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Abstract

Intramuscular fat content (IMF) is a complex trait influencing the technological and sensorial

features of meat products and determining pork quality. Thus, we aimed at analyzing

through RNA-sequencing the Semimembranosus muscle transcriptome of Italian Large

White pigs to study the gene networks associated with IMF deposition. Two groups of sam-

ples were used; each one was composed of six unrelated pigs with extreme and divergent

IMF content (0.67 ± 0.09% in low IMF vs. 6.81 ± 1.17% in high IMF groups) that were chosen

from 950 purebred individuals. Paired-end RNA sequences were aligned to Sus scrofa

genome assembly 11.1 and gene counts were analyzed using WGCNA and DeSeq2 pack-

ages in R environment. Interestingly, among the 58 differentially expressed genes (DEGs),

several were related to primary cilia organelles (such as Lebercilin 5 gene), in addition to the

genes involved in the regulation of cell differentiation, in the control of RNA-processing, and

G-protein and ERK signaling pathways. Together with cilia-related genes, we also found in

high IMF pigs an over-expression of the Fibroblast Growth Factor 2 (FGF2) gene, which in

other animal species was found to be a regulator of ciliogenesis. Four WGCNA gene mod-

ules resulted significantly associated with IMF deposition: grey60 (P = 0.003), darkturquoise

(P = 0.022), skyblue1 (P = 0.022), and lavenderblush3 (P = 0.030). The genes in the signifi-

cant modules confirmed the results obtained for the DEGs, and the analysis with “cyto-

Hubba” indicated genes controlling RNA splicing and cell differentiation as hub genes.

Among the complex molecular processes affecting muscle fat depots, genes involved in pri-

mary cilia may have an important role, and the transcriptional reprogramming observed in

high IMF pigs may be related to an FGF-related molecular cascade and to ciliogenesis,

which in the literature have been associated with fibro-adipogenic precursor differentiation.
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Introduction

Pork meat represents one of the main sources of protein and fat for humans, accounting for

about 30% of meat consumption worldwide [1]. Pork eating quality, a food property that

encompasses taste, flavor, juiciness, and tenderness, is affected, among others, by meat intra-

muscular fat (IMF) content. Higher contents of IMF are generally regarded as exerting a posi-

tive effect on meat quality features, although there is no complete agreement in the literature

[2, 3]. Several studies reported that meat with a level of IMF below 2.2%-2.5% is associated

with detrimental palatability [3, 4]. Anyway, due to the negative genetic correlation linking

IMF deposition with carcass weight and lean percentage [5], the selection carried out by the

swine industry prioritizing production efficiency and increased lean mass growth caused a

consistent decrease in IMF depots [6]. IMF is a heritable trait in pigs [5, 7] and genetic selec-

tion is a promising approach to increase IMF without negatively affecting production effi-

ciency. However, this strategy is confounded by the existence of a high number of Quantitative

Trait Loci (QTLs) associated with IMF content [7, 8] and by the presence of negative associa-

tions with lean mass deposition [5]. Although the differentiation of preadipocytes into adipo-

cytes starts in embryos and continues immediately after birth, this differentiation process

slows down during the growth of the animal [9]. Together with the number of adipocytes

(hyperplasia), IMF content in meat is also determined by the adipocyte size (hypertrophia)

[10]. Even though the number of adipocytes interspersed in the muscle may vary among pig

breeds [11], adiposity in the pig is mainly due to adipocyte hypertrophy. Adipocyte hypertro-

phy is caused by both genetics and environmental effects and consists of an accumulation of

triglycerides in mature adipocyte as a result of a metabolism shifted towards lipogenesis [11,

12]. The complexity of the metabolic processes taking place in IMF adipocytes has been

described in pigs [13] and in other animal species, where several studies suggested for IMF adi-

pocytes different roles compared with subcutaneous and visceral adipocytes [14, 15]. Further-

more, the important role of muscle-interspersed adipocytes in muscle energy metabolism has

been highlighted by the increasing evidence of the involvement of IMF in the modulation of

cardiovascular risk factors [16] and insulin resistance [17], and in the existence of a muscle-to-

fat “crosstalk” mediated by biologically active molecules such as adipokines and myokines [18,

19].

In this scenario, the investigation of the molecular patterns related to IMF deposition may

provide new information useful for a more efficient selection aimed at increasing IMF in pork

and pork products quality without negatively affecting lean mass deposition. This objective

may also be of interest considering the increasing evidence linking this fat depot with some

human metabolism-related diseases. Previous transcriptome studies using RNA-seq have

revealed relevant results about the gene expression patterns and networks underlying IMF at

different ages, breeds, and muscles [20–23]. Ayuso et al. [24] compared the Biceps femoris tran-

scriptome between Iberian and Iberian x Duroc pigs, identifying as differentially expressed

genes (DEGs) related to adipogenesis, lipid metabolism, and myogenesis, thus suggesting that

differences in IMF and meat quality between these two genetic types may be ascribed to genes

involved in these pathways. On the whole, the investigations of the muscle gene expression

profiles identified DEGs involved in lipid metabolism [23, 25–27], myogenesis [23, 25] and

cell proliferation [25]. Despite the increasing number of transcriptomic studies aimed at dis-

secting IMF deposition, the identification of major genes and the comprehension of the molec-

ular cascade events related to this trait remain mostly unknown.

To the best of our knowledge, the scientific literature is still lacking studies analyzing

changes in the transcriptome and regulatory factors associated with divergent IMF deposition

in Large White heavy pigs intended for the production of Protected Designation of Origin
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(PDO) high-quality dry-cured hams. For these specific productions, Semimembranosus muscle

(SM) composition is of primary importance, since it affects the sensory and nutritional quality

of high-quality dry-cured hams. The pig genetic types used for this high economic-value pro-

duction are characterized by higher live weight and slaughter age, characteristics that can influ-

ence the maturation stage of the muscle-interspersed adipocytes [28–30].

The present study was conceived with the objectives of i) evaluating in the SM the gene

expression differences between two groups of Italian Large White purebred heavy pigs diver-

gent for IMF content and identifying the pathways in which the differentially expressed genes

are involved; ii) investigating the gene co-expression patterns related to the divergent deposi-

tion of IMF and interpreting the possible molecular mechanisms related to the variability

noticed for this trait.

Materials and methods

Ethics approval

Sampling occurred with the permission of the Italian National Association of Pig Breeders

(Associazione Nazionale Allevatori Suini, ANAS, http://www.anas.it). Animal care and slaugh-

ter of the animals used in this study were performed in compliance with the European rules

(Council Regulation (EC) No. 1/2005 and Council Regulation (EC) No. 1099/2009) on the

protection of animals during transport and related operations and at the time of the slaughter-

ing. All slaughter procedures were monitored by the veterinary team appointed by the Italian

Ministry of Health. All procedures were performed within the ANAS routine care and did not

require the approval of an ethics committee.

Sampling and phenotypes

Twelve individuals were chosen from a purebred population of 950 sib-tested Italian Large

White pigs already described in Davoli et al. [5]. Briefly, the pigs were from the ANAS national

sib testing selection program. Pigs entered the testing station at about 30 kg live weight and

were reared in the same controlled environmental conditions. During the testing period, pigs

were kept separated and fed the same finishing diet at a quasi ad libitum feeding level (i.e.

about 60% of pigs were able to ingest the entire supplied ration) until an average final live

weight of about 150 kg at about eight months of age. At the end of the tests, animals were

transported to a commercial abattoir located about 25 km from the test station according to

Council Rule (EC) No 1/2005 on the protection of animals during transport and related opera-

tions. At the slaughterhouse, the pigs were electrically stunned and bled in a lying position in

agreement with Council Regulation (EC) No 1099/2009 on the protection of animals at the

time of the slaughtering. All slaughter procedures were monitored by the veterinary team

appointed by the Italian Ministry of Health. After slaughter, SM samples were collected from

the 950 ILW pigs, immediately frozen in liquid nitrogen and stored at −80˚C in a deep freezer

until further analysis. For all the gathered samples, IMF was determined by extraction with

petroleum ether from 1 g of SM using an XT15 Ankom apparatus (Ankom, Macedon, NY,

USA), according to Official Procedure AOCS Am 5–04 [31]. IMF was determined in % (g of

IMF on 100 g of muscle tissue). Basing on the values of IMF % measured on the whole popula-

tion, two divergent groups of six animals each were chosen for the transcriptome study. The

two groups were composed of pigs displaying extreme and divergent contents of IMF, and

they will be referred from here on as low IMF group (i.e. 6 samples with 0.51%�

IMF� 0.74%; μ = 0.67 ± 0.09%) and high IMF group (i.e. 6 samples with 5.87%�

IMF� 8.64%; μ = 6.81 ± 1.17%). The chosen samples were slaughtered in nine different days,

balancing each group for sex and avoiding full and half-sibs.
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RNA extraction, library preparation, and sequencing

Total RNA was extracted with TRIzol Reagent (Invitrogen, Thermo Fisher Scientific, Wal-

tham, MA, US) following the manufacturer’s instruction. The extracted RNA samples were

then quantified using a NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, Wal-

tham, MA, US), and the RNA quality and integrity were assessed using an Agilent 2100 BioA-

nalyzer (Agilent Technologies, Santa Clara, CA, US). RNA integrity values (RIN) ranged

between 7 and 8.5. Stranded total RNA libraries were prepared using the TruSeq Stranded

mRNA Library Prep kit (Illumina Inc., San Diego, CA, US) following the manufacturer’s sug-

gested protocol. A paired-end sequencing strategy was chosen, in which short reads are

extracted from both ends of long DNA fragments through ultra-high-throughput sequencing.

The libraries were tagged, and pairs of libraries were run on a single lane of an Illumina

HiSeq2500 (Illumina Inc., San Diego, CA, US). Paired-end reads of 100 bp were generated and

the raw sequence data have been deposited in the Gene Expression Omnibus (GEO) expres-

sion database under the accession number: GSE144780.

Mapping and assembly of the reads

Raw reads were obtained in FASTQ format and were quality-assessed using FastQC program

(retrieved from URL: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The qual-

ity was measured according to sequence-read lengths and base-coverage, nucleotide contribu-

tions and base ambiguities, quality scores and over-represented sequences and all samples

passed the QC parameters. Terminal low-quality bases and adaptor sequences were trimmed

out using Trimmomatic utility [32]. Clean reads were aligned against Ensembl reference

genome Sus scrofa v. 11.1 (retrieved from URL: http://igenomes.illumina.com.s3-website-us-

east-1.amazonaws.com/Sus_scrofa/Ensembl/Sscrofa11.1/Sus_scrofa_Ensembl_Sscrofa11.1.tar.

gz) using the splice-aware read mapper HiSat2 [33].

Differential expression analysis and Gene Ontology enrichment analysis

BAM files obtained from the read alignment were further processed with StringTie [34] to

assemble known transcripts. HTSeq version 0.6.1 [35] was then used to quantify the reads and

obtain the file with the gene counts. The differential gene expression analysis was carried out

in the R environment [36] with the “DESeq2” package [37] that offers a method for gene-level

analysis of RNA-seq data. Genes that were not expressed were filtered out and the expression

counts of the remaining genes were transformed using regularized-logarithm transformation
or rlog [37]. The two-group comparison was performed by considering only the group since

the two groups were balanced for the numbers of gilts and barrows (3 gilts and 3 barrows per

group) and the hot carcass weight (Table 1). DEGs were identified setting as selection parame-

ters an absolute Log2 (Fold Change) (Log2FC) value greater than or equal to 0.58 (|Fold

Change|� 1.5) and a False Discovery Rate adjusted P-value less than or equal to 0.05

(q� 0.05). Genes showing a q value comprised between 0.10 and 0.05 were considered as

genes showing a difference with a trend towards significance. Fold change was calculated as

the ratio of the normalized expression levels of a gene between low IMF and high IMF groups.

The R package "mygene" [38] was used to match the Ensembl Gene ID to the corresponding

official Gene Symbol, "org.Ss.eg.db" [39] from Bioconductor was used for genome-wide anno-

tation and the packages "clusterProfiler" [40] and "AnnotationHub" [41] were used to compute

Gene Ontologies (GOs). GO enrichment analyses of DEGs were performed using the GO

terms of molecular functions (MF), biological processes (BP) and cellular components (CC).

P-values were adjusted with False Discovery rate method and adjusted P-values� 0.05 were

considered significant.
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Validation by RT-qPCR

RNA samples from the 12 selected animals were used to carry out the technical validation of

some of the DEGs. After DNAse treatment (TURBO DNA-freeTM, Ambion, Applied Biosys-

tems), 1 μg of total RNA was reverse transcribed using the iScript cDNA Synthesis kit (Bio-

Rad Laboratories, Hercules, CA) according to the manufacturer’s instructions. Real-time

quantitative PCR (RT-qPCR) was performed on Rotor Gene 6000 (Corbett Life Science, Con-

corde, New South Wales, Australia) using 5 μL of iTaq Universal SYBR Green Supermix (Bio-

Rad Laboratories, Hercules, CA), 5 pmol of each primer, 2 μL of cDNA template diluted 1:10

in nuclease-free water and then was made up to the total volume of 10 μL with water. Rotor

Gene 6000 protocol was performed using a two-step amplification with cycles constituted by a

denaturation phase at 95˚C for 5 seconds, followed by an annealing-extension step for 20 sec-

onds using specific annealing temperatures for each primer couple (S1 Table). Primers were

designed using Primer3Plus (URL: http://www.bioinformatics.nl/cgi-bin/primer3plus/

primer3plus.cgi) and Primer-BLAST (URL: https://www.ncbi.nlm.nih.gov/tools/primer-blast/

) online software, or were obtained from previous researches. The complete list of primer

sequences and the relative annealing-extension temperatures are shown in the S1 Table. The

samples were first used to assess the expression level of 3 normalizing genes that were already

tested in our previous researches: Beta-2-microglobulin (B2M) [42], Ribosomal Protein S18
(RPS18) and Ribosomal Protein L32 (RPL32) [43]. Three replicates for each sample were per-

formed (2 replicates in the same RT-qPCR run and a third replicate in a separate run) and the

maximum variation coefficient between replicates was set at 0.2. RT-qPCR runs were consid-

ered only if amplification efficiencies were high (slopes < -3.25 and R2� 0.99). These values

were automatically calculated by Rotor Gene 6000 using dynamic tube normalization and

noise slope correction. After the amplification stage, dissociation curves were obtained for

each replicate with the Melt step. Single peaks in the dissociation curves confirmed the specific

amplification of the genes. For each sample, the relative quantification of a target gene was cal-

culated by dividing the mean obtained for the triplicate measurements of the target gene

expression by the geometric mean of the three normalizing gene expressions. The expression

levels were calculated using the standard curve methods, according to Pfaffl [44]. Standard

curves were obtained amplifying 12 progressive dilutions (from 109 to 25 molecules/μl) of a

cDNA sample at a known concentration, obtained by PCR, as described in Davoli et al. [45].

The five target genes were chosen among the DEGs for their functional role and/or their

Table 1. Sex, intramuscular fat (IMF) % and group membership of the used pig samples.

Sample Sex Carcass weight (kg) IMF % Group

1 Gilt 132 8.64 High IMF

2 Gilt 120 7.82 High IMF

3 Gilt 105 6.65 High IMF

4 Barrow 126 5.99 High IMF

5 Barrow 120 5.89 High IMF

6 Barrow 120 5.87 High IMF

7 Barrow 120 0.74 Low IMF

8 Barrow 124 0.73 Low IMF

9 Gilt 119 0.71 Low IMF

10 Gilt 110 0.67 Low IMF

11 Barrow 127 0.64 Low IMF

12 Gilt 116 0.51 Low IMF

https://doi.org/10.1371/journal.pone.0233372.t001
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average-to-low absolute Log2FC values. The technical validation was performed by calculating

the Pearson correlation coefficient and the coefficient of determination (R2) between the

Log2FC of the expression values from RNA-seq data (FPKM) and the Log2FC of the normal-

ized gene expression data obtained with RT-qPCR. These statistics were performed using the

“stats” package in the R environment [36] and basic Excel functions.

Weighted correlation network analysis

To identify strongly co-expressed genes involved in IMF deposition, we employed a co-expres-

sion analysis approach using the “WGCNA” package [46] in the R environment [36]. Scale-

free undirected co-expression networks were built, and modules of genes significantly associ-

ated (P-value� 0.05) with IMF variability were detected and further analyzed.

Pearson’s correlations between each gene were calculated to build an adjacency matrix.

Subsequently, the matrix was raised by a Soft threshold Power (β) of 6, which was found to be

an appropriate value by the function pickSoftThreshold() to reach a scale-free topology index

(R2) of at least 0.70 (S1 Fig). Then the adjacency matrix was calculated using topological over-

lap measure (TOM) and corresponding dissimilarity (1-TOM). The latter was used as a dis-

tance for gene hierarchical cluster, and then DynamicTree Cut algorithm [46] was used to

identify the modules of genes. Modules cluster highly interconnected genes and are named

using color labels. The principal component of each module was defined as the module eigen-

gene (ME). The module eigengene represents the expression value of each module and was

used to detect biologically relevant modules. The module-trait relationship (module member-

ship, MM) was calculated as the Pearson’s correlation between the module eigengene and the

trait of interest.

Gene Ontology enrichment analysis and identification of hub genes from

WGCNA results

Modules significantly associated (P-value< 0.05) with IMF deposition were exported for func-

tional analysis in R packages "clusterProfiler" [40] and "AnnotationHub" [41]. The GO enrich-

ment analyses were performed as previously described. The lists of genes entering the

significant modules were submitted to functional analysis individually (each module of genes

was analyzed separately) and grouped (all the genes entering in the significant modules were

analyzed together). Furthermore, the genes in the modules significantly associated with IMF

deposition were exported for network and functional analysis in Cytoscape v. 3.7.2 [47] using

the function exportNetworkToCytoscape() in “WGCNA” package. Using this command, all the

genes significantly entering in the IMF-associated modules identified with WGCNA were

exported in a unique session in Cytoscape v. 3.7.2. The analysis started building a network of

genes using the “GeneMANIA” plugin [48] and then functional analysis was performed using

the ClueGO plugin [49]. Then “ClueGO” plugin divided the genes into different functional

groups having different P-values. Each functional group contained the pathways and biological

processes (BPs) clustered together according to term similarities. The statistical method was

set at two-sided hypergeometric distribution, and Bonferroni step down P-value correction

was used. Minimum clustering was set at P-value� 0.05 and a minimum k-score at 0.4. The

BPs ontology and KEGG and REACTOME pathways were used as databases for the functional

analysis. Gene ontology (GO) levels were set from 6 to 8, and a minimum number of 4 genes

per cluster was set. Subsequently, “cytoHubba” [50] and “CluePedia” plugins were applied to

select and display in the figures the hub genes. The top 10 hub genes were identified using

Maximal Clique Centrality (MCC) as a topological analysis method [50].
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Results and discussion

Description of the studied sample

Table 1 reports the sex, the carcass weights and the SM intramuscular fat % of the studied sam-

ples. The analyzed samples were chosen from a population of ILW pigs displaying an average

content of IMF of 2.15 ± 1.13% and a carcass weight of 114.50 ± 8.64 kg. As can be noticed

from Table 1, the 12 pigs used for the present transcriptome study were characterized by an

extreme phenotype for SM IMF content, with the low IMF group composed of 6 samples with

0.51%� IMF� 0.74% and an average IMF content of 0.67 ± 0.09%, and the pigs belonging to

the high IMF group displaying an average IMF % of 6.81 ± 1.17%, with 5.87%� IMF� 8.64%.

The 12 investigated pigs had an average carcass weight of 120 kg that approaches the weight of

typical heavy pigs grown to produce high-quality dry-cured hams, such as Parma and San

Daniele. These pigs were slaughtered at about eight months of age, which is quite a different

age when compared with the transcriptomics studies performed on porcine muscle. For

instance, Muñoz et al. [23] analyzed the transcriptome of muscle gathered from 17 months-

old pigs, while other authors used muscle samples collected from animals sacrificed at an aver-

age age of 5 to 6 months [25, 51]. Differences in growth performances and slaughter ages char-

acterizing the animals used in the muscle transcriptomics studies could affect the observed

results since growth rate and age are associated with distinct differentiation and hypertrophia

stages of the adipocytes interspersed in the muscle [9, 28].

Characterization of Semimembranosus muscle transcriptome analysis

A total of 3,235,579,132 of paired-end reads were obtained from the SM transcriptome

sequencing of the 12 samples. After trimming and filtering, 1,155,025,434 reads remained.

Between 79.1% and 85.7% of the reads were uniquely mapped against the Sus scrofa reference

genome 11.1 across samples (Fig 1 and S2 Table). Considering both the unique and the multi

reads, the total % of mapped reads stands between 90 and 95%, in agreement with the data

reported in other recent porcine muscle transcriptome studies [23].

Fig 1. Mapping statistics. For each sample are reported the percentages of the uniquely mapped reads, multi-reads

and unmapped reads against the Sus scrofa reference genome 11.1.

https://doi.org/10.1371/journal.pone.0233372.g001
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Identification of differentially expressed genes

The differential expression analysis showed a total of 58 DEGs with a q value� 0.05 and 31

with a trend towards significance (q� 0.10). The complete list of the identified genes is

reported in the S3 Table. Among the 58 DEGs, 37 were up-regulated in the high IMF group

with log2FC ranging from -4.03 to -0.60, while the remaining 21 DEGs were up-regulated in

the low IMF group with log2FC ranging from 9.29 to 0.60 (S3 Table). The volcano plot in Fig 2

shows the identified DEGs. As shown in Fig 3, when considering these 58 DEGs the gene

expression unsupervised hierarchical clustering properly divides the samples into two groups

belonging to different IMF content, thus underlying that their differential regulation may be

involved in IMF content and deposition. Table 2 reports a subset of DEGs chosen among the

identified 58 for their functional roles possibly associated with IMF deposition.

The two most significant DEGs were ENSSSCG00000036462 RF01848 (log2FC = 9.29 and

adjusted P-value = 1.59E-09) and ENSSSCG00000035039 RF00016 (log2FC = -2.03 and

adjusted P-value = 6.15E-06). Both these genes are predicted non-coding small nucleolar

RNAs (snoRNAs), a class of regulatory RNAs consisting of 60–300 nucleotides responsible for

the post-transcriptional modification, maturation and stabilization of ribosomal RNAs [52,

53]. The snoRNA RF01848 (ENSSSCG00000036462) is predicted to have an ACEA_U3 skele-

ton structure, whereas ENSSSCG00000035039 RF00016 was predicted to have a SNORD14

skeleton. At present, ENSSSCG00000035039 RF00016 has been retired from the latest release

of Sus scrofa genome annotation in Ensembl database, but together with

ENSSSCG00000035039, also two other snoRNAs with a SNORD14 skeleton structure were

more expressed in the high IMF group: the ENSSSCG00000039904 RF00016 (log2FC = -1.89;

adjusted P-value = 6.01E-05) and ENSSSCG00000031725 RF00016 (log2FC = -1.96; adjusted

P-value = 6.01E-05). Recently, equine adipose-derived mesenchymal stromal cells were proven

to release extracellular vesicles mainly enclosing snoRNAs [54], suggesting that this type of

regulatory non-coding RNAs may play an active part in cell differentiation and vesicle-medi-

ated cross-talk between cells. Intriguingly, some SNORDs were also involved in intracellular

cholesterol trafficking and its mobilization from the plasma membrane to the endoplasmic

reticulum [53, 55]. Intracellular cholesterol homeostasis is essential in adipocytes, which func-

tions as a primary depot of unesterified cholesterol in the body [56]. Taken together, these

results reported in the literature would suggest a role in adipocyte proliferation and cholesterol

trafficking of some SNORDs. Our results agree with the results found in the literature for

some SNORDs and may indicate that the SNORDs found DE in the present research could be

involved in some of the molecular networks related to IMF deposition. However, further evi-

dence is needed to elucidate the roles of SNORDs in muscle and prove their possible involve-

ment in the proliferation and metabolism of the muscle-interspersed adipocytes. Interestingly,

some genes found DE in the present study are already known in the scientific literature for

their roles in adipogenesis and lipid metabolism. Among them, Peroxisome Proliferator Acti-
vated Receptor Alpha (PPARA) was already reported in the literature to regulate the expression

of many genes critical for lipid and lipoprotein metabolism and was found to be highly

expressed in tissues that have a high level of fatty acid catabolism [57]. Indeed, the expression

of PPARA promotes fatty acid β-oxidation mediating the activation of genes intervening in lip-

ids catabolism [58], with beneficial effects on liver steatosis, and lowering effects on plasma tri-

glycerides and small dense low-density lipoproteins [59]. These anti-adipogenic effects noticed

for the human PPARA gene agree with the negative correlations identified in pigs between loin

IMF content and PPARA mRNA level [60, 61]. Consistently, we identified higher expression

of PPARA in the pigs belonging to the low IMF group (log2FC = 0.64; adjusted P-

value = 3.52E-03), supporting the anti-adipogenic role exerted by this transcription factor on
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IMF deposition. Similarly, also CCAAT Enhancer Binding Protein Beta (CEBPB) was more

transcribed in low IMF pigs (log2FC = 0.84; adjusted P-value = 6.24E-03). Most of the scientific

literature indicates CEBPB as an early marker of adipogenesis controlling fatty acid metabo-

lism and inflammation in different tissues [62, 63]. The highest expression noticed in low IMF

pigs for this gene may be a suggestive marker of undifferentiated pre-adipocytes in an early

stage of differentiation, when the commitment of CEBPB seems to be crucial for triggering the

following stage of maturation and fat droplet formation [64–66]. On the other hand, the

Fig 2. Volcano plot of differentially expressed genes (DEGs) of low Intramuscular Fat (IMF) vs. high IMF pigs. Red dots indicate DEGs with

q< 0.05 and |Log2(Fold Change)|> 0.58; blue dots indicate genes with q< 0.05, green dots represent genes with |Log2(Fold Change)|> 0.58, grey

dots are non-significant genes. The gene plotted as “SNORD14” refers to ENSSSCG00000039904 RF00016.

https://doi.org/10.1371/journal.pone.0233372.g002
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CEBPB down-regulation in high IMF group may suggest that in these individuals the muscle

interspersed adipocytes have undergone a more advanced differentiation stage, with the for-

mation of lipid droplets. The latter stage does not require the expression of the CEBPB gene,

which was found down-regulated in mature adipocytes [64–66]. In the two groups of samples,

the mRNA amounts of the gene Fibroblast Growth Factor 2 (FGF2) showed the opposite trend

compared to CEBPB levels. FGF2 is synthesized and secreted by adipocytes [67], and depend-

ing on its concentration, FGF2 can function as either a positive or negative factor of in vitro

adipogenesis through the regulation of the ERK signaling pathway [68]. FGF family members

Fig 3. Gene expression unsupervised hierarchical clustering of the 58 differentially expressed genes (DEGs)

between low Intramuscular Fat (IMF) vs. high IMF pigs. The color scale bar shows the relative gene expression

changes normalized by the standard deviation (0 is the mean expression level of a given gene). H and L indicate the

high IMF and the low IMF samples, respectively. The gene named “SNORD14” refers to ENSSSCG00000039904

RF00016.

https://doi.org/10.1371/journal.pone.0233372.g003
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Table 2. List of the main differentially expressed genes (DEGs) associated with Intramuscular Fat (IMF) deposition in porcine Semimembranosus muscle.

ENSEMBL Gene ID Official gene

symbol

Average gene expression

of the low IMF group

Average gene expression

of the high IMF group

Log2(FC)a Log2(FC) S.

E.b
Wald

statistic

P-value Adjusted P-value

(q value)

ENSSSCG00000036462 RF01848 4,341.64 7.47 9.29 1.25 7.41 1.31E-

13

1.59E-09

ENSSSCG00000032967 CACNB3 397.60 131.00 1.61 0.45 3.55 3.82E-

04

4.78E-02

ENSSSCG00000034207 CEBPB 11,387.99 6,378.77 0.84 0.19 4.32 1.59E-

05

6.24E-03

ENSSSCG00000030378 LIMK1 9,651.69 5,827.761 0.73 0.16 4.59 4.45E-

06

2.58E-03

ENSSSCG00000016929 PDE4D 25,069.80 15,664.78 0.68 0.15 4.53 5.99E-

06

3.03E-03

ENSSSCG00000000006 PPARA 1,883.74 1,212.31 0.64 0.14 4.49 7.25E-

06

3.52E-03

ENSSSCG00000028063 TACC2 6,476.73 4,230.56 0.61 0.15 4.12 3.84E-

05

1.14E-02

ENSSSCG00000036213 FGF2 864.10 1,454.32 -0.75 0.19 -3.96 7.59E-

05

1.74E-02

ENSSSCG00000006105 GEM 652.48 1,126.729 -0.79 0.16 -4.89 9.89E-

07

1.00E-03

ENSSSCG00000008645 ID2 508.34 955.21 -0.91 0.23 -4.00 6.35E-

05

1.61E-02

ENSSSCG00000012026 ADAMTS1 3,444.16 6,491.10 -0.91 0.16 -5.85 4.91E-

09

1.99E-05

ENSSSCG00000036893 PTHLH 57.28 115.94 -1.03 0.26 -3.99 6.50E-

05

1.61E-02

ENSSSCG00000011516 EIF4E3 1,066.91 2,230.21 -1.06 0.29 -3.63 2.80E-

04

3.96E-02

ENSSSCG00000006940 CCN1 3,062.23 6,772.00 -1.14 0.27 -4.21 2.57E-

05

8.21E-03

ENSSSCG00000004469 LCA5 136.10 325.75 -1.26 0.32 -3.93 8.65E-

05

1.88E-02

ENSSSCG00000012173 SAT1 2,015.31 5,139.85 -1.35 0.25 -5.34 9.39E-

08

1.90E-04

ENSSSCG00000024312 ID4 488.77 1,333.62 -1.45 0.33 -4.40 1.07E-

05

4.52E-03

ENSSSCG00000009517 GPR183 76.05 210.52 -1.47 0.38 -3.86 1.12E-

04

2.30E-02

ENSSSCG00000022925 SLC2A3 1,356.71 3,937.21 -1.54 0.38 -4.07 4.75E-

05

1.30E-02

ENSSSCG00000013784 DNAJB1 5,418.77 16,383.87 -1.60 0.33 -4.86 1.19E-

06

1.11E-03

ENSSSCG00000039651 SLC2A5 203.42 625.64 -1.62 0.46 -3.55 3.92E-

04

4.85E-02

ENSSSCG00000037241 RGS2 789.87 2,539.31 -1.68 0.32 -5.26 1.42E-

07

2.47E-04

ENSSSCG00000039904 RF00016 115.66 427.28 -1.89 0.34 -5.58 2.47E-

08

6.01E-05

ENSSSCG00000031725 RF00016 130.89 509.37 -1.96 0.35 -5.58 2.42E-

08

6.01E-05

ENSSSCG00000035039 RF00016 86.14 350.98 -2.03 0.33 -6.11 1.01E-

09

6.15E-06

(Continued)
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are involved in a variety of biological processes including embryonic development, cell growth,

and morphogenesis [69]. In particular, polymorphisms in the FGF2 gene were already associ-

ated with bovine milk fat yield and percentage [70, 71], with fat-related traits in pigs [72] and

with human body fat mass [73]. Thus, the increased expression of FGF2 noticed in pigs with

high IMF (log2FC = -0.75; adjusted P-value = 1.74E-02) may be the result of the increased acti-

vation of this gene and secretion of the relative growth factor by the differentiated and hyper-

trophic adipocytes interspersed in the SM of the high IMF animals. Recently, FGF2 was also

studied for its effects on primary cilia, a solitary non-motile cilium that projects from the apical

surface of cells to the internal lumen of the tissues and acts as a sensory antenna transducing a

multitude of chemical and physical stimuli [74]. Kunova Busakova et al. [75] found that mes-

enchymal cells treated with FGF2 showed an elongation of primary cilia and activation of

phosphatidylinositol-3-kinase (PI3K)/AKT, mammalian target of rapamycin (mTOR) signal-

ing and ERK MAP kinase signaling. Interestingly, in agreement with the evidence concerning

FGF2-related effects reported by Kunova Busakova et al. [75], among the DEGs we found sev-

eral genes participating in primary cilia morphogenesis, and in the PI3K/AKT and ERK MAP

kinase signaling. Indeed, compared with low IMF group, high IMF pigs showed also higher

expression of Lebercilin 5 (LCA5, log2FC = -1.26; adjusted P-value = 1.88E-02), a gene coding

for a protein intervening in the primary cilia morphology [76], and increased expressions of

Cellular Communication Network Factor 1 (CCN1, alias CYR61, log2FC = -1.14; adjusted P-

value = 8.21E-03), G Protein-Coupled Receptor 183 (GPR183, log2FC = -1.47; adjusted P-

value = 2.30E-02) and Interleukin 6 (IL6, log2FC = -4.03; adjusted P-value = 4.18E-02). All the

three genes CCN1, GPR183 and IL6 activate or are activated by the ERK MAP kinase signaling

pathway [77–79]. The differential expression noticed for IL6 in high IMF pigs may also be

related to the secretion from white adipose tissue of IL6 [80]. IL6 is a proinflammatory cyto-

kine produced by activated immune cells and stromal cells, including T cells, monocytes/mac-

rophages, endothelial cells, fibroblasts, and hepatocytes [81]. The proteins encoded by this

gene have many functions in the regulation of the immune system and metabolism, and play

also a role in the body’s defense against infection, in many regenerative processes, and in the

regulation of body weight [reviewed in 81]. Interestingly, in humans, omental IL6 mRNA

expression correlated negatively with insulin sensitivity and positively with steatosis [82], sup-

porting a role for this gene in energy metabolism and obesity. Other genes found DE were

related to the control of cell differentiation and stem cell totipotency, such as Inhibitor of DNA
binding 4 (ID4) [83] and Inhibitor of DNA binding 2 (ID2) [84], and to transcription regula-

tion, such as Eukaryotic Translation Initiation Factor 4E Family Member 3 (EIF4E3). The latter

was found over-expressed in high IMF individuals compared with the low IMF group (log2FC

= -1.06; adjusted P-value = 3.96E-02), suggesting its possible role in IMF deposition. Our result

seems to agree with the role shown by EIF4E in cell proliferation and adipocyte differentiation

reported by Nogueira et al. [85]. Indeed, EIF4E3 is a translational initiation factor [86], but this

gene is also required in the AKT/mTORC1/eIF4E axis for adipocyte differentiation [85] since

Table 2. (Continued)

ENSEMBL Gene ID Official gene

symbol

Average gene expression

of the low IMF group

Average gene expression

of the high IMF group

Log2(FC)a Log2(FC) S.

E.b
Wald

statistic

P-value Adjusted P-value

(q value)

ENSSSCG00000020970 IL6 62.87 1,022.05 -4.03 1.12 -3.60 3.20E-

04

4.18E-02

a log2(Fold Change) of the gene expression levels in the low IMF group vs. the high IMF group.
b Standard error (S.E.) of the log2(Fold Change)

https://doi.org/10.1371/journal.pone.0233372.t002
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the mammalian target of rapamycin complex 1 (mTORC1) enables EIF4E to interact with

EIF4G and to initiate the mRNA translation during adipocyte differentiation [87]. Another

gene related to the same gene family (namely Eukaryotic Translation Initiation Factor 4E Bind-
ing Protein 1, EIF4EBP1) was also found among the DEGs associated with porcine backfat

thickness [88], supporting the evidence that EIF4E gene family may be involved in the pro-

cesses associated with adipogenesis. mTORC1 signaling was also found to control polyamine

synthesis [89]. Interestingly, high IMF pigs showed also a higher expression of Spermidine/
spermine N1-acetyltransferase (SAT1; log2FC = -1.35; adjusted P-value = 1.90E-04), an enzyme

acting in the homeostasis of polyamines [90], that are molecules essential for cell growth [91].

The concurrent increased expression of both SAT1 and FGF2 genes noticed in the present

research in high IMF pigs is in agreement with the evidence reported in the literature that

FGF2 concentrations positively regulate polyamine synthesis in arterial smooth muscle cells

[92].

Similarly, high IMF group presented also a higher gene expression for ADAMMetallopepti-
dase With Thrombospondin Type 1 Motif 1 (ADAMTS1, log2FC = -0.91; adjusted P-

value = 1.99E-05). These shreds of evidence are consistent with the scientific literature con-

cerning this gene. ADAMTS1 is mainly recognized to be involved in extracellular matrix deg-

radation [93], but evidence suggests also its participation in adipogenesis. ADAMTS1 gene had

indeed its expression up-regulated during adipogenesis of human mesenchymal stem cells in

the study by Hung et al. [94], and the targeted inactivation of the murine ADAMTS1 gene

resulted in morphological defects in the adipose tissue [95].

The GO analysis revealed several BPs to be enriched, among which "GO:0014013" corre-

sponding to "Regulation of Gliogenesis" (Adjusted P-value = 0.021), "GO:0045444" corre-

sponding to "fat cell differentiation" (Adjusted P-value = 0.021) and "GO:0061448" (Adjusted

P-value = 0.032) which implies a connective tissue development (Fig 4). As can be seen in Fig

4, the genes included in the significant functional categories are almost the same in all the GO

terms and are mainly related to the differentiation of precursors to different types of cells

(such as fat cells, osteoblasts, glial cells, and fibroblasts). This result is therefore in agreement

with the roles previously described for several DEGs, which were found in the literature to be

mainly associated with the regulation of cell differentiation and proliferation.

RT-qPCR validation of differential expression analysis

In order to validate the RNA-seq experiment, RT-qPCR was used to assess the expression of

five genes (two downregulated and five upregulated in the low IMF group): DnaJ Heat Shock
Protein Family (Hsp40) Member B1 (DNAJB1), LCA5, LIM Domain Kinase 1 (LIMK1), PPARA
and Transforming Acidic Coiled-Coil Containing Protein 2 (TACC2). For the selected genes,

the value of the Log2FC from the RNA-seq analysis was compared to the Log2FC obtained

with RT-qPCR. The genes selected for the validation showed similar expression patterns

between the RNA-seq and the RT-qPCR analyses (Fig 5). Indeed, the Log2FC values obtained

by RT-qPCR were significantly correlated with those obtained from RNA-seq (r = 0.89, P-

value = 0.04) and displayed a high coefficient of determination (R2 = 0.79; Fig 5).

Identification of weighted gene correlation networks associated with

intramuscular fat content

To detect possible gene correlation networks associated with IMF deposition and add informa-

tion to the list of DEGs, the package “WGCNA” was used [46]. IMF content showed to be sig-

nificantly correlated with the genes clustered in four modules: grey60 (module

eigenvalue = 0.77; P-value = 0.003), darkturquoise (module eigenvalue = 0.65; P-

PLOS ONE Gene expression networks associated with variations in pig muscle fat content

PLOS ONE | https://doi.org/10.1371/journal.pone.0233372 May 19, 2020 13 / 29

https://doi.org/10.1371/journal.pone.0233372


Fig 4. Results of the Gene Ontology (GO) analysis of the 58 differentially expressed genes (DEGs) associated with Intramuscular fat (IMF) deposition. The color

and size of the dots show the significance and the ratio between the number of DEGs found in the present study belonging to the functional categories and the total

number of genes in the functional categories.

https://doi.org/10.1371/journal.pone.0233372.g004

Fig 5. RT-qPCR validation of five genes found differentially expressed by RNA-Seq analysis. The table reports the

Log2 Fold Change of the gene expressions between low IMF and high IMF groups for the RNA-Seq and RT-qPCR. The

same values are also graphically presented with the results of the correlation analysis (with the r correlation coefficient,

the R2 coefficient of determination, and the P-value).

https://doi.org/10.1371/journal.pone.0233372.g005
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value = 0.022), skyblue1 (module eigenvalue = 0.65; P-value = 0.022), and lavenderblush3

(module eigenvalue = -0.62; P-value = 0.030; Table 1 in S1 File). Firstly, the genes grouped in

the significant modules were compared with the list of DEGs obtained using the DESeq2 pack-

age. Fifty-four genes out of the 58 identified as DE were found to have an expression level sig-

nificantly correlated with IMF content, suggesting that there was an overall agreement

between the two methods.

The GO analysis of the genes significantly entering in the four modules associated with the

IMF content showed only two significant MFs enriched in the skyblue1 module, namely

“GO:0045309 Protein phosphorylated amino acid binding” (comprising the genes CRK Like
Proto-Oncogene, Adaptor Protein- CRKL, Growth Factor Receptor Bound Protein 2- GRB2,

LEO1 Homolog, Paf1/RNA Polymerase II Complex Component- LEO1, NCK Adaptor Protein 2-
NCK2, RAS P21 Protein Activator 1- RASA1; Adjusted P-value = 0.010) and “GO:0001784

Phosphotyrosine residue binding” (with CRKL, GRB2, NCK2, and RASA1; Adjusted P-

value = 0.040).

The genes in the four significant modules associated with porcine IMF content were further

investigated in Cytoscape. The complete lists of gene module memberships with the P-values

and the correlation coefficients are reported in Tables 2 and 3 in S1 File. The overall signifi-

cances of the genes for the IMF content and the relative P-values are reported in Table 4 in S1

File. Fig 6 shows the significant GO BPs and CCs identified for the list of genes belonging to

grey60, darkturquoise, skyblue1, and lavenderblush3 modules. The results of the functional

categories related to the genes found with the weighted gene correlation analysis highlighted

two macro-categories of genes: a first cluster of genes closely linked to the regulation of cell dif-

ferentiation, DNA transcription in the cell nucleus, alternative splicing of transcripts, matura-

tion and translation of mRNA, and a second group of genes linked to the cellular structure

(centriolar satellite, microtubule organizing center and non-motile cilium assembly). The

complete list of the GO terms, the genes found to be associated and the P-values are reported

in S4 Table.

Of particular interest is the latter functional category, which contains the DE gene LCA5,

and several genes that code for proteins that fall within the organization of primary cilia, such

as the various intraflagellar transport proteins (i.e. IFT81, IFT80, IFT74) and centrosomal pro-

teins (CEP135). As previously discussed, the scientific literature is recently investigating with

increasing interest in the role played by primary cilia in cellular energy metabolism. While

mature adipocytes are not thought to be ciliated, a transient primary cilium has been described

during the differentiation of preadipocytes [96], with ciliary proteins expressed during adipo-

genesis [97]. These specialized cellular organelles are formed during interphase of the cell cycle

from an ancestral basal body or elder centriole of the centrosome, to which primary cilia

remain closely connected. The prominent roles of these organelles in cell differentiation and

energy metabolism are only recently beginning to be understood. Indeed, the primary cilia

play critical roles associated with the epithelium–mesenchyme interaction in various tissues,

and several studies evidenced that the primary cilia surface comprises receptors for many

growth factors and chemical stimuli which permit the cross-talk between adjacent tissues and

the regulation of the development and functional differentiation [98]. Primary cilia are also

found to express on their surface receptors associated with the regulation of intracellular

energy balance. Indeed, rat tracheal ciliated cells presented glucose transporters (GLUT fam-

ily) on their surface [99]. In the present study, we found Solute Carrier Family 2 Member 5
(SLC2A5, alias GLUT5) up-regulated in the high IMF group (Table 2). This gene encodes a

fructose transporter responsible for fructose uptake in cells and was proved to be essential in

the adipocyte differentiation process [100, 101]. These results are therefore in agreement with

our findings, and it could be hypothesized that SLC2A5 expression in adipocytes may be
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dependent also on ciliation events. Anyway, the literature concerning SLC2A5 and its possible

relation with primary cilia is still scant, and this interpretation would need further dedicated

studies to be proved. Along with SLC2A5 gene, also the Solute Carrier Family 2 Member 3
(SLC2A3, alias GLUT3) was found up-regulated in the high IMF group (Table 2). This solute

carrier mediates the uptake of glucose and various other monosaccharides (except fructose)

across the cell membrane. SLC2A3 was mainly found expressed in nerve cells [102], but its

gene and protein expression were also detected within the human myocytes and in particular

appear much present in the nerves within the muscle sections [103]. Its expression in muscle

seems to be associated with regenerative muscle fibers [104], but our results along with those

reported in beef cattle [105] may also suggest for this gene a possible involvement in the molec-

ular cascade associated with divergent IMF deposition in livestock species. Among the

Fig 6. Results of the Cytoscape functional analysis of the genes found in the four significant modules associated with Intramuscular fat (IMF) deposition

in the Semimembranosus muscle. Different functional categories are represented in different colors. The genes with central roles in these categories are also

plotted.

https://doi.org/10.1371/journal.pone.0233372.g006
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receptors located to primary cilia are also G protein–coupled receptors (GPCRs), such as neu-

ropeptide Y (NPY) receptors, commonly associated with the regulation of energy balance and

feed intake [106]. Intriguingly, in the present research, we found several DEGs involved in G-

protein signaling, such as the already cited GPR183, suggesting also a possible relationship

exists between primary cilia and the intracellular cascade following chemical stimuli. This

hypothesis is also supported by the fact that the GPR183 receptor binds to oxysterols [107],

bioactive lipids derived from cholesterol that are mediators of obesity and inflammation [108].

Abnormal primary cilia morphology was associated with obesity and insulin resistance in

humans [97, 109], proving the primary role played by this still poorly known organelle in cell

energy metabolism. Such findings are even more interesting when taken into context with the

results reported in the literature concerning the strong linking relating cilia morphogenesis

and transcriptional changes in the cell nucleus [110] and the role of FGF signaling in the regu-

lation of cilia morphogenesis [111]. In agreement with the reported literature, we found higher

FGF2 gene expression in high IMF pigs, and similar expression patterns were observed also for

genes related to intracellular signaling pathways and transcription regulation. The cluster of

genes involved in transcription regulation is connected with the microtubule gene set through

the genes Actin Related Protein 1B (ACTR1B, alias ARP1B) and WRN RecQ Like Helicase
(WRN; Fig 6). ACTR1B significantly entered in grey60 and darkturquoise modules (Tables 2

and 3 in S1 File) and displayed a negative correlation with the IMF amount (Table 4 in S1

File). ACTR1B belongs to the gene family of Actin Related Proteins (ARPs). ARPs function

largely or entirely in the nucleus, and participate together with actin in chromatin remodeling,

transcription and nuclear assembly [112]. ARPs have crucial roles in actin polymerization,

which in turn was found to control primary cilia morphogenesis and the related intracellular

signaling pathways [113]. The disruption of actin polymerization, or the knockdown of the

involved genes, resulted in an increase in ciliation frequency, axoneme length, and intracellular

cilia-related signaling in cultured cells [113]. These findings provide useful insight to guide the

interpretation of the expression patterns we found for ACTR1B and cilia-related genes. Indeed,

the concomitant down-regulation of ACTR1B and up-regulation of cilia morphology related

genes (LCA5, intraflagellar and centrosomal genes) noticed in the present study may suggest

that ciliation events and disruption of actin polymerization may have taken place in high IMF

pigs.

The identification of hub genes with the Cytoscape plugin “cytoHubba” showed a rank of

10 genes, graphically presented in Fig 7.

Almost all the ten identified hub genes encode for proteins falling into the spliceosome, one

of the most complex of the cell molecular machines comprising the coordinated interaction of

more than 150 proteins involved in RNA splicing [114]. The three genes showing the highest

values of MCC, and thus being reported in darker red in Fig 7, were B-TFIID
TATA-Box Binding Protein Associated Factor 1 (BTAF1), Splicing factor serine-arginine rich
protein (SFRS11), and Pre-mRNA Processing Factor 39 (PRPF39). BTAF1 is a TATA-

box binding protein (TBP) associated factor that regulates TBP thus controlling the dynamic

cycling of TBP on and off of DNA and its transcription into RNA [115]. Of great interest are

the results recently published by Hardivillé et al. [116], which showed how changes in the

interaction between BTAF1 and TBP lead to gross alterations in lipid storage, suggesting that

this gene may have a consistent role also on the regulation of the transcriptomic cascade asso-

ciated with differential IMF deposition. Anyway, the latter hypothesis would need further spe-

cific studies to be proved. The PRPF39 gene (Fig 7) is still poorly investigated, but other

members belonging to the same family of pre-mRNA processing factors (PRPFs) have been

studied due to their involvement in retinal diseases [117]. The PRPFs are components of the

U4/U6.U5 tri-small nuclear ribonucleoprotein subunit of the spliceosome, catalyzing pre-
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mRNA splicing. Interestingly, transcripts encoding components of retinal photoreceptor pri-

mary cilia were found to be affected by a specific splicing program, and mutations in the

sequence of another PRPF family member (namely PRPF31) were found to affect ciliogenesis

[117]. Although these results concern another gene of the PRPF family, it could be hypothe-

sized that PRPF39 may also have some role in the molecular processes associated with primary

cilia. This hypothesis, however, would require further evidence to be proven. Another splicing

factor identified among the hub genes in Fig 7 is Serine And Arginine Rich Splicing Factor 11
(SFRS11, alias P54). The mRNA level of SRSF11 positively correlated with the genes in the

darkturquoise module (Tables 2 and 3 in S1 File), where also the already discussed ACTR1B
was clustered. SRSF11 is a pre-mRNA splicing factor and our results seem to indicate that this

gene may have an important role during the splicing events related to adipogenesis in muscle.

This hypothesis seems to agree with the findings reported by Lin et al. [118] for SRSF6, another

member of SRSF gene family, which is required to drive the transcriptional changes related to

brown adipocyte differentiation [118]. Thus, it could be hypothesized also for SRSF11 a possi-

ble role in the cell cycle events during the preadipocyte differentiation. Anyway at present the

scientific literature describes the roles of this gene in the cell cycle of carcinogenic cell lines

[119]. To our knowledge, no specific literature reporting its possible roles in adipocyte differ-

entiation exists. This hypothesis is also supported by the fact that several other genes involved

Fig 7. The top 10 hub genes in the network of the co-expressed genes found in the four significant modules. The intensity of the color shows

the ranking position: the dark red genes have the most significant Maximal Clique Centrality (MCC) values and thus are hub genes of greater

importance in the network; the light-yellow ones have lower MCC values and thus are hub genes of lower importance in the network.

https://doi.org/10.1371/journal.pone.0233372.g007
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in cell-cycle were already reported to play a central role also in coordinating the transition

between cell proliferation and terminal differentiation of preadipocytes [120]. Interestingly,

SFRS11 was not the only member of the Serine And Arginine Rich Splicing Factor family iden-

tified among the hub genes. Together with SFRS11, also the gene encoding for PNN Interacting
Serine And Arginine Rich Protein (PNISR; alias SFRS18) and Splicing Regulatory Glutamic Acid
And Lysine Rich Protein 1 (SREK1, alias SFRS12) were found to have a central role in the gene

expression network identified in the present research (Fig 7). In detail, PNISR is a serine-argi-

nine rich splicing factor participating in the pre-mRNA splicing machinery [121, 122]. Inter-

estingly, the scientific literature on PNISR throws light also upon its possible role of

paramount importance in porcine muscle adipogenesis. Indeed, Wang et al. found that differ-

ential expression of PNISR gene in muscle is correlated with IMF content in pigs and hypothe-

sized that this evidence may be due to a possible implication of the PNISR gene in the pre-

mRNA splicing of key genes regulating IMF deposition [123]. Additionally, members of the

serine-arginine rich splicing factor family were also found involved in ciliogenesis [124], sup-

porting once again the hypothesis of a relationship linking some of the hub genes clustered in

the DNA transcription regulation with primary cilia organelle development and

morphogenesis.

Two other hub genes identified by “cytoHubba” were U2 SnRNP Associated SURP Domain
Containing (U2SURP, alias SR140) and Zinc Finger Protein 518A (ZNF518A; Fig 7). The gene

expression of U2SURP was in particular found to be significantly correlated with all the four

modules associated with the IMF content (Tables 2 and 3 in S1 File). In agreement with the

previously described results, also this gene codes for a protein directly involved in the spliceo-

some machinery [114], but at present, its function remains mostly unknown [125]. A few

researches concerning U2SURP protein associate its activation to variations in intracellular

Ca2+, which in turn impacted also on cellular growth and proliferation [126]. The involvement

of calcium channels as co-regulators of the cell proliferation and transcriptional processes was

proved by several studies, where specific patterns of cytoplasmic Ca2+ signals were found to

control cell proliferation and execution of transcriptional programs [127, 128], while dysfunc-

tional intracellular Ca2+ channels may affect cellular transformation and tissue remodeling in

various pathologies [129]. Interestingly, intracellular Ca2+ signaling was proved to be activated

by FGF2 in satellite cells, activation that was found to be essential in the differentiation process

[130]. This latter evidence is far more of interest considering that in the present research we

found DE genes involved in calcium-channel complex, such as Calcium Voltage-Gated Chan-
nel Auxiliary Subunit Beta 3 (CACNB3) and Phosphodiesterase 4D (PDE4D; Table 2). Hence,

based on the evidence linking Ca2+ channels and transcription regulation [129, 131], it could

be outlined a possible relationship between the identified hub genes involved in the spliceo-

some machinery and the genes encoding for calcium-channel complex found DE in the pres-

ent study.

Another hub gene is ZNF518A, which belongs to zinc finger proteins (ZFPs), one of the

largest classes of transcription factors in eukaryotic genomes. Despite the exact role of

ZNF518A is still unknown, many of the ZFPs were found to be involved in the regulation of

normal growth and development of cells and tissues through diverse signal transduction path-

ways [132]. Furthermore, recent studies have found that an increasing number of ZFPs could

function also as key transcriptional regulators involved in adipogenesis [132, 133], possibly

indicating that also ZNF518A may play an important role in the differentiation of muscle

interspersed adipogenic precursors. The pluripotency of stem cells was also shown to strongly

depend on the THO complex, which is a nuclear protein complex functioning as an interface

between mRNA transcription and export [60]. THO complex comprises also the protein

encoded by the gene THO Complex 1 (THOC1, alias P84), that is one of the hub genes
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identified in the IMF-related gene network (Fig 7) and with a significant weight in the grey60

gene module (Tables 2 and 3 in S1 File). Therefore, the present research strongly supports that

the found hub genes may have a central role also in coordinating the transition between cell

proliferation and terminal differentiation of preadipocytes interspersed in muscle. However,

based on the knowledge reported in the literature, we believe that upstream of these transcrip-

tional changes there could be an autocrine positive loop driven by FGF2. A possible hypothesis

of the molecular cascade of events involved in IMF deposition is outlined in Fig 8.

In particular, considering the effects played by FGF2 in the regulation of cell proliferation

[134], primary cilia morphology [75], adipocyte differentiation [135] and polyamine synthesis

[92], we suggest that the observed gene networks related to IMF deposition may be driven by

FGF2. In the literature, a study carried out on human multipotent adipose-derived stem cells

(hMADS) proved that FGF2 is critical to maintain the differentiation capacity of these cells

and to stimulate their growth also at the single-cell level [135]. This type of regulation of the

cell differentiation seems to be carried out through an autocrine loop since FGF2 was proved

to be exported to hMADS cell surface to bind with its receptors without being released outside

of the cell [135]. Taking into account the scientific literature and the observed increased

Fig 8. A hypothetical molecular cascade of events involved in Intramuscular fat (IMF) deposition based on the obtained results and comparison with the

scientific literature. Between brackets are reported the references endorsing each step in the hypothetical cascade of molecular events.

https://doi.org/10.1371/journal.pone.0233372.g008
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expression of the primary cilia-related genes, in the SM of high IMF pigs, it is possible to

hypothesize the occurrence of ciliation events affecting the adipocyte differentiation process

and the stimulation of energy uptake and storage in the form of adipocyte intracellular lipids.

This hypothesis agrees with the recent scientific literature indicating that primary cilia are nec-

essary for the differentiation of human adipose progenitors in muscle [136, 137]. Adipogenesis

would also be sustained by an increase in polyamine synthesis through the activation of the

SAT1 gene by the FGF2 signal, in agreement with the results reported in Endean et al. [83].

This complex molecular cascade would anyway need further dedicated studies to confirm the

outlined hypothesis.

Conclusions

On the whole, the genes identified in this study associated with IMF in pigs were mainly

involved in the regulation of DNA transcription and cell differentiation, in primary cilia mor-

phogenesis, and with several intracellular signaling cascades (such as the ERK/MAP kinase

and the G-protein related responses). These results provide new insights about the possible

genetic mechanisms underlying adipocyte differentiation and IMF deposition in Italian Large

White pigs intended for the production of PDO hams. The identified new molecular processes

supply a set of candidate genes for further detection of genetic polymorphisms associated with

changes in the expression level of the DEGs and involved in IMF deposition. Further studies

are needed to explore the drivers of this complex process and find possible molecular markers

useful for the selection of pigs with improved meat quality features.
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