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The purpose of this addendum is to close a gap in the proof of [1, Theorem 11.2], 
which characterizes the computational content of the Bolzano–Weierstraß Theorem 
for arbitrary computable metric spaces.

      

In [1, Theorem 11.2] it is stated that BWTX ≡sW K′
X holds for all computable metric spaces X. Here 

BWTX denotes the Bolzano–Weierstraß Theorem, K′
X denotes the jump of compact choice and ≡sW stands 

for strong Weihrauch equivalence. We refer the reader to [1] for the definition of all notions that are not 
defined here.

While the reduction BWTX ≤sW K′
X was proved correctly in [1], the proof provided for K′

X ≤sW BWTX

contains a gap and is only correct for the special case of compact X as it stands. This fact was pointed out 
by one of us (M. Schröder) and is due to the fact that in general the closure of L−1

X (K) is not compact. We 
close this gap in this addendum.

We start with a lemma that shows that compact sets given in K′
−(X) are effectively totally bounded in a 

particular sense. By O(X) we denote the set of open subsets of X, represented as complements of elements 
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of A−(X), i.e., p is a name of an open set U if and only if it is a ψ−-name of the closed set X \ U . We call 
an open ball B(a, r) rational, if a is a point of the dense subset of X (that is used to define the computable 
metric space X) and r ≥ 0 is a rational number.

Lemma 1. Let X be a computable metric space. Consider the multivalued function FX :⊆ K′
−(X) ⇒ O(X)N

with dom(FX) = {K ∈ K′
−(X) : K �= ∅} and such that, for each K �= ∅, we have (Un)n ∈ FX(K) if and 

only if the following conditions hold for each n ∈ N:

(1) Un is a union of finitely many rational open balls of radius ≤ 2−n,
(2) K ⊆ Un.

Then FX is computable.

Proof. Let X be a computable metric space and let K ⊆ X be a nonempty compact set. Let 〈pi〉i be a 
κ′
−-name of K. This means that p := limi→∞ pi is a κ−-name for K and, in particular, for each n ∈ N:

• pi(n) is a name for a finite set of rational open balls for each i ∈ N,
• there exists k ∈ N such that the finite set of rational balls given by pk(n) covers K and pk(n) = pi(n)

for all i ≥ k.

We also have that {p(n) : n ∈ N} is a set of names of all finite covers of K by rational open balls. We want 
to build a sequence of open sets (Un)n such that (1) and (2) hold. We describe how to construct a name 
of a generic open set Un for n ∈ N. We start at stage 0 with Un = ∅. At each stage s = 〈m, i〉 that the 
computation reaches, we focus on the balls B(a0, r0), . . . , B(al, rl) given by pi(m) and we check whether 
r0, . . . , rl ≤ 2−n. If this is not true, then we go to stage s + 1. Otherwise, if the condition is met, we add 
these balls to the name of Un and we check whether pi(m) = pi+1(m). If this is the case we add again 
B(a0, r0), . . . , B(al, rl) to the name of Un. We repeat this operation as long as we find the same open balls 
given by pj(m) for j > i. If we find pi(m) �= pj(m) for some j > i, then the computation goes to stage s +1.

We claim that, for each n, there exists a stage in which the computation goes on indefinitely. Consider, 
in fact, {B(a0, r0), . . . , B(al, rl)}, a finite rational cover of K with r0, . . . , rl ≤ 2−n, which exists by a simple 
argument using the compactness of K. Since 〈pi〉i is a κ′

−-name of K, there exists a minimum 〈m, i〉 such 
that:

• pi(m) is a name for the cover {B(a0, r0), . . . , B(al, rl)},
• pi(m) = pj(m) for each j > i.

If the algorithm reaches stage s = 〈m, i〉, then it is clear that the computation goes on indefinitely within 
this stage. If the algorithm never reaches stage s, then necessarily it already stopped at a previous stage. 
In both cases our claim is true.

Finally, since we built the name of Un by adding only balls of radius ≤ 2−n and since the computation 
stabilizes at a finite stage, it is clear that conditions (1) and (2) are met. �

We note that even though the open sets Un constructed in the previous proof are finite unions of rational 
open balls, the algorithm does not provide a corresponding rational cover in a finitary way. It rather provides 
an infinite list of rational open balls that is guaranteed to contain only finitely many distinct rational balls. 
This is a weak form of effective total boundedness and the best one can hope for, given that the input is 
represented by the jump of κ−.



The following lemma shows that sequences that we choose in range(FX) in a particular way give rise to 
totally bounded sets.

Lemma 2. Let X be a metric space and let Un ⊆ X be a finite union of balls of radius ≤ 2−n for each n ∈ N. 
Let (xn)n be a sequence in X with xn ∈

⋂n
i=0 Ui. Then {xn : n ∈ N} is totally bounded.

Proof. We obtain {xn : n ∈ N} ⊆
⋂∞

i=0

(
Ui ∪

⋃i−1
n=0 B(xn, 2−i)

)
and the set on the right-hand side is clearly 

totally bounded. Hence the set on the left-hand side is totally bounded and so is its closure. �
We mention that it is well known that a subset of a metric space is totally bounded if and only if any 

sequence in it has a Cauchy subsequence [2, Exercise 4.3.A (a)].
Now we use the previous two lemmas to complete the proof of [1, Theorem 11.2]. Within the proof we use 

the canonical completion X̂ of a computable metric space. It is known that this completion is a computable 
metric space again and that the canonical embedding X ↪→ X̂ is a computable isometry that preserves the 
dense sequence [3, Lemma 8.1.6]. We will identify X with a subset of X̂ via this embedding.

Theorem 3 ([1, Theorem 11.2]). BWTX ≡sW K′
X for all computable metric spaces X.

Proof. The reduction BWTX ≤sW K′
X has been proved in [1], so we focus on the reduction K′

X ≤sW BWTX . 
Let (X, d, α) be a computable metric space and let K ⊆ X be a nonempty compact set given by a κ′

−-name 
〈pi〉i. We want to compute a point of K using BWTX . The idea is to define a sequence (xn)n in X, working 
within the completion X̂ of X and using the open sets built in Lemma 1, such that {xn : n ∈ N} is compact 
in X.

It is clear that K is a compact subset of X̂ and that 〈pi〉i can be considered as a κ′
−-name for K in X̂. 

We consider the map

LX̂ : X̂N → A′
−(X̂), (xn)n 
→ {x ∈ X̂ : x is a cluster point of (xn)n}.

By [1, Corollary 9.5] L−1
X̂

is computable and hence L−1
X̂

(K) yields a sequence (zm)m in X̂ whose cluster 
points are exactly the elements of K.

Let FX̂ be the multivalued function defined in Lemma 1. We can compute a sequence (Un)n ∈ FX̂(K). 
Since {zm : m ∈ N} is not compact (and hence not in dom(BWTX)) in general, we refine it recursively to a 
sequence (yn)n using (Un)n in the following way: for each n ∈ N, yn := zmn

for the first mn that we find 
with zmn

∈ U0 ∩ · · · ∩ Un and such that mi < mn for all i < n. Note that we can always find such a yn, 
since U0 ∩ · · · ∩Un covers K which is the set of cluster points of (zm)m. Clearly every cluster point of (yn)n
is also a cluster point of (zm)m, hence it belongs to K.

Recall now that (yn)n is a sequence of points in X̂ and that we want a sequence (xn)n in X in order 
to apply BWTX . We compute (xn)n as follows: for each n ∈ N, xn is the first element that we find in the 
dense subset range(α) such that d(xn, yn) < 2−n and xn ∈ U0 ∩ · · ·∩Un, where d also denotes the extension 
of the metric to X̂. By density of X in X̂ such an xn always exists and it is clear that the cluster points of 
(xn)n and those of (yn)n are the same in X̂.

Now A := {xn : n ∈ N} is totally bounded in X by Lemma 2 and hence every sequence in A has a 
Cauchy subsequence, which has a limit in X̂, since X̂ is complete. By construction of (xn)n the limit of 
such a subsequence is in K and hence in X. Thus every sequence in A has a subsequence that converges in 
X and hence A is compact in X.

Finally, we can obtain an element of K by applying BWTX to (xn)n. �
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