x T “coding matrix”, where T-2 is the maximum 

length in B of an LTP segment (if the LTP segment is shorter, 

a few padding bytes are added). The K information symbols 

(matrix rows) are then coded, by means of a PL-FEC coder, 

which calculates the M=N-K redundancy (or “repair”) 

symbols. Each symbol is then passed to a lower layer, such as 

UDP. On the Rx side, because of losses on the channel, L 

symbols are missing (crossed packets); the PL-FEC decoder 

tries to recover all K information symbols from the N-L 

arrived symbols. On ideal codes, i.e. Maximum Distance 

Separable (MDS) codes , the condition for a successful 

decoding is that losses are no more than redundancy symbols 

(i.e. it is enough that at least K segments arrive, whether of 

information or redundancy) [30], while on most real codes, 

e.g. LDPC, a small margin is required. If the decoding is 

successful, all K information symbols are recovered and 

passed to LTP (after removing the 2B header and padding 

bytes if present), otherwise only a subset. In this latter case, as 

ECLSA is transparent to LTP, the missing segments will be 

recovered by LTP usual mechanisms. 
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Figure 5: Simplified picture of PL-FEC logical process in ECLSA (From 

[27]). Tx side steps, on the left, are performed by ECLSO, those on Rx side, 
on the right, by ECLSI. 

ECLSA makes use of alternative external libraries to 

perform erasure coding and decoding, LibecDLR and 

OpenFEC [32]. LibecDLR uses the LDPC Irregular-Repeat-

Accumulate (IRA) family (see the CCSDS Orange book [24]), 

while OpenFEC relies on LDPC Staircase and LDPC Triangle 

codes (see RFC 5170 [19]). Although they use different LDPC 

codes, both of them can support the N and K values specified 

in the CCSDS Orange book. 

C. ECLSA implementation 

Our ECLSA implementation in ION consists of two 

processes, ECLSO and ECLSI, corresponding to Outduct and 

Induct channels (left and right sides of Figure 5). Each 

consists of three threads, as shown in Figure 6: ECLSA 

implementation: ECLSO (left) and ECLSI (right) threads.  

a) ECLSO threads  

The first thread of ECLSO (left) is “matrix filling from 

LTP”. Its task is to put each segment passed by LTP into a 

new row of the coding matrix. This filling process stops (i.e. 

the matrix is “closed”) when either the matrix is full (K 

information segments have arrived), or when an aggregation 

time expires. In the latter case the number of segments arrived, 

I, i.e. of rows filled, is less than the nominal K. An option (“K 

continuous”) allows a code with K=I to be created on the spot. 

In ECLSA the filling process is transparent to LTP and block 

boundaries are not considered at all. Once the matrix is 

“closed”, the “Matrix Encoding” thread adds the redundancy 

symbols in the last N-K rows, thus forming the (N,K) 

codeword. Finally, the “Matrix Passing to UDP” adds an 

ECLSA header to each symbol then passes it to UDP. 

b) ECLSI threads 

On the receiving side (right) ECLSI performs dual 

operations. From the bottom, the “matrix filing from UDP” 

thread for each ECLSA packet received from UDP removes 

the ECLSA header and fills it in the correct coding matrix. 

Once “closed” the matrix is passed to the “Decoding Matrix 

process”, which tries to fill in any gaps in the K information 

rows; finally, the “Matrix passing to LTP” thread delivers all 

information symbols available (either received or recovered) 

to LTP. 

Many other aspects ECLSA, although significant, are 

beyond our scope and, again, the interested reader is referred 

to [27] and [31]. 

Matrix filling from LTP

ECLSO

Packet Erasure Channel

LTP

Matrix encoding

Matrix passing to UDP

UDP (or CCSDS)

Matrix passing to LTP

LTP

Matrix decoding

Matrix filling from UDP

UDP (or CCSDS)

ECLSI

 
Figure 6: ECLSA implementation: ECLSO (left) and ECLSI (right) threads. 

D. ECLSA: advantages and limits 

In brief, the ECLSA link service adapter protects LTP 

segments using a systematic FEC code: if decoding succeeds, 

all losses on the K information symbols are recovered; 

otherwise, residual losses are left to LTP to recover. 

ECLSA is segment-oriented, thus it is conscious of 

segments but has no concept of LTP block boundaries (it 

could in fact be used with other protocols as well). An obvious 

advantage of the segment-oriented approach is that signaling 

and retransmitted segments are naturally inserted into an 

ECLSA matrix together with data segments from successive 

blocks, so they are naturally protected by FEC. As detailed in 

section II.C and in [29], losses on signaling segments are 

worse than on ordinary data segments, thus FEC protection is 

essential. The same holds true for retransmitted segments. 

To summarize, on an erasure channel with significant 

Packet Loss rate (PLR), ECLSA offers these advantages: 

a) It greatly reduces delivery time by making 

retransmissions unlikely. 

b) It eliminates delivery time dependency on LTP block 

dimensions (for a given PLR, the greater the block, the longer 

the expected delivery time, due to the higher probability of 

multiple retransmission cycles). 

c) It almost eliminates block delivery time variability 

caused by random losses. In LTP, “lucky” blocks with no 

losses can be delivered in 0.5 RTT, “unlucky” ones require 

one additional RTT for each retransmission round. When RTT 

is in the order of minutes, this sort of “jitter” is a significant 

disadvantage, as it cannot be easily compensated by buffering, 

as on Earth. 

The disadvantages are: 

a) First, on high-speed interplanetary links the Rx buffer 

problem remains unresolved. 

b) ECLSA aggregation timers are rather complex to set, as 

proper settings depend on matrix dimensions and link 

characteristics [33]. They also contribute to FEC processing 

time. 
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IV. HIGH-SPEED LTP (HSLTP) 

A. Motivation 

The principal aim of HSLTP is to reduce LTP buffering 

needs, and so allow full exploitation of bandwidth available on 

high-speed interplanetary links (this justifies the “high-speed” 

prefix).  

HSLTP abandons the segment-oriented approach of ECLSA 

in favor of a block-oriented one. It enforces almost one-to-one 

correspondence between LTP blocks and ECLSA coding 

matrixes: each LTP block is now fully contained in one matrix 

and each matrix cannot contain more than one LTP block (but 

signaling segments can still be aggregated to a block and also 

matrixes of signaling segments only can exist). This has two 

key advantages: 

1) Decoding state interpreted as state of the session 

The decoding state (success or failure) of a matrix 

containing a block can now be interpreted as the state of the 

session (successful closing or cancellation). If successful, as 

likely, the whole block is passed to LTP with no need for 

retransmission; otherwise, HSLTP immediately cancels the 

session. In this case, to ensure reliability, HSLTP uses a 

mechanism already present in ION, by which once BP is 

informed of a convergence layer failure, it immediately 

retransmits all bundles involved. In our case, the session 

cancellation triggered by the decoding failure will force BP to 

retransmit all bundles contained in the canceled-session block 

from scratch (i.e. by building a new block a starting a new 

session). The first key advantage of HSLTP is that 

independently of decoding state it never retransmits single 

LTP segments, thus one Rx buffer is sufficient, which solves 

the problem of Rx buffers. The disadvantage is that in case of 

decoding failure, an entire (new) block has to be transmitted 

(in a new LTP session) instead of a few segments (in the still 

on-going LTP session). FEC failures, however, should be rare, 

and as HSLTP is designed for high-speed links, where 

bandwidth should be relatively abundant, the price could be 

well worth paying, especially when the receiver is memory-

limited. 

2) Processing time reduction, simplification of settings 

The second significant advantage of HSLTP is the 

simplification of ECLSO timer settings and the related 

reduction of processing time, as it is no longer necessary either 

to wait for a (potentially large) fixed-dimension matrix to be 

completely filled, or for the ECLSA aggregation timer to 

expire. In HSLTP the coding matrix is immediately closed as 

soon as the last segment of the block is passed by LTP and a 

codeword of the right dimension is built on the spot (see “K 

Continuous Mode”, in [31][31]). 

B. An example of HSLTP flow 

A successful block transfer is presented at the top of Figure 

7. LTP block 1 (containing bundles a and b) is sent and the 

corresponding codeword is correctly decoded at Rx side in 

spite of the possible loss of a few segments; all K information 

segments of the block are immediately passed to LTP. The 

newly opened import session, is immediately closed after a 

final RS is sent, confirming successful arrival of the full block, 

without waiting for the corresponding RACK, which 

immediately allows HSLTP to reuse the Rx buffer in all ION 

versions. At Tx side, the export session is closed on arrival of 

the final RS and BP is notified by the LTPCL of the successful 

transfer of bundles in block 1 (i.e. bundles a and b). This is 

what usually happens. Then a case of failure is shown, with 

bundle retransmission by BP, using a new LTP block and a 

new session. In detail, LTP block 2 (containing bundles c and 

d) is sent but decoding fails because there are too many losses. 

The new import session is immediately canceled and a Cancel 

Segment (CS) is sent back. The Rx buffer is immediately 

released in this case too. On Tx side CS reception triggers the 

cancellation of the export session and LTPCL notifies the BP 

of the transmission failure of all bundles that were aggregated 

in block 2 (bundles c and d). In response, BP immediately 

resends these bundles to LTPCL: they are aggregated in block 

3 and a new export session is opened. This time decoding is 

successful and all continues as for block 1.  

Note that in HSLTP the RS triggered by the CP at the end 

of a block is always “final”, i.e. it always acknowledges all 

segments, as it is sent only in case of successful decoding of a 

full block. 

In case of decoding failure and consequent bundle 

retransmission, the bundle delivery time increases by one RTT 

(Figure 7), as with ECLSA. As said, the main advantage of 

HSLTP is that, success or failure, the Rx buffer is immediately 

available for subsequent sessions. Finally, note that in both 

HSLTP and ECLSA an optional feedback mechanism 

temporarily increases redundancy in response to a decoding 

failure. This considerably reduces the chances of consecutive 

failures on the same blocks. 

 
Figure 7: An example of HSLTP flow. LTP block 1 decoding is successful; 

the new import session opens and closes immediately, while the export 
session closes after the arrival of RS confirming reception of all segments. 

Block 2 decoding fails, however, due to too many losses causing closure of 

new import session. Export session canceled on arrival of CS. Block 2’s 
bundles are resent by BP after aggregation in block 3, a new session starts and 

terminates successfully. Bundle retransmission increases total delivery time 

by just one RTT. 
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V. AN EVOLUTIONARY APPROACH TO HSLTP 

IMPLEMENTATION 

HSLTP can be seen in two ways: either as a new protocol, 

derived from LTP but no more compliant with LTP specs (e.g. 

segment retransmissions are eliminated), or as a derivative of 

ECLSA. As the former, it could be implemented as a brand-

new integrated module; as the latter, it could be implemented 

incrementally, to exploit the existing code of both LTP and 

ECLSA as much as possible. As HSLTP is an experimental 

protocol, we preferred this evolutionary approach and 

managed to implement HSLTP by modifying only two threads 

of ECLSA (the interfaces from and to LTP). In this way we 

left LTP code totally unaltered, which facilitates both code 

maintenance and protocol configurations. In our 

implementation, HSLTP can be activated simply by setting the 

“HSLTP enabling interface” option of ECLSA. More 

generally, the user can easily switch between LTP alone, or 

LTP with ECLSA, or HSLTP simply by modifying very few 

essential settings. 

The modifications introduced to ECLSA interface to LTP 

are shown below. As will be evident, they required an in-depth 

study of both LTP standard and ION implementation. 

A. Block-aware modifications 

On the transmitting side, the main difference between 

HSLTP and ECLSA is that HSLTP is block-aware and needs 

an almost one-to-one correspondence between LTP blocks and 

FEC codewords. To this end, is necessary to modify the 

“matrix filling from LTP” thread of ECLSO, to stop the matrix 

filling of a coding matrix at the end of a block. This however, 

is not sufficient, because LTP signaling segments (RS, RA, 

CS, CAS etc. [11]) belong to a session but not to a block; they 

too need to be inserted into a coding matrix, and possibly sent 

alone, i.e. in a codeword that does not contain any block, if 

necessary.  

Our solution consists in reading the “type” [11], of the LTP 

segment passed by LTP: to infer if the segment is the last of a 

block (flagged as EOB); to infer if it is a normal data segment, 

or is a pure signaling segment. The segment tagged as EOB 

always stops the filling process. The other types are used to 

distinguish whether a coding matrix contains either only 

signaling segments, or only data, or signaling segments 

followed by data. In the first case, a “signal only aggregation” 

timer is necessary to avoid waiting for a block (and its EOB) 

that may never arrive. This timer setting must be short, to 

avoid excessive delay on signaling segments. Setting is easy, 

at it is completely independent of code or channel 

characteristics. 

The old conditions for matrix closure are preserved (matrix 

full and data aggregation timer elapsed), for safety reasons 

only, as they should normally never be enforced in HSLTP. 

An option can be activated to enable proactive fragmentation 

of bundles, to prevent the block from being so large as not to 

fit in the maximum K allowed by ECLSA settings. 

B. Decoding failure: cancellation of import session  

On the receiver side, HSLTP needs the success/failure of 

FEC decoding of a codeword to correspond with the 

successful closure/cancellation of the corresponding LTP 

session. For convenience, we will start from unsuccessful 

decoding, assuming for the sake of generality that there are 

some signaling segments followed by a full block in the 

codeword. 

A decoding failure means that there will be residual gaps in 

the K information symbols of the received codeword. As 

mentioned, in HSLTP there is no attempt to recover these 

residual losses using the usual LTP mechanisms. What 

HSLTP does is as follows: first, all signaling segments 

(always from previous sessions) must be passed to LTP. Then, 

it is necessary to make LTP cancel the newly opened import 

session, instrumental so as not to keep engaged the Rx buffer. 

To trigger immediate cancellation without modifying the LTP 

code, we decided to disguise LTP by inserting a locally 

generated “miscolored” segment. Details below for the benefit 

of readers expert in LTP. 

a) Implementation details 

On receiving the first data segment of a codeword when 

decoding has failed, the “passing matrix to LTP” thread of 

ECLSI (when the “HSLTP enabling interface” is on) triggers 

session cancellation by passing the received segment to LTP 

as usual, but followed by a locally generated clone with the 

LTP “color” inverted (“green” instead of “red”). This second 

segment is recognized by LTP as “miscolored”, which causes 

immediate cancellation of the newly opened import session. 

This cancellation is notified to the sender LTP engine by the 

usual LTP mechanisms, i.e. by means of a CS that triggers the 

export session cancellation at its arrival (see Figure 3).  

C. Decoding success: immediate closure of the import session 

Let us now consider successful decoding. Signaling 

segments, if any, are passed to LTP, then the first data 

segment causes the opening of a new import session as before, 

but this time the session is not canceled and all data segments 

are stored one-by-one in a new Rx buffer. As successful 

decoding means no gaps in the received block, the bundles 

contained can be passed to BP and the Rx session closed 

immediately, after sending the final RS, confirming the 

successful arrival of the block to the sending engine, without 

waiting for the final RA. This is instrumental to immediate 

release of Rx buffer, even in old ION versions. To trigger the 

immediate closure of the import session, without modifying 

the LTP code, we decided to disguise LTP by inserting a 

locally generated fake RA. Details below for expert readers. 

a) Implementation details 

When the HSLTP enabling interface is set, the “matrix 

filling from LTP thread” of ECLSO intercepts the final RS, 

which acknowledges successful reception of the full block. 

This RS is still sent back to confirm the full block arrival, but 

also triggers the local insertion of a fake RA. For LTP this 

appears to be a genuine RA and consequently it closes the 

session. 

As RAs are no longer necessary in HSLTP, their dispatch 

can be disabled by a debug feature introduced in LTP 

enhanced. 



8 

 

 

Finally, to protect the final RS against possible losses (its 

arrival is necessary to confirm successful delivery of the block 

and consequent export session closure, see Figure 3), it can be 

adequately protected by replication, as shown in [29]. In the 

theoretical case that all copies are lost, HSLTP triggers 

cancellation of the export session when the RTO of the 

unconfirmed CP expires. The same remarks apply to the CS 

sent to the Tx engine in case of FEC failure, considered above. 

VI. PERFORMANCE EVALUATION 

We evaluated performance of HSLTP and other benchmark 

techniques (ECLSA [27] and LTP enhanced [29]) using a 

GNU/Linux virtual testbed, built and managed by 

Virtualbricks [33]. ION 3.6.2 [28] was installed on all virtual 

machines and DTNperf was [34] used to generate series of 

bundles of desired dimensions (100 kB). The codes used here 

are the LDPC Scalar provided by OpenFEC [32]. The LTP 

maximum segment size is of 1022, which leads to a coding 

matrix row length of T=1024, by allowing 2B to insert the 

actual LTP segment length [27]). As pointed out in the 

previous sections, LTP segments are in turn encapsulated into 

UDP/IP datagrams. As to physical layer processing operations, 

it is assumed that LDPC channel coding is applied to a stream 

of sync-marked transfer frames according to the CCSDS TM 

[36] specifications, similarly to what also taken as reference in 

the companion paper [27]. 

Finally, a data rate of 10 Mbit/s is considered and packet 

error rates (PER) of 10% and 15% have been taken into 

account in the performance analysis for the sake of the 

exemplification. A more detailed investigation about ECLSA 

performance with different codes (LDPC IRA provided by 

LibecDLR) and against different values of PER is provided in 

[27], which the interested is referred to. 

A. Immediate closing of LTP import session 

This scenario aims to evaluate the HSLTP performance 

improvement that may derive from immediately releasing the 

Rx buffer. This is particularly important on nodes with 

memory constraints, like most nodes in space. 

As an extreme example, we assumed that there is only one 

buffer at Rx side. In LTP (and in ECLSA) the maximum 

number of export sessions is obliged to be the same as the 

number of Rx buffers available on the receiver, thus we can 

have only one export session. This means that we can send 

bundles only one by one, after the previous import session has 

closed, which ideally, with no losses, takes one RTT. By 

contrast, in HSLTP this symmetry constraint is released. The 

import session is always opened and closed immediately (what 

is more, independently of decoding success or failure), which 

allows the unconditional reuse of the sole Rx buffer, and thus 

the transmission of multiple blocks in sequence. 

With no symmetry constraint, we set a maximum of 15 

export sessions for HSLTP, instead of only one for LTP and 

ECLSA.  

Of the many experiments done, only the two most 

significant are reported here. 

1) One Rx-buffer, PLR=10% 

The first experiment (Figure 8), considers the transfer of ten 

bundles generated simultaneously. The PLR is high (10%), but 

below the recovery capabilities of the FEC code used (about 

11% with Rc=8/9 assuming ideal performance). The elapsed 

time is normalized to RTT for analysis convenience (here 

RTT=6s). We have four series: the first, on the y-axis, refers 

to bundle generation, the other three to the delivery times 

achieved by HSLTP, ECLSA and LTP. The superiority of 

HSLTP is immediately evident; its delivery time is only 

marginally longer than one-half RTT, the theoretical minimum 

without retransmissions. This proves that HSLTP processing 

time is already negligible for a propagation delay of only 3 s 

and that, more importantly, that all LTP blocks have been 

successfully recovered by the FEC mechanism, as expected. 

The same perfect recovery is also present in the ECLSA 

series, as shown by the regular intervals between consecutive 

markers, here almost equal to one RTT, i.e. the minimum 

duration of a Tx/Rx session. Last, in the LTP case, delivery 

time is further penalized by retransmission cycles of lost LTP 

segments (at least one RTT penalty for each additional 

retransmission cycle). In conclusion, in the presence of 

significant memory constraints, which could severely limit the 

number of Rx buffers, the advantage of HSLTP is outstanding. 

 
Figure 8: Performance comparison between HSLTP, ECLSA and LTP 

enhanced (with signal replication burst=3). Delivery series as a function of 
time elapsed. PLR=10% (on the forward link only); Rc=8/9; #Rx buffers=1; 

#Tx buffers=15 for HSLTP, 1 for others]. In HSLTP all bundles are delivered 

after about one-half RTT (no bundle retransmissions). 

2) One RX buffer, PLR=15% 

The second experiment (Figure 9) is the same, but with 

PLR=15%, which is deliberately a little higher (+2.5%) than 

code recovery capabilities. As a result, decoding may 

occasionally fail, as happens in HSLTP for blocks containing 

bundles 4 and 9. Each failure triggers session cancellation and 

bundle retransmission in a new successful session. The 

delivery time becomes only marginally longer than 1.5 RTTs, 

the theoretical minimum in case of retransmissions. By 

contrast, for ECLSA decoding fails for bundles 7 and 9, but in 

this case single LTP segments are retransmitted (those not 

previously recovered by FEC). The retransmission cycle 

requires about one RTT as before. Last, for enhanced LTP, 

segments lost are no longer protected by FEC so must all be 

retransmitted. The PLR is high, so the average number of 
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retransmission cycles, is greater than with ECLSA, and this 

accounts for much longer bundle deliveries (Figure 9). 

In conclusion, the comparative advantage of HSLTP over 

ECLSA and LTP is outstanding in this case too. 

 
Figure 9: The same as Figure 8, but with PLR=15% (deliberately beyond the 

margin for Rc=8/9). For HSLTP note that the delivery time of #4 and #9 is 

now of about 1.5 half RTTs, due to FEC failure and consequent automatic 
bundle retransmission. For the other techniques, the higher PLR results in a 

much longer delivery time penalty. 

B. Reduction of ECLSA waiting time 

In Figure 10 the time necessary to transmit an ECLSA 

matrix (a codeword) is shown as a function of the number of 

its information symbols, K, for Rc=8/9 and a Tx rate of 10 

Mbit/s. This time also represents the minimum value of the 

ECLSO “aggregation timer”, after which a partially filled 

matrix is closed by ECLSO and then coded and sent. This 

timer has been eliminated in HSLTP as when LTP passes a 

segment flagged as EOB the matrix is immediately closed. It 

is worth noting that in ECLSA the corresponding delay can 

occur twice in the worst case. To illustrate this, let us consider 

the case of a small LTP block inserted into a new matrix, 

which is then almost filled up with subsequent blocks. The 

small block has to wait first for the aggregation timer to 

expire, then because decoding cannot start at Rx side until the 

coded matrix is completely received, which takes roughly the 

same time again. 

These waiting times are almost eliminated in HSLTP as 

each block is contained in one matrix, which is decoded and 

delivered independently. This also leads to a simplification of 

HSLTP settings, now easier than in ECLSA. On the other 

hand, the immediate closure of the matrix at the end of a block 

can lead to inferior FEC performance with very small blocks, 

because of the reduced length of the codeword. It is however 

easily possible to reduce the likelihood of very small blocks 

by proper setting of LTP aggregation size and time. In 

addition, in HSLTP, as in ECLSA with the “K continuous” 

option, we set a threshold on the minimum number of 

redundancy symbols in a codeword, to cope with very small 

blocks. 

 

Figure 10: Transmission time of an ECLSA matrix as a function of its 

dimension. Rc=8/9 and T=1024B, Tx speed=10Mbit/s. 

VII. CONCLUSIONS 

HSLTP can be considered a variant of LTP designed for 

high-speed links, where the bandwidth is high and buffering 

requirements may become the performance-limiting factor. 

HSLTP is based on upper layer coding FEC, like ECLSA, 

with two main differences. First, while ECLSA is designed to 

be transparent to LTP, and thus is unaware of LTP block 

boundaries, HSLTP is not, as it imposes an almost one-to-one 

correspondence between LTP blocks and codewords. Second, 

by contrast to ECLSA, in HSLTP LTP blocks are either 

entirely received (FEC success) or entirely dropped (FEC 

failure). This binary result eliminates by root the need of LTP 

data segment retransmissions in HSLTP. In fact, in HSLTP it 

is BP that takes responsibility of loss recovery by immediately 

retransmitting bundles contained in the discarded LTP block.  

The most important advantage of this more radical approach 

is the possibility of using only one Rx buffer, even in the 

presence of high PLR, which makes the use of HSLTP very 

appealing in very high bandwidth-delay- product links, such as 

optical links in space, especially when the receiver has 

significant memory constraints. 

The numerical results presented in the paper, achieved on a 

GNU/Linux testbed running the latest version of ION, confirm 

the validity of the approach. HSLTP is released as free 

software and is already included in ION as an optional 

extension of the ECLSA code. 
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