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Abstract 

Nowadays the role played by passenger vehicles on the 

greenhouse effect is worth heavy. In order to slowdown both 

the global warming and the fossil fuels wasting, the design of 

high efficiency engines is compulsory. Downsized 

Turbocharged Gasoline Direct Injection engines comply with 

both high efficiency and power demand requirements. 

Nevertheless, Direct Injection inside downsized chambers 

may result in the fuel wall impingement depending on the 

operating conditions. The impact of fuel on the cylinder liner 

leads to the mixing between the fuel and the lubricant oil on 

the cylinder wall. When the piston moves, the piston top ring 

scraps the non-evaporated fuel-oil mixture. Then, the scraped 

fuel-oil mixture may be scattered into the combustion 

chamber, becoming source of diffusive flames in all 

conditions and abnormal combustions known as Low Speed 

Pre-Ignitions at the highest loads. In order to analyse these 

phenomena, accurate predictions of the liquid phase diffusion 

between fuel and oil are needed. Currently, no experimental 

data are available for the diffusion between fuel and oil, and 

common correlations are characterized by high inaccuracy 

(errors around 20-40% are reported). In this work, a Deep 

Neural Network methodology was developed and validated 

against engine-like fluids. Furthermore, the diffusion 

coefficients for different gasoline surrogates/SAE oils are 

provided and the effect of gasoline-ethanol blending is 

discussed. 

Introduction 

The further tightening of the tailpipe particulate emission 

limits expected beyond those by Euro 6d-temp and the 

application of new test cycles (WLTC and RDE) bring new 

challenges to the design of the engine combustion systems. In 

the last years, the efficiency and environmental impact of 

gasoline-powered engines have been greatly improved with 

the application of downsizing together with other 

technological solutions like Direct Injection (DI), 

Miller/Atkinson cam, advanced combustion systems (SPCCI, 

by Mazda) etc. One of the main drawbacks of the joint use of 

DI and downsizing is the liquid fuel wall impingement, with 

emphasis on the cylinder liner and the piston crown. 

Different technological solutions have been applied to 

promote faster fuel evaporation and lower spray momentum: 

injector nozzle shape and drilling; improved spray targeting; 

multiple injections strategies; ever higher injection pressure 

(currently 350 bar are available and 500 bar are expected in 

few years). Nevertheless, the liquid fuel droplet-wall 

impingement remains a concern. It must be underlined that 

also Port Fuel Injection (PFI) and Direct Port Injection (DPI) 

configurations are affected by liquid fuel wall impingement. 

In both the configurations, the inflow air momentum strips-

off the fuel liquid film formed on the intake port walls or on 

the intake valve seat crevice. Then, the stripped fuel droplets 

convecting against the cylinder liner or the piston crown 

realize the wall impingement. 

Focusing on the wall impingement against the cylinder liner, 

it should be remembered that the cylinder wall is wetted by a 

lubricant film of few micrometres of height, which allows the 

upward and downward piston motion within the cylinder. The 

impact of high kinetics fuel droplets against the oil layer on 

the cylinder wall, may result in the strip-off of liquid 

droplets, whose composition (fuel only, oil only or fuel-oil 

mixture) depends on the impact regime [1, 2]. In the current 

Turbocharged Gasoline Direct Injection (TGDI) engines, due 

to the high kinetics of the fuel droplets (high injection 

pressure) and the wet state of the cylinder wall, the splash 

and the spread regimes are the most likely fuel impingement 

regimes [3]. The spread regime leads to the fuel deposition, 

whilst the splash regime leads to both the fuel deposition and 

the scattering of post-impingement liquid droplets. The fuel 

deposited due to spread or splash, dilutes with the lubricant 

oil layer, resulting in a fuel-oil mixture. The dilution between 

the fuel and the oil causes the degradation of the oil 

properties, with emphasis on the viscosity, since the own 

typical values of lubricant oils (≈ 102 mPa·s) and fuels (≈ 0.5 

mPa·s) highly differ from each other’s, with concerns on the 

engine reliability. The deposited fuel is added to the oil layer, 

leading to the local thickening of the wall film on the cylinder 

liner. When the piston reaches the thicker part of the wall 

film during the compression stroke, the fuel-oil mixture is 

scraped into the first piston land crevice. This mixture may be 

scattered into the combustion chamber during the piston 

retraction due to inertia forces. The scattered liquid, 

comprising both fuel and lubricant oil, may cause Pre-

Ignition (PI) phenomena or diffusive flames (soot formation) 

depending on the engine load. 

Several Authors reported evidences of the relationship 

between the presence of flying lubricant oil droplets in the 

combustion chamber and abnormal combustion events known 

as Low Speed Pre-Ignition (LSPI). The LSPI may occur in 

modern TGDI engines when accelerating at low speed and 

high loads, likely resulting in severe engine damages (spark 

plug wear, cracked piston). Dahnz et al. [4] conducted both 

experimental and numerical campaigns with an optical 

accessible engine. According to the Authors, likely the 

presence of a second phase (liquid or solid particles) in the 



combustion chamber is responsible of the LSPI. Amman et 

al. [5] conducted experiments to test the influence of different 

engine parameters on the LSPI occurrence frequency such as 

air/fuel ratio, coolant temperature, fuel enrichment, etc. In 

[5], the measurements at the exhaust port suggested that 

during the LSPI events, the gas mixture was enriched 

inconsistently with the operating conditions. Therefore, the 

Authors assumed that an extra source of hydrocarbons (HCs) 

accumulation and release must be present in the combustion 

chamber. In [6] the same Authors tested difference piston 

crevice configurations, discovering a relationship between the 

piston crevice volume and the LSPI occurrence frequency. As 

a result, the Authors supposed that the piston crevice was the 

HCs source under investigation. Welling et al. [7] tested a 

downsized gasoline engine and reported that the PI events 

might be triggered by the presence of foreign low ignition-

delay spots in the combustion chamber. Since the lubricant 

oil is characterized by a larger chemical reactivity with 

respect to fuel (lower ignition-delay and ignition 

temperature), its detachment and transport into the 

combustion chamber was considered the responsible of those 

low ignition-delay spots. Furthermore, it must be 

remembered that the lubricants mainly made by HCs. 

Therefore, flying lubricant droplets in the combustion 

chamber, promoted by the piston-induced lubricant film strip-

off, may burn individually according to a diffusive 

combustion, which is a recognized source of soot formation. 

In a review paper [8] Raza et al. collected several findings on 

the analysis of the particulate at the tailpipe of TGDI engines. 

The work reports the significant contribution of the lubricant 

oil to the overall Particulate Mass (PM) and Particulate 

Number (PN). Thus, it is reasonable to believe that the 

lubricant oil detachment and transport in the combustion 

chamber and the soot emission are correlated. 

Since the fuel-oil dilution affects not only the engine lifetime 

(LSPI, parts wear) but also the advances in engine 

downsizing and the design of low-impact combustion 

systems, a deep understanding of the dilution process 

between fuel and oil is needed. In order to avoid the high 

time and cost requirements of experimental investigations 

reproducing LSPI conditions, the numerical modelling is 

attractive to simulate the diffusion between the fuel and the 

oil lubricant under engine-like conditions. The experimental 

measure of the diffusion coefficient is known to be very 

annoying and expensive in terms of care, time and cost spent. 

This is true especially for mixtures comprising oils, due to the 

high viscosity and opacity of these fluids. At present, few 

Authors have reported models of fuel-oil dilution under 

engine-like conditions. In these models, the 2nd Fick’s law, 

which needs the diffusion coefficient between fluids, is the 

standard approach to model the mass transport by diffusion. 

Yu and Min [9] implemented a diffusion model between the 

fuel and the oil film by considering two representative mono-

component liquids assuming a uniform constant temperature 

along the thickness. In [9] the diffusion coefficient was 

initially estimated with the correlation of Hayduk and Minhas 

[10] for fuel-oil and vice versa at infinite dilution, i.e. solute 

molar concentrations < 10%. Then, the Authors used that 

estimations to calculate the diffusion coefficient depending 

on the solvent and the solute molar concentrations. Zhang et 

al. [11] improved the model of Yu and Min by implementing 

additional features such as the multi-component liquid 

approach and the temperature dependence, solved with the 

Fourier equation. In spite of Yu and Min that assumed a 

concentrated fuel-oil mixture, the Zhang et al. considered the 

fuel-oil mixture as infinite diluted and estimated the diffusion 

coefficient with the classical Wilke and Chang correlation 

[12]. It must be considered that the results reported in [9, 11] 

might be not reliable because the correlations adopted to 

estimate the diffusion coefficients are affected by significant 

errors. Siddiqi and Lucas [13] compared the results of 

different correlations (including the ones by Hayduk and 

Minhas and Wilke and Chang) with several hundred 

experimental data. In [13] the Authors reported mean 

absolute errors from 13% to 20% for organic solutions and 

from 20% to 35% for aqueous solutions. However, the 

modelling of the diffusion coefficient remains the most viable 

method to estimate and predict this key transport property. 

Based on this background, increasing the accuracy of the 

methods that model the diffusion coefficients, is a step 

forward in the analysis and the prediction of phenomena of 

engine interest. 

In the last decade, thanks to the advances in computing 

power, Machine Learning (ML) and Neural Networks (NNs) 

techniques have proven to be powerful tools for the 

prediction of the fluid properties. The liquid-liquid 

equilibrium [14] and the vapour-liquid equilibrium [15], the 

thermal diffusivity [16], the fuel laminar flame speed [17, 18] 

and the diffusion coefficient itself [19], have been yet 

successfully predicted with those techniques. The present 

work deals with the implementation of different ML and NN 

methodologies to predict the diffusion coefficient at infinite 

dilution. The developed methodologies are based on an 

extensive database created after a deep literature review and 

comprising a large number of HCs, accounting for some 

components of real gasolines and lubricant oils, and alcohols, 

accounting for gasoline-biofuel blends. The methodologies 

were validated against the experimental diffusion coefficients 

of different mixtures given by the combination of HCs. The 

main contribution of this work is the implementation of the 

hybrid methodologies, where efforts were made to integrate 

in a physical manner the predictions by ML algorithms and 

NNs with the predictions by traditional correlations. After the 

validation step, the methodology called hybrid W-C, which 

integrates a deep NN with the classical Wilke and Chang 

correlation, showed a significant gain in accuracy, reliability 

and interpretability with respect to both traditional 

correlations and stand-alone ML algorithms and NNs, which 

are the common practice in the current state of the art. Thus, 

the hybrid W-C methodology was applied to predict the 

diffusion coefficient of different binary combinations of 

gasoline surrogates and SAE lubricant oils. 

Methodology 

This work deals with the development of a numerical 

methodology to predict the liquid phase diffusion coefficient 

of binary dilute solutions. Currently, the most common 

approach to estimate the diffusion coefficient, is the use of 

empirical and semi-empirical correlations that were 

developed decades ago. Some remarkable correlations are the 

Wilke and Chang correlation [12] and the Siddiqi and Lucas 

correlation [13]. The former is a milestone that inspired a 

number of investigations and it is strongly based on the 

classical Einstein-Stokes equation. The latter is one of the 

most recent steps forward in the topic, and the one with the 



better agreement with the experimental data. When one 

investigates the mass transport by diffusion between species, 

the most common assumption is that the diffusion rate 

depends on: i) the frictional resistance between molecules; ii) 

the intermolecular forces. The frictional resistance was 

commonly represented with the solvent dynamic viscosity, 

whilst the representation of the intermolecular forces was the 

target of several interpretations. Based on the comparison 

with the experimental data, Wilke and Chang adjusted the 

Einstein-Stokes equation by adding the effective solvent 

molecular weight as a measure of the intermolecular forces. 

The effective molecular weight was defined as the product of 

the solvent molecular weight with the so called association 

factor, i.e. a multiplicative coefficient representative of the 

bonds strength in the liquid. Siddiqi and Lucas assumed that 

calculating the molar volumes of both the solvent and the 

solute at their own Normal Boiling Point (@NBP) was 

sufficient to take into account the intermolecular forces. For 

sake of clarity, the correlations by Wilke and Chang and 

Siddiqi and Lucas are reported respectively in Eq. (1) 

(generally valid) and in Eq. (2-3) (respectively valid for 

organic and aqueous solutions). In Eq. (1-3) T is the liquid 

temperature, µ is the liquid dynamic viscosity, M is the 

molecular weight, Vb is the molar volume @NBP, A is the 

association factor and K is a multiplicative constant. The 

subscripts 1 is associated with the solvent, whilst the 

subscript 2 is associated with the solute. The quantities with 

no subscripts (T, µ) are associated with the mixture (solvent + 

solute). 

𝐷12 =  𝐾 [
 𝑇  

 𝜇 
 
 
(𝐴1 𝑀1)0.5

𝑉𝑏2
0.6 ] , 𝐾 = 7.40 x 1E − 12 (1) 

𝐷12 = 𝐾 [
𝑇  

 𝜇 
0.907

 
 𝑉𝑏1

0.265

𝑉𝑏2
0.45 

] , 𝐾 = 9.89 x 1E − 12 (2) 

𝐷12 =  𝐾 [
 𝑇  

 𝜇 
1.026

 
1

𝑉𝑏2
0.5473] , 𝐾 = 2.98 x 1E − 11 (3) 

 

Fig. (1) shows the Absolute Relative Error (ARE) committed 

with the Wilke and Chang correlation and the Siddiqi and 

Lucas correlation when applied to different solvent/solute 

combinations. The upper part of the figure shows mixtures 

that were commonly characterized in the experimental 

measure of the diffusion coefficients. The lower part of the 

figure shows HCs mixtures where the solvent is a light HC 

(number of carbons C < 10) and the solute is a heavy HC (C 

> 10). These solvent/solute combinations are the closer to 

fuel-oil mixtures, where the solvent (gasoline) and the solute 

(lubricant oil) are blends of HCs that has an average number 

of carbons respectively between C7-C8 and C30-C35 [20]. In 

Fig. (1) is visible that the error committed on the fluids in the 

upper part of the figure is small (< 10%), whilst the error 

committed on the light/heavy HCs mixtures is high (> 10% 

for Eq. (2) and > 20% for Eq. (1)). In the lower part of Fig. 

(1) is visible that the heavier are the solvent and the solute 

molecules, the higher are the errors committed by the 

correlations. It needs to be considered that n-heptane (C7) 

and n-octane (C8) are similar to real gasolines in terms of 

weight and average carbons number, whilst n-tetradecane 

(C14) and n-hexadecane (C16) are often the lighter part of 

the lubricants. Therefore, since C30-35 and C40-50 are 

representative of the average and the maximum carbons 

number in the lubricant oils, a further increase of the error 

committed by those correlations is expected for realistic 

engine mixtures. These errors are in contrast with the ever 

higher need of accuracy and detail in engine modelling. This 

work approaches the prediction of the diffusion coefficient by 

using different ML algorithms and NNs. Since these 

techniques require a large number of reliable data in order to 

be trained and experienced properly, an extensive database 

was created. 

 

Figure 1. Absolute Relative Error with respect to 

experimental data for the Wilke and Chang (Eq. (1)) and the 

Siddiqi and Lucas (Eq. (2)) correlations 

Database creation 

Consider the TGDI engine conditions at low engine/piston 

speed and wall film close to the TDC. These conditions result 

in maximum oil dilution with gasoline on the cylinder liner. 

The time available for mass diffusion between fuel and oil in 

under these conditions in a stroke before piston arrival is 

around 10 milliseconds. Considering this period as the time 

interval to integrate the 2nd Fick’s law, and assuming the 

typical value of 1E-9 m2/s for the diffusion coefficient, 

concentration changes below the 10% are expected. The 

aforementioned experimental evidences suggest that this 

degree of dilution is sufficient to affect the engine operations, 

however they result too low to assume the fuel-oil mixture as 

concentrated. Hence, in the present work the fuel-oil mixture 

was considered a dilute solution. Therefore, the experimental 

liquid phase diffusion coefficients of binary mixtures at 

infinite dilution were collected to create the database. 

Moreover, the database creation was addressed towards 

liquids that are representative of the components of real 

gasolines (e.g. cyclohexane, toluene, n-heptane, n-octane, i-

octane, n-decane, n-dodecane, ethanol, methanol, buthanol) 

and oils (e.g. oleic acid, n-tetradecane, n-hexadecane, 

kerosene). Following the abovementioned criteria, about 250 

mixtures given by the combination of 72 different liquids 

were collected from experimental findings in literature [21-

47]. According to some literature findings [12, 13, 48] and 

considerations of the present Authors, the fluid properties that 

mainly affect the diffusion coefficient were selected. Then, 

these properties were provided as input features to the ML 

algorithms and the NNs. As a result, the dynamic viscosity 

(µ), the molecular weight (M), the molar volume (V), the 

density (ρ), the latent heat of vaporization (LV), the number of 

carbons (#C), hydrogens (#H) and oxygens (#O) were 

chosen. For each liquid, these properties were collected as 



follows: i) the density and the dynamic viscosity from 

literature experimental data at ambient conditions (298 K, 1 

atm); ii) the latent heat of vaporization at the saturation point 

from experimental data if available, otherwise by means of 

correlations [38, 49]; iii) the molar volume at ambient 

conditions and at NBP respectively by means of Eq. (4) and 

Eq. (5). In Eq. (5) The liquid density @NBP was estimated 

according to the correlations reported in [38] by replacing the 

generic temperature with the normal boiling temperature at 

zero vapour fraction. 

𝑉 =  
𝑀

𝜌
 (4) 

𝑉𝑏 =  
𝑀

𝜌@𝑁𝐵𝑃
 (5) 

 

Machine Learning methodologies 

In this work, three Machine Learning methodologies to 

predict the diffusion coefficient, which are deeply described 

in the following section, have been developed and compared: 

a) pure regression; b) hybrid Wilke-Chang (hybrid W-C); c) 

hybrid Siddiqui-Lucas (hybrid S-L). For each methodology, 

several regression algorithms and NNs have been tested 

while maintaining the same optimization workflow of the 

tuning parameters (hyperparameters). The implementation of 

these algorithms is based on open-source software libraries 

developed for Python 3.7.4: Scikit-learn [50] for data pre-

processing and classical ML models, Keras [51] and 

Tensorflow [52] for the NNs. 

Considering the nonlinear dependencies between the fluid 

properties selected as input features (µ, M, V, ρ, LV, #C, #H, 

#O) and the target variable, several new features have been 

generated. These new features, called derived features, were 

obtained as the ratio between the solvent and the solute 

properties and by applying exponentials to the physical 

properties. The generation of derived features, together with 

the limited size of the database in comparison with those 

recommended for ML methods [53], increases the risk of 

overfitting, i.e. generate a regression algorithm with excellent 

performance on the training set, but not able to generalize to 

new data. In order to limit this risk, only the most meaningful 

features were selected based on a rank of mutual information. 

Fig. (2) shows the mutual information rank for the ten most 

relevant among features and derived features. The mutual 

information between two discrete sets (𝑋 and 𝑌) is a measure 

of the dependence of a variable to the other that does not rely 

on their covariance. Thus, it allows for nonlinear 

dependencies to be accounted for. Its value is calculated as in 

Eq. (6), where 𝑝(𝑋,𝑌) is the joint probability mass function of 

𝑋 and 𝑌, while 𝑝𝑋 and 𝑝𝑌 are the marginal probability mass 

functions of 𝑋 and 𝑌. 

𝐼(𝑋, 𝑌) = ∑  

𝑥∈𝑋

∑ 𝑝(𝑋,𝑌)(𝑥, 𝑦) 𝑙𝑜𝑔 (
𝑝(𝑋,𝑌)(𝑥, 𝑦)

𝑝𝑋(𝑥) 𝑝𝑌(𝑦)
)

 𝑦∈𝑌

 (6) 

 

Figure 2. Example of features and derived features ranked 

with decreasing mutual information 

After applying the mutual information analysis of each 

original feature and derived feature with the target, only the 

features with a relative importance greater than 0.05 were 

considered (Table (A1)). This allows the training step of the 

ML algorithm to rely only on the most meaningful features 

and reduces the risk of “memorizing” the input data. 

After the mutual information rank, the optimization of the 

regression algorithms has been performed by applying a 

repeated k-fold approach [54] combined with an extensive 

grid search among the hyperparameters of the models. For 

this application, repeated k-fold consisted in iteratively 

splitting the database into train and test set, normalizing the 

features with mean value set to 0 and standard deviation set 

to 1. Then, the algorithm is trained on the train set and the 

accuracy of the model is evaluated on the test set as the mean 

of all the repetitions. This approach is required to avoid 

defining hyperparameters and NN architectures based on 

observations that depend on a single dataset split. Among the 

tested regression algorithms, AdaBoost [55] and Feed 

Forward Neural Networks (FFNN) [54] have performed best 

in terms of accuracy. The accuracy goal is checked by 

comparing the coefficient of determination (𝑅2), Eq. (7), and 

the Mean Absolute Relative Error (MARE), Eq. (8), where 𝑦𝑖 

and �̅� are the real targets and their mean value, �̃�𝑖 is the 

predicted value. 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̃�𝑖)2

𝑖

∑ (𝑦𝑖 − 𝑦 ̅)
2

𝑖
 (7) 

𝑀𝐴𝑅𝐸 = ∑
|𝑦𝑖 − 𝑦�̃�|

𝑦𝑖𝑖
 (8) 

 

Focusing on AdaBoost, Zhu [55] and Freund [56] were 

among the first to introduce the idea of boosting as a strategy 

to enhance the performance of several simple regression 

algorithms by computing a weighted average of their outputs 

to obtain the final prediction. The algorithm of AdaBoost is 

based on the successive training of base learners on a 

modified version of the training set, where more weight is 

given to the samples that were not predicted accurately by the 

previous models. The most relevant parameters of this 

algorithm are the number, type and characteristics of base 

learners and the learning rate, which controls the contribution 

of each regressor to the final output. 



 

Figure 3. Mean Absolute Relative Error map and example of 

the optimized point (black marker)  

To limit the search of the parameters, the base learner has 

been set to a decision tree regressor [52], while the number of 

estimators, the maximum depth of the tree and the learning 

rate have been optimized. It must be underlined that in this 

work, adding more estimators would have not improved the 

performance of the algorithm on both train and test sets. On 

the other hand, the depth of each regression tree is a 

parameter that allows to better fit the train set and therefore 

its value must be carefully controlled to avoid overfitting. 

This can be noticed by the increase of MARE for the largest 

values of the ordinate in Fig. (3). 

A FFNN applied to a regression task is a multi-layer network 

of simple elements, called neurons, that receive the input 

features on one end of the network, and provide a predicted 

value on the other end, without any recurrence or matrix 

manipulation step [53]. Neurons are organized in layers (of 

any width) connected with each other from the input layer (of 

the same size as the number of features), to the output layer. 

The information is transferred from one layer to the next one 

via connections among the neurons of variable weights, 

which are optimized during the training step, and then 

modified by applying a transformation function (usually 

hyperbolic tangent or rectified linear unit [56]). The 

parameters that might affect the performance of NNs the 

most are the topology of the network (number of neurons and 

distribution on different layers) and the activation function. 

The optimization algorithm employed for the weights update 

has been kept constant (Adam [56]), as well as the kernel 

initializers (normal distribution with std = 0.05 and mean 

value = 0). The number of epochs (number of times that the 

full dataset is used to update the weights of the neurons [53]) 

allowed during the training step has been set to 1E5. This 

stop criterion was integrated with a control strategy that 

would stop the training of the dataset if the performance on 

the training set would not improve after 20 consecutive 

iterations. Considering the limited size of the train set, the 

neurons weights would tend to “memorize” the training 

points and to overfit the data. In order to avoid this risk, each 

NN has been integrated with an additional input layer where 

Gaussian normal noise is added to the normalized features. 

Moreover, one of the internal layers has a kernel L2 

regularization to improve the robustness of the prediction. 

The standard deviation of the Gaussian noise and the lambda 

value [57] of the L2 regularizer have been added to the 

optimization grid search. 

 

Figure 4. Root Mean Square Error for different amplitude of 

the Gaussian noise 

In Fig. (4), the effect of different values of std of the 

Gaussian noise on the training performance of a NN is 

reported as a function of the epochs and the loss (Root Mean 

Squared Error (RMSE)). It can be noticed that the 

performance of the algorithm on the training set increases 

with the number of epochs until a minimum asymptotic 

value, while the performance of the same model on the test 

set suffers from increasing overfitting. The addition of 

increasing Gaussian noise to the input features reduces the 

distance from the test to the train loss, even if the 

performance on the train decreases. Considering the early 

stopping strategy after a given number of successive steps, it 

can be noticed that as the noise increases, the optimum value 

is reached after a smaller number of time steps. Several 

structures of NNs have been tested during the optimization 

step, with a different number of layers, neurons per layer and 

activation functions. For sake of simplicity, the illustration of 

the architecture of the optimized NNs is avoided, thus, a 

schematic representation of a deep NN general structure with 

one output neuron is given in Fig. (5). 

 

Figure 5. Schematic structure of the implemented deep 

Neural Networks 

Pure regression methodology  

The pure regression methodology consisted in the prediction 

of the diffusion coefficient by directly applying the 

regression algorithm (AdaBoost or FFNN). Thus, the 

regression task of the ML technique, called θ, is the diffusion 

coefficient itself (𝐷12 = 𝜃). In order to avoid the risk of 

fading gradients for deeper NNs [52], given the order of 
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magnitude of the diffusion coefficient in SI units, the target 

value has been scaled by 1E9. 

Hybrid methodology 

The two hybrid methodologies (hybrid W-C and hybrid S-L) 

were developed by implementing a three-steps prediction 

using both the Machine Learning technique (AdaBoost or 

FFNN) and an empirical correlation (the Wilke and Chang 

correlation in the hybrid W-C and the Siddiqi and Lucas 

correlation in the hybrid S-L). The three steps can be resumed 

as follows: i) in the first step the ML technique, given the top 

ranked input features, is trained to return a corrective factor 

that is the regression task (𝜃) of the hybrid methodologies; ii) 

in the second step the empirical correlation is applied in its 

standard form (regardless to the mutual information); iii) the 

diffusion coefficient returned by the correlation is multiplied 

by the correction factor (𝜃). A scheme of the abovementioned 

workflow is shown in Fig. (6). 

 

Figure 6. Comparison between the flowchart of the pure 

regression and the hybrid (hybrid S-L) methodologies 

In the hybrid W-C methodology, the Wilke and Chang 

correlation was rearranged as follows: i) the solvent 

molecular weight was replaced with the molar volume 

according to Eq. (4); ii) the molar volumes at ambient 

conditions were used instead of the ones @NBP; iii) the 

association factor was removed; iv) under the assumption of 

dilute solution, the temperature and the dynamic viscosity 

were associated with the solvent instead of the mixture. Due 

to points ii) and iii), the rearranged correlation lacks of a 

measure of the intermolecular forces. The original idea of 

Wilke and Chang to take into account the intermolecular 

forces by introducing a correction, i.e. the association factor, 

was maintained. To this aim, the θ correction factor predicted 

by the ML step adjusts the solvent-solute molar volume ratio 

at ambient conditions, which is increased or decreased 

depending on the bonds strength in the two liquids. In Eq. (9) 

the final formulation of the diffusion coefficient predicted 

with the hybrid W-C methodology is shown. Fig. (7) shows 

the θ correction factor predicted for the train set against the 

carbons number of the solvent. The zero and the low carbon 

zones, which include solvents with strong bonds (𝐻 bonds) 

such as water and alcohols, are characterized by the highest 

correction factors. Then, the higher is the carbons number, 

i.e. the weaker are the bonds, the lower is the correction 

factor. Since the correction factor is not normally distributed 

in the dataset, a log transformation is performed on the target 

values before training and reversed after the regression step 

in order to improve the performance of the regression 

algorithms. 

𝐷12 =  𝐾 [
 𝑇1 

 𝜇1
  𝜌1

0.5  (𝜃
𝑉1

0.5

𝑉2
0.6 )] (9) 

 

Figure 7. Correction factors predicted by the hybrid W-C 

against the carbon number of solvents 

In the hybrid S-L methodology, the Siddiqi and Lucas 

correlation was fully maintained except for the application of 

the same point iv) as for the hybrid W-C methodology. In the 

hybrid S-L methodology, the ML step predicts a correction 

factor 𝜃 which is a pure multiplicative coefficient as reported 

in the scheme in Fig. (6) and in Eq. (10) (organic solutions). 

𝐷12 = 𝜃 [𝐾 (
𝑇1 

 𝜇1
0.907  

 𝑉𝑏1
0.265

𝑉𝑏2
0.45 

)] 

 

(10) 

 

Optimized methodologies 

The optimized regression algorithm AdaBoost is summarized 

in Table (1) for the three implemented methodologies. The 

FFNN optimization led to three different architectures. The 

optimized FFNN is composed by 2 hidden layers of 12 

neurons each in pure regression mode, 2 hidden layers of 30 

neurons each in hybrid S-L mode, and 3 hidden layers of 20 

neurons each in hybrid W-C mode. In pure regression and 

hybrid S-L modes, the activation functions are the tanh for 

the first hidden layer and the ReLu for the second. In hybrid 

W-C mode, the activation functions are the tanh for the first 

hidden layer and the ReLu function for the other two. The 

Gaussian noise std is set to 0.02 in pure regression and hybrid 

S-L modes and to 0.01 in hybrid W-C mode. The lambda for 

L2 regularizer is set to 0.01 in all the three methodologies. 

Table (2) provides a brief view of the abovementioned 

optimized NN architectures. 

Table 1. Optimized AdaBoost parameters for the three 

methodologies 

 
Learning 

rate 

Base 

estimators 

Max 

depth 

Pure 

regression 
0.1 30 10 

Hybrid W-C 0.1 20 15 

Hybrid S-L 0.1 35 18 

 

Vb1 Vb2 μ1 . . . Other

ML

θ = D12

Pure 

regression

Input from mutual

information analysis

Hybrid

S-L

D12 

ML
θV

1
V
2
μ
1

H bonds 
zone Van der Waals bonds 

zone



Table 2. Optimized Neural Network structures for the three 

methodologies 

 Hidden layers Neurons/layer 

Pure regression 2 12 

Hybrid W-C 3 20 

Hybrid S-L 2 30 

 

Results 

Results on the train set 

Table (3) reports the performance of the optimized AdaBoost 

and NN on the train test after repeated k-fold cross validation 

(10 repetitions on each of the 5-fold splits) for the three 

implemented methodologies. As visible in Table (3), for all 

the methodologies the NN shows higher 𝑅2 mean values 

(especially in pure regression mode) and 𝑅2 standard 

deviations that are half of the ones reported for AdaBoost. 

According to this, the NN resulted the winner ML technique. 

Thus, in the following sections the results of the pure 

regression, the hybrid W-C and the hybrid S-L, are presented 

only with the NNs. 

Table 3. Prediction performance for AdaBoost and Neural 

Networks on the train set 

  Mean R2 Std R2 

Pure regression 
NN 0.95 0.22 

AdaBoost 0.90 0.40 

Hybrid W-C 
NN 0.96 0.15 

AdaBoost 0.95 0.25 

Hybrid S-L 
NN 0.95 0.12 

AdaBoost 0.92 0.34 

 

Results on the full dataset 

In order to compare the performance of the three 

implemented methodologies with particular focus on HCs 

mixtures, a targeted split of the dataset has been performed. 

The split between train and test set has been performed 

targeting the representability of the two sets of features in the 

range of application of HCs mixtures, and the similarity 

between the distribution of the target variables in both sets. 

The validation set was created including 15 different 

combinations of butanol, n-hexane, n-heptane, n-octane, n-

decane, n-dodecane, n-tetradecane, n-hexadecane, kerosene 

and oleic acid. These fluids were selected directly by the 

present Authors, since they were the more similar ones to the 

fluids of interest, i.e. gasolines and lubricant oils, with 

experimental characterization data of their physical properties 

available. 

The optimized NNs for each methodology have been trained 

on the train set and the results are reported in Table (4) in 

terms of 𝑅2 and MARE for the train set, the test set and the 

validation set. Despite similar performances on the train and 

test set, the hybrid W-C methodology has achieved the better 

results (R2 = 0.98, MARE ≈ 6%) on the validation set. The 

comparison in Table (4) shows that the performance of the 

regression task is improved by the integration of the NN 

within the correlation. Moreover, the potential of the hybrid 

methodologies is the interpretability of the most relevant 

dependencies that are not assigned to the regression task. 

Table 4. R2 and Mean Absolute Relative Error for three 

different Neural Network methodologies on train, test and 

validation sets 

 Train Test Validation 

 R2 MARE 

(%) 

R2 MARE 

(%) 

R2 MARE 

(%) 

Pure 

regression 
0.99 11.3 0.60 26.6 0.94 21.4 

Hybrid 

W-C 
0.99 6.3 0.72 14.3 0.98 6.2 

Hybrid  

S-L 
0.99 6.7 0.68 15.8 0.96 10.2 

 

Fig. (8) shows the deviation of the diffusion coefficient 

predicted with the hybrid W-C methodology by the 

experimental values for the train and the test set. The figure 

highlights a good agreement with the experiments, in 

particular for values lower than one, where real gasolines and 

oils are expected based on the performed literature review 

[32-35]. The ARE shows the cumulative distributions 

reported in Fig. (9) for the hybrid W-C methodology and the 

two benchmark correlations (Eq. (1), Eq. (2,3)). A general 

reduction of the mean error that can be attributed to the train 

set is observed. However, the gain in reliability when one 

adopts the proposed methodology is underlined by the fact 

that the fraction of points below the 5% error is about the 

70% of the database, while the fraction of points below 15% 

error is almost the full database (about 90%). 

 

Figure.8 Comparison between experimental and predicted 

(hybrid W-C) diffusion coefficient 

 

Figure 9. Absolute Relative Error cumulative distribution in 

predicting the database for two correlations and the hybrid 

W-C methodology 



Diffusion coefficient for gasoline-lubricant mixtures 

Since the work aims to predict the diffusion rate between 

gasolines and lubricant oils for engine modelling, five 

gasoline surrogates (one mono-component and four multi-

component) and two SAE oils (one single-grade and one 

multi-grade) were considered to create different fuel-oil 

(solvent-solute) combinations (Table (A2)). For the multi-

component liquids, the properties that are required by the 

hybrid W-C methodology were calculated as follow: i) the 

mass-weighted average (Eq. (11)) for the density, the 

molecular weight, the molar volume and the latent heat of 

vaporization; ii) the Grunberg-Nissan law [61] for dynamic 

viscosity (Eq. (12)). 

𝜙𝑚𝑖𝑥 = ∑ 𝑤𝑖  𝜙𝑖

𝑁𝑐𝑜𝑚𝑝

𝑖=1
 (11) 

log(𝜇𝑚𝑖𝑥) = ∑ 𝑥𝑖  𝑙𝑜𝑔(𝜇𝑖)
𝑁𝑐𝑜𝑚𝑝

𝑖=1
 (12) 

 

For sake of comparison, in addition to the hybrid W-C 

methodology, the predictions of the gasoline surrogate/SAE 

oil mixtures were performed with the benchmark correlations 

(Eq. (1,2)). According to the original formulation proposed 

by Wilke and Chang, in Eq. (1) the association factor for the 

gasoline surrogates was set to 1, since the HCs are classified 

as non-associate fluids. It must be noticed that for this 

calculation the molar volume at ambient conditions (298 K, 1 

bar) was used in Eq. (1,2) instead of the molar volume 

@NBP as that adopted in the original formulation. This 

choice was taken because both gasolines and the lubricant 

oils are blends of hundreds of species and their own normal 

boiling temperature uses to be comprised in wide ranges. 

Table 5. Predictions of different gasoline/oil combinations 

with the hybrid W-C NN methodology, the Wilke and Chang 

correlation and the Siddiqi and Lucas correlation 

 

The diffusion coefficients predicted with the hybrid W-C 

methodology and the original Wilke and Chang and Siddiqi 

and Lucas correlations for mixtures of gasoline surrogates 

and oils are reported in Table (5). In general, as visible in 

Table (5), the single-grade SAE 30 oil is less diffusive in 

gasolines than the multi-grade SAE 10W30 oil due to its 

higher weight and molar volume. Two multi-component 

surrogates, i.e. the RON95 and the RD587, are more diffusive 

than the mono-component surrogate (i-octane), whilst the 

other two multi-component surrogates, i.e. MIT and Ford-

Synfuel, are less diffusive. This is due to the higher content 

of the lighter HCs (e.g. C5, C6, Table (A2)) that are present 

in the RON95 and the RD587 surrogates, which contributes 

to reduce the viscosity, the molar volume and the θ correction 

(higher latent heat of vaporization) of the average liquids. 

In order to compare the results in Table (5), consider that the 

experimental diffusion coefficient of n-dodecane (C12) and 

n-hexadecane (C16) in n-octane (C8) reduces from 1.64 to 

1.5 x1E-9 m2/s as the solute increases from C12 to C16. It 

must be remembered that while the n-octane is a reasonable 

representation of the real gasolines thermo-physical 

properties, the average and the maximum carbons number of 

lubricant oils are respectively around 30 and 50. At this point, 

if one assumes to maintain C8 as a solvent while using 

molecules with C30-C50 as a solutes, a further decrease of 

the diffusion coefficient to values lower than 1 x1E-9 m2/s 

can be expected. The predictions performed by means of Eq. 

(1,2) for i-octane/SAE 10W30 (Table (5), 5th row, columns 3 

and 4) are respectively 1.21 and 1.37 x1E-9 m2/s. These 

values seem to be unreasonably close to the experimental 

diffusion coefficient for n-octane/n-hexadecane (1.5 x1E-9 

m2/s) with respect to the high increase of carbons number of 

the solute. Considering this abrupt flattening with respect to 

the solute change, one can assume that the correlations are 

not able to capture the influence of solvents and solutes 

having higher carbons number, thus, the behaviour of heavy 

high viscosity liquids such as HC oils. The predictions 

performed by means of the hybrid W-C NN are closer to the 

expectations for solutes with the average carbons number of 

lubricant oils. Analysing the data reported Table (5), one can 

see that the average predictions performed with Eq. (1) and 

Eq. (2) overestimate the diffusion coefficient respectively by 

the 48.3% and the 73.5% with respect to the hybrid W-C NN. 

This difference mainly depends on two factors: i) the 

correlations were based on a limited number of species, being 

developed over 50 years ago when much fewer data were 

available, whilst the hybrid W-C NN is based on data that 

comprise a large number of different species; ii) the results 

returned by the correlations strongly depend on the fitting 

coefficients of the molecular weight and the molar volume 

that the original Authors tuned based on the experimental 

dataset. The hybrid W-C NN relies on the capability to 

interpret the experimental data to capture the complex key 

dependence on the intermolecular forces resulting in the θ 

correction. 

It must be underlined that since these gasoline/oil 

combinations were created by the Authors for the sake of the 

analysis, there are no experimental data available to perform 

a direct validation. Nevertheless, in order to provide a proof 

of reliability of the predictions returned by the hybrid W-C 

for the mixtures of gasolines and lubricant oils, a further 

prediction test was performed. To this aim, the work by Hiss 

and Cussler [62] was considered as a reference. In [62] the 

Authors measured the diffusion coefficient at ambient 

conditions of n-hexane and naphthalene, which played the 

role of the solute, in different HC oils, which played the role 

of the solvent. These HC oils were characterized by a 

molecular weight in the range 209-667 g/mol and by a 

dynamic viscosity in the range 3-5000 mPa·s. In [62], the 

experimental diffusion coefficient of n-hexane diluted in HC 

oils with a dynamic viscosity in the range 50-300 mPa·s, 

which is representative of the most common SAE oils, are 

around 0.15-0.03 x1E-9 m2/s. For sake of illustration, the 

Solvent/solute 

D12 (m
2/s) x 1E9 

Hybrid  
W-C 

Eq. (1) Eq. (2) 

MIT/SAE 10W30 0.702 1.082 1.260 

Ford-Synfuel/SAE10W30 0.622 0.965 1.121 

RD587/SAE10W30 0.824 1.254 1.433 

RON95/SAE10W30 0.821 1.232 1.402 

I-octane/SAE10W30 0.803 1.210 1.370 

MIT/SAE30 0.634 0.940 1.134 

Ford-Synfuel/SAE30 0.565 0.839 1.009 

RD587/SAE30 0.751 1.089 1.290 

RON95/SAE30 0.754 1.071 1.262 

I-octane/SAE30 0.739 1.052 1.233 



hybrid W-C methodology was used to predict the diffusion 

coefficient of n-hexane (solute) in SAE 10W30 and SAE 30 

(solvents) and for all the mixtures listed in Table (5) by 

reversing solvent and solute. In Fig. (10) one can see that 

both the order of magnitude and the value of the SAE oils/n-

hexane combinations are in agreement with the experimental 

diffusion coefficient of n-hexane diluted in generic HC oils. 

Since real gasolines show higher carbons number (#C 

between 7 and 8 are common), molar volume and lower 

latent heat of vaporization than those of n-hexane, if one 

maintain the same solvent (SAE oil), reduced molar volume 

ratio, θ correction factor and diffusion coefficients are 

expected. As visible in Fig. (10), the predicted diffusion 

coefficients for the reversed mixtures of Table (5) stay below 

the reference experimental curve of the n-hexane. As a result, 

the hybrid W-C methodology has shown to capture the 

diffusive behaviour of these fluids in the case of gasolines 

diluted in lubricant oils. Thus, one can expect that the 

proposed methodology performs similarly in the case of 

lubricant oils diluted in gasolines, which is the concentration 

ratio of interest for LSPI analysis in engines. 

 

Figure 10. Diffusion coefficient between n-hexane and 

gasoline surrogates (solutes) in hydrocarbon oils of 

increasing viscosity (solvent) 

Even though the results in Table (5) and Fig. (10) are not 

directly validated, they were obtained with a new approach in 

the attempt to provide helpful values to be used in future 

engine modelling works. Moreover, these results aim to 

encourage future experiment campaigns of characterization 

of those fluids, in order to confirm or disprove the present 

predictions and also to extend the available experimental data 

to improve the NN methodology. 

Fig. (11) shows the predicted effect of blending gasolines (i-

octane and RON95 surrogate) with different ethanol volume 

percentage. Blends with 5%, 10% and 20% of ethanol were 

considered since they are representative of the most common 

current gasoline blends with biofuels that can be used without 

any engine modification. As visible in Fig. (11), regardless to 

the gasoline composition, the addition of ethanol reduces the 

diffusion coefficient promoting a slower dilution. The single-

grade SAE 30 oil and the multi-grade SAE 10W30 oil are 

expected to behave similarly with respect to the ethanol 

addition. The addition of 5%v of ethanol reduces the 

diffusion coefficients by around the 7%, whilst the addition 

of 20%v of ethanol reduces the diffusion coefficients by 

around the 25%. 

 

 

Figure 11. Effect of ethanol addition in gasoline surrogate/oil 

diffusion 

Currently, gasoline blends with ethanol are well-known to 

promote lower air pollution and greenhouse gases emissions 

in comparison with fossil fuels. As shown in Fig. (11), a 

further benefit of the ethanol addition is the reduced diffusion 

rate of the deposited fuel with the lubricant oils. As a 

consequence, biofuels blends would be effective to reduce the 

LSPI frequency of TGDI engines. 

Conclusions and future works 

The present paper aims to improve the numerical modelling 

of the fuel-oil dilution process that occurs on the cylinder 

walls of downsized TGDI engines. To this aim, three 

different methodologies based on Machine Learning 

techniques were developed: i) one called pure regression, 

where a Machine Learning algorithm and a deep Neural 

Network directly predicts the diffusion coefficient; ii) two 

called hybrid, where a Machine Learning algorithm and a 

deep Neural Network are integrated within empirical 

correlations in a physical manner. The hybrid methodologies 

are proposed as novel approaches where the Machine 

Learning technique is used to predict a factor that accounts 

for the bonds strength of the mixing liquids. This is a 

complex dependence that the most adopted correlations have 

proven to be not capable to capture, in particular for fluids of 

engine interest. After the validation step, the hybrid 

methodology that integrate a deep Feed-Forward Neural 

Network within the classical Wilke and Chang correlation 

(hybrid W-C), has shown to meet the accuracy, simplicity 

and reliability targets with particular focus on the mixtures of 

hydrocarbons. 

The hybrid W-C methodology was used to predict the 

diffusion coefficients of different mixtures of gasoline 

surrogates and SAE lubricant oils. These predictions have 

shown values around 0.6-0.8 x1E9 m2/s, which are consistent 

with the diffusion coefficients expected for those species 

based on the observations of experimental data. Furthermore, 

the behaviour of the diffusion rate with respect to the 

increasing of the carbons and hydrogens number of both the 

solute and the solvent, was captured by the proposed 

methodology. Moreover, the hybrid W-C methodology was 

used to predict the effect of ethanol addition in gasolines. 

According to the results, blending common gasolines (pure 

fossil fuel) with ethanol (biofuel) contribute to strongly 

slowdown the dilution between the fuel deposited on the 



cylinder wall and the lubricant oil, likely leading to the 

reduction of the LSPI frequency. 

The hybrid W-C methodology was needed by the present 

Authors as a key step to develop an in-house One-

Dimensional model for the assessment of the LSPI risk under 

different engine configurations. The accuracy shown by the 

hybrid W-C methodology, allows the implementation a fast 

and reliable tool intended to qualitatively support and address 

the very early stage step of the engine development. This 

would be performed by comparing the scraped oil mass of 

two or more configurations under review with different wall 

film location (i.e. spray pattern), wall temperature, air-fuel 

ratio, oil species, fuel species, oxygenates addition etc. In this 

code, the engine variables listed above, would play the role of 

parameters given by the user in a certain range, resulting in 

LSPI risk maps. 
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Nomenclature 

Abbreviations 

DI: Direct Injection 

DPI: Direct Port Injection 

FFNN: Feed Forward Neural Network 

HC: Hydrocarbon 

LSPI: Low-Speed Pre-Ignition 

ML: Machine Learning 

NBP: Normal Boiling Point 

NN: Neural Network 

PFI: Port Fuel Injection 

PI: Pre-Ignition 

PM: Particulate Mass 

PN: Particulate Number 

RDE: Real Driving Emission 

SI: International System of units 

SPCCI: Spark Controlled Compression Ignition 

TDC: Top Dead Center 

TGDI: Turbo Gasoline Direct Injection 

WLTC: Worldwide harmonized Light vehicles Test Cycle 

Variables 

A: association factor 
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ARE: Absolute Relative Error 

C: carbons number 

D: diffusion coefficient 

H: hydrogens number 

I: mutual information 

K: generic constant 

Lv: latent heat of vaporization 

M: molecular weight 

MARE: Mean Absolute Relative Error 

O: oxygens number 

p: generic probability 

R2: coefficient of determination 

RMSE: Root Mean Squared Error 

T: temperature 

V: molar volume 

Vb: molar volume at the normal boiling point 

w: mass fraction 

x: mole fraction 

Greek letters 

θ: machine learning prediction task 

µ: dynamic viscosity 

ρ: density 

Φ: generic property  

Subscripts 

1: solvent  

2: solute 

mix: mixture  



Appendix 

Table A1. Rank of the input features for the Machine Learning input based on the mutual information analysis 

Feature Mutual Information 

𝜌1 0.4261 

𝑉1
  0.3764 

# 𝐻1  0.2935 

𝑀2
0.5 0.2649 

𝜇1 0.2641 

𝜌1 𝜌2
 ⁄  0.2422 

𝜌2
  0.2398 

# 𝐶1 0.2350 

𝑀1 0.2241 

𝑉1 𝑉2
 ⁄  0.2202 

𝐿𝑣1 0.2058 

𝑀1 𝑀2
 ⁄  0.1950 

𝑀2
2 0.1789 

𝐿𝑣2
2 0.1663 

𝑉2
2 0.1634 

# 𝐶2 0.1532 

𝜌2
2 0.1508 

# 𝑂1 0.1439 

𝜌2
0.5 0.1425 

# 𝑂2 0.1418 

𝑉2
0.5 0.1414 

𝑀2
  0.1401 

𝑉2 0.1157 

𝐿𝑣2
0.5 0.0965 

# 𝐻2 0.0856 

 

  



Table A2. Mass fractions (%) and properties for the tested gasoline surrogates and lubricant oils. 

 I-octane RON95 RD587  Ford-

Synfuel  

MIT 

 

SAE10W30 SAE30 

Cyclopentane 0 0 6.3736 0 0 0 0 

i-pentane 0 0 0 16.61 20 0 0 

n-Pentane 0 0 8.4304 0 0 0 0 

Cyclohexane 0 0 0 24.05 0 0 0 

1-Hexene 0 0 6.5558 0 0 0 0 

n-Hexane 0 33.534 0 0 0 0 0 

3-Methylpentane 0 0 0 0 10 0 0 

Toluene 0 0 23.9247 17.65 13 0 0 

n-Heptane 0 0 11.7079 0 5 0 0 

m,p-Xylene 0 0 0 0 17 0 0 

Ethylbenzene 0 0 0 12.93 0 0 0 

i-Octane 100 45.24 43.0076 19.2 15 0 0 

1,2,4-Trimethylbenzene 0 0 0 0 5 0 0 

Naphthalene 0 0 0 1.09 0 0 0 

n-Decane 0 21.226 0 8.47 3.5 0 0 

i-Dodecane 0 0 0 0 1.5 0 0 

Ethanol 0 0 0 0 10 0 0 

Pentadecane 0 0 0 0 0 0.3 0 

Hexadecane 0 0 0 0 0 0.5 0 

Heptadecane 0 0 0 0 0 0.7 0 

Octadecane 0 0 0 0 0 1 0 

Nonadecane 0 0 0 0 0 1.5 0 

Eicosane 0 0 0 0 0 2 0.2 

Heneicosane 0 0 0 0 0 3 0.3 

Docosane 0 0 0 0 0 4.5 0.4 

Tricosane 0 0 0 0 0 5.5 0.7 

Tetracosane 0 0 0 0 0 6.5 1 

Pentacosane 0 0 0 0 0 7.5 1.3 

Hexacosane 0 0 0 0 0 8.5 1.5 

Heptacosane 0 0 0 0 0 9 1.9 

Octacosane 0 0 0 0 0 8.5 2.6 

Nonacosane 0 0 0 0 0 8 3.5 

Triacontane 0 0 0 0 0 7.5 3.7 

Hentriacontane 0 0 0 0 0 6.5 4.3 

Dotriacontane 0 0 0 0 0 5.5 5.1 

Tritriacontane 0 0 0 0 0 4 5.6 

Tetratriacontane 0 0 0 0 0 3 6.2 

Pentatriacontane 0 0 0 0 0 3 6.5 

Hexatriacontane 0 0 0 0 0 1.5 6.7 

Heptatriacontane 0 0 0 0 0 1 6.6 

Octatriacontane 0 0 0 0 0 0.5 6.4 

Nonatriacontane 0 0 0 0 0 0.3 5.9 

Tetracontane 0 0 0 0 0 0.2 5.3 

1-Hentetracontene 0 0 0 0 0 0 4.8 

1-Dodetracontanethiol 0 0 0 0 0 0 4 

Tritetracontane 0 0 0 0 0 0 3.4 

2-Methyl-Tritetracontane 0 0 0 0 0 0 2.9 

2-Methyltetra-Tetracontane 0 0 0 0 0 0 2.4 

n-Heptatetracontane 0 0 0 0 0 0 1.9 

n-Octatetracontane 0 0 0 0 0 0 0.9 

n-Nonatetracontane 0 0 0 0 0 0 0.7 

n-Pentacontan 0 0 0 0 0 0 0.5 

n-Henpentacontane 0 0 0 0 0 0 0.3 

n-Dopentacontane 0 0 0 0 0 0 0.2 

Tripentacontane 0 0 0 0 0 0 0.1 

Reference / [58] [59] [60] [11] [11] [11] 

M (kg/kmol) 114.23 110.77 98.97 97.59 93.45 387.48 497.97 

ρ (kg/m3) 692 689.28 729.88 761.25 746.83 875 890 

µ (mPa·s) 0.503 0.487 0.452 0.583 0.509 113.75 311.50 

Lv (kJ/kg) 272 323.98 336.23 363.44 411.21 257.38 221.23 

 


