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Chapter 1
Energy-Efficient Train Control
A practical application

Valentina Cacchiani, Antonio di Carmine, Giacomo Lanza, Michele Monaci,
Federico Naldini, Luca Prezioso, Rosalba Suffritti, and Daniele Vigo

Abstract This work presents a practical application of the Energy Efficient Train
Control (EETC) problem, arising from a collaboration between the OR group of
the University of Bologna and ALSTOM Ferroviaria SpA, within the framework
of project Swift, funded by the Emilia-Romagna regional authority. Such problem
requires to determine a speed profile for a given train, running on a given line, such
that it minimizes the traction energy consumption. For the solution of this problem
we introduce three methods: a constructive heuristic; a multi-start randomized con-
structive heuristic; and a Genetic Algorithm. Numerical experiments are executed
on real-life instances. The results show that high quality solutions are produced and
the computing time is suitable for real-time applications.

Key words: heuristic, railway optimization, energy, train control

1.1 Introduction

One of the major costs for railway companies is given by energy consumption. For
this reason, the development into a more mature and competitive market makes an
efficient energy management imperative for reducing the operating costs. Ecological
awareness is also a major driver for energy efficiency in railway systems in an effort
towards reducing air pollutants, e.g., carbon dioxide, whose emissions are one of the
causes of global warming (Luijt et al., 2017).
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The construction of energy-efficient driving profiles has attracted large atten-
tion from researchers in the recent years, being an effective way of saving energy.
The resulting problem is known as Energy-Efficient Train Control (EETC), and is
sometimes also referred to as eco-driving or train trajectory planning problem. This
problem aims at finding the most energy-efficient driving profile for a given train
traveling on a certain line, while satisfying a number of operational constraints to
ensure a safe and punctual journey. Recent surveys on EETC have been proposed by
Yang et al. (2016) and Scheepmaker et al. (2017). A complete review on the Optimal
Train Control Theory has been given in Albrecht et al. (2016a,b).

Analyses based on the Pontryagin Maximum Principle (PMP) have shown that
an optimal driving strategy consists of a sequence of four driving regimes, namely,
maximum acceleration/traction (MT), cruising/speed-holding (SH), coasting (CO)
and maximum braking (MB), see, e.g., Howlett et al. (1994) and Albrecht et al.
(2016a,b). An example speed profile consisting of MT-SH-CO-MB is shown in
Figure 1.1.
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Fig. 1.1 A profile consisting of MT, SH, CO and MB. The train runs on a track approximately 35
kilometers long, and starts and ends at zero speed.

Based on this result, most of the algorithms proposed in the literature (Albrecht
et al. (2016b), Yang et al. (2016) and Scheepmaker et al. Scheepmaker et al. (2017))
define the driving profile as a sequence of these four driving regimes, identifying
suitable switching points between consecutive driving regimes.

In this paper we focus on the EETC in its basic version, arising when the driving
profile of a single train has to be determined. We do not consider railway traffic
management, as we assume that the schedule of the train has already been optimized
by a (possibly online) scheduling algorithm (see, e.g., Bettinelli et al. (2017) and
Fischetti and Monaci (2017)). In this context, safety requirements impose that the
schedule of the train is given on input and cannot be changed. In addition, we do not
consider possible interactions between trains in terms of power exchange, as it could
happen in complex networks equipped with appropriate infrastructures and energy
storage systems.

This paper is organized as follows. In Section 1.2 we define the problem, and in
Section 1.3 the solution approaches are outlined. The results of the computational
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testing on real-world instances are given in Section 1.4. Finally, Section 1.5 draws
some conclusions.

1.2 Problem Definition

We are given a rail track having length D, and a train running on the track. The train
has a fixed schedule, imposing its travel time be equal to exactly T time units, and
is characterized by some known rolling-stock properties (e.g., its weight). The track
geometry, e.g., the position-varying slope and radius of curvature, is also known.
Finally, there are give speed limits that the train must respect, and that vary along
the track. The problem requires to determine a driving profile for the train such that
(i) the travel time of the train is exactly T ; (ii) speed limits are respected; and (iii)
the total amount of energy required for running the train is minimized.

We represent the track as a segment [0,D] and assume that the train travels on the
track from time instant 0 to time instant T .

For the sake of simplicity, we do not consider the case of steep uphill/downhill
tracks, i.e., we assume that the train, regardless of its speed, is always capable of
negotiating uphills/downhills or speed-holding. Moreover, we assume a continuous
control and neglect any form of energy recovery, as it happens with the so-called
Regenerative Brake. For details on steep uphills/downhills and on Regenerative
Brake, the reader is referred to Howlett et al. (1994); Albrecht et al. (2016a,b).

In our setting, themotion of a train is approximated using the following point-mass
model

dv
dt
= u(t) − R(v(t)) + G(x(t)) (1.1)

dx
dt
= v(t), (1.2)

where time t ∈ [0,T], is the independent variable, while speed v(t), position x(t) are
coordinates of the dynamical system and u(t) is the controlled acceleration.

Term R(v) represents the so-called Basic Resistance, taking into account the
speed-dependent resistive phenomena, and given by the well-knownDavis Equation

R(v) = r0 + r1 v(t) + r2 v(t)2, (1.3)

where r0, r1 and r2 are positive empirical constants depending on the rolling-stock
(see, J.W. Davis Jr (1926)).

Term G(x) is the Line Resistance, which measures the position-dependent forces
acting on the train along its route, such as the gravity force (depending on the
position-varying track slope) and the curve resistance (depending on the position-
varying radius of curvature). The analytic expression of G(x) has been provided by
our industrial partner as a piece-wise function through the expression
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G(x) := −g sin

[
arctan

(
0.8
ρ(x)

+ tan θ(x)

)]
, (1.4)

θ(x) and ρ(x) being the (position-dependent) track grade and radius of curvature
respectively, and g the gravity constant (see, Fayet, 2008; Sapronova et al., 2017).

The controlled acceleration u(t) is bounded by two functions, i.e.

−uL(v) ≤ u(t) ≤ uU (v). (1.5)

where bounds uL(v) ≥ 0 and uU (v) ≥ 0 are the maximum deceleration and the max-
imum acceleration, respectively, that the train engine can handle. In the following,
we will always assume that uL and uU are decreasing non-linear functions of the
speed.

As mentioned above, speed limits impose an upper bound on the maximum speed

0 ≤ v(t) ≤ V̄(x(t)) (1.6)

where the upper bound value V̄(x(t)) depends on the geometry of the track. In
addition, the following boundary conditions

x(0) = 0, x(T) = D, v(0) = vinit, v(T) = v f inal, (1.7)

are imposed to fix the position and speed of the train at time instants t = 0 and t = T ,
with vinit and v f inal given on input.

Finally, the objective is to minimize the total energy spent by the train, given by

E =
∫ T

0

u(t) + |u(t)|
2

v(t)dt (1.8)

Equation (1.8) considers that no energy is recovered when u(t) < 0, in fact, the
term (u + |u|)/2 is equal to zero in that case.

Observe that the Equations (1.1)-(1.8) constitute a well-known Optimal Control
Formulation for the EETC, see Albrecht et al. (2016a,b) and Scheepmaker et al.
(2017).

1.2.1 Overview of the Solution Approach

In most practical cases, track geometry and speed-limits are described as piece-wise
constant functions of the space. Therefore, it is possible to partition the track [0,D]
into a sequence of n consecutive sections Sk = [x

(k)
o , x(k)

f
], with x(0)o = 0, x(n)

f
= D

and x(k)
f
= x(k+1)

o , (k = 0, 1, . . . , n − 1), that have constant slope, radius of curvature
and speed limit (see Haahr et al. (2017); Wang et al. (2012, 2013)). We will refer to
those sections as segments. This results in having a fixed Line Resistance along with
a fixed speed limit. In particular ∀ k = 1 . . . n:
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G(x) = g(k) V̄(x) = V̄ (k). (1.9)

As mentioned in the introduction, similar to what is done in Li and Lo (2014),
our approach is based on the Optimal Train Control theory and assumes that a
concatenation of at most four given driving regimes is used to define the speed
profile in each section. The driving regimes are characterized by the following
conditions:

Maximum Traction, MT: u1 = uU (v) (1.10)

Speed Holding (or Cruising), SH: u2 = R(v) − g(k) (1.11)
Coasting, CO: u3 = 0 (1.12)

Maximum Braking, MB: u4 = − uL(v), (1.13)

where u1, u2, u3 and u4 are the accelerations in every regime. Within a segment,
each regime can be executed at most once, and regimes must appear in fixed order,
namely, MT, SH, CO, and MB. Furthermore, some regimes may not be used in a
segment.

As a consequence, Equations (1.1) and (1.2) can be simplified, because the term
u corresponds to one of the u j ( j = 1, . . . 4) shown in Equations (1.10)-(1.13) and
G(x) = g(k) in each segment k.

We observe that, within our settings, energy is only consumed during the MT and
SH driving regimes. Let E (k)MT and E (k)

SH
, respectively, be the energy consumed in the

MT and SH regimes for segment k (k = 1 . . . n). Then Equation (1.8) reduces, for
MT, to

E (k)MT =

∫ t
(k)
2

t
(k)
1

u1(v(t)) v(t) dt, (1.14)

where t(k)1 and t(k)2 are the start and end time for MT in segment k. Similarly, for
regime SH, we have that (1.8) simplifies to

E (k)
SH
= u2(v

(k)
2 ) v

(k)
2 (t

(k)
3 − t(k)2 ), (1.15)

where v
(k)
2 is the constant speed value, while t(k)2 and t(k)3 are respectively the start

and end times for SH regime.
We note that, under appropriate time discretion, Equations (1.1), (1.2) and (1.14),

can be pre-computed, for each segment and driving regime, by using numerical
methods or approximated closed-form expressions under some assumptions on u as
in Ye and Liu (2017).
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1.3 Heuristic Solution Approaches

In this section we propose heuristic approaches for the problem at study. We first
introduce a constructive heuristic (CH); then, we present a multi-start randomized
constructive heuristic (RCH) and a Genetic Algorithm (GA).

1.3.1 Constructive Heuristic

The proposed constructive heuristic is an iterative procedure that starts from an
infeasible solution and, at each iteration, tries to reduce infeasibility, until a feasible
solution is produced.

At the beginning, the algorithm computes the so-called allout speed profile, i.e.
the solution obtained by running the train at its maximum allowed speed. When
computing this speed profile, train motion laws and speed limits are taken into
account.

Observe that the running time τAO associated with this solution provides a lower
bound on the running time for the train in any feasible solution. If this running time
is not equal to the required time T , the current solution is infeasible. To recover
feasibility we consider the actual maximum speed Ṽ (k) reached in every segment k,
and slow the train down by artificially reducing the speed limits. This speed reduction
is applied in one segment at a time.

For each segment k, we reduce its maximum speed by a given amount s (which is a
parameter of the algorithm), and re-compute the associated speed profile and running
time τ. If τ > T , then the last update of the maximum speed is canceled. If, instead
τ < T , the next segment is considered. This procedure continues until a feasible
solution is obtained. The pseduo-code of the algorithm is shown in Algorithm 1.

1 Compute the allout speed profile for the given route. Store travel time in τ = τAO .
Store in Ṽ (k) the maximum speeds that are actually reached by the allout speed
profile in each segment k;

2 Set wk := Ṽ (k), ∀k = 1 . . . n ;
3 while τ < T do
4 for k = 1. . . n do
5 wk := wk − s;
6 Re-compute speed profile using the current speed limits in each segment (i.e.

w1, . . .wn). Store travel time in τ;
7 if τ > T then
8 Undo the change, namely wk := wk + s
9 end
10 end
11 end

Algorithm 1: CH
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1.3.2 Multi-start Randomized Constructive Heuristic

The constructive heuristic of the previous section is used in a multi-start fashion to
determine a pool of feasible solutions. This allows to possibly find better solutions
and to determine an initial population of the genetic algorithm (see Section 1.3.3).

The multi-start randomized constructive heuristic performs a fixed number (say,
NI) of iterations, changing a set of parameters in a randomway. In particular, at each
iteration, γ1 segments are selected (where γ1 is a parameter of the algorithm), and
the maximum speedwk of the selected segments is reduced by a random value. Then,
the constructive heuristic of Section 1.3.1 is applied. It is worth to be noted that the
sub-procedure which computes the allout speed profile needs to be executed only
once. The best solution found among all iterations is then returned. The pseudo-code
is reported in Algorithm 2.

1 Compute the allout speed profile for the given route. Store travel time in τ = τAO .
Store in Ṽ (k) the maximum speeds that are actually reached by the allout speed
profile in each segment k;

2 Set wk := Ṽ (k), ∀k = 1 . . . n ;
3 while τ < T do
4 for c = 1 . . . γ1 do
5 Randomly select a segment k̃ according to a uniform random distribution;
6 Reduce wk̃ by a uniform random number within (0, γ2 wk̃ ] with 0 ≤ γ2 ≤ 1;
7 end
8 Re-compute speed profile using wk as the maximum speed in each segment

(k = 1 . . . n). And let τ be the resulting travel time;
9 end
10 Apply lines 3-11 of Algorithm 1;

Algorithm 2: RCH

1.3.3 Genetic Algorithm (GA)

In this section, we present a Genetic Algorithm, inspired by the work of Li and Lo
(2014).

In our algorithm, each chromosome is associatedwith a solution and is represented
by a vector containing the values of the initial speed for each driving regime.

The population contains M individuals. During each iteration, by means of
crossover and mutation operators, the current population might grow larger than
M . The selection operator restores the number of individuals to M by eliminating
the lowest ranking ones from the current population. A fixed number h of Elite
individuals is kept intact over the iterations.

The evaluation of each chromosome c of a current population is carried out by
means of the following fitness function
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f (c) = k1E(c) + k2H(c), (1.16)

where k1 and k2 are tuning parameters, E(c) represents the traction energy that
is spent driving the train according to solution c, and H(c) measures the diversity
of chromosome c with respect to the rest of the current population (thus making
the fitness function biased towards favoring diversity, instead of considering energy
efficiency only). H(c) is computed as a mean difference between c and the other
individuals.

The main components of the GA are reported in the following list, according to
the order in which chromosomes are processed in each iteration:

1. Mutation Operator: this operator is applied, with probability Pm, to each non-
elite chromosome, producing new individuals. It consists of applying random
variations of speed to a set of randomly selected segments, according to a uniform
random distribution. The maximum variation amount is given as a percentage m
(parameter of the algorithm) of the maximum speed in a each segment.

2. Crossover Operator: it implements a single-point crossover to produce two
children chromosomes from a couple of parents, by recombining their genome
after splitting on a randomly selected segment boundary. It has a probability Pc of
affecting each chromosome, excluding Elites and those chromosomes produced
by mutation at the current iteration;

3. Repair Operator: it restores feasibility of solutions after mutation and crossover,
if needed. It implements a procedure similar to the constructive algorithm intro-
duced in Section 1.3.1

4. Selection Operator: it ranks each chromosome c of the current population by
means of the fitness function.Then, it deletes the lowest ranking individuals
exceeding the maximum population size M , while preserving a group of E Elites
intact.

1.4 Computational Experiments

The algorithms described in the previous sectionwere implemented inC and executed
on a 2.9-Ghz Intel Core i7-7500Uwith 16 GB of RAM. Our benchmark is composed
by real-world instances provided by ALSTOM. All instances are associated with
two railway lines, denoted as ROUTE 1 and ROUTE 2. These lines have lenghts
equal to 250 and 270 kilometers, respectively, and are composed by 42 and 67
segments, respectively. For each line, we considered five different train models,
denoted with letters A to E in the following, and having different characteristics.
This produced a benchmark of 10 different instances. To evaluate the quality of the
obtained solutions, we used the following measure of efficiency, commonly used by
ALSTOM’s practitioners:

e = 100 ·
EA − E

EA
, (1.17)
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where EA represents the energy consumption of the aforementioned allout profile,
while term E corresponds to the energy consumption associated with the given
solution.

The RCH algorithm (see Algorithm 2), which also initializes the GA, was iterated
32 times in each experiment in a multi-start fashion. Parameter s was set to 1 (m/s),
γ1 = 20 and γ2 = 40%. The GAwas configured according to the following parameter
values: Pc = 0.97, Pm = 0.95, M = 9, h = 5 and m = 5%. A maximum number
of 300 generations was imposed. Moreover the GA was set to terminate after 11
non-improving consecutive generations.

Table 1.1 shows the results associated with ROUTE 1. For each train model we
report the fixed travel time T , the level of efficiency computed according to (1.17),
and the associated CPU time (in seconds).

Efficiency CPU time (seconds)
Train T (s) CH RCH GA CH RCH GA
A 4560 3.2 5.4 7.2 0.2 1.5 4.4
B 4560 8.2 10.4 11.6 0.1 1.2 2.5
C 6525 6.6 11.5 25.3 0.3 4.9 10.6
D 10920 10.9 12.5 12.7 0.1 0.6 2.2
E 7079 18.8 20.2 21.6 0.2 0.7 2.1

Table 1.1 Results on ROUTE 1 (250 km, 42 segments).

The results show that, when the first line is considered, the constructive heuristic is
able to reduce the energy consumption, with respect to the allout profile, by around
10% on average. The associated computing times are rather small, being always
below 2 seconds. By executing the randomized multistart constructive heuristic and
the genetic algorithm we obtain further savings, about 12% and 15%, respectively.
While the increase in CPU time for the former is rather limited, the latter may require
a significantly larger computing time, whichmay prevent its use in a real-time system.

Efficiency CPU time (seconds)
Train T (s) CH RCH GA CH RCH GA
A 7285 6.6 13.7 23.7 0.5 9.6 15.8
B 7142 8.7 14.8 29.0 0.6 11.4 21.7
C 7933 9.9 13.4 27.2 0.8 15.9 29.4
D 11729 12.7 13.2 13.9 0.2 0.9 2.4
E 7595 18.2 18.9 22.2 0.3 1.7 5.2

Table 1.2 Results on ROUTE 2 (270 km, 67 segments).

The results for the second line, reported in Table 1.2, confirm those obtained
for the first line, although the computing times are larger than before. However, we
observe that energy reduction in Table 1.2 is also higher than in Table 1.1.
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1.5 Conclusions and future research

In this paper we studied the Energy-Efficient Train Control (EETC) problem. This
problem was solved using three approaches: a constructive heuristic, a multi-start
randomized constructive heuristic, and a genetic algorithm. Computational results
on real-life instances show that, in most cases, the computing times of the algorithms
are short enough to allow their use in a real-time application.

Future research directions will be to consider real-time traffic management as-
pects, related to the possibility of slightly changing the schedule of the train, as
well as the adoption of a system which allows energy recovery through regenerative
brake.
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