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Abstract

FOIL is a family of two-sorted first-order modal logics containing both object
and intensional variables. Intensional variables are represented by partial functions
from worlds to objects and the abstraction operator λ is used to talk about the object
(if any) denoted by an intension in a given world.

This paper answers a problem left open in Fitting’s [4] by showing that Fitting’s
axiomatization of FOIL augmented with infinitely many inductively defined rules,
CD(k), k ≥ 0, allows for the construction of a canonical model that is essentially a
constant domains model. Moreover, it is shown that the rules CD(k) are derivable
in logics where the symmetry axiom B holds. Hence, Fitting’s axiomatisation of
FOIL is already complete when the underlying logic imposes symmetric models.

1 Introduction
First-order intensional logics (FOIL) are a family of quantified modal logics studied by
Melvin Fitting [2, 3, 4] where not only object variables but also intensional variables are
present. Object variables are rigid terms that directly represent objects of the model, as
terms do in standard quantified modal logics. Intensional variables are non-rigid terms
that represent individual concepts – i.e., partial functions from worlds to objects. A
complete axiomatisation for some FOIL systems is given in [4].

As Fitting himself notices, his completeness proof for the quantifier-free language
gives rise to a canonical model with increasing domains and, hence, it does not work
for logics, requiring a constant domains semantics – e.g., it does not work for logics
where the symmetry axiom B holds. Thus, Fitting [4, p. 16] presents the following
open problem (noted also in [11, p. 571]):

the structure of the model constructed during the completeness argument
is essentially varying domain, while symmetry forces constant domain on
us. Without quantifiers available, I don’t know how to state something
like the Barcan formula, and so I don’t know how to reconcile symme-
try requirements with the model construction given. Completeness of the
{λ,=} part of FOIL, with an underlying logic of, say, S5 is an interesting
question.
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The problem, roughly, is that Fitting [4] constructs a Lindenbaum-Henkin-style
model with increasing domains since whenever he has to build a successor world he
extends the language with a new set of witnesses. For FOIL based on propositional
modal logics such as K, D, T, K4, and S4 – i.e., for logics based on tree-like frames –
he is able to prove completeness with respect to a constant domains semantics because

no quantifiers are present, so there is no way we can “see” the difference
between constant and varying domains. [4, p. 16]

Nevertheless this trick does not work for FOIL involving at least one of the axioms
B or 5. These axioms correspond to the non-tree-like properties of symmetry and
Euclideaness. Hence, in building a canonical model for logics including them we must
be able to keep the same language during the entire construction.

This paper provides a positive solution to this problem by showing that:

• FOIL augmented with infinitely many inductively defined rules, CD(k), k ≥ 0,
allows for the construction of a canonical model whose structure during the com-
pleteness argument is essentially a constant domains model;1

• The rules CD(k) are derivable, for all k ≥ 0, in logics where the symmetry axiom
B holds, and therefore Fitting’s axiomatisation of FOIL is complete also when
the underlying logic imposes symmetric models.

Moreover, this paper gives a simple solution to a problem noted in [5] for the canon-
ical model construction given in [4]: namely that it is possible for two distinct inten-
sional variables f and g to be interpreted on the same intension without thereby being
intersubstitutable salva veritate – i.e., it can be that P(. . . f . . . ) ∈ w and P(. . . g . . . ) < w
for some world w of the canonical model even if f and g denote the same intension.
Fitting [5] solves this problem in a way that he himself finds rather artificial: by adding
additional worlds (so-called disambiguation worlds) to the canonical model in such
a way that two intensional variables may be interpreted on the same intension only
if syntactically they are the same variable. In this paper the same result is obtained,
not by adding disambiguation worlds, but by defining the codomain of intensions as
pairs 〈object, label〉 in such a way that syntactically distinct intensional variables are
interpreted on distinct intensions.

2 Objects, intensions, and constant domains
A crucial question for quantified modal logics is whether terms should behave as rigid
designators – i.e., they are bound to denote the same object in all (accessible) worlds
of a given model – or as non-rigid designators – i.e., they can denote different objects
in different worlds of one and the same model. FOIL are two-sorted quantified modal
logics encompassing terms of both kinds. Object variables denote objects directly and
irrespectively of the particular world of the model under consideration. Intensional

1What we present here has similarities with the rules R6 and R7 introduced by Thomason [9] and with
the rule EBR in Corsi [1].
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variables, instead, denote functions from worlds to objects; moreover these functions
need not be total, hence it might well be that an intension does not denote any object
in some world. To exemplify the distinction, an object variable behaves like the proper
name ‘Donald J. Trump’ and an intensional variable behaves like the expression ‘the
president of the US’. Whereas the former denotes uniformly a particular object, the
latter denotes different objects in different worlds: it denotes Donald J. Trump in the
actual world, but in a reasonable alternative it denotes Hillary Clinton and in a more
remote alternative it simply lacks a denotation (say in a world where the Confederacy
had won the American Civil War).

Another important distinction for formulas involving intensional terms is whether
they are used to speak about the intension as such, as in ‘the president of the US is
more influent than the former protagonist of the TV show The Apprentice’, or to speak
about the object actually picked out by that intension, as in ‘the president of the US is
one of the richest men of the world’: in the first case the intensional term ‘the president
of the US’ is used to talk about the presidential role irrespectively of who is the actual
president, whereas in the latter it is used to talk about the individual who actually is the
president – i.e., Donald J. Trump.

Following [8, 10], Fitting uses the predicate abstraction operator λ as a scoping
mechanism for designation by intensions: the formula 〈λx.P(x)〉 f says that the object
denoted by the intension f satisfies the predicate 〈λx.P(x)〉. Since intensions are partial
functions from worlds to objects, if f does not denote in w then the value of 〈λx.¬A〉 f
differs from that of ¬〈λx.A〉 f : the first formula will be false and the second true at w
since no formula can be true of the denotation of f in worlds where f does not denote.
In the case of modalities a scoping mechanism is needed because the object denoted by
an intension changes from world to world. Hence, in a world w, the value of 〈λx.�A〉 f
might differ from that of �〈λx.A〉 f . For the first formula, which can be read as ‘ f has
the property of being necessarily A’, we have first to determine the object o denoted by
f in w and then to move to accessible worlds to see whether o satisfies A(x) therein.
For the second formula, which can be read as ‘it is necessary that f has property A’,
we have first to move to accessible worlds and then to see whether the object therein
denoted by f satisfies A(x). To sum up, we need λ as a scoping mechanism because
intensions might fail to denote and, when they denote, they do it non-rigidly.

As to be expected when constructing a world w of a canonical model witnesses
are necessary for abstraction formulas 〈λxA〉 f , i.e. if 〈λx.A〉 f ∈ w then there must
be a parameter p such that 〈λx.x = p〉 f ∈ w and A[p/x] ∈ w. When moving from a
world w to a related world v, in order to have witnesses in v for λ-abstraction formulas
a typical strategy is that of enlarging the language of w so as to have fresh witnesses.
But by doing so, one gets models with increasing domains. A parallel situation takes
place when quantifiers are present and witnesses are needed for existential formulas:
∃xA(x). As well known, see [9], in this case the Barcan formula comes to rescue and
witnesses in w can be used again as witnesses in worlds accessible from w, therefore
Kripke models with constant domains can be constructed.

In [4] Fitting considers FOIL based on a quantifier-free language with λ-abstraction
operator and identity and he provides completeness with respect to Kripke models with
constant domains. The strategy used is a variation of the usual Henkin-style construc-
tion which gives rise to worlds with expanding domains, but then the final canoni-

89

FOIL with constant domains revisited



cal model is defined as to have the same domain for each world – i.e., the union of
the domains provided by the Henkin-style construction. This is feasible because the
quantifier-free language cannot distinguish between increasing and constant domains:
each logic that is complete with respect to a given class of models with increasing do-
mains is complete also with respect to the corresponding class of models with constant
domains. In particular, completeness (w.r.t. both increasing and constant domains) can
be proved for the tree-like FOIL based on propositional modal logics K, D, T, K4, and
S4. What cannot be proved using an expanding set of witnesses is the completeness
of non-tree-like FOIL such as those involving the symmetry axiom B or the Euclidean
axiom 5: these logics are not complete with respect to models with increasing domains,
but only with respect to constant domains ones.

For the FOIL systems without quantifiers, infinitely many rules are needed to pro-
vide a Henkin-style construction involving a constant set of witnesses. Here are the
rules, for all k ≥ 0,

A0 → �(A1 → · · · → �(Ak ∧ D f → 〈λx.x , y〉 f ) . . . )
A0 → �(A1 → · · · → �(Ak → ¬D f ) . . . )

CD(k), y not free in Ai

where D f (to be read as ‘ f denotes’) is an abbreviation for 〈λx.>〉 f . If k = 0, we get

A0 ∧ D f → 〈λx.x , y〉 f
A0 → ¬D f

CD(0), y not free in A0

and its meaning is clear: if at the world under consideration f is defined and A0 is true,
there must be an element of the domain of that world which is the denotation of f in
that world. Analogously, rule CD(k), with k arbitrary, says that if in a world that is
k-accessible (i.e., a world that is accessible in k steps) from the actual one the intension
f is defined and Ak is true, then there must be an element of the domain that is the
denotation of f in the k-accessible one.

What is most remarkable is that in the presence of axiom B : A → �^A the rule
CD(k) is derivable from CD(0) for each k > 0, see Lemma 6. Moreover, CD(0) is
a theorem of FOIL, see lemma 5.2 This implies that all FOIL systems with B as a
theorem can be proved complete with respect to models with constant domains.

3 Syntax
We consider a signature containing, for each pair 〈n,m〉 with n,m ∈ N, a set, at most
denumerable, of n + m-ary logical relational symbols, denoted by Pn,m,Rn,m.3 There
are no individual constants nor function symbols, but they can be added without any
difficulty. The two sorted language contains a denumerable set of object variables,
OBJ, to be denoted by x, y, z, . . . , and a denumerable set of intensional variables, INT ,
denoted by f , g, h, . . . The language contains also the 2 + 0-ary identity symbol = and
the logical symbols⊥,→ �, λ. An atomic formula is any expression Pn,m(~x, ~f ) – where

2Let us recall, en passant, that the Barcan formula is derivable in classically quantified logics when B is
a theorem.

3For simplicity’s sake and without loss of generality we let the object variables precede the intensional
variables.

90

Giovanna Corsi & Eugenio Orlandelli



P is a n + m-ary relational symbol, ~x is an n-ary list of object variables, and ~f is an m-
ary list of intensional variables – or an identity atom x = y. Whenever possible we will
omit the superscripts from the relational symbols. The (quantifier-free) language L is
generated by the following grammar:4

A ::= Pn,m(~x, ~f ) | x = y | ⊥ | A→ A |�A | 〈λx.A〉 f (L)

The symbols >,¬,∧,∨,↔,^ and , are defined as usual, and the formula:

D f (to be read as ‘ f denotes’) abbreviates 〈λx.>〉 f (def. D)

We use A, B,C, . . . for arbitrary formulas and α, β for both object and intensional vari-
ables. Moreover, we abbreviate the formula 〈λx.〈λy.A〉g〉 f as 〈λx, y.A〉g. f . λ is the
only variable-binding operator of L. Free and bound occurrences of object variables
in a formula are defined in the standard way – e.g., in 〈λx.A〉 f all occurrences of x are
bound by λx. Intensional variables are always free.

The symbol ≡ denotes syntactic identity. Without loss of generality, we assume
that the variables occurring free in a formula are different from the bound ones, and
we identify formulas that differ only in the name of bound variables. By A[y/x] we
denote the formula that is obtained by substituting each free occurrence of x in A with
an occurrence of y, provided that y is free for x in A – that is to say, no free occurrence
of x becomes a bound occurrence of y after the substitution is performed. The formula
A[g/ f ] is defined analogously. Having identified formulas differing only in the name
of bound variables, we can assume that y is always free for x in A[y/x].

4 Semantics
A constant domains model is a tuple M = 〈W,R,DO,DL,DI ,V〉 where:

1. 〈W,R〉 is a frame;

2. DO is a non-empty set of objects;

3. DL is a non-empty set of labels ` f̂ , `̂g . . . ;

4. DI is a set of intensions such that, for each ` f̂ ∈ DL, DI contains a partial function

f̂ : W −→ DO × DL such that:

• if f̂ is defined for w ∈ W, then f̂ (w) = 〈o, ` f̂ 〉, for some o ∈ DO,

• if, instead, f̂ is not defined for w ∈ W, then f̂ (w) = 〈` f̂ , ` f̂ 〉;

5. V is a valuation function such that:

• V(Pn,m,w) ⊆ (DO)n × (DI)m, and

• V(=,w) = {〈o, o〉 : o ∈ DO}.
4In Fitting’s [4] terminology this is the language L{λ,=}.
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M so defined is said to be a constant domains model because the domain of in-
terpretation of the relational symbols and the variables doesn’t vary depending on the
world under consideration, it is always DO.

We say thatM has complete intensions (CI-model) if each f̂ ∈ DI is a total function.
An assignment of a modelM is a function σ mapping each individual variable to

a member of DO and each intensional variable to a member of DI .
We say that an intentional variable f is defined for a world w under the assignment

σ iff σ( f )(w) ∈ (DO × {` f̂ }).
When f is defined for w under the assignment σ, we define the function σ? to the

effect that
σ?( f )(w) = o iff σ( f )(w) = 〈o, ` f̂ 〉

We use σx.o (σ f .i) for the assignment behaving like σ except for the variable x ( f )
that is mapped to the object o ∈ DO (the intension i ∈ DI , respectively).

The notion of satisfaction of a formula A in a world w of a model M under an
assignment σ, to be denoted by σ |=Mw A (possibly omitting the M), is defined as
follows.

Definition 1. (Satisfaction)
σ |=w Pn,m(~x, ~f ) iff 〈σ(x1), . . . , σ(xn), σ( f1), . . . , σ( fm)〉 ∈ V(Pn,m,w)
σ |=w x = y iff σ(x) = σ(y)
σ 6|=w ⊥

σ |=w A→ B iff σ |=w A implies σ |=w B

σ |=w �A iff for each v ∈ W, wRv implies σ |=v A

σ |=w 〈λx.A〉 f iff there is an o ∈ DO s.t.: σ?( f )(w) = o and σx.o |=w A

Note that
σ |=w 〈λx.>〉 f iff there is an o ∈ DO[σ?( f )(w) = o ∧ σx.o |=w >] iff there

is an o ∈ DO[σ?( f )(w) = o];
σ |=w 〈λx.(x = p)〉 f iff there is an o ∈ DO[σ?( f )(w) = o ∧ σx.o |=w x = p]

iff there is an o ∈ DO[σ?( f )(w) = o ∧ o = σ(p)] iff [σ?( f )(w) = σ(p)];
If there is no o ∈ DO such that [σ?( f )(w) = o] then not (σ |=w 〈λx.A〉 f ) and

so σ 6|=w 〈λx.A〉 f .

A formula A is true at a world w of a modelM, |=Mw A, iff for all assignments σ,
σ |=Mw A.
A formula A is true on a modelM, |=M A, iff for all w, |=Mw A.
A formula A is valid on a class of models C, C |= A, iff for all modelsM in C, |=M A.

A logic L is the set of all formulas that are valid on a given class of models. A
model is a model for a logic L if it makes true all formulas of L.

5 Axiomatic systems
Definition 2 (FOIL). The axiomatisation of the set of L-formulas that are valid on the
class of all models is given by the following axioms and rules [4]:

92

Giovanna Corsi & Eugenio Orlandelli



• Axioms:

1. All L-instances of propositional tautologies

2. �(A→ B)→ (�A→ �B)

3. 〈λx.A→ B〉 f → (〈λx.A〉 f → 〈λx.B〉 f )

4. 〈λx.A〉 f → A, for x not free in A

5. 〈λx.A〉 f → 〈λy.A[y/x]〉 f , for y free for x in A

6. D f → (〈λx.A〉 f ∨ 〈λx.¬A〉 f )

7. x = x

8. x = y→ (P[x/z]→ P[y/z]), for P an atomic formula;

9. x = y→ �(x = y)

10. x , y→ �(x , y)

11. D f → 〈λy, x.x = y〉 f . f

• Rules:

A A→ B
B MP A

�A N A→ B
〈λx.A〉 f → 〈λx.B〉 f

λ-reg

Lemma 3. The following L-formulas are theorems of FOIL:

1. `FOIL D f → (¬〈λx.A〉 f ↔ 〈λx.¬A〉 f )

2. `FOIL 〈λx.A〉 f ↔ (D f ∧ A) provided x not free in A

3. `FOIL (〈λy.x = y〉 f ∧ 〈λy.z = y〉 f )→ (x = z)

4. `FOIL x = y→ (A[x/z]→ A[y/z])

5. `FOIL 〈λx.x = y〉 f → (〈λx.A〉 f ↔ A[y/x])

Proof. For items (1), (2), and (3) see [4, Proposition 4.1]. (4) follows from axioms (8)
and (9). For (5) we have:

(a) ` x = y→ (A[x/x]↔ A[y/x]) Lemma 3.4
(b) ` 〈λx.x = y〉 f → (〈λx.A〉 f ↔ 〈λx.A[y/x]〉 f ) from (a) by λ-reg
(c) ` 〈λx.x = y〉 f → (〈λx.A〉 f → A[y/x]) from (b) by axiom 4
(d) ` D f ∧ A[y/x]→ 〈λx.A〉 f Lemma 3.2
(e) ` D f → (A[y/x]→ 〈λx.A〉 f ) from (d)
(f) ` 〈λx.x = y〉 f → (A[y/x]→ 〈λx.A〉 f ) from (e) by Lemma 3.2
(g) ` 〈λx.x = y〉 f → (A[y/x]↔ 〈λx.A〉 f ) from (c) and (f)

�

93

FOIL with constant domains revisited



Definition 4. The calculus FOIL.CD is given by adding to FOIL the CD-rule:

A0 → �(A1 → · · · → �(Ak ∧ D f → 〈λx.x , y〉 f ) . . . )
A0 → �(A1 → · · · → �(Ak → ¬D f ) . . . )

CD(k), k ≥ 0, y not free in Ai

(CD-rule)

Lemma 5. The rule CD(0) is derivable in FOIL:

(Ao ∧ D f )→ 〈λx.x , y〉 f
A0 → ¬D f

where y is not free in A0

Proof.
(a) A0 ∧ D f → 〈λx.x , y〉 f Assumption
(b) A0 → [〈λx.>〉 f → 〈λx.x , y〉 f ] from (a) and def. D
(c) 〈λy.A0〉 f → [〈λy, x.>〉 f . f → 〈λy, x.x , y〉 f . f ] from (b) by λ-reg
(d) A0 ∧ D f → [〈λy, x.>〉 f . f → 〈λy, x.x , y〉 f . f ] from (c) by Lemma 3.2
(e) A0 ∧ D f → [D f ∧ 〈λx.>〉 f → 〈λy, x.x , y〉 f . f ] from (d) by Lemma 3.2
(f) A0 ∧ D f → [D f ∧ D f → 〈λy, x.x , y〉 f . f ] by def. D
(g) A0 → [D f → 〈λy, x.x , y〉 f . f ] from (f)
(h) A0 → [D f → 〈λy.¬〈λx.x = y〉 f 〉 f ] from (g) by Lemma 3.1
(i) A0 → [D f → ¬〈λy, x.x = y〉 f . f ] from (h) by Lemma 3.1
(j) A0 → [D f → 〈λy, x.x = y〉 f . f ] from (i) by Axiom 11
(k) A0 → ¬D f from (i) and (j).

�

Now we show a key lemma concerning FOIL augmented with axiom B : A→ �^A.

Lemma 6. The CD(k) rules, k ≥ 0, are derivable in FOIL.B.

Proof. As is well known, the following rules are derivable from axiom B:

^A→ B
A→ �B DRB A→ �B

^A→ B DRB′

We show that CD(2) is derivable in FOIL.B.5

(a) A0 → �(A1 → �(A2 ∧ D f → 〈λx.x , y〉 f )) Assumption
(b) ^A0 → (A1 → �(A2 ∧ D f → 〈λx.x , y〉 f )) from (a) by DRB′

(c) (^A0 ∧ A1)→ �(A2 ∧ D f → 〈λx.x , y〉 f ) from (b)
(d) ^(^A0 ∧ A1)→ (A2 ∧ D f → 〈λx.x , y〉 f ) from (c) by DRB′

(e) (^(^A0 ∧ A1) ∧ A2)→ (D f → 〈λx.x , y〉 f ) from (d)
(f) ^(^A0 ∧ A1) ∧ A2)→ ¬D f from (e) by CD(0)
(g) ^(^A0 ∧ A1)→ (A2 → ¬D f ) from (f)
(h) (^A0 ∧ A1)→ �(A2 → ¬D f ) from (g) by DRB
(i) ^A0 → (A1 → �(A2 → ¬D f )) from (h)
(j) A0 → �(A1 → �(A2 → ¬D f )) from (i) by DRB

Analogously, CD(k) is derivable in FOIL.B for all k ≥ 0. �
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(D) �A→ ^A

(T ) �A→ A

(4) �A→ ��A

(5) ^A→ �^A

(B) A→ �^A

(CI) D f K

D

T

K4

D4

S4 = T4

KB

DB

B = T B

KB5 = KB45

S5 = KT4B

D45

K5

D5

K45

Figure 1: Additional axioms and cube of propositional modal logics

Theorem 7 (Soundness of FOIL.CD.S). Let S be any of the propositional modal logics
of figure 1. Each theorem of FOIL.CD.S is valid in the class of all frames with constant
domains for the propositional modal logic S.

Proof. We prove only that the rule CD(1) preserves truth at each point of a constant
domains model:

A0 → �(A1 ∧ D f → 〈λx.x , y〉 f )
A0 → �(A1 → ¬D f )

y not free in A0, A1

Suppose, by reductio, that for some w of a constant domains modelM:

|=w A0 → �(A1 ∧ D f → 〈λx.x , y〉 f ) (1)

and that for some assignment σ:

σ 6|=w A0 → �(A1 → ¬D f ) (2)

(2) entails that there is a u such that wRu, σ |=u A1 and σ |=u D f – i.e., σ( f )(u) = o for
some o ∈ DO. From (1) we have that for all assignments τ, τ |=w A0 → �(A1 ∧ D f →
〈λx.x , y〉 f ), in particular also for the assignment σy.o. Hence, σy.o |=u 〈λx.x , y〉 f ,
and so σy.o,x.σ∗( f )(u) |=u x , y, we have thus reached a contradiction: o , o. �

6 Completeness
We are ready to present a general strategy to prove completeness theorems for all the
FOIL systems based on the propositional modal logics of figure 1 plus the CD-rule. If
the propositional logic proves the formula B, we do not need to add the CD-rule, since
it is derivable (see Lemma 6).

We prove strong completeness by the usual Henkin-style technique, cf. [1]. Let P
be a denumerable set of fresh object variables (to be called parameters) and let LP be
the language obtained by adding the set P toL and by imposing that parameters cannot
be bound by λ. In this section, we use L (LP) to denote any logic that includes FOIL.CD
over the language L (LP, respectively). Moreover, we use ∆ for a set of formulas of L
or of LP (depending on the context).

5See [7, p. 295].
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Definition 8.

• ∆ is LP-consistent iff ∆ 0LP ⊥.

• ∆ is LP-complete iff for all A ∈ LP, either A ∈ ∆ or ¬A ∈ ∆.

• ∆ is ^k-P-rich iff if A0 ∧ ^(A1 ∧ · · · ∧ ^(Ak ∧ D f ) . . . ) ∈ ∆ then
A0 ∧ ^(A1 ∧ · · · ∧ ^(Ak ∧ D f ∧ 〈λx(x = p)〉 f ) . . . ) ∈ ∆ for some p ∈ P ∪ OBJ.

• ∆ is �k-P-inductive iff
if A0 → �(A1 → · · · → �(Ak ∧D f → 〈λx.x , p〉 f ) . . . ) ∈ ∆ for all p ∈ P∪OBJ
then A0 → �(A1 → · · · → �(Ak → ¬D f ) . . . ) ∈ ∆.

• ∆ is LP-saturated iff it is LP-consistent, LP-complete, and ^k-P-rich, for all
k ∈ N.

Remark 9. Notice that ∆ is ^0-P-rich iff if A0 ∧ D f ∈ ∆ then, for some p ∈ P ∪ OBJ,
A0 ∧ 〈λx.x = p〉 f ∈ ∆.
∆ is �0-P-inductive iff if A0 ∧ D f → 〈λx(x , p〉 f ) ∈ ∆ for all p ∈ P ∪ OBJ then
A0 → ¬D f ∈ ∆.

Lemma 10. If ∆ is LP-saturated, then it is �k-P-inductive for all k ∈ N.

Proof. Let A0 → �(A1 → · · · → �(Ak ∧ D f → 〈λx.x , p〉 f ) . . . ) ∈ ∆ for all p ∈
P ∪ OBJ and suppose by reductio that A0 → �(A1 → · · · → �(Ak → ¬D f ) . . . ) < ∆.
As ∆ is LP-complete, A0 ∧ ^(A1 ∧ · · · ∧ ^(Ak ∧ D f ) . . . )) ∈ ∆.

∆ is ^k-P-rich, so A0 ∧ ^(A1 ∧ · · · ∧ ^(Ak ∧ D f ∧ 〈λx.x = p〉 f ) . . . ) ∈ ∆, for some
p ∈ P ∪ OBJ. But this contradicts the LP-consistency of ∆ since by hypothesis, for all
p ∈ P∪OBJ, A0 → �(A1 → · · · → �(Ak ∧D f → 〈λx.x , p〉 f ) . . . ) ∈ ∆ and therefore,
by Lemma 3.1, A0 → �(A1 → · · · → �(Ak ∧ D f → ¬〈λx.x = p〉 f ) . . . ) ∈ ∆ holds for
all p ∈ P ∪ OBJ. �

Lemma 11.

1. If ∆ `LP A and no parameter of P occurs in ∆ ∪ {A}, then ∆ `L A.

2. Let ∆ `LP A[p/x], where p doesn’t occur in ∆, and let z be a variable not occur-
ring in the derivation of A[p/x] from ∆. Then ∆ `LP A[z/x].

3. If ∆ is L-consistent and no p ∈ P occurs in ∆, then it is also LP-consistent.

Proof. To prove (1) and (2), assume that p1, . . . , pn are all the parameters occurring
in the derivation D of ∆ `LP A (of ∆ `LP A[p/x], respectively), and that z, z1, . . . zn

are variables not occurring therein. By replacing each occurrence of p(i) in D with an
occurrence of z(i) we obtain a derivation of ∆ `L A or of ∆ `LP A[z/x], respectively. (3)
follows from (1). �

Lemma 12 (Lindenbaum-Henkin). If ∆ is an L-consistent set of formulas of L, then
there is an LP-saturated set ∆?, for some denumerable set of parameters P, such that
∆? ⊇ ∆.
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Proof. Let B0, B1, B2, . . . , Bn, Bn+1, . . . be an enumeration of all the formulas of LP.
Let us define the following chain:

• ∆0 = ∆.

• In order to define ∆n+1 we consider the set ∆n and the formula Bn:

1. If ∆n ∪ {Bn} is not LP-consistent, let ∆n+1 = ∆n ∪ {¬Bn}.

2. If ∆n ∪ {Bn} is LP-consistent, we distinguish two caes:

(a) If Bn ≡ A0 ∧ ^(A1 ∧ · · · ∧ ^(Ak ∧ D f ) . . . ), for some A0, . . . , Ak, let
∆n+1 = ∆n ∪ {A0 ∧ ^(A1 ∧ · · · ∧ ^(Ak ∧ D f ∧ 〈λx.x = p〉 f ) . . . )} for
some p ∈ P ∪ OBJ such that the resulting set is LP-consistent;

(b) Else, ∆n+1 = ∆n ∪ {Bn}.

Lemma 13. Each member of the chain thus defined is LPconsistent.

Proof. By induction on n we show that ∆n is LP-consistent for every n.
∆0 is L-consistent since ∆ is so by hypothesis and therefore, by Lemma 11.3, ∆0 is

LP-consistent.
Let us assume, by induction hypothesis, that ∆n is LP-consistent and consider case

(2)(a). Let Bn ≡ A0 ∧ ^(A1 ∧ · · · ∧ ^(Ak ∧ D f ) . . . ) and suppose, by reductio, that
∆n ∪ {A0 ∧ ^(A1 ∧ · · · ∧ ^(Ak ∧ D f ∧ 〈λx.x = p〉 f ) . . . )} is not LP-consistent for all
p ∈ P ∪ OBJ.

Then ∆ `LP (G ∧ A0 ∧ ^(A1 ∧ · · · ∧ ^(Ak ∧ D f ∧ 〈λx.x = p〉 f ) . . . )) → ⊥, for all
p ∈ P ∪ OBJ, where G is the (finite) conjunction of the formulas of (∆n − ∆).

Hence `LP (C∧G∧A0∧^(A1∧· · ·∧^(Ak ∧D f ∧〈λx.x = p?〉 f ) . . . ))→ ⊥, where
C is a conjunction of formulas of ∆ and p? is a parameter occurring neither in G nor in
Bn. p? doesn’t occur in C, since no parameter occurs in formulas of ∆.

Thus, by modal reasoning and Lemma 11.2, for some fresh variable z,
`LP C ∧ G ∧ A0 → �(A1 → · · · → �(Ak ∧ D f → ¬〈λx.x = z〉 f ) . . . ) and, by Lemma
3.1, `LP C ∧G ∧ A0 → �(A1 → · · · → �(Ak ∧ D f → 〈λx.x , z〉 f ) . . . ).

Whence, `LP C ∧ G ∧ A0 → �(A1 → · · · → �(Ak ∧ ¬D f ) . . . ), by rule CD(k).
Hence, ∆n `LP A0 → �(A1 → · · · → �(Ak ∧ ¬D f ) . . . ) contrary to the LP-consistency
of ∆n ∪ {Bn}.

By the induction principle, each ∆n is LP-consistent. �

Let

∆? =
⋃
n∈N

∆n

The set ∆? is LP-consistent since each ∆n is so. Moreover ∆ ⊆ ∆? and ∆? is
LP-complete and ^k-P-rich by construction. �

Lemma 14 (Diamond-lemma). If w is an LP-saturated set of formulas and ^A ∈ w
then there is a set v of LP-formulas such that:

1. v is LP-saturated;
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2. A ∈ v;

3. v ⊇ �−(w), where �−(w) = {A : �A ∈ w};

4. for each p ∈ P ∪ OBJ, [p]w = [p]v, where [p]w = {a : p = a ∈ w}.

Proof. Let B0, B1, B2, . . . Bn, Bn+1 . . . be an enumeration of all LP-formulas. Let us
define the following chain:

• ∆0 = �−(w) ∪ {A};

• Given ∆n and Bn, we define ∆n+1:

1. If ∆n ∪ {Bn} is not LP-consistent, let ∆n+1 = ∆n ∪ {¬Bn};

2. If ∆n ∪ {Bn} is LP-consistent, then we distinguish two cases:

(a) If Bn ≡ A0 ∧ ^(A1 ∧ · · · ∧ ^(Ak ∧ D f ) . . . ), for some A0, . . . , Ak, let
∆n+1 = ∆n ∪ {A0 ∧ ^(A1 ∧ · · · ∧ ^(Ak ∧ D f ∧ 〈λx.x = p〉 f ) . . . )} for
some p ∈ P ∪ OBJ such that the resulting set is LP-consistent;

(b) Else, ∆n+1 = ∆n ∪ {Bn}.

Lemma 15. Each element of the chain is LP-consistent.

Proof. By induction on n.
∆0 is LP-consistent by modal reasoning. Assume, by induction hypothesis, that ∆n

is LP-consistent. It will be enough to consider the case (2)(a).
Suppose by reductio that there is no p ∈ P ∪ OBJ such that the set
∆n ∪ {A0 ∧^(A1 ∧ · · · ∧^(Ak ∧D f ∧ 〈λx.x = p〉 f ))} is LP-consistent. Then, for all

p ∈ P ∪ OBJ, it holds that
∆n `LP (A0 ∧^(A1 ∧ · · · ∧^(Ak ∧ D f ∧ 〈λx.x = p〉 f )))→ ⊥, and by modal reasoning,
∆n `LP (A0 → �(A1 → · · · → �(Ak ∧ D f → ¬〈λx.x = p〉 f ))). By Lemma 3.1,
∆n `LP (A0 → �(A1 → · · · → �(Ak ∧ D f → 〈λx.x , p〉 f ))).

Moreover, ∆n is just �−(w)∪{C1, . . . ,Cm} for some finite set of formulas {C1, . . . ,Cm},
therefore, where C ≡ C1 ∧ · · · ∧ Cm, for each p ∈ P ∪ OBJ we have that �−(w) `LP

C ∧ A0 → �(A1 → · · · → �(Ak ∧ D f → 〈λx.x , p〉 f )).
Thus w `LP �(C ∧ A0 → �(A1 → · · · → �(Ak ∧ D f → 〈λx.x , p〉 f ))) and trivially

w `LP > → �(C ∧ A0 → �(A1 → · · · → �(Ak ∧ D f → 〈λx.x , p〉 f ))) for all p ∈ P ∪
OBJ. Since w is LP-saturated, by Lemma 10, w is � j-P-inductive for all j ∈ N, hence,
in particular w is �k+1-P-inductive, so w `LP > → �(C ∧A0 → �(A1 → · · · → �(Ak →

¬D f ))). It follows that w `LP �(C ∧ A0 → �(A1 → · · · → �(Ak → ¬D f ))), which
implies that (C ∧ A0 → �(A1 → · · · → �(Ak → ¬D f ))) ∈ �−(w), and therefore
∆n `LP A0 → �(A1 → · · · → �(Ak → ¬D f )). But this contradicts the LP-consistency
of ∆n ∪ {Bn}. �

Let
v =
⋃
n∈N

∆n

The set v is LP-consistent. All the properties of the lemma hold for v: (1)–(3) hold by
construction.

98

Giovanna Corsi & Eugenio Orlandelli



As to (4), if a ∈ [p]w, then (p = a) ∈ w, then by axiom (9), �(p = a) ∈ w,
(p = a) ∈ �−(w), (p = a) ∈ v, so a ∈ [p]v. If, instead a < [p]w, then (p = a) < w, then
(p , a) ∈ w since w is LP–saturated. By axiom (9), �(p , a) ∈ w, so (p , a) ∈ �−(w),
(p , a) ∈ v, so a < [p]v. �

Remark 16. The Diamond Lemma 14 is the key step in the construction of a canon-
ical model based on a constant domains construction because it ensures that we can
saturate all worlds of a canonical model with respect to a single set of parameters P.

In the proof of Lemma 14, in order to make sure that the set ∆n+1 is both LP-
consistent and ^k-P-rich, we need to know that w is �k+1-P-inductive. This explains
why the infinitely many rules CD(k), k ∈ N, are needed.

Definition 17. Let us consider the frame 〈GL,R〉 where:

• GL is the class of all LP-saturated sets of formulas of LP for some denumerable
set of parameters P;

• wRv iff �−(w) ⊆ v.

This frame is likely to be composed of a number of parts, each completely isolated
from any of the others. Such frames are said to be non-cohesive. Following [6, p. 78],
a cohesive frame is one in which, for every w and w′ ∈ W, w(R ∪ R−1)nw′ for some
n ≥ 0, where w(R ∪ R−1)w′ means that either wRw′ or w′Rw.

Definition 18 (Normal canonical model). A normal canonical model for L is a tuple
ML = 〈WL,R,DO,DL,DI ,V〉, where:

• 〈WL,R〉 is one of the cohesive frames of which 〈GL,R〉 is composed;

• DO = {[p]w : for some w ∈ WL, where p ∈ P ∪ OBJ;

• DL = {` f̂ : f ∈ INT };

• DI = { f̂ : f̂ (w) = 〈[p]w, ` f̂ 〉 iff 〈λx.x = p〉 f ∈ w and f̂ (w) = 〈` f̂ , ` f̂ 〉 iff
〈λx.x = p〉 f < w for all p ∈ P ∪ OBJ}.

• the valuation V is a function with domain WL that is such that:
V(Pn,m,w) = {〈[p1]w, ..., [pn]w, f̂1, . . . , f̂m〉 : Pp1, ..., pn, f1, . . . , fm ∈ w}.

V(=2,0,w) = {〈[p]w, [p]w〉 : p ∈ P ∪ OBJ}.

Remark 19. The frame 〈WL,R〉 is cohesive and so for every w, v ∈ WL, [p]w = [p]v

thanks to axioms (9) and (10). So we can write [p] instead of [p]w.
As to the interpretation f̂ of f , the equivalence class [p] is unique since by Lemma

3.3, `L [〈λy.p = y〉 f ∧ 〈λy.p′ = y〉 f ]→ (p = p′).
We avoid the problem noted in [5] of two distinct intensional variables f and g that

have the same graph – i.e., (〈λx.x = p〉 f ∈ w) iff (〈lx.x = p〉g ∈ w), for all w ∈ WL –
but satisfy different formulas.6 The labels prevent from having f̂ = ĝ. In fact if f . g,
then ` f , `g and, therefore f and g will be interpreted to different intensions: f̂ , ĝ.

6In Fitting [4] f and g are interpreted to the same intension.
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Lemma 20 (D f ). 〈λx.>〉 f ∈ w i f f f̂ (w) = 〈[p]w, ` f̂ 〉 for some p ∈ P ∪ OBJ.

Proof. Since w is ^0-P-rich if 〈λx.>〉 f ∈ w then there is a p ∈ P ∪ OBJ such that
〈λx.x = p〉 f ∈ w, therefore f̂ (w) = 〈[p]w, ` f̂ 〉, see Remark 9. If f̂ (w) = 〈[p]w, ` f̂ 〉 for
some p ∈ P ∪ OBJ, then 〈λx.x = p〉 f ∈ w and so 〈λx.>〉 f ∈ w since w is deductively
closed and `FOIL 〈λx.x = p〉 f → 〈λx.>〉 f . �

Lemma 21 (Assignments and substitutions). LetML be a normal canonical model for
L and let σ be the assignment such that σ(p) = [p] and σ( f ) = f̂ . For all w ∈ WL and
for all formula A of LP,

σx.[p] |=M
L

w A iff A[p/x] ∈ w.

Proof. By induction on A. We consider two cases.
σx.[p] |=M

L

w 〈λy.y = x〉 f iff by Def. 1 and def. of DO, for some s ∈ P ∪ OBJ,

σ?( f )(w) = [s] and σx.[p],y.[s] |=w y = x iff by Def.1
σ?( f )(w) = [s] and 〈[s], [p]〉 ∈ V(=,w) iff by def. of V(=, w)
s?( f )(w) = [s] and (s = p) ∈ w iff by def. of σ?

σ( f )(w) = 〈[s], ` f̂ 〉 and (s = p) ∈ w iff by def. of DI

〈λy.y = s〉 f ∈ w and (s = p) ∈ w iff by Lemma 3.4
〈λy.y = p〉 f ∈ w

σx.[p] |=M
L

w 〈λy.P(y, x)〉 f iff by Def. 1 and def. of DO for some s ∈ P ∪ OBJ,

σ?( f )(w) = [s] and σx.[p],y.[s] |=w P(y, x) iff by Def. 1
σ?( f )(w) = [s] and 〈[s] [p]〉 ∈ V(P,w) iff by def. of V(P,w)
σ?( f )(w) = [s] and P(s, p) ∈ w iff by def. of σ?

σ( f )(w) = 〈[s], ` f̂ 〉 and P(s, p) ∈ w iff by def. of DI

〈λy.y = s〉 f ∈ w and P(s, p) ∈ w iff by Lemma 3.5
〈λy.P(y, p)〉 f ∈ w

�

Lemma 22 (Truth lemma). LetML be a normal canonical model for L and let σ be
the assignment such that σ(p) = [p] and σ( f ) = f̂ . For all w ∈ WL and for all formula
A of LP,

σ |=M
L

w A iff A ∈ w

Proof. By induction on A, we consider two cases.
σ |=w 〈λx.B〉 f iff by Def. 1 and def. of DO there is a p ∈ P ∪ OBJ such that

σ?( f )(w) = [p] and σx.[p] |=w B iff by Lemma 21
σ?( f )(w) = [p] and σ |=w B[p/x] iff by induction hypothesis
σ?( f )(w) = [p] and B[p/x] ∈ w iff by definition of σ?

σ( f )(w) = 〈[p], ` f̂ 〉 and B[p/x] ∈ w iff by definition of DI

〈λx(x = p) f ∈ w and B[p/x] ∈ w iff by Lemma 3.5
〈λx.B〉 f ∈ w
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σ |=w �B iff by Def. 1
for all v ∈ WL,wRv, σ |=v B iff by induction hypothesis
for all v ∈ WL,wRv, B ∈ v iff by Lemma 14
�B ∈ w.

�

Theorem 23. Let S be any of the propositional modal logics of figure 1. Each
FOIL.CD.S-consistent set of formulas ∆ has a model with constant domains based on
a frame for S.

Proof. Let L = FOIL.CD.S be any of the logics referred to in the theorem. By Lemma
12, the FOIL.CD.S-consistent set ∆ can be extended to an LP-saturated set of formulas
∆? for some denumerable set P of parameters. ∆? is a member of at least a cohesive
frame of which 〈GL,R〉 is composed of. Take a normal canonical modelML based on
such a cohesive frame and constructed according to Definition 18.

By the truth Lemma 22, there is a world w and an assignment σ s.t.: σ |=M
L

w D for
each D ∈ ∆ – i.e.,ML is a model of ∆.

Moreover, ML is a model for the logic LP because every theorem of LP is true at
every world, i.e. it is satisfied at every world by all the assignments. To wit, let `LP

A(~x, ~f ) and let τ be an assignment such that τ(xi) = pi and τ( fi) = f̂i. Then `LP A(~p, ~̂f )

and A(~p, ~̂f ) ∈ w because w is deductively closed. By Lemma 22 , σ |=M
L

w A(~p, ~̂f ) and,
therefore, τ |=M

L

w A(~x, ~f ).
The proof that ML is based on a frame for S follows the usual pattern, as for the

propositional base. �

For logics containing axiom CI, it is immediate to acknowledge thatML is based
on a CI-frame since, by closure under CI, D f ∈ w for all w ∈ WL and all intensional
variables f .

7 Conclusion
One problem that remains open is the status of the CD-rule (for k > 0) when B is
not a theorem. Given Fitting’s [4] completeness result, we know that the CD-rule is
semantically admissible in FOIL.S when S is one of K, D, T, K4, and S4. Nevertheless,
it would be interesting to know if the CD-rule is also derivable or only admissible in
these calculi (as well as in calculi including axiom 5).

Another problem that remains open concerns a complete axiomatisation of constant
domains FOIL over a quantifier-free and identity-free language. As shown in [2] the
S5-based FOIL over this language is not decidable and without identity we don’t know
how to state anything like the CD-rule.

One line of future research is the extension of FOIL with an identity predicate
between intensions ≈. In particular, the addition of labels to intensions shall allow a
fine-grained treatment of intensional identity where we can distinguish two intensions
which coincide as to the objects designated in every world: it could be that f̂ (w) =

〈o, ` f̂ 〉 iff ĝ(w) = 〈o, `̂g〉 for all w ∈ W and o ∈ DO.
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