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Abstract. The aim of this supplement is to give a condensed (but hopefully self-contained) account of the GIA theory, providing
a physical background to the numerical implementation of the Sea Level Equation in program SELEN“ A number of technical
aspects and also discussed, along with some strictly necessary, basic mathematical definitions. The material presented here
should be accessible to all students at a PhD level in Earth Sciences.

S1 Introduction

This document is organised into several sections, whose content is briefly summarised here.

In Section S2, we define the surface mass distributions and we introduce basic concepts as sea level, topography, the ocean
function and continent function; the mass conservation principle is also presented. Section S3 deals with the geometrical and
physical properties of the Earth models that are employed with SELEN*and introduces the loading and the tidal Love numbers.
The response to surface loads is studied in Section S4 by introducing the surface Green’s functions and building surface
response functions for sea level, for the geoid height and for vertical displacements. In Section S5 we deal with the essentials
of Earth rotation, introducing the Liouville equations for polar motion and defining the excitation functions; furthermore two
different rotation theories are illustrated for which we study the Polar Motion Transfer Function. Section S6 discusses the
responses to Earth’s rotational variations by introducing the rotation Green’s functions and the rotation response functions for
sea level, for the geoid height and for vertical displacements. In Section S7 we perform a spatiotemporal discretisation of all
the terms included in the SLE with the aid of the spherical harmonic functions and of a geodesic grid. Finally, in Section S8 we
present a suite of self-contained, short special topics; some of them are meant to be of support to the development of the above
sections, some others are discussing specific geophysical aspects of the GIA process, and some are dealing with technical
aspects.

This supplement (hereafter referred to as SSM19) and the main text (SM19) contain a remarkable number definitions in-
volving physical quantities and mathematical symbols. We have made everywhere efforts to use a clear and self-explanatory
notation, which admittedly sometimes is not standard in the GIA literature. To facilitate the reader, in Table S7 we provide
the acronyms that we have used in the text, a glossary with a list of recurrent symbols and notations is given in Table S8, and
numerical values of important constants are listed in Table S9.

S2 Surface mass distributions

In this Section various quantities are defined, useful to describe the distribution of the ice and of the water masses over the
surface of the Earth and its time evolution. We first define the ocean function, which in a given location is determined by the ice
thickness and by the Earth’s topography, and its complementary continent function. The surface mass distribution is described
in terms of the surface load function. With the aid of the ocean function, the time-variations of the surface load with respect
to a reference state are expressed in terms of changes in the ice thickness, variations in sea level, and changes in the oceans
geometry. By the principle of mass conservation, a general form of the Sea Level Equation (SLE) is also established.

S2.1 Ocean Function
The ocean function (OF) is

7
1, it T+ 1<0
O(v,t) = P (S1)

o
0, if T+=1>0,
pw

where 7 stands for (0,)), 6 and X are colatitude and longitude, respectively, ¢ is time, p’ and p* are the density of ice and
water, respectively (throughout this supplement, p° and p* are assumed to be constants). With I(v,t) we denote the ice



10

15

20

thickness (I(~y,t) > 0), and T'(~y,t) is the topography, given by
T(v,t)=-B, (S2)

where B(v,t) is sea level. As fas as we know, the OF has been first defined and decomposed in series of spherical harmonics
by Prey (1922); the reader is referred to Balmino et al. (1973) and Lambeck (1980) for modern determinations of the OF and
of its harmonic spectrum.

The continent function C(~y,t) (or CF) is defined as the complement to one of the OF, i.e.,

C(y,t)=1-0. (S3)
According to the values of 7" and I, five different mutually exclusive conditions can be met, which are discussed in detail

below and illustrated in Table S1 and Figure S1 and in terms of O and C'.

Condition 1: ice-free ocean. The topography is 7' < 0 and since I = 0, from Eqgs. (S1) and (S3) we obtain O =1 and C' =0,
respectively.

Condition 2: floating ice. Where ice is floating, 7' < 0 and I > 0. By the condition of isostatic equilibrium, all the columns
have the same mass:

pUB(v,t) = p'I+p"y, (S4)

where y is the thickness of the water layer beneath the ice column (see Figure S2a). Since y > 0, using Eq. (S2), the floating
ice condition reads

T(v,t)+ /%I (7,t) <0, (S5)

stating that the ice is lighter than the water column. Hence, from Eqs. (S1) and (S3) we obtain O = 1 and C = 0, respectively.
Since from Figure (S2a) we have y = B — (I — ), where x is the thickness of the ice above sea level, Eq. (S4) provides

T = (1—pi/,0w)l.

Condition 3: ice grounded below sea level. In this condition, illustrated in Figure S2b, the topography is 7" < 0 and the ice
thickness is I > 0, like in the case of floating ice (Figure S2a). However, the system is not in isostatic equilibrium, and the ice
column turns out to be heavier than the water column. i.e., p*1 > p“ B, or

)

p
T(0)+ 5T (,1) 20, (S6)
Condition Sealevel Topography Ice thickness 71+ ;—;I OF CF
1 - Ice-free ocean B>0 T<0 I1=0 <0 1 0
2 - Floating ice B>0 T<0 1>0 <0 1 0
3 - Ice grounded below sl B>0 T<0 1>0 >0 0 1
4 - Ice grounded above sl B<O0 T>0 1>0 >0 0 1
5 - Ice-free land B <0 T>0 I1=0 >0 0 1

Table S1. Values of the ocean function OF (Eq. S1) and of its complement CF=1-OF (S3) according to the values of topography 7" and of

ice thickness I, with a description of the five possible conditions described in the text. Here “sl” stands for sea level.
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Values of the ocean function.

ice pz I
T sea surface
C— e -
ice p" \ ice p" B
——
water pw seafloor
C
crust P
seafloor
O=1 ? 0=0 - 0=1 1 0=0 - 0=1
floating ice Ice grounded above sea ice-free  ice grounded ice-free
or ice-free ocean level or ice-free land ocean below sea level ocean

Figure S1. Possible values of the OF, corresponding to the five different conditions listed in Table S1, according to the values of 1" (topog-

raphy) and [ (ice thickness). With B = —T" we denote sea level.

hence according to the definitions given by Eqs. (S1) and (S3), we have O =0 and C = 1.

Condition 4: ice grounded above sea level. When ice is grounded above sea level, the topography and the ice thickness are
T > 0 and I > 0, respectively. In this case, from Eqgs. (S1) and (S3), we have O =0 and C' = 1.

Condition 5: ice-free land. Across ice-free lands, where according to Figure S1 we have 7' > 0 and I = 0, Egs. (S1) and (S3)
give O =0 and C = 1, respectively.

S2.2 Topography and sea level

From the definition of topography given by Eq. (S2), it is possible to draw a few important consequences. We first define
sea-level change by the difference

S(v,t) = B — By, (S7)

where By = B(7,t) is sea level in a reference equilibrium state attained for ¢ < ¢, = 0 (the time discretisation adopted in this
study is described in §S8.1). Then, taking the difference between Eq. (S2) and the same equation evaluated at present time (i.e.,
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a) Floating ice.
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b) Ice grounded below sea level.
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Figure S2. Diagrams showing floating ice (a) and ice grounded below sea level (b), where I and B are the ice thickness and sea level,

respectively.

t =ty), we obtain

= —((B—=DBo)—(By—Bo)), (S9)

where By = B(7,tn). Hence, using Eq. (S7) and defining Ty = T'(+y,tn), we have
T(y,t) =Ty — (S —Sn). (S10)

This last equation, which shall be referred to as “PT equation” in the following, allows for the reconstruction of paleo-
topography (i.e., the time history of topography T'(+,t)) once present topography T'(y,tx) is known and the solution of the
SLE is has been found (i.e., sea-level change S(vy,t) is determined at all times ¢ and places 7). Using e.g., model ETOPOI (see
Amante and Eakins, 2009; Eakins and Sharman, 2012) as a representation for the modern relief, the PT equation can be used
to refine the value of T'(y,t) using successive iterations of the SLE.

The method of reconstruction based on Eq. (S10) has been first introduced by Peltier (1994) and since then applied to
paleogeographic investigations made in the framework of GIA studies (see e.g., Spada and Galassi, 2017, and references
therein). It is worth to note that Peltier (1994) has also defined another quantity, which he has defined true paleo-topography,
as follows

PT(y,t) =T +1, (S11)

where T is topography and I is ice thickness. It is clear that PT'(-y,t) can be easily reconstructed once 7" has been determined
by solving the SLE, since [ is given a priori.
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S2.3 Surface load

This section is devoted to the description of the surface load L associated to the ice and water distributions at the Earth’s
surface. We shall also consider its variation £ with respect to a reference state, since it has a central role in the numerical
implementation of the SLE.

Surface load. In SM19, we have defined the surface load L(~,t) by means of

M(t) = /LdA, (S12)

€

where M (t) is the mass distributed over the whole Earth’s surface in the form of ice or water, and

dA = a’dy (S13)
is the area element, being a the average Earth’s radius and

dry = sinOdfd (S14)

is the area of the infinitesimal solid angle. Hence, according to Eq. (S12), the surface load represents the mass acting on the
Earth’s surface per unit area, i.e.,

dM

Surface mass distribution. At a given time ¢, the mass M (¢) distributed over the Earth’s surface can be expressed as
M(t) =M+ M"Y, (S16)

where M*® and M are the mass of the ice and of the water at time ¢, respectively. We now consider these two terms separately.
The ice mass term stems from two contributions, with

M(t) = M9 4 M5 (S17)

where superscript gr denotes grounded ice (either above or below sea level), while f[ indicates floating ice. By the definition
of CF (see Eq. S3), we can equivalently write

M(t) =p' / ICdA+ p' / IdA, (S18)
e fl

where the first integral over the whole Earth’s surface accounts for the contribution of all the grounded ice M*97, while the
second accounts for the floating ice contribution M%7,
In a similar way, M ™ (t) stems from two terms, with

MU}(t) — Mw,if -‘er’fl, (819)

where superscripts ¢ f and fl indicate contributions from the ice-free oceans and from ocean regions where there is floating
ice, respectively. Using the condition of isostasy given by Eq. (S4), we obtain

MY (t) = p® / BdA + / (p"B—p'I)dA. (S20)
if fl
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Hence, using Eqgs. (S18) and (S20) in (S16), the total mass of the (ice+water) system is
M(t) = p' /ICdA + 0 /IdA +p" /BdA + p* /BdA —p /IdA, (S21)
e fl if fl fl

where we note that the integrals of I over region fl cancel out and those involving B can be merged taking advantage of the
OF definition (see Eq. S1), so that

M(t) = / (p'IC + p“BO) dA, (S22)

€

which compared to Eq. (S12) provides the following compact (and symmetrical) expression for the surface load

L(v,t) = p'IC + p* BO. (S23)

Surface load variation. The surface load variation is defined as the difference between the actual surface load and its value
in a previous reference state:

L(v,t) =L — Ly, (524)
which using Eq. (S23) gives

L(y,t) = p'(IC = IyCo) + p* (BO — ByOy). (S25)
We now define the ice thickness variation as

Z(v,t) =1 — I, (526)
and the ocean function variation

O(v,t) =0 — O, (S27)

where subscript 0 indicates reference values. Also using the definition of topography given by Eq. (S2) and of sea-level change
(S87), (S25) can be manipulated as follows

L(7,t) = p'((Lo+I)C—1Co)+ p" ((Bo+S)O — ByOy)
= p'ICH p'Io(C — Cp) + p“SO + p“ Bo(O — Oy)
p'IC —p'Io(O = Op) + p“' SO — p"“Ty(O — O)
p'CT +pPOS — (p'Iy + p*“Tp)O. (S28)

Thus, the load variation can be conveniently decomposed as

L(y,t) =L+ LC +L£°, (S29)
with

LY(v,t) = p'W (S30)
L(,t) = pUZ (S31)
L(,t) = pra, (S32)
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where

W(y,t) = CI (S33)
Z(v,t) = OS (S34)
X(v,t) = QO, (835)

and we have defined the auxiliary variable

Q) =- (p Io + p—r To) ; (S36)
p p

being p" > 0 an arbitrary reference density. We note that adopting the decomposition (S29) for the load variation £, variables
W, Z and X are uniquely associated to variations of the ice thickness, of sea level and of the OF, respectively.

Variable Z defined by Eq. (S34), which can be interpreted as the “projection” of sea-level change S on the OF, shall
play an important role in the development of the pseudo-spectral approach to the SLE detailed in §S7 below. We note that,
symmetrically, in Eq. (S33) W projects the ice thickness variation Z on the CF.

S2.4 Mass conservation

The mass conservation principle states that
M) = Mo, (S37)

where M (t) is the mass of the (ice+water) system at an arbitrary time ¢ and M is the mass at the reference time ¢y. Note that
we assume that the mass of the solid Earth is unvaried. Defining the mass variation as

M(t) = M — M, (S38)

the mass conservation principle reads

M(t) = / LdA=0, ($39)

where L is the surface load variation defined by Eq. (524). An equivalent expression is
< L(v,t) >°=0, (S40)
where the average over the whole Earth’s surface of a scalar function F'(v,t) is defined as

< Fly,t)>° () = % / F(r,£)dA. (S41)

€
We anticipate that using Eq. (S432), (S40) implies
Loo(t) =0, (542)

where L is the coefficient of degree [ = 0 of the expansion coefficient of L£(~,t) in series of (complex) spherical harmonics.
In this work we shall only consider physically plausible loads, which obey the principle of mass conservation given by (S39)
or by the equivalent forms (S40) or (S42).

Using the expression for the surface load variation given by Eq. (S25), the mass conservation principle can be also stated as

M(t) = pi/(]C— IOCQ)dA+pw/(BO - B()Oo)dA =0 (543)

e e



10

15

20

which can be rearranged as

w(t)+p® / (BO — ByOg)dA =0, (S44)
where
plt) = p' / (IC — IyCo) dA (45)

€

represents the time-variation of the grounded ice mass M%9" (see Eq. S18). We note, in passing, that from the definition of
whole Earth surface average (S41), Eq. (S45) can be equivalently written as

p(t) = ptA° < IC — ICy >° . (S46)
Using simple algebra, from Eq. (S44) we obtain

u+p”/((B—BO+B0)O—BOOO)dA =0

€

qupw/((B7B0)0+B0(0700))dA = 0

€

,u+p“’/SOdA+p“’/BOOdA =0

€ €

u+pr°<S>°—pw/TOOdA = 0

€

pA+pUA° (KR >0+ 4 <R >%) —p¥ /TOOdA = 0, (S47)
e

where we have used the definition of sea-level change (Eq. S7) and of the OF variation (S27), we have taken advantage of SLE
in the form given by Eq. (26) in SM19, R*%" and R"°* are the surface and the rotation sea-level response functions defined by
Eqgs. (27) and (28) of SM19, respectively, and the ocean average of a scalar function F'(~y,t) is defined as

<> ()= % / P, )dA, ($48)

where label o stands for ocean, and the integration is over the region where O =1 at time ¢. Hence, in an equivalent manner
we can write

<F>0(t) = % / F(y,0)0(7,1)dA, ($49)

where now the integration is over the entire Earth’s surface. Furthermore, being

A0 () = / dA ($50)

10
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the area of the oceans, the ocean average of F'(vy,t) can be also expressed by

/F(%t)dA

<F>°()=° (S51)
/ dA
The mass conservation constraint expressed by Eq. (S47) is now easily solved for the ¢ constant, providing:
c(t) =8 < R¥ >0 — < R >0, (S52)
where
SWe(t) = S 4 ST =< § >° (S53)
is the average of over the oceans and we have defined two spatially invariant terms
I
S (t) = — S54
=- % (5549
and
1
SeTu(t) = - / ToOdA. (S55)
e

As discussed in SM19, terms S€9%(t) (equivalent sea-level change) and S°f*(t) are both dependent upon variations of the
OF caused by variations of the geometry of the oceans. We note that if a constant OF is imposed, as in the traditional Farrell
and Clark (1976) (FC76) theory, S°f%(t) vanishes and S¢9%(t) is equivalent to S¢"*(t), the eustatic sea-level change (this term
is attributed to Suess, 1906). Substitution of Eq. (S52) into Eq. (26) of SM19 proves Eq. (31) of SM19.

S3 Earth models and Love numbers

In this section, we first describe the geometrical and physical features of the Earth models that can be adopted in the framework
of SELEN* Then, we review the definition of loading and tidal Love numbers and we describe their form both in the time and
in the Laplace domains. These constitute essential ingredients for the construction of the surface and of the rotational response
functions which shall be introduced in later sections.

S3.1 Spherically symmetric models

The Earth models accessible by SELEN*, and therefore considered in this theory supplement, are all characterised by the
spherically symmetric structure shown in Figure S3. In the literature, these models are often referred to as “1-D GIA models”,
since the density field, the elastic and the rheological parameters only depend on radius r. However, note that since the surface
load is distributed unevenly over the Earth’s surface, the response of 1-D GIA models shall be 3-D, in general. The 1-D models
had (and are still having) a fundamental role in the development of the Post Glacial Rebound (PGR) and of the GIA theories for
a spherical Earth. References to fundamental papers on the subject are given below. The reader is also referred to Whitehouse
(2009, 2018) and Spada (2017) for in-depth reviews of GIA and PGR.

In 1-D GIA modelling, it is assumed that: i) the Earth is isotropic, self-gravitating, and usually incompressible (i.e., its
volume is assumed to be constant), ii) the core is fluid, uniform, and inviscid (i.e., with zero viscosity), iii) the Earth’s mantle

11
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1-D GIA model.

Figure S3. A 1-D (spherically symmetric) GIA model. The elastic lithosphere is in blue. The mantle is composed of IN,, Maxwell viscoelastic

layers of arbitrary thickness, rheological parameters, rigidity and density. The fluid uniform core is in green.

is spherically layered and characterised by a Maxwell linear viscoelastic rheology, iv) the lithosphere is purely elastic and
characterised by a uniform thickness. For such 1-D GIA models, the response of the Earth is conveniently described by Love
numbers (Love, 1911), for which closed-form solutions are available in some cases (Vermeersen et al., 1996a; Vermeersen and
Sabadini, 1997). For the simplest 1-D model, constituted by a homogeneous incompressible sphere (the so-called Kelvin Earth
model), an elegant analytical expression of the Love numbers is available (see e.g., Munk and MacDonald, 1960). However,
the complexity of the analytical solutions increases considerably with the number of layers, even excluding self-gravitation
effects (see Wu and Ni, 1996). SELEN* is designed to assimilate Love numbers of general multi-layered 1-D models. These
are often computed making use of the well established viscoelastic normal mode theory, due to Peltier (1974), which indeed
can be extended also to more advanced models, like those characterised by compressible (e.g., Vermeersen et al., 1996b) or
transient (e.g., Yuen et al., 1986; Caron et al., 2017) rheologies.

Love numbers represent the response of the 1-D GIA models to a unit, localised and impulsive (i.e., d-like, where § is
Dirac’s delta function) surface load or to a change in the external potential. In the first case they are referred to as loading
Love numbers (LLNs), in the second case to as tidal Love numbers (TLNs). Here we only give the essentials on this subject in
a quite informal manner; the reader is referred to Love (1911), Longman (1962), Longman (1963) and Farrell (1972) for the
fundamental definitions, and to Peltier (1974), Lambeck (1980), Wu and Peltier (1982) and Wu and Peltier (1984) for a detailed
discussion on the use of Love numbers in the context of GIA. For the relevance of Love numbers in the rotational dynamics

12
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of the Earth, the reader is referred to Lambeck (1980) while for a condensed review also describing the various analytical and
numerical methods available for the computation of the Love numbers, see Spada et al. (2011) and references therein. This
same work also provides community-agreed, high-precision numerical values of Love numbers for realistic 1-D GIA models.

We remark that the values of the LLNs and TLNs of harmonic degree [ = 1 depend on the choice of the origin of the reference
frame adopted to describe the deformation and the change in the geopotential (e.g., Spada et al., 2011). In the following, we
assume that the Love numbers are expressed in the centre of mass (CM) reference frame of the system (Earth + Load). For a
discussion, see e.g., Greff-Lefftz and Legros (1997) and Greftf-Lefftz (2000).

S3.2 Loading Love numbers

The ‘6> LLN determines, at harmonic degree [/, the change in the gravitational potential of the Earth associated with the
deformations induced by a localised surface load. In the framework of the viscoelastic normal modes theory (Peltier, 1974;
Vermeersen et al., 1996a; Vermeersen and Sabadini, 1997), it is shown that the ‘.’ LLN is a causal function characterised by two
distinct parts. The first (elastic part of the LLN) is in-phase with the impulsive load and only depends on the elastic constants
and density profile of the Earth, the second (viscous part) is also sensitive to the rheological profile and is characterised by a
delayed multi-exponential form. Hence the ‘6’ LLN has the general form

M
kp(t) =kFeo(t) + H(t) Y ki et (S56)

where lee is the elastic LLN, H (t) is the unit step function defined by Eq. (5290), the terms leZ describe the viscous com-
ponents of the LLN, each associated to frequency s;; = —1/7;; where 7;; are the characteristic relaxation times of the Earth’s
model, and M is the number of viscoelastic normal modes, determined by the rheological layering. We note that the viscous
part of the LLN has the form of a Prony series (e.g., Tschoegl, 2012). In the special case of a rigid (i.e., undeformable) Earth,
we have le" = leZ 0. The non-rigid response is, in general, determined by the (model dependent) values of k:LP kL, and sﬁ.
In Eq. (S56) we note that k:L (t) has dimensions of [T —11; the same holds for leZ, while kLe is non- dlmenswnal

In a similar way, it is possible to define a loading Love number ‘i’ that determines, for each harmonic degree [, the vertical
displacement of the Earth’s surface in response to a localised load. Such LLN, which with ‘k’ is an essential component of

sea-level Green’s function (see Eq. S88 below), has also the multi-exponential form

1

hE(t) = hEes(t) ZhL st (S57)

where h/¢ and h}; describe the elastic and the viscous parts of h}" (t), respectively, and the s;; are the same as for the ‘6’ LLn
(Eq. S56). For a rigid Earth, the surface load does not induce vertical displacements, hence h® = h}; = 0. Although hori-
zontal movements do not enter into the sea-level Green’s function, the expression for the LLN ‘¢’ correspondmg to horizontal
displacement is useful since GIA produces, in addition to gravity changes and vertical movements, significant horizontal move-
ments, now detectable using ground-based geodetic techniques (see e.g., King et al., 2010, and references therein). In analogy
with the expressions for ‘4’ and ‘k” above, ‘¢’ reads

E[L( ) _ KLP(S ZEL syit (SSS)

where ¢ and ¢% define the elastic and viscous parts of ¢ (t), respectively. The LLNs for horizontal displacements are also
sometimes referred to as Shida Love numbers (Shida, 1912; Lambeck, 1980).
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Since numerical methods for computing the LLNs very often rely upon the Correspondence Principle of linear viscoelasticity
(e.g., Tschoegl, 2012), it is useful to consider the Laplace transform (LT) of the LLNs, i.e.,

M

k‘L

L _ li
K (s) = Z p— (S59)

Moo

L _ e
hi(s) = Z p—— (S60)
() = ELEJFZs—sl (S61)

where s is the complex Laplace variable (for the definition of LT and some basic LTs, the readers are referred to Table S2).

For incompressible and stably stratified Earth models (i.e., models in which density is not varying in consequence of de-
formation, and the density is increasing with depth, the inverse decay times s;; are real-valued and negative (e.g., Vermeersen
et al., 1996a; Vermeersen and Sabadini, 1997; Spada et al., 2011). We note that the numerical values s;; and the number of
modes M only depend on the density and rheological profile of the Earth model and not on the type of forcing, either loading
or tidal, so that they are the same for the LLNs and the TLNs. At a given harmonic degree [, the s;; are roots of an algebraic
equation of degree M in the Laplace domain, often referred to as secular equation

Ni(s) =0, (S62)

where the secular polynomial is

M
Nl(s) = H S — SIk anls (563)
k=1

where ny; are the (real-valued) coefficients of the polynomial. With varying harmonic degree, the s;;’s define the spectrum
of relaxation of the Earth model (e.g., Spada et al., 1992b). For the 1-D GIA model considered in this work (see Figure S3),
M = 4N, where N, is the number of Maxwell viscoelastic layers that compose the mantle (for a review and more details, see
e.g., Vermeersen et al., 1996a; Spada et al., 2011). For Earth models characterised by more complex rheologies, also including
transient components of deformation (see e.g., Sabadini et al., 1985; Yuen et al., 1986), the secular equation is still an algebraic
equation, but M increases with NV, following different laws.

The fluid LLNs are defined as the values attained by the LLNs at long times, when a new state of equilibrium is reached
after a unit step surface load has been applied (i.e., after the Earth has creeped). These can be computed by taking the limit for
t — oo of Egs. (S56-S58) after convolving them with the unit step function H (¢), or, equivalently, taking the limit for s+ 0
of Egs. (§59-S61), thus obtaining

M kL

Lf _ Le 1z

ko= K —;; (S64)
M L

Lf _ Le li

' o= H 7;; (S65)
M EL

N A D (S66)

for the three LLNS, respectively. We note that the fluid values of the LLNs k:lL f ,hlL ! ,ElL f

depend upon the viscosity profile adopted, but they are sensitive to the density layering of the mantle (see e.g., Spada et al.,
2011).

) are dimensionless and do not
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Time domain: f(t) = LT *[f(s)] Laplace domain: f(s) = LT [f(t)]

) i) [ s
2) 0 |
3) Ht) é
2) Ht—1) e_s
5) et 5 i P
6 Hi-7) [ ) 1)
7 F(®)+ gt 7(s)9(s)
“\ Plor) ape P(s)
8) 2 @ )

Table S2. Some Laplace transforms used in this supplement. In 1) the definition of Laplace Transform is given, where LT is the Laplace
operator. In 7), symbol * denotes time convolution, i.e., f(t) * g(t) = fj;o f(t—t)g(t)dt'. In 8), polynomials P(s) and Q(s) are such
that deg(P) < deg(Q) and constants oy, are the v (distinct) roots of equation Q(ay) = 0, and Q' () is the derivative of Q(s) computed at

s = a.

S3.3 Tidal Love numbers

According to the viscoelastic normal modes theory, the tidal Love numbers (TLNs) have the same multi-exponential form of
the LLNs, but they correspond to different surface boundary conditions, since in this case the forcing is an external potential
that does not load the Earth (Munk and MacDonald, 1960; Peltier, 1974; Wu and Peltier, 1982, 1984). Hence they are, in
general, numerically distinct (and independent) from the LLNs (see e.g., Spada et al., 2011). Note, however, that

kP () =k —hi (S67)

and that more complex relationships exist between loading, tidal, and shear Love numbers (e.g., Saito, 1974; Molodensky,
1977; Saito, 1978; Lambeck, 1980). Since changes in the centrifugal potential of the Earth are essentially expressed by har-
monic functions of degree [ = 2 (see Lambeck 1980 and §S8.4 below), TLNs of higher harmonic degrees have no direct role
in GIA studies.
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In close analogy with the expressions found for the LLNs, for the TLNs we thus write
M
k') = Koty +H(t) Y ki e (S68)
i=1
M
W) = hl°6@)+H(t) > hi; et (S69)
i=1
e = s ZET sut (S70)
with LTs
Mo
iy — T li S71
1 (s) ] +;S_S” (S71)
M7
hi(s) = hi° —b S72
1 (s) l +ZS_5li (S72)
if(s) = ETG+Z b (S73)
s — Slv
and fluid limits
M T
lef _ jTe_ i (S74)
=1 Ol
M 7
pIf — pTe _ 13 S75
l l ; St (875)
M1
(Tf — ETC _ i (576)
1 l ; .

S4 Response to surface loads

In this section we introduce the surface response functions (SRFs), which at a given place and time describe the response of
the Earth to surface loads in terms of gravity field variations, vertical displacements and relative sea-level change. As we shall
see below in detail, from a mathematical standpoint the SRFs are given by spatio-temporal convolutions involving a particular
Green’s function (containing a suitable combination of LLNs) and the surface load variation function L.

Here we shall consider three SRFs. The first, associated with height variations of the geoid, shall be denoted by G**"
and referred to as the “geoid SRF”. The second, referred to as the “vertical displacement SRF”, is associated with vertical
displacements at the Earth’s surface and denoted by {/°“". These two SRFs are effectively independent, since as we shall see
they are constructed using independent sets of loading Love numbers. The third SREF, i.e., the “sea-level SRF”, is defined
by the difference

RsuT‘ (’y,t) — gsuT‘ _ Z/{S'LLT7 (S77)

and is of particular importance, since it enters directly into the SLE. Our purpose here is to make the three SRFs explicit,
also providing formulas for their expansion in series of complex spherical harmonics (CSH), an essential prerequisite for the
numerical solution of the SLE.
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We note that additional SRFs for other geophysical quantities can be defined as well, such as those for horizontal displace-
ments, gravity anomalies, tilts, efc.. These are constructed using Green’s functions which entail specific combinations of the
three LLNSs, and will be considered in future editions of this supplement.

S4.1 Surface Green’s functions
All the SRFs have the form
SRF(v,t) =GF® L, (S78)

where GF(q, t) is a general surface Green’s function describing the response to an impulsive load acting at time ¢t = 0, £(,t)
is the surface load variation defined in §S2.3, and symbol ® denotes the 3-D spatio-temporal convolution

(GF® L) (v /dt /GFa t—t"L(y',t)dA, (S79)

which implies a 1-D time convolution and a 2-D spatial convolution over the sphere, where « is the angular distance between
~v = (6, ) (the observer) and 4" = (6’,\") (each of the points where the load is applied), given by the law of cosines in spherical
trigonometry

cosa = cosfcosf + sinfsinf’ cos(A — \') (S80)
and
dA' = a’dy = a*sinf'de’d N, (S81)

where a is the average Earth radius.
Surface GF for the geoid. Following Eq. (S78), for the geoid SRF we write
G () =T L, (S82)

where according to e.g., Wu and Peltier (1982) the surface GF for the geoid is

)= 257 (5(t) + KE(t)) Pilcosa), (S83)
m =0

where m¢ is Earth’s mass, P;(cosc) is the degree [ Legendre polynomial (see §S8.5), and k[ (t) is the gravity potential LLN
defined in §53.2. The impulsive term §(¢) accounts for the direct effect of the load on changes of the geoid height, while k()
describes the indirect effect induced by elastic and viscous deformation. Thus, I'? does not vanish in the case of a rigid Earth
(i.e., for kI = 0).

In this supplement and in the numerical implementation of the theory, we shall only consider physically plausible surface
loads which obey the principle of mass conservation. According to the results of §S2.4, this means that the spherical harmonics
expansion of the surface load variation is identically zero, in agreement with Eq. (S42). Since in Eq. (S82) G°*" depends upon
the load linearly (the convolution ® indeed is a linear operator), a vanishing Lyo(¢) would imply a vanishing SRF regardless
the actual value of the degree 0 LLNs. For a discussion on LLNs in the presence of mass conserving surface loads, the reader
is also referred to Farrell (1972).

We observe that in the reference frame with origin in the Earth CM (including the solid and fluid portions), which is
conventionally adopted here since this seems to us to be the most natural choice, there will be no first-degree terms in the
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spherical harmonic expansion of the gravitational potential (Hofmann-Wellenhof and Moritz, 2006), nor of its variation in
response to surface loads (Greff-Lefftz and Legros, 1997; Greff-Lefftz, 2000). Hence, there must be no degree [ = 1 terms in
the expansion of 'Y in Eq. (S83). This means that §(¢) + k¥ (¢) must vanish. Recalling the expression for kF () (Eq. S56),
this condition is met if k¢ = —1 and lef =0 (G=1,2,...M). Our following numerical results are consistent with these
conditions. Note that other choices are possible, as discussed in Greff-Lefftz and Legros (1997); for instance, in Farrell (1972),
the LLNs are expressed in the reference frame with origin at the centre of the undeformed Earth (often this point is indicated
as CE).

Surface GF for vertical displacement. According to Egs. (S78) and (S82), this SRF has the form
U (y,t) =T"Q L, (S84)

where the surface GF for vertical displacement is defined as
)= — Z hE(t)Py(cosa), (S85)

where hf(t) is the LLN for vertical displacement (Wu and Peltier, 1982). We observe that i) since hF(t) is independent on
le (t), U™ and G°*" are mutually independent, ii) contrary to G**", there is no “direct effect” accounted for in /**", hence
the vertical displacement SRF vanishes for a rigid Earth, i.e., for h¥ () = 0, and that iii) differently from kF(¢), hi*(¢) is not
a priori constrained by the choice of the origin of the reference frame in the CM of the whole Earth; its value is numerically
determined by the solution of the equilibrium equations (see Spada et al. 2011).

Surface GF for sea level. According to Eq. (S78), the sea-level SRF!
Rsur(,%t) . £, (586)

where, consistently with Egs. (S77), (S82) and (S84), the surface GF for sea level I'® is

I*(a,t) =T9 — T, (S87)
hence
)= — t)+kE(t) — hE (1)) Pi(cosa). (S88)
m
l:O

We observe that I'® has dimensions of [T"'LM~!] and that the same holds for I'Y and I'* (note that both § (t) and the LLNs
have dimensions of [T~']). Accordingly, R*"" and the other two SRFs considered above, i.e., G**" and //*"", have dimensions
of [L].

To lighten the computations needed to expand R*"" in series of CSH, which shall be accomplished in the following section,
it is convenient to define the particular combination of LLNs

i (t) =6(t) + ki (t) — by (1), (S89)

so that Eq. (S88) simply reads

)= 72 nt (t) Pi(cos ). (S90)

I'Since R5%" is a response function for sea level, a more appropriate definition for it could be S%", probably. However, this could lead to some confusion

with symbol S (sea-level change) that already appears in the SLE. Indeed, the superscript s in I'® recalls that we are dealing with sea level.
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It is interesting to note that, by virtue of the relationship between LLNs and TLNs given by Eq. (S67), we have
0 (8) = 0(t) + ki (2), (S91)

showing that the surface GF for sea level I'*(«,t), and consequently the SRF S*“" can be expressed only in terms of the ‘k’
tidal Love number.

S4.2 Sea-level surface response function

Using the surface load decomposition given by Eq. (S29) into (S86) leads to

RV (,t) = R+ RY + R, (S92)
where each of the three terms on the right hand side has the form

R(v,t) =T* @ pF, (593)

in which according to Egs. (S30-S32), pF = p'W, pF = p* Z and pF = p" O for terms R%, R® and R¢, respectively, and F
is a causal piecewise constant (PC) function, defined in §S8.1 (see, in particular, Eq. S296). From Eq. (S93), using (S90) and
(S79), and recalling that dA = a2d% for R we obtain

+oo
Rivt) = / a / T (a,t =) pF (ot )dA"
o agp dt’ i L / 1oy ’
= n(t—t")P(cosa) | F(v',t")dy
1=0
= nr(t—t') /Pl cosa) F(v',t")dy'.

We now transform P, (cos «) by the Addition Theorem (Eq. S426), we expand F in series of CSHs according to (S297), and
use the orthogonality property (S423) of the spherical harmonics to obtain

Riv,t) = —o m L(f—t')/yfm(vl)ylm(v)]:(vlaf/)dvl
lm e
= 2l+1 t_t /ylm yl’m Z/Z]:l’nL yl/m( )
— / ., ! * ! o, A /
= el w1 )3 Fume ) Vim (1) [ Vi (V) (01
Ilm _ 'm/’ 5
4 3 1 +oo
Tasp ,
= dt - Jv m oo mm/’
me %;QZ—H / i l/zm:/ v (8) Vim (7)6u
4ra? N
ma’p L / / /
= t—t")Fn(t)dt m (), S94
Y, [ =) Fin)at | Yin(a) (s94)
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which represents an expansion in series of CSHs

)= Rim(H)Vim(7), (S95)
Im
with coefficients
Rim(t) = %f Q?T K (596)
where
o= (897)

is the Earth’s average density and Cj,, is the time convolution in parentheses in Eq. (S94).
With the aid of the normal mode forms of the LLNs (Eqgs. S56 and S57), and using definition (S89), the time convolution is
easily transformed, obtaining

“+oo

Cim(t) = /(6(t7t’)+le(t7t’)fhf(tft’))ﬂm(t’)dt’
= (1+kFe—hfo) /5t—t Fim (t')dt! +Zkh h: /H Je ) 7 () dt =
t
= (14K =) Fin(t) +§:kh hi;) /1”ﬂ4%ﬁmwmﬂ (S98)

where we have used the sifting property of Dirac’s delta> and the definition of unit step function (Eq. $290). Hence by substi-
tuting into Eq. (S96) we obtain

Rim (t) = R, + R}y, (S99)

where the elastic and viscous components of Ry, are

3
im () = Ffefﬂm(t) (S100)
with
1+ kPe — he
s _ 101
“ 20 +1 (S101)
and
3p 1 < /
Ry () =2 5" (K — 1) / et F (#)dt (S102)
pe2l+1 pat
- —oo
respectively.

2The sifting property of Dirac’s delta §(t) reads I j;f F(@)o(t —to)dt = f(to), see e.g., http://mathworld.wolfram.com/SiftingProperty.html.
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Since F(7,t) is stepwise constant

N

F(yt) =) (Frpr(y) = Fr(y) H(t —tr),
k=0

according to Eq. (S299) the expansion coefficients F;,,, (t) in (S100) and (S102) are stepwise constant as well:

N

Fim(t) =Y AFpm pH(t — 1),
k=0

where AFy,,  is given by Eq. (S301) for £ = 0,... N. Thus the elastic component of R;,, is

N
3
¢ ()= Ff > AFiH(t — ).
k=0

Using Eq. (S104), the integral that appears in the expression for the viscous component (S102) becomes

t

/ eszi(tft')]:lm@/)dt/

N t
ZA}—lm’k / esli(titl)H(tl — tk)dtl
k=0

N t
= > AFims H(t—tk)/es“(t_t/)dt/
k=0 i
N 1 t
= ZA]:lmJg H(t—t) estit [—e_s”t ]
k=0 Sti tr

- 1
= ZA-Flm,k H(t — tk) () eslz‘t (efslit N efslitk)

S1i
k=0
N estit—te) _ 1
= Y AFmx H(t—t) () :
s Sti

hence

N
3
szm(t) = Ff E A-/_'.lm,k Bl(t - tk)H(t — tk),
k=0

where we have defined

M
s _ 1 lez_hle syt
51@):21_‘_1; i (e —1).

(S103)

(S104)

(S105)

(S106)

(S107)

(S108)

Substituting Eqgs. (S105) and (S107) into (S99), we conclude that the coefficients of the CSHs expansion of the generic SRF

are

N
Run(t) = 2257 A 61+ B 0= ) H(e - 0),

e
k=0

21
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hence, according to Eq. (§92), for the individual harmonic components of R*""(-y,t) we obtain:

3

Rin®) = 25" AWi (6 + B (t —tr)) H(t — ti) (S110)
k=0
3% &

R (1) = 56 > AZp (¢f + B (t—t1)) H(t—ty) (S111)
k=0
3" o

im (t) ppe ZAle,k (ef +B7(t—t)) H(t—tx). (S112)
k=0

We close this section with a consideration about the harmonic degree | =0 component of the SRF R*“"(,t). From
Eqgs. (S92) and (S110-S112) we have

Ry () = 6o+ Roo + Réo

N
3 .
— E Z (plAWOO,k + prZOO,k + pTAXOO)k) (62g + Bls (t — tk)) H(t — tk)

k=0
g N
= = ALook(e] + 87 (t—t)) H(t—tx)
P =0
g N
= EZ(EOMH — Loox) (6] + 87t —tr)) H(t —tx)
k=0
- (S113)

since we are considering mass conserving surface loads, for which with Lo (t) = 0 (see §S2.4).

S4.3 Other surface response functions

Following the same procedure outlined in previous section, it is possible to decompose the G**" and ¢/°*" SRF:s in individual
contributions associated with the surface load components £¢, £° and L?, respectively.
In particular, in analogy with Egs. (S110-S112), for the geoid SRF we have

G (y,t) =G+ G+ G°, (S114)
with
G () = G + G + Gl (S115)
where
3p¢
() = p’i > AW (€] + 87 (t —ti)) H(t—tx) (S116)
k=0
3p0 &
Gln(t) = 56 > AZi i (€] + 7 (t—tn)) H(t—tx) (S117)
k=0
3" o
Gim (1) pe D> AXig (€] + B (t—tr)) H(t—t), (S118)
k=0
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1+ ke
7 = ! St1
T It (S119)
and
1 SN kE
9(¢) = i (estt 1) S120
') 2l+1;8”(e ) (5120)
Similar expressions hold for the vertical displacement SRF, with:
U (y,t) =U* + U + U, (S121)
where the coefficient of the harmonic expansion are
Uy (£) = Uppy + Upp + Uy, (8122)
with
3p° al
Uin(t) = 5> AWiri (6 + B (1~ 1) Hlt— 1) (5123)
k=0
3p" al
Un(t) = S AZyn (e + B (e~ 1)) Hlt—t0) (S124)
k=0
307 N
Us, (t) - D AXi g (ef + Bt —tr)) H(t—ty), (S125)
k=0
where we have defined
hie
= S126
AT (5126)
and
1 M hL
U — Ml st 1
Bi(t) = ST ; " (e ). (S127)

We note, in closing, that by the same argument we have used for R54" (¢) in Eq. (S113), for the geoid SRF and for the surface
displacement SRF we have

Gor(e) = 0 (S128)
Usp"(t) = 0, (S129)

respectively, since we are assuming a mass conserving (or plausible) surface load. Using Eq. (S432), we can equivalently state
that the whole-Earth-surface averages are

<G () >¢ = 0 (S130)
<U(v,t) > = 0, (S131)

which are useful for the interpretation of the geodetic fingerprints of GIA in §S8.9.
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S5 Polar motion

Polar motion (or wobble) is the motion of the rotation axis with respect to the Earth’s crust (Lambeck, 1980).

The rotational behavior of the Earth in response to geophysical excitations is governed by the Liouville equations, which
have been discussed in various treaties (see e.g., Routh, 1905; Munk and MacDonald, 1960; Lambeck, 1980, and references
therein). They are obtained by imposing the conservation of angular momentum for a rotating deformable body. For small
displacements of the rotation axis, the Liouville equations can be decoupled into two sets of equations, describing polar motion
and the variations of the length-of-day, respectively (Lambeck, 1980). For the purpose of modeling rotational effects on sea-
level change, it is not necessary to consider the problem of the length-of-day variations. Hence, we deal with the Liouville
equations for polar motion, which constitute a set of two coupled linear ordinary differential equations.

S5.1 Liouville equations

The (linearised) Liouville equations are traditionally written? as

M (S133)

o

where the dot denotes the time derivative,
1
m(t) =my +img = ﬁ(wl + iw2) (S134)

represents the displacement of the pole of rotation, ¢ = +/—1 is the imaginary unit, {2 is the mean angular velocity of the
Earth, w; and wo are the cartesian x and y components of the Earth’s angular velocity vector W= (w1,ws,ws3) in a rotating
(non-inertial) reference frame, respectively. Furthermore

W(t) =T,y +iW, (S135)

is the polar motion excitation function, and the constant

o = <C;A>Q~3(1)6d1 (S136)

is the Euler precession frequency for a rigid Earth, C' and A being the observed polar and equatorial moments of inertia (Lam-
beck, 1980). Hereinafter, we shall only consider small excursions of the pole of rotation; hence Eqs. (S133) are consistent with
the assumptions |m| < 1 and m3 < 1, where mg is defined by

(1+mg) =2, (S137)
Q
For a more general non-linear approach, also valid for large displacements of the axis of rotation, the reader is referred to
e.g.,Spada et al. (1992a) and Ricard et al. (1993).
Following Lambeck (1980), here we consider two sources of polar motion excitation separately. The first one is associated

with loads acting at the Earth’s surface, like for example the waning and waxing continental ice sheets; the second is associated

3 As mentioned by Munk and MacDonald (1960), quoting the work of Routh (1905), these equations were first obtained by Liouville in 1858. We note that

the linearised Liouville equations can be also expressed in a real, matrix form as

1 m 0 1 m; -
- S T = 7. (S132)
ar Ty -1 0 my Wy,
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with the rotationally-induced deformations. Here we do not consider possible contributions arising from external torques and
momentum transferred to the solid Earth from its fluid portions, which would constitute another source of excitation.
Accordingly, ¥ can be split into two parts as follows

W(t) = W5 4 grot (S138)

where W4 and W are associated to the surface and to the rotation excitations, respectively. While ¥**" shall be made
explicit below, for Pot we have

: k3 (¢
Prot(t) = % *1m, (S139)
where k2 (t) is the degree 2 ‘k’ TLN (see §S3.3), symbol * denotes the operation of time convolution (for the definition of time
convolution, see Table S2) and the secular ‘k’ Love number is

s 3(C-AdG
k® = TRE ~0.942, (S140)
where G' = 6.67 x 107" N m? kg~? is the universal gravitational constant, R, is the equatorial radius of the Earth, and the
observed values of C, A, R, and () have been used (Lambeck, 1980).

Substitution of Eq. (S139) into (S133) through (S138) gives

. T

o

where the first term can be neglected when m varies on time scales exceeding 27 /o, ~ 10 months. This is fully appropriate
in GIA modelling, since the late-Pleistocene ice sheets are evolving on time scales millennia, thus not causing an excitation
the “fast” Chandler wobble (Lambeck, 1980), but simply a drift of the mean pole of rotation. Hence, the form of the Liouville
equations suitable for GIA studies is

kI (t
(5(t) - 2k( )) xm =W (S142)

Dealing with the Liouville equations, it is often convenient to work in the Laplace domain, since this allows to transform
time convolutions into simple products and differential equations into algebraic equations (e.g., Tschoegl, 2012). Thus, taking
the fundamental property of the time convolution into account (see Table S2), the LT of Eq. (S142) is

(1 - kig‘s)) m(s) = U5 (s), (S143)

where k2 (s), m(s) and ¥*"" (s) are the LTs of k2 (), m(t), and ¥*"" (t), respectively.

S5.2 Rotation theories

As first pointed by Mitrovica et al. (2005) and later rediscussed in depth by Mitrovica and Wahr (2011), in GIA modeling it is
possible to approach the solution of Eq. (S143) into two distinct ways. This is related with the interpretation of the meaning
of the secular ‘£’ Love number, which in previous section has been evaluated using observed values of the relevant geodetic
quantities. A problem arises when the secular ‘k’ is to be employed for a specific GIA model. Indeed, in GIA modelling it is
customary to employ Earth models characterised by a lithosphere of finite strength, something that is considered appropriate in
view of the relatively short time scale of GIA, compared to the time scale of mantle convection. However, for Earth models that

25



25

30

35

10

15

include such a feature, the long-term equilibrium rotational shape may well differ from the observed shape, due to the elastic
stress “frozen” in the elastic lithosphere, even assuming that the Earth has been spinning for a very long time.

Traditional rotation theory. Many previous studies have been based on the so-called traditional rotation theory, briefly
illustrated by e.g.,Spada et al. (2011). In this framework, is assumed that

k= lim k1 (s) = k17, (S144)

s—0

i.e., that the secular Love number coincides with the fluid ‘4’ TLN k:2T f characterising the employed Earth model (see Eq. S74),
possibly including an elastic lithosphere having a long-term finite strength. In conjunction with a coarse description of the
Earth’s density profile that is sometimes adopted in GIA modelling (e.g., Spada et al., 1992b, 2011) using Eq. (S144) may lead
to significant inaccuracies in the prediction of the present-day rate of polar motion.

New (or revised) rotation theory. The new (or revised) rotation theory (Mitrovica et al., 2005; Mitrovica and Wahr, 2011),
suggests that the k° values employed in GIA modelling should not depend upon the Earth’s elasticity, and that a density closely
matching the seismically determined profile (e.g., the PREM profile, see Dziewonski and Anderson 1981) should be employed
in order to accurately describe the Earth’s rotational response. Furthermore, the £° value should also account for the Earth’s
excess ellipticity. Accordingly, they have proposed to model the secular Love number as

k® = k1T (LT = 0) + k°°, (S145)

where k2T f (LT =0) is the fluid "k TLN of an effectively fluid Earth, characterised by a viscous lithosphere and a PREM
density profile, and £°¢ is a small correction associated to the excess ellipticity. Following Nakiboglu (1982) and Mitrovica
and Wahr (2011), in SELEN* we have adopted the numerical value £°¢ = 0.0082.

As discussed in detail in Mitrovica and Wahr (2011), the two rotation theories predict responses that differ qualitatively
and quantitatively, with the revised one implying a less significant impact of GIA long-wavelength (harmonic degree [ = 2)
geodetic signatures compared to the traditional theory, and a reduced rate of polar drift. In SELEN*, both theories can be
employed. We remark that in both cases the fast Chandler wobble is filtered out since the onset, according to Eq. (S142).

S5.3 Polar motion transfer function

Regardless the rotational theory adopted (either traditional or revised), the Liouville equations in the Laplace domain (S143)
can be formally solved to obtain

m(s) = A(s) ¥ (s), (S146)
where

T -1
A(s) = <1 - ka(j)) (S147)

is the polar motion transfer function (PMTF). We note that, in the time domain, Eq. (S146) would correspond to the time
convolution

m(t) = A(t) « &5 (1). (S148)

Relationship (S146) can be used to provide a physical interpretation for the PMTF. Indeed, assuming an excitation function
W(t) ~ 6(t) where the tilde denotes proportionality, and recalling that the LT of a Dirac delta is 1 (see Table S2), from (S148)
we would obtain A(t) ~ m(t), showing that the PMTF physically represents the polar motion driven by a impulsive (i.e.,
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o-like) surface excitation. We also observe that obtaining ¥*"" () assuming the knowledge of .A(¢) and some astronomical or
geodetic observation of m(t) constitutes a classical deconvolution problem (Lambeck, 1980).
The PMTF is studied in detail in §S8.2, where it is shown that it can be cast in the general form

s M’ A
—Aca v S14
Als) += +;S_ai, (S149)

where constants A°¢, A°, A; and a;, which depend upon the rheological layering of the Earth, are known in the literature
as elastic rotational residue, secular rotational residue, rotational residues, and rotational roots, respectively (e.g., Spada
et al., 2011). All these constants turn out to be quite complex combinations of degree / =2 LLNs and TLNs. Accordingly,
using the LT Table (S2), in the time domain the PMTF reads

M/

Alt) = A°5(t) + A H(t)+ H(t) Y Age®". (S150)
i=1

Furthermore, in §S8.2 it is also shown that when the traditional rotation theory is employed, we have

M'=M-1 and A°®#0, (S151)

where M is the number of modes, while adopting the new (or revised) rotation theory one obtains
M'=M and A®=0, (S152)

in agreement with Mitrovica and Wahr (2011). In both cases, A¢, A®, A; are numerically found to be real-valued (i.e., their
imaginary parts are negligible in front of their real parts), and all the a;’s are real-valued and negative that ensures the asymp-
totic stability of Eq. (S150). We are not aware, however, of theoretical arguments that can justify and provide a motivation for
the numerical evidence.

S5.4 Surface loading excitation function

To solve explicitly the Liouville equations (Eq. S146) we need, in addition to the PMTF (S149), an expression for the excitation
function ¥*“" that accounts for variations of the Earth’s inertia tensor associated with surface loading. We note that ¥"°¢ i e.,
the polar motion excitation function associated with the rotation-induced deformation, given by Eq. (S139), has been already
assimilated in the PMTF.

Following e.g., Lambeck (1980), the excitation function for surface loading, also referred to as matter excitation function, is
defined as

JSUT‘

‘I’SUT — 1
=5—7 (s153)

with

JUT(t) = Jy3 4+ idas, (S154)

where Ji3 and Jo3 are variations (relative to the reference state defined in §S8.1) of the corresponding inertia tensor compo-
nents induced by surface loading. According to e.g., Ricard et al. (1992), we have

I (t) = (6(t) + k(1)) « 79 (¢) (S155)

where * is time convolution, the ‘.’ LLN of harmonic degree [ = 2 accounts for the isostatic compensation of the surface load,
and J"% is the inertia variation for a rigid Earth (i.e., J“" = J"% for kX = 0). Therefore, from Eq. (S153) we obtain

(1) = (500) + K (1) * ), (5156
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where the surface loading excitation function for a rigid Earth is

% Jrig
() = S (S157)

In the analysis of §S8.3 it is shown that J"% is only determined by the time-variations of the degree [ = 2 and order m = +1
components of the surface load. In consequence of that

N
() = k) > ALY, L H(E— ), (S158)
k=0

where the asterisk denotes complex conjugation,
ALo1 k= Lo p+1 — Lo, (S159)

and where c;pl is a positive constant given explicitly by Eq. (S371). In closing, we note that from Table S2 the LT of ¥"(¢)
can be expressed as

e*Stk

N
W9 (s) =chy Yy ALY, (S160)

k=0

S .

S5.5 Solution of Liouville equations

We have now all the elements needed to solve explicitly the Liouville equations for GIA. By substitution of Eq. (S156) into
(S148), we obtain the polar motion displacement in the form of a double time convolution

m(t) = A(t) * (8(t) + kz (t)) * B9 (1), (S161)
which in the Laplace domain corresponds to the double product
m(s) = A(s) (1 +kz (5)) €"(s). (S162)

It is now convenient to define a modified PMTF as

A'(s)=A(s) (L+k5(s)) (S163)
which, according to the analysis performed in §S8.2, has the spectral form
A g
"(s)= A" ! S164
Al(s) += +;57a,;’ (S164)
where A’¢, A’® and A} are appropriate constants obtained from A€, A® and A;.
Hence, substituting Egs. (S160) and (S163) into (S162) using (S164) gives
N M’
i A/s Al_ e*Stk
_ rig e )
m(s) =Y Ui | AC+ = +Zs_ai — (S165)
k=0 1=1
where we have set
Zig = C;plAcékLk- (S166)
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Using the Laplace transforms Table S2, Eq. (S165) can be easily inverted back into the time domain giving

N M’
. Ali
m(t) =3 Yy [ AT+ A (t—t)+ ) j? (eai<t*fk>—1) H(t—ty), (S167)
k=0 i=1

K2

which represents the sought explicit solution of the Liouville equations for polar motion.
We note that, taking the time derivative of Eq. (S167) and ignoring ¢-like terms arising from the time derivative of H(t), the
rate of polar motion can be expressed as

N M’
m(t) =Y o | AT Al ) ) H(t—ty). (S168)
k=0 1=1

S6 Rotational response

Here we study of the Earth’s response to variations in the centrifugal potential. There are analogies with the theory framework
adopted for the surface response functions (SRFs, see §S4.2), but also some important differences. As we have done for the
SRFs, here we introduce three rotation response functions (RRFs), i.e., the “geoid RRF” (G"°!), the “vertical displacement
RRF” (U"°) and the “sea-level RRF” (R"°%). The latter, which enters directly into the SLE (see Eq. 31 in SM19), is defined
by the difference

R (,8) = G — U, (5169)

As we did previously for the SRFs, our purpose is to determine explicit expressions for the three RRFs, providing in particular
the CSH expansions which are necessary for the numerical implementation of the SLE in SELEN*,

S6.1 Rotation Green’s functions

The harmonic component of the three RRFs considered here (i.e., Grot, Ut and R"°%) have all the general form
RRFim(t) = GFy x Appp, (S170)

where here GF,(t) denotes the corresponding rotation Green’s function, Ay, (t) is degree | and order m harmonic component
of the change of centrifugal potential associated with variations in the Earth’s angular velocity (see §S8.4), and * denotes the
1-D temporal convolution, i.e.,

+oo
(GF % M) (1) = / GF(t — t") Ay (') dt, (S171)

—0o0

as opposed to the 3-D spatio-temporal convolution employed in the construction of the SRFs (see Eq. S79). For a further
clarification about this important difference, the reader is referred to Milne and Mitrovica (1998).

Rotation GF for the geoid. Following Eq. (S170), for the geoid RRF we write
g”}t (t) = Tiq * Agm,s (S172)

ilm

where the rotation GF for the geoid is defined by

()=~ (3(t)+ K (1)), (S173)

Q|+
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where k] (t) is the degree [ tidal ‘k’ Love number introduced in §S3.3, and g is the reference surface gravity acceleration. The
term §(t) represents the direct effect of the change in centrifugal potential upon G"°%, while k;’ (¢) describes the indirect effect
induced by rotational deformation. Thus, the geoid RRF would not vanish in the case of a rigid Earth (i.e., for le =0). We
note that, contrary to the surface geoid GF for surface loads (Eq. S83), the rotation GF Y7 (¢) does not imply a sum over the
harmonic degrees; for this reason, the [-dependence remains explicit (Milne and Mitrovica, 1998). Furthermore, Tf(t) does
not depend upon the coordinates of the ‘observer’ v = (6, \).

It is interesting to observe that, by virtue of the relationship between LLNs and TLNs expressed by Eq. (S67), the rotation
GF for the geoid could be expressed only in terms of loading Love numbers, with

TI(f) = é (8() + KE () — hF(1)). (S174)

Rotation GF for vertical displacement. According to Eq. (S170), the vertical displacement RRF is
UL () =T} % Ay, (S175)

with the rotation GF for vertical displacement given by

Ti'(t) = =hi (t), (S176)

Q| =

where h! (t) is the tidal *h’ Love number at harmonic degree [, introduced in §S3.3 (Milne and Mitrovica, 1998). We observe
that since A7 (t) and k7 (t) are mutually independent, /"°* and G"°* are also mutually independent. We also note that, contrary
to G, for a rigid Earth U/"°! vanishes, since in this case h] (t) = 0 by definition.

Rotation GF for sea level. According to Eq. (S170), the sea-level RRF is
RICH(t) = Y5 * Mgy, (S177)

im

where consistently with Egs. (S169), (S172) and (S175), the GF is given by the difference

T3 (t) ="1] - T¢, (S178)
hence

1
ﬁ@z§®®+ﬁm—ﬂﬁ» (S179)

We note that T} has dimensions of [TL~!] and that the same holds for Tlg and YT}'. Hence, R in Eq. (S177) has dimensions
of [L], like G"°t and U™ °".

S6.2 Rotation response functions

To obtain explicit expressions for the RRFs, it is convenient to consider the geoid RRF (G™) first. The expression for vertical
displacement (I4"°?) has a similar structure, while the sea-level RRF (R"°?) is simply given by the difference between G"°* and
U™, The details follow.

Rotation response function for the geoid. According to its definition (S172), the geoid RRF in the Laplace domain reads

Gl (s) = 17 (8)Aim (s), (S180)
where taking Eq. (S408) into account, gives
Grok(s) = €3, Y7 (5)0120mz1m* (s), (S181)
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showing that the only non-vanishing coefficients are those of degree [ = 2 and order m = £1, expressed by

G5i'(s) = exnTi(s) m*(s)
M’

(DN N /s / —st
C31C21 ey A A e
= === AL 1—|—k A + S182
p > 21,k< E S_S2Z>< § s_al> P (5182)

where we have used the definition of the rotation GF for the geoid (Eq. S173), the LT of the ‘4 TLN (Eq. S71), the solution of
the Liouville equations (Eq. S165), the expression for the surface excitation function (Eq. S160), and where we have also taken
advantage of the fact that A’®, A’*, A} and a; are real-valued constants. We now note that the product of the two factors in
parentheses above is analogous to the product (1 + k% (s)) A(s) that defines the modified PMTF in Eq. (S163). Thus, without
the need of further computations, we arrive at

—stk

rot 631021 e g7, Z g;/ €
Gsi' (s) = ZMM g+ Zs_az > , (S183)

g — =1 s

where, according to Egs. (S358-S361) and (S355-S356), we have introduced the new constants
g° = (1+k3©) A",

g/s — <1+kgf> !4/57

! k‘g T / /

. = 1 k L =(1+k 3 A», .:L 7M

fi + +Z,ZIGZ_SZ = (14 k5 (a) 47, (i )
Als M’ A/

gl = A+ — 4> |k =A(si) k3, (i=1,...,M).
Si i 151—01

Using Table S2, the inverse LT of Eq. (S183) is now readily found, giving the time-domain degree ! = 2 and order m =1
CSH coefficient of the geoid RRF:

20t = C;pleN:ALm YI(t —tx) H(t —ty), (S184)
k=0
where all the other coefficients are identically zero, except G5%4 = —(G59%)*, and where we have defined the function
Y9 (t) Eg’e—&-g’st—i—%g—g (e®*—1) + f:g—gl(es"t—l). (S185)
im1 % iz1 i

Rotation response function for vertical displacement. Following its definition (S175), the LT of the vertical displacement
RRFis

ULPH(s) = T3 (8) A (), (S186)

formally identical to the geoid RRF (Eq. S180), but with the important difference that the GF Y}*(s) contains the ‘A’ TLN
instead of the combination ‘1+k’ (this can be seen comparing Eq. S176 with S173). However, it is clear that we can imme-
diately take advantage of the computations above for G/'°¢, by making the appropriate substitutions. In particular, in analogy

lm >
with Eq. (S183), we write
b W' M’ / M " —st
C C u; € ’
urot ~21%21 AE 7 , S187
(s) = P kEO a1k | W +*+E S a ;:15—81' S (S187)
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where now the constants u'¢, u'*, u} and v/ are defined as

we = hIe A,

s T s
u* = hlT A,

u, = hT6+Z _hdy =hl(a;) 4, (i=1,....M)

7 - az_sz 2 7 7R — Ly

,oAs X, ‘
w = | A+ . +Zs - hl.=A'(s)) i, (i=1,...,M).
% j—1 ¢ 7

Hence, by the same arguments used for the geoid RRF, we can conclude that

Uzt (t) = %iAEZLk YUt —tk) H(t—tk), (S188)
k=0
all the other coefficients being identically zero, except U3 = —(U37")*, with
Yt = +u“t+z +§:“—g(esﬁ—1). (S189)
im1 i

Rotation response function for sea level. Since, by definition, R"°t = G"°t —f"°t (see Eq. S169), we immediately conclude,
from Eqs. (S184) and (S188), that

v oA N
Rrot( ) C21021 ZAEQLk’YS(t —tk)H(t—tk), (S190)
k=0
with
V() =77 =" (S191)

where 79 and v* are given by Eqgs. (S185) and (S189), respectively.

S7 Numerical discretisation of the SLE

In this section, we aim at providing discrete forms of all the terms which appear in the SLE, in view of the numerical implemen-
tation in SELEN*. The time discretisation is performed on the 1-D grid introduced in §S8.1 below. The spatial discretisation
on the surface of the sphere is carried out by either a direct evaluation of the field variables on a spherical grid or by a spectral
approach based on the CSH functions, defined in §S8.5. For the spatial discretisation and for the computation of the required
surface integrals, we take advantage of the properties of the equal-area, icosahedron-shaped, spherical pixelization introduced
by Tegmark (1996) and described in §S8.6. The material presented in this section extends the analysis first presented by Spada
and Stocchi (2006) and Spada and Stocchi (2007). A summary of the discretised variables considered in this Section is given
in Table S3.
For the reader’s convenience, from SM19 we recall that the SLE, in its ultimate “ocean-projected” form, reads

Z(vy,t) = 27 + K+ KP(2) + K+ K 2), (S192)
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where the unknown is
Z(v,t) =08 (S193)

where O is the OF, S is sea-level change, and

Zave (t) — 08¢ =0 (Sequ + SOfu) ; (S194)
with S€9% and Sef given by Eqs. (S54) and (S55), and

K®(v,t) = OR'* (S195)
Kot (y,t) = OR'™, (S196)
where

R/ abc(’}/,t) — Rabc_ < Rabc >0 (S197)
R’ TOt(’%t) — Rrot_ L Rrot >0, (S198)

where R¢ denotes each of the three components of the sea-level SRF, Rt is the sea-level RRF and < --- >° indicates the
ocean-average.

Our purpose here is to discretise the variables contained in the SLE (S192), in order to reduce it to a spectral form that easily
admits a numerical implementation, which shall read as follows

Zjn =200+ K}, + KD L(2)+ K5, + K% 2), (S199)

where j stands for /m and subscript n denotes a given time ¢ = ¢,,. The maximum range of harmonics to be included in the
discretisation (i.e., l,,,4;) shall depend upon the spatial resolution that is to be achieved and from the available computing power.
In SM19, we examine the effects of truncating the CSH series to increasing values of l,,q, in a test run of SELEN* having
some geophysical significance. The maximum range of index n (i.e., IV) shall be suggested from the specific chronology of the
ice sheets employed in the simulation.

In the following subsections, all the terms in Eq. (S192) and (S194-S198) shall be considered and analyzed in detail. Of
course, our ensuing analysis shall also provide convenient forms for all the terms that appear into the “lower level” SLE

Sin =8I+ R +RED (2)+ RS + RSN Z), (S200)
which represents the discretised counterpart of Eq. (39) in SM19.

Notation and conventions. To deal with discretised fields, henceforth we use the following notation and conventions. With
F, ., we indicate the scalar field F'(+y,t) evaluated on a given pixel of coordinates v, = (6,, A,) and at time ¢ = ¢,,, where t,, is
a point of the time grid that we have conventionally adopted in this work (see §S8.1). Hence we define

Fpn=F(pita), (S201)

where p = (1,...P) and n = (0,... N+ 1). The coefficient of the CSH expansion of F'(v,t), evaluated at time ¢ = ¢,,, shall be
denoted by

Fjn = Fj(tn), (S202)

where j = Im indicates a couple of harmonic degrees and orders. Furthermore, to denote a CSH computed at a given grid point
of coordinates -, we shall conventionally write

Vip = Vi(¥p)- (S203)
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Finally, a spatially invariant quantity like e.g., p(¢), evaluated at time ¢ = ¢,,, shall be simply denoted as

i = p(tn)- (S204)

Note that confusion between symbols F; ,, (Eq. S202) and F}, ,, (S201) should be easily avoided, since henceforth letters j
(or j") will always denote the couple composed by harmonic degree and order I (or I’m”), subscript n (or k) always represents
a point on the time grid, while letters p (or p’) conventionally indicate a generic pixel on the sphere. Thus, for instance
X i indicates a spectral quantity (as denoted by symbol j) that represents the harmonic coefficient of the CSH expansion of
field X'(y,t), evaluated at time ¢ = ¢}, while U, ,, denotes scalar function U(+y,t) in the spatial domain, evaluated at a pixel
of coordinates 7,/ and time ¢ = ¢,,. Similarly, T}, o indicates the field T'(y,t) (i.e., topography) at pixel 7, and time ¢ = t,.
Furthermore, to indicate the (47-normalised) CSHs, we shall always employ the calligraphic symbol ) (see §S8.5). Hence,
for example, ))j/,, unequivocally identifies the CSH of degree and order j’ = I’m/, evaluated on the grid at the pixel placed at
coordinates .

S7.1 Ice thickness, topography and ocean function

In this section, we consider the discretised forms of ice thickness I(v,t), of topography T'(v,t), and of the ocean function
O(,t). While for variables I and T a discretisation in space and in time is sufficient for solving the SLE, the OF also needs to
be decomposed in the spectral domain, since its harmonic coefficients are explicitly required by the solution algorithm; these
shall be determined exploiting the properties of the Tegmark grid.

Ice thickness. The ice thickness distribution is the basic input of SELEN* along with a description of the Earth’s rheology. We
assume to know the function I(7,t), i.e., the ice thickness at any location and time, based on a priori geological information,
ad hoc hypotheses, glaciological arguments, or reconstructions published in the literature. These typically constrain the time-
evolution of ice thickness distribution by the knowledge of Relative Sea Level (RSL) at specific locations since the Last Glacial
Maximum (LGM, ~ 21,000 years ago), using predictions obtained by solving the SLE. Hence, we assume that the array

Ipn = 1(Vptn), (S205)

where p = (1,...P) and n = (0,... N+ 1), is given a priori. The choice of the time step At = t;,41 — t), that characterises the
time-discretisation in SELEN (see §S8.1) is indeed made according to the natural time step of the ice chronology. Typical
values in GIA modelling are At = 1000 or At = 500 years. We also note that ice models currently employed in GIA studies*
are normally defined on traditional, cartesian latitude-longitude grids. Pixelised versions of these datasets, characterised by
different spatial resolutions, are made available with the SELEN* package.

Topography. Consistent with our conventions on notation, at time ¢ = ¢,,, the discretised topography is
Tpn =T (Vp:tn), (S206)

where we use the same grid employed to describe the ice thickness distribution in Eq. (S205), v, = (6,, A,) denotes the pixels
coordinates with p = (1,... P), and time is labelled by n, with n = (0,... N + 1).

Array T}, , is however not known a priori. Indeed, according to Eq. (S2) the past topography (or paleo-topography) is
determined by the history of the sea-level variations, which is not known in advance, i.e., before the SLE is solved. Indeed, the
present-day relief serves as a “final condition” for the Earth topography, in order to constrain its evolution in the past. In this
way, paleo-topography can be iteratively reconstructed using the PT equation given by Eq. (S10), which in discretised form
reads

Ton=TpN—(Spsn —Sp.N)» (S207)

4Some of the more recent models belonging to the ICE-X family are available from the home page of Prof. WR Peltier, see http:// www.atmosp.physics.

utoronto.ca/ peltier/data.php - last accessed Jan. 23, 2019.
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where T}, y is topography at present time (¢ =t ), and S, , is sea-level change at a given time ¢ = ¢,, and at pixel ,, as given
by the SLE in Eq. (5200). Using the definition of true paleo-topography TP (see Eq. S11), we have

PTyn=Tyn+1Ipn, (S208)

where I, ,, is the input array containing the ice thickness, and T}, ,, is given by Eq. (S207).

In SELEN*, the present topography is based on the global relief dataset ETOPO1 (see Amante and Eakins, 2009; Eakins
and Sharman, 2012). ETOPO1 is provided ° on a traditional cartesian longitude-latitude grid with a resolution of 1 arc-minute®,
so it needs to be interpolated on the pixels of the Tegmark grid before the code is run. With SELEN*, suitably interpolated
datasets are provided, characterised by different spatial resolutions.

Ocean function. From its definition

1, it T+ 1<0
pw

O(v,t) = i (5209)
0, if T+ 2 1>0,
pw
the OF is totally determined by I and 7". On the Tegmark grid, the OF is written as
. o
L if Tpn+— Ipn <0
Opn = O0(Ypstn) = Pi (S210)

0, if Tyn+L1,,>0,
nt ol

where we have used the discretised forms of the topography (Eq. S206) and of the ice thickness distribution (S205), respectively.
Hence, by its own definition, the CF is discretised as

Cpn=1=0Oppn. (S211)

According to Eq. (S452), the harmonic coefficients of the CSH expansion of the OF, i.e.,

1
0;(t) = E/O(%t)y}‘(v)dv (S212)
Y

are found by quadrature on the grid as
1 *
Ojn =52 OpnYip: (s213)
p

where the discrete values O, ,, are obtained from Eq. (S210). Using the definition of CF, its harmonic coefficients are

Cjn = 0100mo — Ojn- (S214)

S7.2 Spatially invariant terms

In the SLE, several spatially invariant terms appear (see in particular Eq. S192 and those that follow immediately). Most of
them shall be analysed here, in order to provide discretised forms suitable for the numerical solution of the SLE. However,
note that some others shall be discussed in later sections devoted to the surface and rotational response of the Earth.

3See https://www.ngdc.noaa.gov/imgg/global/ - last accessed 26 Feb 2019.
0ne arc-minute is (1,/60)° and corresponds to an arc of latitude of ~ 1.85 km.
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Ocean averages. The ocean-average of a function F'(y,t) is a spatially invariant term that often appears in the treatment of
the SLE. It is defined as

/F('y,t)dA
<F>'(t)=° (S215)
/ dA

where the surface integrals are over the region where, at time ¢, the OF has value O = 1. Hence, with the aid of the OF, the
ocean average can be equivalently written as

/ F(v,t)0dA
<F>°(t)==< , (S216)
[ oda
e
which is easily discretised on the grid using the quadrature rule given by Eq. (S446), obtaining
> FpnOpn
<F>°=<F>°(ty) = e, (S217)
O
P
where F}, ,, = F'(7p,tn) and O, ,, is given by Eq. (S210).
Global averages. The global spatial average of function F'(+y,t), defined as
/ F(y,t)dA
<F>{t)=*—F7—, (S218)
[aa
is discretised on the grid according to
AY [ Fon
1
F>=<F>(ty)=——2"—==Y F,., S219
<SF>=<F > () = — Pg, (s219)
since the area of all cells (or pixels) is given by the ratio
4 2
Ac =T (5220)
P
Area of the oceans. At a given time ¢, the area of the oceans is
A°(t) = /dA, (S221)
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where the integral is over the surface where the OF is O = 1 at time ¢. Equivalently, using the OF definition and the quadrature
rule given by Eq. (S446), we have

A°(t) = / OdA =A%) " O(yp,t), (S222)
e P

where A€ is the area of each of the cells in Tegmark grid and the sum is over all the pixels. Hence, in discretised form, the area
of the oceans is

A = A°(ty) = A% Opn. (S223)
p

It is worth to note that A°(t) is proportional to the harmonic degree ! = 0 component of the OF. In fact, since Yy, = 1, for
harmonic degree [ = 0, Eq. (S213) provides

1
Ooon =5 Zp: Op.ns (S224)

which, by comparison with Eq. (S223) and also recalling (S220), shows that A can be also expressed as
A% = 4ma*Ogp .- (S225)

Grounded ice mass. According to Eq. (S45), the mass variation of the grounded ice is

u(t)=p' [ (1€~ 1oCo)da, (5226)

where [ is ice thickness, C'is the CF, and subscript 0 denotes reference quantities. Thus, according to the integration rule given
by Eq. (S446), we have
p(t) = p A (I(1:,t)C (4, t) = To(7p:t0)Co (s t0) ) (S227)
P
which at time ¢ = ¢,, gives
pn = p(tn) = PiAC Z (Ip,ncpm/ - p700p,0) ) (5228)
P

where I, ,, and Cp, ,, are given by Egs. (5205) and (S211), respectively.

Term S°€7%. This term of the SLE, defined as
(1)
Seau(t) = - (S229)
) pA°(t)

and referred to as equivalent sea-level change in the body of the paper, describes the effects of time-variations of the mass of
the grounded ice p(t), also taking the consequent changes in the area of the oceans A°(t) into account. Taking advantage of
expressions (S223) and (S227) for A°(t) and u(t), respectively, the discretisation of S€9%(¢) is straightforward, with:

; Z (Imepm - Ipﬁcp,o)

Hn P p
Ser = SeTu(t,) = — - _r . (5230)
( ) prfr)L pw j :Opyn
p
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Since §°9* is spatially invariant, in its CSH expansion all the coefficients vanish except those of harmonic degree [ = 0 and
order m =0, i.e.,

ST = SET G108 o (S231)

Term S°/%. This second spatially invariant term of the SLE, introduced in §S2.4, and defined as

1
Sofu(t) = Yo / ToOdA, (S232)

accounts for time-variations of the ocean function (hence the superscript ofu) either associated to the horizontal migration of
the shorelines or to transitions between grounded and floating ice (or viceversa). Contrary to S€7%(t), this term is not explicitly
dependent upon variations of the grounded ice mass.

Using Eq. (S27) and applying the integration rule (S446), we have

ST (t) = Af(ct) > T4 t0) (O(p:t) — O(ps o)), (S233)

so that

> T)0(Opn—0py0)
Sofu = gofu(g,) =2 , (S234)

2_Opn
P

where we have also used Eq. (S223). Since S°*(t) is spatially invariant, the coefficients of its CSH expansion are

SoT = ST 5100mo.- (5235)

Term S*?¢. According to Eq. (S53), this spatially invariant term is simply given by

Save(t) = §eau 4 §ofu (S236)
and represents the ocean-average of S(+y,t). Thus we have

S = 8™ (tn) = S + S (S237)
where S79% and S;9* are given by Eqs. (S230) and (S234), respectively. Furthermore, its CSH coefficients are given by

Seve = (Se + S57) 8100mo- (5238)
Term Z%Y¢. We note that the ocean-projected S*¥¢, i.e., the term Z%¢ = OS%"¢ given by Eq. (S194), is certainly not spatially

invariant, since O is variable in space and time (i.e., O = O(~,t)). However, since S®¥¢ is invariant, its CSH expansion is
straightforward, with
Z30¢ =050 55", (5239)

J,n

where S2V¢ is given by Eq. (S237).
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The c constant. The so-called “c constant”, first introduced by Farrell and Clark (1976), arises from the imposition of mass
conservation. According to Eq. (S52), it is given by the following combination of spatially invariant quantities

c(t) = 8™ — < R >0 — < R >°, (S240)
which using Eq. (§92), can be immediately discretised as follows

Cn=c(ty) =81 — <RI>% — <RV >0 — < RE>2 — < R™E >0, (S241)
where terms < R%%¢ > and < ’R”’t >,°V are made explicit by Eqgs. (S271) and (S286), respectively.

S7.3 Surface response

The three sea-level SRFs R?, R” and R¢ which appear in the SLE (see Eq. S192 and in those that immediately follow)
share common structures. Below, we first discretise the surface load variation £, then we make the CSH coefficients of the
sea-level SRFs explicit; we evaluate the ocean-averages of the SRFs, and lastly we construct the “primed SRFs” defined by
Eq. (S197).

Surface load. Based on Eqs. (529-S32), the surface load variation is easily expanded in series of CSHs, with

Lin=L,+L5,+L5, (S242)
with

Ll = pWin (S243)
- (S244)
LS, = p . (5245)

According to Eq. (S33), variable W is defined as W = ZC, where Z = I — I is the ice thickness variation and C =1— O
is the CF. The CSH coefficients W, ,, in Eq. (5S243) above are obtained by direct integration of WV on the Tegmark grid using
Eq. (S452), with

1 . 1 .
Win= ﬁZIp,ncp’nyj,p =5 > Ty —Ipo) (1= 0p0) V5, (S246)
P

p

In Eq. (S244) Z; ,, represents the spectral discrete form of the basic unknown of the final form of the SLE (see Eq. S192 and
those that immediately follow), namely the ocean-projected sea-level change Z = OS. Within the iteration scheme of the SLE
described in §S8.7, progressively updated values of Z; ,, are used in Eq. (S244) in order to determine Eé’

Based upon Eq. (S35), we recall that variable X is defined as X = QO, where variable @ is given by Eq. (S36) and O is
the OF variation. Again, integration on the spatial grid using Eq. (S452) provides the CSH coefficients required in Eq. (5245),
namely

1 y *
Xjn =135 QOpnY,= ZQP b= 0p0) Vi, (5247)
P
where, using Eq. (S36), we have defined
%= (% o+ 2 Tha). (5248)

Response functions R, 1/*°, and G**°. Egs. (S110-S112) of §S4.2 give the CSH coefficients of the three SRFs R%, R®
and R, respectively, for an arbitrary time. Setting ¢t = t,,, where t,, is one of the time grid points, exploiting the property of the
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Heaviside step function, and following our conventions for notation, the SRFs harmonic coefficients are discretised as follows

; n—1
3 7
Rjn = 7[; <6ij,n +) AWj,kﬂf,n_k> (S249)
k=0
3pw n—1
Rin = — (6? Zint Y AZj Bink> (S250)
P k=0
SPT n—1
Rin = e (6? Xin+ Y AXjj ﬂf,n_k> ; (S251)
k=0
where we have defined
AWir = Wik — Wik (S252)
AZjk = Zjkr1—Zjk (S253)
AXjp = Xjpy1— Xk, (S254)
and
Bl = Bi (kAt), (S255)

(k=0,...N), with 5;(t) given by Eq. (S108). We finally remark that since W; o = Z; o = X o = 0 and since the sums give
no contributions for n = 0, we have R;-l’%c =0.

We note that following the scheme above, discretised forms for the SRFs ¢/°“" (vertical displacement) and G**" (geoid
height variation) are easily obtained. Indeed, from Eqs. (S123-S125) and (S116-S118), we have

U =Us, + U, U, (S256)
where
3p2 n—1
Uin = o <€7ij +> AWj,kﬁan_k) (S257)
k=0
, 3pw . n—1 ,
Upn = — | Zin+ > AZik Bl i (S258)
k=0
C 3pr u = U
Uin = —o|e Xint > AX By ) (S259)
k=0
where, for any value of index k,
e = B (kAY), (S260)
with §j*(¢) given by Eq. (S127), and
G =G+ G+ G (S261)
with
. 3p1 g n—1 .
Gin = AN Win+ > AW, B/, 4 (S262)
k=0
, 3pw g n—1 .
Gjn = o\ Zjn+ ZAZj,k Bk (S263)
k=0
3pr n—1
Gin = (6? Xjn+ > AX Bﬁnk> : (S264)
k=0
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where
Bl = B (kAt), (5265)
for any k, with 8/ (¢) given by Eq. (S120).

Ocean averages of R, The (spatially invariant) ocean-averages of the three SRFs R¢, RP, and R¢ are evaluated by a
straightforward application of the definition of ocean-average. Hence, according to Eq. (S48), we have

<RS0 (1) =

(7, t)dA; (S266)

then, taking advantage of the spectral decompositions given above for the SRF (Eqs. S110-S112) and for the OF (S212), and
since the OF is a real-valued function (i.e., O = O*), we have

<R™e>O (1) = (7,£)O* (v, t)dy (S267)
_ Aszt) / 2R ON || 2050056 | (5268)
¥ J
= ST R0 0) [ 3,000 (5269
Jj g 5
= 4”“22735170(75) o5 (1), (5270)

A°(t)

J

where we have exploited the orthonormality of the CSHs. Hence, at a given time ¢ = t,,, the ocean-averaged SRFs are

abc N*
ZR] n Oj n
< Rabe - >0=< Rabe 0 (tn) = J , (8271)
Oovo.n
where we have used Eq. (S225).

Primed SRFs R’ *¢. According to Eq. (S197), the primed SRFs are obtained by the unprimed SRFs simply by subtracting
their ocean-averages. Hence, their discretisation is straightforward, with

R; ’%bc _ R‘}f’,f— < R S0 508,10, (S272)
where < R¢ >¢ is given by Eq. (S271).

The terms K¢, According to Eq. (S195), the three terms X ®*° result from projecting the primed SRFs over the OF, i.e.,

K (y,t) = OR' @<, (S273)

For these terms, we assume a CSH expansion

Kb (v, ) Z/cm V(v (S274)
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where, according to Egs. (S430) and (S451), coefficients K?bc(t) are evaluated by a numerical quadrature on the grid:

> 1 / abc *
K0 = 4= [0t R ey (i 5275)
Y
1 .
~ 5200t R (. )Y; () (S276)
P
1 !/ abc *
= 52 00mt) | DRy () | Vi (m) (S277)
p 7’
1 !/ abc *
= p Yo ROV () | V() (S278)
p such that 7’
O(’vat)zl

hence, at time ¢ = ¢,,, we have

Kb = K9 (t) = > X V; (S279)

pn Y jp?
p: Op n=1

where we have defined the three arrays

aoc 1 aoc
o = 5 2 RV (S280)
J

S7.4 Rotational response

For the RRF R"°!, the discretisation scheme largely follows the one adopted for the three SRFs terms R, Again, we consider
separately the various terms depending on R"°?, which appear in the SLE.

CSH expansion of R"°*. The RRF for sea level which appears in the SLE is given by Eq. (S190). Since it is a pure harmonic
function of degree [ = 2 and order m = +1, its discretisation is straightforward:

3121)105\1 =
Rl = 012041 > ALy (S281)
k=0
where
ALjr=Ljr+1—Ljk, (S282)

with £; , given by Eq. (5242), and where for any index k, we have

M=~ Ve (S283)
with

o= I(kAt) (S284)
e = 7“(kAY), (S285)

where 79(t) and y“(¢) are given by Egs. (S185) and (S189), respectively.
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Ocean-average of R"°'. The ocean-average of the RRF R"! is evaluated following the same principles which have led to the
evaluation of the ocean-averaged SRF. Indeed, using Eq. (S271), we have immediately

ZRrot O*
<R SO=< RSO (t,) = L— (S286)
Ooo.n
where R’} is given by (S281).

Primed RRF R’ . According to Eq. (S198), the primed RRF is obtained by the corresponding RRFs by subtracting the
ocean-averages; hence, the discretisation is

RLP =R — <R >, 6100mo, (S287)
where < R"°! >, is given by Eq. (S286).

The term K7t This term of the SLE is stemming from the projection of the primed RRF R’ "°* over the OF. In analogy with
what we have done for the terms K¢ associated to surface loading, we thus write

ICrot ’Crot( ): Z XTOt jp7 (8288)

p: Op n=1

where we have defined the array

1
Xt = — ZR’ oY), (S289)
J

with R "°" given by Eq. (S287).
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S8 Miscellaneous topics

S8.1 Piecewise constant functions

Here we first define the unit step function (also often referred to as Heaviside step function); then, we describe how we are
dealing with the time-evolution of scalar functions. The CSH expansion of piecewise-constant functions is discussed at the end
of the section.

Unit step function. We define the unit step function as

[0 ift<o0
H(t):{ 1 i, (S290)

where we note that H () is “left-continuous”, i.e., H(0) = 0. The unit step function is shown in Figure S4a.

Time discretisation. We denote by F' = F(v,t) a function that, at a given point v = (6, \), varies with time in discrete steps
according to the diagram of Figure S4b. This type of “piecewise constant” (PC) time history is particularly convenient for the
numerical discretisation adopted in SELEN*.

With Fy(vy) we denote the value attained by F'(v,t) for —oo <t < tg =0, and with Fj(~y) the value in the time interval
tp—1 <t <ty (k=1,...,N).Fort > ty, the value of F(v,t) is Fn11(7).

Thus:
FO(’V)v _00<t§t050
Fi(), to<t<ty
B(y), t<t<t
F(y,t)y=<¢ o S291
=Y R). ta<t<n (529D
Fn(y),  tn-1<t<tn
Fnia(v), t>tn,
where NV is the number of time steps in the interval 0 < ¢ < ¢y, each time step having the constant length
t
At=ty —tp 1= FN (S292)
and where it is useful to remark that, according to Eq. (S291), at the time grid points we have
F(y,tr) = Fe(v), (5293)

which is a consequence of the left-continuity of H (t) in Eq. (S290).
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Using the definition of unit step function we have

F(y,t) = Fo(y)(1—H(t—t0)+ Y Fi(y) (H(t—ty—1) = H(t—tx)) + Fn 1 (y) H(t —tn)
k=1

N N
= Fo(y) = Fo(y)H(t —to) + sz(V)H(t —tp—1) — ZFk(W)H(t —tg) + Eny1 (V) H(t—tN)
k=1 k=1

N-1

N
= Fo(y) = Fo(v)H(t—to) + Z Frpa (V) H(t—tw) — Z F(MH (@t —te) + Fnyr (V) H(t —tn)
k'=0 k=1
N-1

5 = Fo(v) = Fo(WH(t—to) + Fi(V)H(t —to) + > Frpa(NH(E —t) +
k'=1

N-1
- Z Fo(V)H(t—ty) = F(y)NH({t —tN) + F(y) N1 H(t—tn)

k’'=1
N-—-1
= Fo(7)+ (Fi(7) = Fo() H(t—to) + 3 (B () = Fu (1)) H(t = tr) + (Fva1(7) = Fy (7)) H(t ),
k’'=1

hence, merging all the contributions, we obtain the compact form

N
F(y.t)=Fo(V)+ > (Fera(y) — () H(t — tg). (5294)
k=0

10 Accordingly, the fime-variation of F(,t), defined as
F(v,t) = F(v,t) = Fo(v), (S295)

admits a PC time history as well, with:

N
Flvt) = Z(FkJrl('V)_Fk('Y))H(t_tk)v
k=0
N
= > ((Fer1() = Fo() = (F(v) = Fo(7)) ) H(t — t,),
k=0
N
15 = > (Feni(n) = Fu(y) H(t—tx). (S296)
k=0

CSH expansion of a PC function. Dealing with the numerical implementation of the SLE, it is often necessary to expand a
PC function F(v,t) in series of CSHs. According to the general expression given by Eq. (S428), the expansion reads

Ft) = Fim®)Vim (), (S297)
lm
where using Eq. (S430) the (time-dependent) coefficients turn out to be
1
20 Fum(t) =1~ / F(, ) Vi (v)dy. (S298)
¥
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a) The unit step function b) Piecewise constant function

Figure S4. Unit step function (a) and general PC function (b), where Fj = Fj(w) is the value of F(w,t) in the k-th time interval (k =
1,...N), Fo = Fy(w) is the value of F'(w,t) in the reference state before the inception of melting, and Fnvy1 = Fn+1(w) is the future

value.

By substituting Eq. (5296) into (S298) we obtain

N

Fim(t) = (Fimks1 = Fimi) H(t — tg), (5299)
k=0

or, equivalently

N
Fim(t) =Y AFpm pH(t —ti), (S300)
k=0
5 where
AFimk = Fimet1 — Fimpk, (k=0,...N) (S301)
and
1
Fim e = Fim(tr) = o / Fre() Vi (v)dry. (S302)
Y

S8.2 Polar motion transfer function

10 This section is devoted to the study of the Polar Motion Transfer Function (PMTF). We shall obtain the PMTF for both the
traditional and the revised rotation theory, described in §S5.2. Then, we shall provide an expression for the modified form of
the PMTEF, necessary to solve the Liouville equations.

Traditional rotation theory. Our purpose here is to show that when the traditional rotation theory is adopted, the PMTF
defined by Eq. (S147) takes the form:
s M

e Ai
15 A(s)=A +?+;

)
S —a;

(S303)
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where M’ = M — 1 and the secular residue A® is, in general, a non-vanishing constant.
First of all, we recall that the Laplace-transformed Liouville equations (S143) read

(1 - kifﬁ) m(s) = ¥ (s), (S304)

where m is the displacement of the pole of rotation, k* is the secular Love number, " (s) is the surface loading polar motion
excitation function and

M

K(s)=k""+>

i=1

kT

§—8;

(S305)

is the Laplace-transformed ‘k” TLN of degree [ = 2. To simplify notation, here we have dropped subscript ‘2’, i.e., we have
defined kTe = kg €, kLT = kgi, and s; = s9;. Now, following e.g., Spada et al. (2011) we approximate the secular Love number
with the degree 2 fluid TLN ’k’, i.e.,

kS = k7T, (S306)
where k17 = k; T and according to Eqgs. (S74) and (S305), we have

M T
ET7 = lim kT (s) = kTe =) 4.

s—0

(S307)

S.
i=1 "t

Taking advantage of Eqs. (S306) and (S307) and using simple algebra, the factor multiplying m in Eq. (S304) can be
rearranged as

K(5) <~ i
1-— = E _ S308
ks s p s — 87( Y ( )
with constants
1 (kT .
’y,;z—ka (sl)’ (i=1,....,M) (S309)

so that the Liouville equations take the form

M sur
(Z - js> m(s) = %@ (S310)

i=1
By a comparison with Eq. (S146), we note that the PMTF can be expressed as

Als) = — 1 (S311)

M
Vi
SE
S—8;
i=1 v

showing that, in the hypothesis that all the s;’s are distinct, .A(s) has M simple zeros in s = s;, ie.,

A(si)=0 (i=0,1,...M). (S312)
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Multiplying both the denominator and the numerator of Eq. (S311) by the secular polynomial with roots s = s;, defined by
Eq. (S63), we obtain

___N(s)
T M
N(s)
S Z%‘ s—s
=1
We now observe that the ratio

Bi(s) = V&)

T s—s

A(s) (S313)

(S314)

is a degree M — 1 polynomial

M-1
Bi(s)= > bis", (S315)
k=0

with coefficients

bv—1i = nu
be-1; = ngptbrisi (k=M-1,M-2,....1);

thus from Eq. (S313) we have
N(s)

M M-1
s (Z% Z bk,isk>
i=1 k=0
N(s)

M—-1 M
k=0 \i=1

N(s)
SO (S316)

s g cps®
k=0

Hence, defining the new polynomial

A(s) =

M—1

C(s) = crs" (S317)
k=0
with coefficients
M
i=1

from Eq. (S316) we see that the PMTF can expressed, in the Laplace domain, by a rational function of s involving two degree
M polynomials:

A(s) = . (S319)
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The structure of the PMTF suggests the decomposition

A(s) = A° + § + 58, (S320)

where P(s) is a degree M — 2 polynomial with coefficients

Pk = Nk41 —Aeck—Aka+1 (k:07M—2) (8321)
and
. no
A® =1lim sA(s)=—#0 (S322)
s—0 Co
is the secular rotational residue while
A° = lim A(s) = —M (S323)
S 00 cM*l

is the elastic rotational residue. Furthermore, assuming that C'(s) has M — 1 distinct zeros at s = a; (i.e., C(a;) =0) we can
follow the usual method for the Laplace inversion of a rational function (e.g., Longman and Sharir, 1971). Hence, defining the
rotational residues as

P(a;)

Ai:c’(ai) (i=1,...M—1), (S324)

where here the prime denotes the derivative with respect to s, from Eq. (S320) we obtain

as Mg,
= A+ : $325
A(s) += +;5_ai, (S325)
with
M' =M -1, (S326)

which confirm Egs. (S303) and (S151).

New (or revised) rotation theory. Here we show that according to the revised rotation theory, the PMTF defined by Eq. (S147)
takes the form:
S M,

e A
Als)=A +?+lz

b
S —a;

(S327)

where M’ = M and the secular rotational residue is, in this case, A% = 0.
The computations below follow quite closely those for the traditional rotation theory, but some important details differ. From
Eq. (S143), we first recall that the Laplace-transformed Liouville equations read

<1 - kifﬁ) m(s) = ¥ (s), (S328)

where m(s) is polar motion, k* is the secular Love number, ¥*"" () is the polar motion excitation function for surface loading
and

M

K (s)=k""+>

i=1

T
ki
—8;

(S329)
s
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is the Laplace-transformed ‘.4” TLN of degree [ = 2 where, to simplify notation, we have again dropped subscript ‘2’, i.e., we
have set k7¢ = k1¢, kI = k1, and s; = s9;.

Now, following Mitrovica et al. (2005) and Mitrovica and Wahr (2011) we do not make the assumption k° = kTS that is
at the basis of the traditional rotation theory. Rather, we assume, for the moment, an arbitrary value of k°. By substitution
of Eq. (S329) into (S328) also using the definition of fluid TLN (S74) and simple algebra, the factor in front of m(s) in the
Liouville equations can be cast in the form

K (s) N
1= :Hszs—si’ (S330)
=1
where
KT/
e=1-— (S331)

where k77 = k:2T 7 and

T
515_% <k> (i=1,....M), (5332)

Si

where we note that, for k* = k™7, ¢ = 0 and according to Eq. (S309) §; = +;, so that the traditional rotation theory is recovered.
Using Eq. (S330), the Liouville equations (S328) become

M
)
=P S333
<e+s;s_8i>m(s) (s), ( )
which compared with (S146) gives the PMTF:
1
A(s) = — (S334)
i
E+s Z s
1=1
showing that, in the hypothesis that all the s;’s are distinct, also in this case .A(s) has M simple zeros in s = s;, i.e.,
A(s;)=0 (i=0,1,...M). (S335)
Multiplying both the denominator and the numerator of Eq. (S334) by N(s), we obtain
N(s)
A(s) i NG
s
N 0;
eN(s)+s ; pa—
N(s)
M
eN(s)+s Z 0;B;(s)
i=1
N
_ (s) (S336)

M—1 /M )
eN(s)+s Z <Z 5ibk’i> 5"
k=0 \i=1
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where we have used Egs. (S63), (S314), and (S315). Hence, defining the new degree M — 1 polynomial

M—-1
_ k
D(s)=">_ dys", (S337)
k=0

with coefficients
M

dp=> dibgi (k=0,1,...M—1), (S338)
=1

from Eq. (S336) we see that the PMTF is expressed, as for the traditional rotation theory, as the ratio of two degree M
polynomials

Als) = Fs)’ (S339)
where
E(s)=eN(s)+sD(s), (S340)
with coefficients
e0 = eng
e = enp+di—1 (k=1,...M).

The secular residue of A is
A = lim sA(s) =0, (S341)
while the elastic residue is
A° = lim A(s) = (S342)

S0 e M
Following the usual method of inverting the rational function (e.g., Longman and Sharir, 1971), the rotational residues are

o N(al)
7 E/(ai)v

(i=0,1,... M), (S343)

where the prime denotes the derivative with respect to s, and a; are the (simple) roots of equation F(s) = 0. Hence from (S325)
we obtain

M’

5 A,
A(s):Ae+§+;S_ai7 (S344)
with

M' =M, (S345)
which confirm Egs. (S149) and (S152).

Modified form of the PMTEF. Here we show that the modified PMTF in the Laplace domain, defined in §S5.5 as
A'(s)=A(s) (L+k5(s)) (S346)

51



can be cast in the form
M’ M

A/S A/ A//
/6 3
A(s)=A +§ s—a,+§ : (S347)

S§—8;

where A’¢, A’®, A} and A} are appropriate constants, and where in particular A} =0
We start recalling, from Eq. (S149), the general form of the PMTF

A(s) = A€+£+Z 4

=1

where for the traditional rotation theory M’ = M — 1 and A® # 0, while for the new theory M’ = M and A® = 0. Furthermore,
according to (S59), the degree 2 LLN is

(S348)

s—a;’

kb (s) = kL€+§: i (S349)

S—85;
i=1 Z

where we have dropped subscript ‘2 to simplify notation, i.e., we have set k%¢ = kl¢, kF = kL, and s; = so;.
Direct substitution of Egs. (S349) and (S348) into (S346) gives

s M ML
A'(s) A@+—+Z p— <1+k“+zs_ls_>
K2 i=1 K2

As(1+ kL) (1 4+ kLe) 4,
(k) | A0k,

A¢ L
= A°(1+kb) +Zs_ks. +
i=1 v

s p s—aj;
M M M
ASEE A kL
—_t L S350
+Zs(s—si)+ZZ(s—ai/)(s—si)’ ( )
=1 i'=111=1
where we note that since
1 - 1/81' _1/81' (8351)
s(s—s;) s—s; s
the fifth term is
M M M
AskL Ask-L/s- 1 kL
M SN /o Asi. 2
23(5_51') Z s—s; SZ s; (8352)
=1 i=1 i=
furthermore, since
1 :1/(ai/—si)_1/(ai1—si) (S353)
(s—ay)(s—s;) s —ajy s—s;
the sixth term is
M AgkF B AvkF ) (ay — s;) AvkE /(ay — 1)
ZZS_G, T i ZZ po— ZZ p—
i’=1:=1 i'=11=1 i'=11=1
e I D I
- §—ay i Gy —8; L 8§—5i T ay —5;
M’
= — S354
Sty o 350
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where we have defined

M

Allk'L
> ——— (i'=1,...M)
— Ay — 5

=1

Fil

M/
AgkE

;1 — S;

G (i=1,...,M).

=1

Hence, substituting Eqgs. (S354) and (S352) into (S350) using (S355) and (S356), we obtain

M M’ M M
AKE AS(1+ ke (1+ k) A, AkF /s 1 kL
/ o e Le 7 7 7 ? s'™vi
Als) = A°(1+k")+> sos T . +> a +> P, —EE:A —+
=1 =1 i=1 =1

M’ M
oy
i ST ST S
M/

(k) 4 A (1 ey S REAT A 5) = Gi | R (AR A+ By
A®(1+ kM) + , (1+k )+i:21 p— +i:ZI — 7

where we have used the expression for the fluid "k” LLN given by Eq. (S64). Thus, defining

Ale _ (1+kLe) Ae7
A® = (14+EM) 40,
Al = (1+EFAA4F, (i=1,...,M)
AS
Al = kf(A@+>(z, (i=1,...,M)
s
we find that the modified PMTF can be written as
A o Xy
! — A/e 7 7
Al(s) += +;S_ai+zs_si,

which confirms Eq. (S347).

(S355)

(S356)

(8357)

(S358)
(S359)
(S360)

(S361)

(S362)

In conclusion, we observe that a remarkable identity exists, already noted’ in Spada et al. (2011). In fact, from Eqgs. (S361)

and (S356), we obtain

Al = kf(AeJFA)Gi

s
M/
As A kL
=gk (aep ) oy Akl
z( +si> Z,Z::lai/—sl
N M’
S Ak
= kl|A+=
! + s +I;5ﬁak

= klA(s) (i=1,...,M),

(S363)

where we have used the definition of PMFT given by Eq. (S149). But from Eqgs. (S312) and (S335), valid for the traditional

and the revised rotation theories, respectively, we have
A(s;) =0,

7V. R. Barletta (2011), personal communication.
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so that Eq. (S363) simply gives
Al=0, (i=1,...,M). (S365)

Therefore, A’(s) has the same structure of A(s).

S8.3 Inmertia variation for a rigid Earth

5 In this section, devoted to the evaluation of the inertia change for a rigid Earth, we will show that

‘ ima* [6
Jmo(t) = 7;&\/;531@), (S366)

where Lo; is the harmonic degree [ = 2 and order m = 1 coefficient of the CSH expansion of the load variation £. We shall
also find a convenient expression for the excitation function ¥"%9, both in the time and in the Laplace domains.
Since here we are assuming a rigid Earth, J"%9 can only depend upon the surface mass redistribution, so that it must be
10 expressed as a surface integral. Also using the definition of inertia tensor®, we have

Jr9(t) = — / (123 +ix9m3)dM, (S367)

e

where d M is the change in the unit surface mass. But recalling from Eq. (S24) that the load variation represents the change of
mass per unit area, i.e., L =dM/dA, we obtain:

() = —a2/($1$3+ix2x3)£(y,t)d7
vy

15 = —a4/sin00089 e AL (v, t)dy

5
a* /6
= 3\/;/5(%15)3721(7)61% (S368)
5

where by the definition polar spherical coordinates we have made the substitutions x1 = asinflcos A, x3 = asinfsin \, x3 =
acosf, and we have used the expression of V1 given in Table S4. We now expand the (real-valued) scalar field £ in series of
CSHs, also using the orthogonality condition, to obtain

a4
2 I 3\/§ / (Zcrmmmm) Yor(1)y
y Im
_ GS\/E > i) JECOS
7TCL4
= 4 3 \/E%: ‘Cl*m(t)émdnﬂ

4dma* 6
= 3[5 L3, (5369)

8The inertia tensor is / (212103 — ;) )dm, where the integration is over the volume of the body and dm is the mass element (e.g., Landau et al., 1986).
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hence, based upon definition of surface loading excitation function given by Eq. (S157), we have

W9 (1) = b, L5, (t) (S370)
with

47 16 ot
w = — — 1

Assuming, for the harmonic coefficients of the load variation, a PC evolution

N
Lor(t) = ALy H(t 1), (S372)

k=0
from Eq. (S370) we obtain, for "%, the following expression

N
(1) =5 > ALY H(t—t). (S373)
k=0

S8.4 Centrifugal potential variations

This section is devoted to the study of the variations of the centrifugal potential A(+y,t) caused by movements of the Earth’s
rotation axis. In particular, we show that A(v,t) can be expressed by harmonic functions of degrees I = 2 and [ = 0, with

2
A(’Vvt) = AOOyOO + Z A2my27n7 (S374)

m=—2
where coefficients Agg and As,, (Jm| < 2) depend upon the components the (time variable) angular velocity vector.

Rotational states. To obtain a suitable expression for the coefficients Ay, (¢) in Eq. (S374), in the following we consider the
centrifugal potential in two distinct rotation states. In particular, following the scheme outlined in §S8.1, we assume a reference
state in which the Earth has been rotating in equilibrium until time ¢y = 0, with its angular velocity vector constantly aligned
with the z axis, i.e.,

where € is a constant. Subsequently, for ¢ > ¢y = 0, a new dynamical state is attained in response to the forcing imposed by
e.g., GIA. In this state, the rotation axis is slightly displaced with respect to the equilibrium axis, so that

wi(t) = Q(ml + (51‘3), (S376)

where the m;’s (i = 1,2,3) are small dimensionless quantities (m; < 1) introduced in §S5.1. We note that, in the new state,
the squared modulus of the angular velocity vector is

WAt) = Wi twstws (S377)
= Q®(mi+m3+mj+2ms+1) (S378)
= Q*(1+2mz+m?), (S379)

where

m2(t) =m? +m3 +m2. (S380)
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Figure S5. Geometry for the study of variations of the centrifugal potential A(+,t). A is an Earth-fixed observer at (a,0,)), P = (a,0p, Ap)
is the instantaneous position of the pole of rotation, and W is the angular velocity vector. With © we denote the the co-latitude of A with

respect to P.

Furthermore, denoting by 6, and A, the co-latitude and longitude of the instantaneous pole of rotation, i.e., the point where the
rotation axis pierces the Earth’s surface (see Figure S5), we have

wi(t) = wsinfpcosh, = Qmy (S381)
wa(t) = wsinf,sinA, = Qmqy (S382)
ws(t) = wcosl, = Q(1+ms3), (S383)

where from Eq. (S377) the modulus of the angular rotation vector is w = w(t) = y/w? + w3 + w3.

Centrifugal potential. In the general rotation state, the centrifugal potential experienced by an observer A located at the
Earth’s surface (hence rotating with the Earth) is

U°(A) = %w2d2, (S384)
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where d is the distance between point A and the instantaneous rotation axis W (see Figure S5). Since d = asin ©, where O is
the co-latitude of A with respect to the direction of W, we have

U°(A) = %w%z (1—cos’O), (S385)

showing that the potential vanishes when the observer is located at the instantaneous pole of rotation (i.e., © = 0) or at the
antipodes (O = ) and it is maximum along the equator (6 = 7/2).

On one hand, using Table S4, in the general rotation state the centrifugal potential U¢(A) can be easily expressed in terms
of degree | = 0 and [ = 2 Legendre polynomials:

w?a?
U°(A) = 3 (Po(cos®) — Pa(cos0)); (S386)
on the other hand, in the reference rotation state, at the same point the centrifugal potential is
0%a?
UL(A) = (Po(cos®) — Px(cosb)), (S387)

where 6 is the co-latitude of A in the geographical reference frame. Hence, the centrifugal potential variation experienced at
point A is

A(y,t) =U°-U?, (S388)
which according to Egs. (S386) and (S387) can be cast in the form
A(y,t) = N'(t) + A" (7, 1), (S389)

where we have defined
2

N(t) = % (w?—0?) (S390)
and

2
AN'(y,t) = —% (w? Py(cos©) — O Py(cosb)), (S391)

and where v = (6, \) are the geographical coordinates of A.

Harmonic degree [ = 0. Since A’ in Eq. (S390) is constant over the Earth’s surface (i.e., it does not depend on =), its CSH
expansion is straightforward. Indeed, using Eq. (S379), we have
a2
A/(’Y,t) = ? (w2 — Q2)
a2
= 3 (2% (142m3 +m?) — Q?)
a?Q?

- = (m?+2ms), (8392)

hence A’(t) is a harmonic function of degree [ =0, i.e.,

A'(t) = AooYoo (S393)
where Vyo = 1 and

a?Q)?

Ago(t) = (m? + 2ms) . (S394)
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Harmonic degree 1 = 2. The expansion of A”(v,t), defined by Eq. (S391), requires some more work. First of all, with the aid
of Table S5, we obtain the [ = 2 CSHs at ,,:

Voo(7p) = V/5Ps (cosb,) = ? (3 cos? 6, — 1) , (S395)

Vor(vp) = \/ng(cost) :—3\/gs1n9 cosf, e (S396)
_ 5 2iX, 5 2iXp
Var(vp) = ﬂPQQ(COS 0p) e =3 21 sin 0,, e (S397)

Then, applying the Addition Theorem expressed by Eq. (S426) to the spherical triangle with sides ©, 6 and §,,, we have

Py(cos®) = Z Vi (1) Yam (), (S398)

m—72

which makes it possible to express the centrifugal potential variation only in terms of v and -y, i.e., of the geographical
coordinates of points A and P, respectively (see Figure S5). In fact, substitution of Eq. (S398) into (S391), also taking (S395)
into account, provides

w| S,

w2 2 2
N'(yt) = - (5 > yékm(’)’p)y2m(’¥)$gy20(7)>_ (8399)

m=—2

Q

_ _; (f)ﬂzo(vp) - 325) Yao(y) +

a2w2 2 2

— T Y5 ()Y (1) — - V5 (3) Ve (1) +

2

Cl 2,2

V52 (0)Vaa (1), (S400)

Vs () Va1 () -

which has the form of a CSH expansion at degree l=21ie,

AI/(’Yat): Z A2my2m7 (8401)

where the coefficients As,,, considered separately below, can be expressed entirely in terms of the polar motion vector
components m;. Note that since A”(+y,t) is real-valued, we just need to compute the three terms Asg, Ag; and Ass, being
Ao = (—1)™ A3, from Eq. (S431).

Degree 1=2 and order m=0. This zonal coefficient A2y appears in front of Va0 () in Eq. (S400). Using Egs. (S395), (S383)
and (S379) and some algebra gives

2 2 02
Axo(t) = —C;(wyzo(%)—\/g)
= —— (3w cos 0 —w —2(22)
6\f
292
= (i - 2md —dmy). (402)

58



10

15

20

Degree 1=2 and order m=1. The tesseral coefficient Ay, multiplies Vo1 (7y) in Eq. (S400). Thus, using (S396), we have

a’w?
Axi(t) = —?3@1(%)
2, 2
= 7‘11(;)’ (3\/?) sinf, cos b, (cos A, —isin\,)
a’Q)?
= ﬁ(ml(l—i—mg)—img(l—l—mg)), (5403)

where from Egs. (S381) and (S382) we have employed the identities wqws = Q?m1 (14 m3) = w?sind, cosb, cos\, and
wawsz = P2ma(1 +m3) = w? sin@, cosf,sin \,.

Degree 1=2 and order m=2. The sectorial coefficient Ass is the term in front of Vso(7) in Eq. (S400). Thus, using (S397) we
obtain

a2w2
Am(t) = —"-V5() (3404)
a?w? .,
= - sin® 0, (cos2X, —isin2\,) (S405)
/7120 p 'y 'y
CL2UJ2
- W(m%—m%—i—%mlmz), (S406)

where based upon Egs. (S381) and (S382), we have used w? —w3 = w?sin? 0, cos2), = Q*(m3—m3) and wywy = %2 sin? Opsin2), =
szl mao.

CSH expansion of A. Recalling Egs. (S389), (S393), and (S401), we conclude that in the geographical reference frame, the
CSH expansion of the centrifugal potential variation only contains terms of degree [ = 0 and [ = 2:

2
A(’Wt) = AOOyOO + Z A2my2m7 (S407)

m=—2

in agreement with Eq. (S374). The coefficients of the expansion are:

a292

AOO (t) = ? (m2 + 2m3) 5
a?Q?

Aoo(t) = ;s (mf +m? —2m3 — 4mg)
a?Q? ,

Ao (t) = (m1(1+m3) —ima(1+ms3)),

2

a2Q? .
Ax(t) = (m% — m% — 22m1m2) ,

2v/30
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30

where neglecting quadratic terms in m; < 1, as it is appropriate for small excursions of the rotation axis and consistently with
the linearised polar motion theory of §S5.1, gives:

20202
Aoo(t) =~ 3 ™3
2a20)?
Ago(t) ~ — 3\/5 ms,
a?Q)? .
Ao (t) ~ +m(m1—zmz),
Agg(t) ~ 0.

However, as pointed by Han and Wahr (1989) and Milne and Mitrovica (1998), rotational perturbations due to GIA induce
mg variations which are several orders of magnitude smaller than either m; or me. Thus, we conclude that the variation in
the centrifugal potential is, to a good approximation, a pure degree [ = 2 and order m = 41 harmonic function, whose CSH
expansion simply contains the coefficients Ao, where

Ao (t) = ¢5ym*, (S408)
with

N GQQQ
021 = ﬁ

We note, in closing, that using Eqs. (S407) and (S408), it is possible to obtain a simple expression for the centrifugal potential
variation, as a function of the observer coordinates, namely:

A(y,t) = AoadVor +Ao 1Yoy
Ao1 Vo1 + A5, V51
= 2Re(A21)Va1)

1
= —§a2§22 (mq cos A+ mgsin \) sin 26. (S410)

(S409)

S8.5 Spherical harmonic functions

The spherical harmonic functions play an important role in the context of the development of the SLE, since the equation is
solved by a (pseudo)spectral method in which all the fields are decomposed in series of spherical harmonics. In this section of
the supplement, we introduce the Legendre polynomials, the associated Legendre polynomials, and the complex spherical har-
monics. The expansion of a scalar function in series of harmonic functions is accomplished using both complex and real-valued
harmonics. Here we only provide the basic definitions and properties; for a more in-depth presentation the reader is referred
to the classical textbooks (e.g., Ferrers, 1877; Sternberg et al., 1946; MacRobert, 1947) and to more recent contributions (e.g.,
Atkinson and Han, 2012; Wieczorek and Meschede, 2018) or web resources”.

Legendre polynomials. The Legendre polynomials (LPs) P;(x) are!® functions of variable z, defined in the interval —1 <
x < 41. The LPs are solutions of the Legendre differential equation

C;i((l—xQ) C“[;?)H(Hl)ﬂ(x):o, (S411)

9See: https:/len.wikipedia.org/wiki/Spherical_harmonics and http://mathworld.wolfram.com/SphericalHarmonic.html - last accessed 24 Jan 2019.
10See also http://mathworld.wolfram.com/LegendrePolynomial.html - last visited May 16, 2019.
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where [ (I =0,1,...) is the degree of the LP. A compact expression for the LPs is given by Rodriguez formula

1 d
) = Sy gt

We note that P;(x) is a degree | polynomial in . The low-degree (I = 0,1,2) LPs are listed in Table S4; in particular, we note
that

Py(z) =1. (8413)

(% —1)%. (S412)

Associated Legendre polynomials. The associated Legendre polynomials'! P, (cosf) (ALPs) are defined as the canonical
solution to the general Legendre differential equation

2 2
(1—o2) Pnl) o Pinl®) (lu F1)- 1’_”1,2) Pim() =0, (s414)

where integers [ (I =0,1,...) and m (m =0,1,...]) are the degree and the order of the ALP, respectively. Solutions of
Eq. (S414) corresponding to arbitrary real or complex values of | and m are referred to as associated Legendre functions.
The ALPs can be obtained in terms of m order derivatives of the Legendre polynomials, as follows

dm
Pi() = (=1)" (1= 2?)"2 - Py (), (S415)
xm
where in this definition of P}, (z) we have included the so-called “Condon-Shortley phase factor” (—1)™. We also note that
the ALPs of order m = 0 coincide with the corresponding LP, i.e.,

Po(x) = Py(x). (5416)

The Py,;,’s defined by Eq. (S415) are also referred to as un-normalised ALPs. For them, the following orthogonality condition
holds

2(1+m)!
(I+m) o, (S417)

+1
Py (2) Py (x)de = ————7——
_/1 20+ 1)(I—m)

where §;; is the Kronecker delta (see Table 1 of Wieczorek and Meschede, 2018).

Fully normalised associated Legendre polynomials. Along with the un-normalised P;,,’s, various normalised forms of the
ALPs exist, which have been recently categorized by Wieczorek and Meschede (2018). One of these forms is of interest here,
since it is usually employed in the field of geodesy and spectral analysis, and referred to as the fully normalised form of the
ALP (or FNALP). We note that in Wieczorek and Meschede 2018) the term fully normalised is not adopted and this form is
rather referred to as a 47-normalised (real) form.

The FNALPs of degree [ and order m are defined by

(I—m)!
(I +m)!

Pio(z) = ¢ (2 dom) (21 +1) Pim(@), (S418)

where P, () is the usual un-normalised form given by Eq. (S415). Note that by virtue of definition (S415), the FNALPs
include the Condon-Shortley phase factor. Using (S418) and (S417) it is easily verified that for the FNALPs the following
orthogonality condition holds true

+1
/ P (2)Prim ()t = 2(2 — Sorm) 610 (S419)
—1

1T A nice introduction is found at the page https://en.wikipedia.org/wiki/Associated_Legendre_polynomials - last accessed 16 May, 2019.
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in agreement with Wieczorek and Meschede (2018).

Complex Spherical Harmonics. The complex spherical harmonics (CSHs) are complex-valued functions of colatitude 6 and
longitude A, defined on the unit sphere i.e., for 0 < # < 7 and 0 < A < 27. In this work, for the development of the SLE theory
and for the numerical implementation, we use conventionally the so-called 47-normalised form of the CSHs. Other choices,
characterised by different normalisations are however possible, as explained in Wieczorek and Meschede (2018). Indeed, in
a previous treatment of the SLE (Spada and Stocchi, 2006), “quantum mechanics” (or “1-normalised”) complex spherical
harmonics have been used.

For non-negative orders, the 4m-normalised CSHs are defined as

_ (l B m)' imA\
Vim(y) =4/ (21+1) (+m), Py (cosf)e™, m >0, (5420)
where vy = (0,A), Py, (cos®) is the un-normalised ALP given by Eq. (S415), and integers I (I =0,1,...) and m (|m| <) are
harmonic degree and order of the CSH, respectively.
For negative orders, the CSHs are obtained as

Viem(7) = (=1)" Vi (7) (5421)

where the asterisk denotes complex conjugation.
We observe that, using Eq. (S418), the CSHs can be also written in terms of FNALPs, with

1

ﬁﬁlm (COS e)eimk. (S422)

ylm (’7) =

A few properties of the Complex Spherical Harmonics. We only give a few essential properties, needed for the development
of the SLE theory.

1. Orthonormality. The CSH are orthonormal. In particular, due to the particular choice of the normalization factor in
Eq. (S420), the following orthogonality condition holds

/ Vi (V) Vi () dy = 47531 (S423)
/

which motivates the attribute “47-normalised” of the CSH.

2. Degree 0 CSH. By definition of CSHs (see Eq. S420), since Pyp = 1 (see S416 and S413), it turns out that

Yoo(v) =1. (5424)

Other low-degree CSHs are listed in Table S4.

3. Addition Theorem. We consider two points on the unit sphere, with coordinates v = (6,)) and +' = (8’,\’), and we
denote with © the angular distance between « and +' along the great circle connecting the two points. By the law of cosines
(or “cosine rule for sides”) in spherical trigonometry, we have

cos© = cosfcost +sinfsind’ cos(A — \'), (5425)

and the Addition Theorem for CSHs states that

1 l
Py(cos®) = 5= D> Vi (7)Vim(7), (S426)
m=-—1
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where P,(x) is the degree [ LP given by Eq. (S412).

4. Average of the CSHs. All the CSHs have a vanishing average over the sphere, except Voo (7). This can be seen immedi-
ately using the definition of average (see Eq. S218), the orthogonality condition (S423) and using (S424):

1
Ina? /ylm (V)dA

< Vim(y) >°
_ 1 y 2d
= a2 / im (7)a”dy

1
= = [YmYio()r
/
= 51000 (S427)

Expansion in series of CSHs. It is often useful to expand a scalar, square-integrable, real-valued, time-dependent function as
an infinite series of CSHs, with

F(’%t) = ZE’IU (t)ylm (7)3 (5428)
lm

where Fy,, (t) are the (complex) coefficients of the CSH expansion and we use the notation

> = i Zl: : (S429)

lm =0 m=—1

Multiplying both sides of Eq. (S428) by )}/, (7), where I’ and m’ are an arbitrary degree and order, integrating over the unit
sphere and using the orthogonality condition (S423), the coefficients of the CSH expansion are easily obtained:

FL,0Yim () = Y Fun®)Vim (1) Vi (7)

lm

[FQ0Y 0y = X Fn®) [ Y Vi )i
Im 5

J
JFO0Yi 0ty = 47 B0
J

lm

/ F () Vs ()

v

47rﬂ’m’ (t),

hence, for an arbitrary degree [ and order m, we have

1
Fim(t) = / F(v, )Y (v)d, (S430)
Y

where, taking Eq. (S421) into account, we have the symmetry condition on the coefficients

Fiom(t) = (1) Fj (8). (3431)
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It can be easily verified that the degree [ = 0 coefficient in the CSH expansion (S428) simply represents the average of
F(,t) over the sphere. In fact, using | = m = 0 and Eq. (S424) into (S430) we see that
1

Foo(t) = In F(v,t)dy

~

1
= F(v,t)dA
47Ta2 / (77 )

= < F(y,t)>¢ (S432)
where according to (S218) < F'(v,t) >¢ is the spatial average of F(+y,t) over the sphere of radius a.

Expansion in series of FNALPs. In the field of geodesy and spectral analysis, real harmonic functions are generally preferred
to complex harmonics (see e.g., Heiskanen and Moritz, 1967). Here we show that a CSH expansion like

F(y) =Y FimYVm(3), (5433)
lm

where we have omitted the time-dependence of F' for the sake of simplicity, is equivalent to a (real) FNALP expansion restricted
to positive orders, with

F(y)= Z (Wpm COSMA + Dy, SINMA) Py (cos6), (S434)
Ilm
m>0

where the cosine and sine real-valued coefficients %, and vy, are univocally determined by Fj,,. The demonstration is
straightforward, and is based on condition (S431), on Eq. (S422), and some algebra. The details follow:

F() = > Fmdim(y)
Im

= Z (Z FimnYim + FioVio + Z Flmylm>

m<0 m>0
= ( > FmViem + Fodo+ Y Flmylm>
m’>0 m>0
= ( "™ F (1™ Vi + Fiodo+ Y Fzmyzm>
m’> m>0
= (Z Fi Vi + Fiodio + Z Flmylm)
m>0 m>0
= (2 §0m)Re (Flmylm)
w20
= Z (2 = 0om) (Re(Fim)Re(Vim) — Im(Fyp ) Im (Vi )
lm
m>0

= Z (Uprm cOSMN + g, SiINMA) Py (cos ), (S435)
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hence, for a general time-dependent scalar function F'(vy,t), the relationship between the coefficients of the CSH expansion
(S433) and those of the real expansion (S434) over the FNALPs is:

Tm(t) = +/2—om Re(Fim(t)) (S436)
Tim(t) = —/2— dom Im(Fim(t)): (S437)

we note that this relationship can be equivalently stated as

Uim (t) + Z.@lm (t) =V 2- 5Om Fl):n (t)v (8438)

where F} (t) is the complex conjugate of Fy,, (t).

S8.6 The Tegmark grid

In all the versions of program SELEN published so far (Spada and Stocchi, 2006, 2007; Spada et al., 2012; Spada and Melini,
2015), the spatial discretisation of the SLE has been accomplished with the aid of the equal-area, icosahedron-shaped, spherical
pixelization introduced by Tegmark (1996), and employed in astrophysics to study the Cosmic Microwave Background (e.g.,
Tegmark et al., 2003). The Tegmark grid is also employed in SELEN*. The grid is particularly convenient for the manipulation
of harmonic functions, for the computation of power spectra, and for the numerical evaluation of surface integrals (quadrature)
on the sphere.

Properties of the Tegmark grid. The Tegmark grid is characterised by a “resolution parameter” R that determines the density
of the pixels on the surface of the unit sphere, and consequently the size of the grid cells. For a given value of R, the number
of pixels on the grid is

P=40R(R—1)+12, (S439)

where each pixel is the center of slightly distorted, hexagonal equal-area grid cells. As an example, Figure S6 shows four
Tegmark pixelizations characterised by resolutions R = 18, 28, 44, and 60.
For a given pixelization, the cell area is

4 2
A= 1T (S440)

where a = 6371 km is Earth’s radius. Thus, the angular half-amplitude of a disk on the sphere having an area A€, is

5= (180 ) cos* (1 — 2) , (S441)
T P

where ¢ is expressed in degrees. For a sufficiently large number of pixels, the cell can be assimilated to a disk on a plane. An
approssimate value for the radius of the disk is

2a
Teell & —=
ce \/P’
an expression which is useful to obtain a quick estimate of the grid spacing.

Tegmark (1996) has shown that a sufficiently accurate numerical integration of harmonic functions up to degree l,,,4, de-
mands a commensurately large number of pixels, with

(S442)

P> ”;"”. (5443)
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R=28

R=18

Figure S6. Four pixelizations of the sphere according to the icosahedron-based algorithm by Tegmark (1996), with increasing spatial reso-

lutions R = 18,28, 44 and 60 (for the geometrical properties of these and other pixelizations, see Table S6).
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This implies that, for a given value of P, there is an upper limit to the [,,,, value that can be safely employed in the numerical
solution of the SLE, namely [,,,,, < L. Values of [,,,,, exceeding Lj; would not guarantee that some fundamental properties
of the CSHs (such as their orthonormality) can be numerically reproduced on the grid with a sufficient precision. According to
Eq. (S443), we have

Ly = V3P. (S444)

We also note that the constraint given by Eq. (S443) can be employed to provide a very rough rule of thumb that gives the
minimum spatial resolution R that is to be employed for a fixed I,,,4.. In fact, since from (S439), P ~ 40R2, (S443) gives
40R? > 12, .../3, hence

lmaa:
R> : S445
= 10 ( )

The statistics of the Tegmark grid are summarised in Table S6 for some values of the resolution parameter R.

Quadrature rule. In the numerical implementation of the SLE, the Tegmark grid is intensively exploited, especially for
computing coefficients of the CSH expansions of relevant scalar fields (Spada and Stocchi, 2006, 2007; Spada et al., 2012;
Spada and Melini, 2015). Of course, other integration methods are possible, such as the traditional Gauss-Legendre quadrature
(e.g., Press 2007). However, the almost regular grid of points implied by the icosahedron method of Tegmark (1996) makes it
very attractive for problems in spherical geometry, where a maximally regular pixelization is needed to optimise the algorithm.

The Tegmark grid provides a set of equal-weight integration points which allow for a straightforward, nearly optimal quadra-
ture on the sphere, i.e.,

/ F(y) dA~ A°Y F(y,), (S446)
e D
where
P
Z = Z (S447)
p p=1

denotes the sum over all the pixels, we have taken advantage of the equal-area property of the grid, F'(vy,) is the value of F'(7y)
at the pixel (the center of the cell) and vy, = (6,, \,) denotes the spherical coordinates (colatitide and longitude) of the pixels.
Eq. (5446) constitutes the basic principle adopted in our numerical implementation of the SLE.

The quadrature rule given by Eq. (S446) can be applied to the computation of the coefficients of the CSH expansion of a
general scalar field, a problem that is often encountered in this supplement. As discussed in §S8.5 above, the CSH expansion
of a scalar function F'(y,t) reads

F(7,t) =Y Fun ()Y (), (S448)
lm

where, using the orthonormality property of the CSHs given by Eq. (S423), the computation of the coefficients Fj,, (t) demands
the evaluation of the following surface integral over the unit sphere:

1
Fim(t) = / F(v, )Y (v)dy, (S449)

Y

where Y}, (7) is the complex conjugate of V;,,, (7). Recalling that dy is such that dA = a?dy and applying Eq. (S446) provides
the CSH coefficients

1
Fj(t) =5 D F(m. )Y (1), (S450)
p
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where conventionally letter j stands for the couple Im. Setting ¢ = t,,, where ¢,, is a specific point of the time grid adopted in
this work (see §S8.1) gives

1
Fj(tn) = 5> F (o tn)V; (), (S451)
p

which, according to the conventions described in §S7, can be written in compact form as

]' *
Fin=1% Y iy (S452)
P

S8.7 Numerical solution of the SLE

In SELEN* the SLE is solved iteratively in the spectral domain. Since some of the computations are performed directly on
a grid, the term pseudospectral is often invoked, with reference to this approach. The equation is decomposed in series of
CSHs and the harmonic components constitute the unknowns in the iteration. By an harmonic synthesis, the coefficients are
subsequently employed to retrieve the solution in the space domain by summation over the CSHs. An iterative approach is
natural in the context of integral Fredholm equations (e.g., Jerri, 1999), and it has been utilized systematically in the literature
since the integral nature of the SLE has been recognized first (Farrell and Clark, 1976; Spada, 2017).

A very detailed treatment of the iterative approach to the SLE is given by Kendall et al. (2005), who however is based on
a formalism that differs from the one employed here. The iterative solution scheme of the SLE also takes advantage of the
so-called pseudo-spectral method (Mitrovica and Peltier, 1991; Mitrovica and Milne, 2003), in which the original unknown
field S (i.e., sea-level change) is substituted by the ocean-projected unknown field Z = OS (see Eq. $192), thus making the
cumbersome evaluation of Wigner coupling coefficients (Plag and Jiiettner, 2001) unnecessary.

Execution phases. The execution of SELEN“sees six distinct phases.

- Phase 1. Some basic data are input from external files. These include the spherical coordinates (longitude and colatitude)
of the Tegmark pixels (vy,), a set of pre-computed CSHs (); ;) to a given maximum degree [, a pixelization of the
modern Earth’s relief (7, ), and the full history of the ice thickness (I, ,,). Furthermore, the program reads the combi-
nations of Love numbers that build the Green’s functions (i.e., arrays Bﬁi and ~;;9), which are employed to compute the
isostatic and rotational response functions. These quantities must be pre-computed and supplied by the User. However,
our release of SELEN“comes with a small set of these input fields, corresponding to different spatial resolutions.

- Phase 2. SELEN* initializes the global topography, assuming to a first approximation that it corresponds to present-
day topography during the whole time interval since the inception of melting, setting 7}, , = T, n. A first guess of
the OF O, ,, is obtained using this approximation of topography and the chosen input ice model. Initial values of the
CSH coefficients S; ,, are computed assuming a globally uniform sea-level change, matching the ocean-averaged value

evaluated by the initialized OF, i.e., setting S ,(.0) =S j‘“;f

J,n

- Phases 3 and 4. The program executes two nested do-loops (iterations). The external iteration is performed n.,; times
over the topography, which is progressively updated taking advantage of the PT equation (see Eq. S10) once the internal
iterations are accomplished. In the external iteration, the response functions R}ln and Rjn are evaluated, as well as
arrays K7, and K5 ., which do not depend upon the value of Zj ,. The solution of the SLE in terms of variable Z = OS
is performed in the internal iteration, based on an iterative scheme as well and performed n;,,; times, assuming as starting
value Z; , = Z77°. Here, the Z; ,,-dependent response functions Ré’.’n and R;‘;f are progressively updated, as well as

K?’n and the rotational contribution K7,

- Phase 5. The CSH components of the response functions U} ,,, G;,, and N ,, (including their surface and rotational
components) are evaluated, using the outcomes of the last external iteration executed. In this phase, SELEN* writes
several outputs on external files; however some outputs are also created (or updated) during the previous phases.
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- Phase 6. SELEN* executes some post-processing steps, in which the CSH coefficients previously copied on the output
files are read and synthesized to obtain several geophysical quantities of interest (RSL variations at specific sites, paleo-
topography grids, geodetic variations at specific locations, the excursion of the Earth’s axis of rotation, variations of the
Stokes coefficients of the Earth’s gravity field, geodetic fingerprints, et cetera). In SM19, an intermediate-resolution zest
run of SELEN*(i.e., R =44, l,00 = 128 and negt = niny = 3) is performed to illustrate the outputs that are available
at end of the post-processing phase.

Workflow of SELEN* Below, we outline the workflow of the Fortran 90 program that we have progressively developed to
solve the SLE, based on the theory illustrated in this supplement.

Declarations
The program begins
B Phase 1: Data input.

Read: (U) yj[} p[\ Ipn)
Read: (53,9, v49).

M Phase 2: Initialisation.

Set: T}, , =T}, N,

Write: T}, ,,

Opn = (Tp,m—rp,n)’
Write: Oy, p,

St <= (Ipn, Op,n)
Sf;fu (Tp 05 Op n)
Sﬁve (Sequ Sofu)
S‘;?,}US ( ave)

0)
Set: Sj(n =870
B Phase 3: External iteration (over the topography)

DO i_ext =1, n_ext

Qp ( p,05 I )
Oj.n — (Op nay/*p),
Zﬁle (Sme OJ n)’

[ Computing K7, ]

Wj.n, — (Ip,'n 3 Op,’rl,vy;:p) s
(21’1 M (WZ] 71)
R? n (W7 ) ‘:)JZ n)

<R >04= (R%,,0%,),

7m0~ g,mn
R, = (R;‘ <R >0 )

X; n (R]an yj:l’)’
Kin = OGn:Vip)s
[ Computing K5 , ]
Xjn <= (Qp OpnsVj)
51!,1 — (X21,7l,)7
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RC

(Xj ns f rL)

Jn
<R(/>O:( J”,Oj,,>
R]pn (R; s < RE >° )’
Xp,n, (Rj,11’yj-l7)’

c
]CJ}TL

— (X;,my;p>’

Set: 2\) = zgve,

B Phase 4: Internal iteration (7o solve the SLE)

jn

DO i_int =1, n_int

[Computing Kb, |
‘621 n

b
Rijn =

Zi?intfl
( 7211nrtL 1 )’
( ’ﬂl n)

<Rb >Z<: (Ré’,mO;‘.n),
(Rb L <RE>0),

/

b
Rijn &
b
Xp n

’Cb

jn

( 7, n“yj’p)
= (G Vi)

[Computing K55 ]

Loy n ( 91.ms 521 ns 51,n)’
gftn < (£21,n7'yn)7

ugftn (['21 n77}f)

R <= (G530 U;),

<R >0 = (RFS,0%,,

R rof (R;%, < Rrof

X;O:; (Rjrgt?yj-P)’

Kia = (Gn Vi)

W = (L5)0),

Cp <
(i_int )
z J.n
ENDDO
S (i_ext)

Jm

(

Save < Rabc >o

)

(Zave }Cabc ,Crot)

J7,m?

(Save R " abc R 'rot

Jjm o Vgm oo

Spn — ( (@ ewt) y]’p)
Tp,n — ( p,N:Sp,n,Sp, ),

Write: T, ,
Opn == (Tp,m]p,n)’
Write: Op, ,,
S’relqu (IP oy Op n)
ngu (Tp 0,0p, n)s
Sg'ue (Sequ Sofu)
Sjgl:ve ( a'ue)
ENDDO
Write: S,

EOR

%)

Rrot >$1 )’
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B Phase 5: Response functions

U = Wins B2

U = (2 ),

Us,, < (Xj,n,ﬁﬁn),

U = (U5 Uy U )
Ujin <= (U UG3)
Write: U,
Gin<— (Wj,@,ﬁlg,n),
G = (252" B0
G5 = (Xjm:,B,)
Gia = (950097 95m)
Gim = (G53.G7%)
Write: G ,,
Njn == (Gjnscn)-
Write: Nj ,,
Write: 1)*9
Write: S2¢

H Phase 6: Post-processing

End of Program

Convergence to the solution. In Figure S7 we address the problem of the rate of convergence to a stable solution of the
iterative process which we have set up to solve the SLE (see §S8.7). In SELEN® we have not assumed a pre-defined stopping
criterion, like done by e.g.,Milne and Mitrovica (1998) and Kendall et al. (2005). Indeed, the user is requested to configure a
priori the number n.,; of external iterations and the number n;,,; of internal iterations. To help the user to establish a number
of iterations that ensure a reasonable accuracy of the solution obtained, in Figure S7 we visualize the convergence pattern of
two SELEN* outputs as a function of the number of iterations, keeping fixed the spatial resolution to R44/L128. The first is
7, i.e., the average rate'? of present-day sea-level change at the tide gauges sites considered by Douglas (1997) in his study of
global sea-level rise (left frame, see also Table 5 in SM19). The second is < S >, which represents the whole-Earth-surface
average of the fingerprint S (right frame, see also Fig. 4 of SM19).

The asymmetry of the convergence pattern obtained with varying n.,; and n;,: is apparent. We recall that the external
iteration determines the topography and consequently the ocean function (OF) while the internal iteration solves the SLE for
a given topography. Thus, the two iteration processes have a different nature and similar patterns of convergence should not
be expected a priori. When n;,, is varied, for a fixed value of n.,, a substantial convergence (indicated by the plateau in
Figure S7), is monotonically achieved already for n;,; = 3. This holds for both v and < S >¢. Our finding is fully consistent
with Milne and Mitrovica (1998), who noted that . .. three to five iterations are required for convergence for a pre-determined
convergence parameter € = 104 (see their Eq. 48). However, Figure S7 clearly shows that when n.,; is varied keeping 7,
fixed, the convergence is not monotonic, and a value n.,; = 5 would certainly appear more appropriate in this case. So, the
reconstruction of paleo-topography (and of the OF) is more burdensome than the solution of the SLE, for a given topography
and ice distribution. This finding disagrees with Milne and Mitrovica (1998), who found that. .. one or two (external) iterations
are normally adequate. The cause of the different pattern of convergence probably depends on how the algorithms have been
designed, and on the starting values (the zero order guess) adopted to initialize the iteration. Anyway, according to our experi-
ence and based on the results obtained for the test run in the body of the paper, we agree with Milne and Mitrovica (1998) that
the choice 1, = neyr = 3 provides reliable results for the whole output set of SELEN 4 The user can push the algorithm to
higher values in the case the data set under study requires a high-precision evaluation of the GIA predictions.
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Figure S7. Convergence plots for «y (left) and for < S > (right) using configuration R44/L 128, as a function of the number of internal and

of external iterations in the SLE.

Execution times. On a given computer system, the time needed by SELEN“ to obtain a numerical solution of the SLE scales
with the following parameters: i) the number of external and internal iterations (ne,; and n;,;, respectively); ii) the number
of pixels in the Tegmark grid, P = 40R(R — 1) + 12; iii) the number of harmonic terms of degree 0 < m <1 < l,;44, given
Jmaz = (maz + 1) (Lnaz +2) /2. To help the user in estimating the run time of SELEN for a given choice of these parameters,
we configured a test run in the R44/L128/133 setup, and performed four sets of runs in which we varied one of the four
parameters (R, lqz, Next and n;y,) while keeping the remaining three fixed to their nominal value. Figure S8 shows the
measured execution times as a function of the corresponding parameter for each suite of runs. Increasing the number of
iterations (either external or internal) results in a linear increase of execution time. Increasing [,,,,,. results in a nearly quadratic
increase of execution time, that corresponds to a linear proportionality with the number of harmonic terms (indeed, jp,qz ~
12,..)- Conversely, run time turns out to scale with resolution R as ~ R?:7, which corresponds to a ~ P scaling with the
nummber of grid pixels, since P ~ R2. The lack of a linear proportionality between run time and the number of grid nodes
may be attributed to memory overhead and/or disk I/O, and its investigation is beyond the scope of the present work.

Code parallelism. On modern multi-core systems, SELEN takes advantage of shared-memory parallelism in order to speed up
the most computationally intensive portions of the code. As first pointed out by Amdahl (1967), if inter-thread communication
overhead is negligible the execution time t.,. of a parallel code can be written as

feve = to (fs + ﬁ) (S453)

n

where n is the number of threads, fs and f, are the serial and parallel fractions of the code (fs + f, = 1) and ¢, is the execution
time for n = 1. Eq. (S453) can be rewritten as

Ntege = tO (fp + nfs) (5454)

12This symbol should not be confused with v = (6, \) used extensively in this document to indicate the spherical coordinates of an arbitrary point of the

surface of the sphere.
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Figure S8. SELEN* execution times as a function of resolution R, maximum harmonic degree [,,,., and number of iterations nez: and Mn¢.
Each set of runs is based on a R44/1.128/133 configuration, in which the investigated parameter is varied while keeping the remaining ones
fixed to their nominal values. Execution times have been measured on a quad-processor Intel Xeon E7 “Broadwell” system running CentOS

Linux 7.3, using 16 out of 56 cores.

showing that, if the communication overhead is negligible, a linear relation exists between nt.,. and n. Eq. (S454) can be used
to determine through a linear regression the parallel fraction f,, by running a code for different values of n and measuring the
corresponding execution times. Figure S9 shows measured values of ¢.,. and nt... as a function of n for a SELEN run in the
R30/L64/133 configuration. Scaling of nt.,. with n is linear up to n ~ 30, after which significant oscillations arise due to the
increasing impact of communication overhead and bandwith saturation. A dashed red line shows the best-fitting linear relation
obtained through least squares, from which we can estimate to ~ 1072 s and f,, ~ 0.98, indicating that a remarkably high level
of parallelism is attained by SELEN.

73



10

3000

T T T
. R= 30 lmaJ' = 64- Next = 37 Nt = 3

2}

2 ntc‘z'c:fpt()""(l*fpﬂon P
<2500 £ — 7
S 2500 fp =0.98 . -

7 to =1071.6 s e oo ‘/‘6C0“O
g e oS00
3 o ®.4*

5 2000 - _e® .

o C!Q/'

5] LIl
E %%
= 1)
= 1500 - ® .
x ‘O“

_—e0®
- YT Ll

1000 1 1 1 1 1
0 10 20 30 40 50 60

Number of cores, n

600 —
*
500 F | 4
S400p ! ]
= °
< \
-E, 300 + 'S =
g \
= 200} Y 1
.
= ®
100 - ha ] TSR e .
”“”000000¢‘¢0”. 0802000000 00000 oo —
0 Il Il Il Il Il
0 10 20 30 40 50 60

Number of cores, n
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teze and n obtained with Eq. (S454).

S8.8 Relative sea-level variations

Geological and archaeological evidence of sea-level variations from various regions of the globe constitute an essential con-
straint to GIA models (e.g., Tushingham and Peltier, 1991; Lambeck and Chappell, 2001). In particular, relative sea level

(RSL) variations since the Last Glacial Maximum represent the amount of sea-level rise (or fall) relative to present datum (e.g.,
Farrell and Clark, 1976).

More specifically, RSL stems from the difference
RSL(v,t) = B — By, (S455)
where ~ indicates the coordinates of the RSL site (6, \), ¢ is the epoch at which RSL is determined, B = B(~,t) is sea level at
that epoch, and By = B(7,ty) is present sea level at the site. Hence, by the same definition of RSL, we have RSL(y,tn) = 0.
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We note, however, that the solution of the SLE (see e.g., Eq. S200) yields S (i.e., sea-level change), not RSL(~y,t). According
to the discussion in §S2.2, sea-level change S is defined as

S(7,t)= B~ By, (S456)

where By = B(,to) is not present sea level, but sea level at a remote (and arbitrary) reference epoch that we have previously
denoted by ¢ = ty. Nonetheless, the relationship between RS L and S can be easily established observing that

RSL(v,t) = (B—By)—(By— Bo)
S-Sy, (S457)

where we have used Eq. (S456). This shows that the history of RSL can be immediately obtained once the solution of the SLE
has been determined at site y and at all time steps, by taking the difference (S457).

Combining Eq. (S457) with the PT equation (S10), or simply recalling that the topography is defined as T'= —B (see
Eq. S2), we note that at a time £ RSL can be interpreted as the difference between the value of present-day topography and the
value of topography at that time, with

RSL(y,t) =Ty —T. (S458)

This last equation shows that reconstructing the evolution of the variations of the Earth’s topography is indeed equivalent to
reconstruct the history of RSL variations (Peltier, 1994); the present relief Ty constitutes the basic constraint of the process of
reconstruction. The locus

v ="s(t) (8459)
for which
RSL(vs(t),t) =0 (5460)

determines the location (i.e., longitude and latitude) of the shoreline at time ¢, apart from correction to compensate for the
erosion or sedimentation processes (see Lambeck, 2004, page 685).

In SELENY the user can schedule the computation of RS L(+,t) at specific locations of interest. In the default configuration
of the program, the sites are those belonging to the RSL database of Tushingham and Peltier (1993) (TP), which has had (and
still maintains) a central importance in GIA studies (e.g., Tushingham and Peltier, 1991, 1992; Melini and Spada, 2019). Of
course, other input dataset can be supplied, provided that they are properly formatted (or the source code is suitably adapted).
In the post-processing phase, the program first computes S; ,, by spherical harmonic synthesis of the S; ;, coefficients, where
~vi = (0;,\;) are the spherical coordinates of the i-th site of the TP database. Then, according to Eq. (S457), at time ¢, Before
Present (BP), RSL is evaluated by

RSL; =8 Nn-—Sin, (S461)

where index k varies in the range (0,1,2,... N).

S8.9 Geodetic effects of GIA

GIA produces a number of geodetically observable effects (see e.g., King et al., 2010). At the current stage of development,
the geodetic predictions of SELEN*include so-called GIA fingerprints, the rate of relative sea-level variation at tide gauges,
vertical movements at GPS stations, the current rates of change of the Stokes coefficients of the Earth’s gravity field, and polar
motion.

GIA fingerprints. The GIA fingerprints are functions that describe the spatial variability of any quantity involved into the
process of isostatic readjustment. The variability manifests the effects of deformation, gravitational attraction, and rotation
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within the system composed by the solid Earth, the oceans and the ice sheets. As far as we know, in GIA studies the concept of
fingerprint function has been first explicitly introduced by Plag and Jiiettner (2001) in the context of the inversion of global tide
gauge data for modern load changes. However, the concept is not limited to present-day signatures, since it also encompasses
the effects of GIA on past variations of sea level or of other physical quantities (Clark et al., 1978; Mitrovica and Milne, 2002).

Currently, the term GIA fingerprints is normally (but not uniquely) adopted to indicate the present-day effects of GIA, being
either caused by past or contemporary ice sources, expressed as rates of change. Hence, in the following, we shall refer to the
basic set of GIA fingerprints to as S, U, N, and G, where the dot indicates the time detivative evaluated at present time. Some
physical and geometrical properties of the GIA fingerprints have been presented by e.g., Tamisiea (2011) and Spada (2017); a
short discussion can be found in SM19.

In SELEN* the GIA fingerprints constitute one of the standard outputs of the post-processing phase. Examples of finger-
prints obtained for a specific test run can be found in SM19. Specifically, the program produces arrays of Sp, Up, N p and Gp,
where the over-dot indicates the time-derivative evaluated at present time ¢ = ¢y, and subscript p indicates that the fingerprints
are computed at 7y, = (6, A), i.e., on the pixels of the Tegmark grid adopted in the numerical solution of the SLE.

In practice, using the output of the SLE solver, the fingerprints are evaluated according to

: 1
Fyp= TNEJ: (X1 = XN 1) Vi, (3462)

where j indicates a sum over /m to maximum degree [, and here F p stands for Sp, Up, N p> OF Qp, At is the natural
step of the 1-D time grid described in §S8.1, F; ,, represents any of the harmonic coefficients S; ., Uj n, N and G; ,,, with
Jmaz We denote the maximum harmonic degree, and we have performed a numerical differentiation in time by computing a
symmetric difference quotient.

Spatial averages of GIA fingerprints. Spatial averages of the fingerprints, either computed over the (present-day) oceans or
across the whole Earth’s surface, are also provided as a default SELEN* output. According to Eq. (S217), the ocean-averages
are evaluated by computing:

Zj:p Op
<F>e=—t__ (S463)

2.0
P

where .7-"p is given by Eq. (S462) and O, = O,, v is the discretized OF at present time. Based on (S219) the whole-Earth-surface
averages are evaluated by means of

.1 .
<F> zfzp:}‘p, (5464)

where we recall that P is the number of pixels over the grid.
Since we are always adopting mass conserving surface loads (i.e., a plausible surface load, see §S2.4), to a very high degree
of precision, in our numerical experiments for the geoid height fingerprint we obtain

S e 1 .
<G> :FZQP:O, (S465)
P
and similarly for the vertical displacement fingerprint

. 1 .
<U>°= F%:up =0. (S466)
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GIA and altimetric sea-level rise. According to Eq. (S463), the ocean-average of the N fingerprint reads

ZNPOP
<N>="Lt__ (S467)

>0,

P

Often, this quantity is adopted to correct absolute sea-level rise obtained from altimetry for the effects of GIA (Tamisiea, 2011;
Spada and Galassi, 2015; Spada, 2017; Melini and Spada, 2019). The value of < A/ >° depends quite weakly from the GIA
model adopted; according to the literature quoted above, a useful rule of thumb is

<N >°~—0.30 mmyr . (S468)

GIA at tide gauges. Tide gauges (TGs) observe sea-level relative to the solid Earth (e.g., Spada and Galassi, 2012; Woppel-
mann and Marcos, 2016). In order to decontaminate the long-term rates of relative sea-level change from GIA to enlighten the
effects of present climate change, an appropriate GIA correction is to be performed. To obtain such correction, we directly map
the fingerprint for relative sea-level on the geographical coordinates -y, = (644, Atg) of the TG, computing

. 1

Sig= EZJ: (SjN+1—8jn-1) Vitg, (5469)
where Y; 1, are the CSHs evaluated at the TG locations. For the sake of completeness, in the post-processing phase of SELEN®,
the values of {/;4, N +g and G4 at TGs are also evaluated (of course, by virtue of the SLE, condition N tg = Stg +U¢g is met).

GIA at GPS stations (vertical component). In order to evaluate the GIA-induced rate of vertical displacement at GPS stations
(see e.g., Serpelloni et al., 2013, for a specific case study), we follow exactly the same approach adopted for the TGs above,
but we employ the I/ fingerprint, with

. 1
Ugps = Tm; WU N1 = U, n-1) Vj g (470)
where subscript gps indicates that the corresponding quantity is computed at the GPS station coordinates vgps = (8gps; Agps)-

GIA at GPS stations (horizontal component). The topic shall be covered in the NEXT EDITION of SELEN*

Stokes coefficients. In gravity field studies, the Earth’s exterior potential (or geopotential) at a point of geocentric radius 7,
geographic colatitude 6 and longitude A is conventionally represented using a spherical harmonics expansion like

Lma 1
Gme max a l _ B . o
Vr,0,\t) = " <1 + E (;) E (Cim (t) coOsSTA + S () SinA) le(cosﬂ)> , (S471)
=2 m=0

where G is the universal gravitational constant, m. is the mass of the Earth, ¢ is its mean radius, P (cos) are the fully
normalised associated Legendre polynomials (FNALPs) of harmonic degree ! and order m, and the non-dimensional real-
valued quantities ¢;,,, and 5y, are referred to as Stokes coefficients of the geopotential (Heiskanen and Moritz, 1967). Due
to mass movement and exchanges between the components of the Earth system, V' is in general time-dependent and this is
reflected in the time dependence of the Stokes coefficients (see e.g., Bettadpur, 2018).

We observe that in writing Eq. (S471) the origin of the reference frame has been chosen to be the center of mass (CM) of
the whole Earth, including the solid and the fluid portions; thus there are no terms of harmonic degree [ = 1 in the spherical
harmonics expansion of V' (Heiskanen and Moritz, 1967). The Stokes coefficients of degree [ = 2 are determined by the time
variations of the inertia tensor of the Earth (see e.g., Heiskanen and Moritz, 1967). By a proper choice cartesian reference
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frame, with the z-axis aligned with the axis of figure of the Earth (i.e., the axis of maximum inertia), the terms of degree and
order 2 and 1 vanish, all first degree harmonics and the degree [ = 2 and order m = 1 terms are indeed referred to as forbidden
harmonics by Hofmann-Wellenhof and Moritz (2006).

GIA perturbs the geopotential and, in consequence of that, it causes a time-variation of the Stokes coefficients. In SM19,
the geopotential variation ® induced by GIA at the Earth’s surface (r = a) has been quantified in terms of the geoid response
function G, with

G(y,t) = % (8472)

where v = (0, ) and ¢ is the (constant) reference gravity acceleration. It is useful to recall that
g — gsur‘ + grot’ (S473)

where G*“" and G"°! are associated with changes in the load at the Earth’s surface (see Eq. S82) and changes of the rotational
potential (Eq. S172), respectively. Furthermore, we note that both terms contain a direct effect and an indirect effect, stemming
from the ‘6(¢)” and the ‘k(t)’ terms in Egs. (S83) and (S173), respectively. Henceforth, we assume that both direct and indirect
contributions are included in G, hence in the Stokes coefficients variations through ®. Note, however, that an instrument like
GRACE does not see the direct centrifugal effect on gravity potential, since it is not tied to the rotating Earth. About this point,
it is interesting to read a personal communication of J Wahr to WR Peltier in 2011, reported in the supplementary Text S3
of Peltier et al. (2012). Hence, a comparison between the GRACE-derived rates of gravity change of harmonic degree 2 and
order 1 and the GIA prediction ® may be misleading (Chambers et al., 2010; Peltier et al., 2012; Chambers et al., 2012).
In close analogy with Eq. (S471), we now write

3

lmaz 1
B(v,t) = Gv:e S~ (3¢t (t) cOSTA + 8511 (£) sinmA) Py (cos0), (S474)

m=0

I|
N

where dc,,, (t) and s, () are the Stokes coefficients that describe variations of the geopotential induced by GIA. Recalling

that g = G;;?e, from Eq. (S472) it follows that the surface response function G can be also expressed in series of spherical

harmonics

l’NLafIJ l
G(v,t)=a (6cim (t) cosmA + 85, () sinmA) Py, (cosb), (S475)
0

=2 m=

where no terms of degree [ =0 appear since i) we are only considering mass-conserving loads for which G§i" =0 (see
Eq. S129) and ii) G™* is a pure degree [ = 2 order m = 1 quantity (see §S6.2). Furthermore, harmonic degree [ = 1 terms
are also missing from (S475), since we are conventionally using a reference frame with origin in the CM, so that there are no
such terms in the surface GF for the geoid (see §54.1).

The present-day (t = t,), GIA-induced rates of change of the Stokes coefficients in Eq. (S475) are related with the harmonic
coefficients in the CSH expansion of the G fingerprint. In fact, taking the time-derivative and recalling Eq. (S438), we obtain

Sim +0051m =~ /2 — 0om G (t), 1>2,m=0,...1, (S476)

where the asterisk denotes complex conjugation (these expressions are consistent with those used by Melini and Spada, 2019).
We note that since the sea surface variation is defined as N’ = G + ¢ (see Eq. 22 of SM19), where c is the “FC76 constant”, in
the range of harmonic degrees [ > 2, we have Gim (t) = Nim (t), since ¢ is a harmonic degree 0 quantity. We observe that in the
context of the Gravity Recovery and Climate Experiment (GRACE) the spherical harmonics normalization convention does
not include the Condon-Shortley phase factor (—1)™ (see Bettadpur, 2018, page 6). Hence, the right hand side of Eq. (S476)
should be multiplied by this factor in order to conform to GRACE conventions for spherical harmonics.
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The quantity

S2(1) = i: <(5clm)2 + (&slm)Q) (S477)
m=0

represents the power spectrum of the Stokes coefficients at a given harmonic degree [ where the present day rates of change of
the Stokes coefficients are given by Eq. (S476). It provides information on how the “energy” of the GIA-induced variations of
the geopotential depends on wavelength of each harmonic component, which according to Jean’s rule is

2ra
20+1

(see e.g., Spada and Galassi, 2015).
Performing a numerical differentiation in time by a symmetric difference quotient, in SELEN the rates of change of the
Stokes coefficients are computed, at present time, according to

3¢, = +a 1 (=1)"2— om Re(Njns1 —Njn_1)/(2A8) (S479)
Ej = 7(171(71)"1 2*50m IIII(./\/-]'7N+1 7./\/]’7N_1)/(2At), (5480)
where j = Im, At is the time step and the GRACE convention on the FNALPs is used.

(S478)

Polar motion. The fundamental solution of the Liouville equations for polar motion is given by Eq. (S167). In the numerical
implementation of SELEN?, this solution is discretized according to the general scheme outlined in §S7. Accordingly, for the
history of polar motion we have

n—1 ) M’ 1
m, =m(t=t,) = > ¥ [ A4 A" (n—k)At—kZ% (eai<"—’“>m - 1) , (S481)
k=0 i=1 "

where we recall that m is a complex variable m,, = my,, + ims, and At is the increment of the time grid. In (S481) m,, is
expressed in the natural units of radians, so that it must be rescaled by the factor f = % to be given in the more common
units of degrees on the Earth’s surface.

For the rate of polar motion, we discretise the derivative of the fundamental solution of Liouville equations, given by (S168),
obtaining

n—1 M’
m, =m(t=t,) =Y | AT+ AlennmhAL) (S482)
k=0 =1

which in SELEN*has the standard units of kyrs~!. So, to transform it into the commonly used unit of deg Myr—! (degrees per
million years), it must be rescaled by factor g = f x 103.

To characterise the history of polar motion, other quantities are worth to be defined. These are the displacement of the pole
of rotation over the Earth’s surface (in degrees)

o= fy/mi, +m3,, (S483)

the rate of polar displacement (in deg Myr—!)

M1nM1n + ManMap

P = g — e (S484)
Min + Man

and the direction of polar motion on the zy plane (in degrees)

¢dn = fatan2 (may, m1y,). (S485)
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Field} Discretised field(s)  Definitions, equivalences, and notes . ..
Vim () Vip CSH of degree and order j = Im and its c.c.
I(~,t) Ipn Obtained by pixelizing the input ice model (e.g., ICE-X)
T(v,t) Tyom =Tpn — (Spm — Sp.n), with T, v from e.g., ETOPOI
O(v,t) Opyns Ojin For O, », see Eq. (S210); O;,, = (1/P) Zp Opndip
C(v,t) Cpony Cin Cpn =1=0pn; Cjn=20800mo—Ojn
< F>°(t) <F>° (zp Fp,nop,n) / (zp op,n)
<F>° () < F >3 (1/P) >, Fpn
A°(t) A = A°Y Opn = 474> Ouo,n
u(t) fin =p'A°Y (IpnCpin — Ip,0Cpy0)
Se (1) sp, se s = — g (ZellnCra tlnoCoo) ) gen — 5506,
CEN0 sal, syl 827" = (S, 100 (Opin = 00.0)) /(2,00 )1 S50 = 85781080
S (1) Save, Save Save = SEv 4 SO Save = §eveq,08,
c(t) Cn =8I <RSI — <RS2 — < RE>% — <R™ >0
Z(,1) S = 0jn(S5 + S77") = 0,57
W(v,t) Win =1/P) >, Upn = Ipo) (1= Opn) V5,
X(7,t) Xjon =(1/P) 32, Qp (Op,n = Op,0) Vip(7)
L2 (1) L5 L5 =pWin L50=p"Zjn L0 =0 Xjn
0 o — B (nA)
(R,G,U)*(y,t) (R, Q,Ll)jbrf See Eqs. (S249-S251), (S257-S259), and (S262-S264), respectively.
<RS0 <Ry = (2, Rs% 03.0) /(Ooon)
R abe Ry =R — < R >3 5190mo
K (v, 1) K55 =2t 0y =ty Xon Vips With X550 = (1/P) 30, R 5 Vi
7o) ¥ = "9 (nAt)
(RGU™(1,)  (RGU); = b0 (chicdi/g) Sopsg ALy
<ROESO(H) <R = (2R 05) /(Onoun )
R (y,1) RyC = R5%— <R > §106mo
K7 (7.1) K = 3 0y Xk Vi With X% = (1/P) S, RV
T (t) o =y L51,
S(7,t) Spin>Sjim Sin =S+ R+ RN (Z)+ RS + R Z)
Z(v,t) Zin =Z00 + KS, + K8 (2)+ K5, +Ki5%H(2)

Table S3. Scalar fields involved in the SLE (left) and discretised forms (middle), with notes (right). See §S7 for details of the discretisation.
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degree, !  order, m P(z) Py (cosb)
0 0 1 1
1 0 x cosf
1 1 —sinf
2 0 1(32°—1) 1 (3cos’0—1)
2 1 —3sinfcosf
2 2 3sin” @

Table S4. Low-degree Legendre polynomials P;(x) with 2 = cos6, and (un-normalised) ALPs P, (cosf) of harmonic degree 0 <1 < 2

and order 0 <m <.

degree,l  order, m Vim (7) Vim (7)
0 0 1 1
1 0 \/gPlo(COSH) V3cosh
1 1 \/an(cosG)e“ —y/ 2singe™
2 0 V5 Pso(cosh) Y5 (3cos?0 — 1)
2 1 \/%Pgl(cosé?)ei’\ —3\/§sin9cos96“
2 2 %ng(cos 9)e2i)‘ 3 % sin? fe?*

Table S5. Low-degree, 4m-normalised complex spherical harmonics (CSHs) of degree ! < 2 and order 0 < m < [, for argument v = (6, A). In

the third column, the CSHs are expressed in terms of P, () while in the fourth column they are written explicitely in terms of trigonometric

(=D)"Vim ().

functions. Note that, for negative orders, Vi—m (y)
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R P 0 (deg)  7Teen (km) Ly

14 7,292 1.34 149.22 147
18 12,252 1.04 115.12 191
24 22,092 0.77 85.73 257
32 39,692 0.58 63.96 345
44 75,692 0.42 46.31 476
60 141,612 0.30 33.86 651
80 252,812 0.23 25.34 870
100 396,012 0.18 20.25 1089
200 1,592,012 0.09 10.10 2185
500 9,980,012 0.04 4.03 5471

2,000 159,920,012 ~0.01 ~1 21,903

Table S6. Statistics of the Tegmark grid. R is the grid resolution, P is the corresponding number of pixels, ¢ is the radius of the equivalent
(i.e., with the same area) disk on the sphere, rce;; is the approximate radius of the equivalent disk on a plane, and Ly, is the maximum

harmonic degree admissible for the chosen R value. Note that a characteristic cell size of ~ 1 km is attained for R = 2,000.
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S8.10 Complementary tables

Acronym

Meaning

ALP
CF
CSH
FCT76
GIA

GF
LLN

LT

OF

PC

PGR
PMTF
PT

RSL
SELEN*
SGF
SRF
RRF
RGF
TLN

Associated Legendre Polynomial
Continent Function

Complex Spherical Harmonic
Farrell and Clark (1976)

Glacial Isostatic Adjustment
Green’s Function

Loading Love Number

Laplace Transform

Ocean Function

Piecewise Constant

Post Glacial Rebound

Polar Motion Transfer Function
(true) paleo-topography
Relative Sea Level

a Sea LEvel EquatioN solver, version 4
Surface Green’s Function
Surface Response Function
Rotational Response Function
Rotation Green’s Function

Tidal Love Number

Table S7. Acronyms used in this manuscript.
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Symbol Definition Comments, notes, links, dimensions, units, ...

a; Rotational roots (t=1,...M"), see §S5.3 and Eq. (S149), natural units are kyrs !
AA PMTF and its modified form' See Egs. (S149) and (S163), both dimensionless

A° Area of the oceans See Eq. (S50) and §S7.2, units are m?

A° Area of the Tegmark cells Eq. (S220), units are m?

Ac A'C elastic component of the PMTF Eqgs. (S348) and (S164), dimensionless

A% A® secular component of the PMTF Eqs. (S348) and (S164), units are kyrs !

A AL AY Rotational residues (i=1,...M"), Eqs. (S348) and (S164), §58.2, units are kyrs !
B,S Sea level and sea-level change' See Eq. (S2), (S7); units are m

c(t) The “c constant” of FC76 See Eq. (S52), units are m

C The “Continent Function” Eq. (S3), also denoted by CF, dimensionless

vy Stands for the couple (6, \) 0 = colatitude, A = longitude, units are radians or degrees
r, Surface and rotation GFs §S4.1 and §S6.1, units are [T 'LM '] and [TL™'], respectively
dA Element of area Defined as dA = a?sin0dfd\ = a>d~y, units are m?

o(t) Dirac delta See footnote on page 20, dimensions are [T~

(he, 1, k)" () Time-domain LLNs® (I=1,...1nax), see Egs. (S56-S58), units are kyrs ™

(ha, 01, k)" (s) Laplace-domain LLNs® Eq. (S59), dimensionless

(ha, &1, k) 7e Elastic LLNs® Egs. (S56-S58), dimensionless

(he, by, k) Lf Fluid LLNs® Eqgs. (S64), dimensionless

(has, i, k) ™ Visco-elastic LLNs® (i=1,... M), see Egs. (S56-S58), units are kyrs ™"

H Heaviside (unit step) function See §S8.1 and Eq. (S290)

I,T Ice thickness' See §S2 and Eq. (S26)

Jij Inertia tensor variation See §S5.4, units are kg m?

k® Secular ’k’ Love number See Eq. (S140), dimensionless

IL,m Harmonic degree and order 0 <!l <lmaz, |m| <1

lmaz Maximum harmonic degree e.g., lmazr = 128,256,512 ..

L, L Surface load' See §S2.3, Eqs. (S12) and (S24), units are kg m ™2

m; Cartesian polar motion components (i=1,2,3), see §S5.1 and Eq. (S134), dimensionless

M, M Surface mass and its time variation' See §S2.3, units are kg

M, M’ No. of Isostatic and Rotational Modes  See §S3.2 and §S5.3, respectively; dimensionless

I Variation of the grounded ice mass See Eq. (S45), units are kg

N Sea surface variation Units are m

0, O The “Ocean Function”! Eqgs. (S1) and (S27), also denoted by OF, dimensionless

P R Tegmark pixels and grid resolution See the whole §S8.6, Eq. (S439) and Table S6; dimensionless
P, P, Legendre polynomial and ALP See §S8.5 for definition and properties

Q An auxiliary variable See Eq. (S36), units are m

R, G, U Response functions See §S4 for the SRFs and §S6, for the RRFs, units are m
PW, p*Z p" X  Components of £ see Egs. (S30-S32) and (S33-S35), same units as £

s Complex Laplace variable Dimensions are [T~ '], units are kyrs~*

Si Isostatic roots (i=1,...M), see §S3.2 and §S3.3, Eq. (S62), units are kyrs !
ttn,tk Time [T], the natural unit is kyr

T Topography Eq. (S2), units are m

U, A Centrifugal potential and its variation ~ See Eq. (S384) and whole §S8.4, dimensions are [L2T~2]

YV 4-7 normalised CSHs, with j = Im See §S8.5 for definition and properties

s Excitation function see whole §S5, dimensionless

w;, 2 Angular velocity (1 ='1,2,3), see whole §S5, dimensions are [T~!]

Table S8. Glossary of the some recurrent symbols, with some brief comments. Notes: “similar expressions hold for the TLNs (see §S3.3),

4 . P . . v 4 4 B . V. e



Symbol  Constant or parameter Value SI Units
a Earth’s radius 6.371 x 10° m

A Polar inertia 8.0131 x 10%7 kg m?
C Equatorial inertia 8.0394 x 10%7 kg m?

g Surface gravity 9.81 m s>
G Universal gravitational constant ~ 6.67 x 10™*! N m? kg2
p° Earth’s average density 5514 kgm™3
o Ice density 931 kgm™3
oY Water density 1000 kgm™®
p" Reference density 900 kgm™®
w® Earth’s angular velocity 7.292115x 1075 s7*

85

Table S9. Physical constants and parameters used in this supplement and in SM 19, with the corresponding numerical values and SI units.
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