
Table S1. Examples of Involvement of GSK-3 Isoforms in Cancer. 

Cancer Type 

(alphabetical) 

GSK-3 

Isoform 
Function Type of Study Reference 

Bladder cancer GSK-3β 

Prognostic marker and 

therapeutic target. Inhibition of 

GSK-3 resulted in apoptosis. 

GSK-3 was serving as a tumor 

promoter. Aberrant nuclear 

accumulation of GSK-3β in 62% 

and 91% of noninvasive and 

invasive human urothelial 

carcinomas. GSK-3β nuclear 

staining was associated with 

poor prognosis. 

Human tumor 

samples and in 

vitro 

[1] 

 

Brain cancer GSK-3β 

Brain-derived neutrophilic 

factor/TrkB induced 

phosphorylation of GSK-3β 

which resulted in its 

inactivation and contributed to 

chemotherapeutic drug 

resistance. GSK-3β was acting 

as a tumor suppressor. 

In vitro [2] 

Brain cancer GSK-3β 

Inhibition of AKT mediated 

phosphorylation of GSK-3β by 

an AKT inhibitor reduced cell 

growth. GSK-3β was acting as a 

tumor suppressor. 

In vitro [3] 

Brain cancer GSK-3β 

GSK3β was linked with 

increased expression of TP53 

and p21Cip-1 in glioblastoma cells 

with wild-type p53 and with 

decreased Rb phosphorylation 

and expression of cyclin-

dependent kinase 6, Treatment 

with GSK-3 inhibitor AR-

A014418 sensitized GMB cells to 

temozolomide. GSK-3β was 

functioning as a tumor 

promoter. 

Human tumor 

samples, in vitro 

studies.  

[4] 

Brain cancer GSK-3β 

Expression of high levels of 

GSK-3β was associated with 

poor prognosis.  Treatment with 

a combination of temozolomide 

other drugs used to treat brain 

cancer improved prognosis. 

GSK-3β was acting as a tumor 

promoter. 

In vitro, in vivo, 

clinical trial, 7 

patients in 

clinical study 

[5] 

Brain cancer  

Suppression of GSK-3β by miR-

101 restored sensitivity to 

temozomide in brain cancer. 

In vitro, in vivo [6] 



GSK-3β was acting as a tumor 

promoter. 

Breast cancer GSK-3β 

GSK-3β expression was 

associated with MCL1 

expression and inactivation. 

GSK-3β was acting as a tumor 

suppressor. High MCL1 

expression was associated with 

poor prognosis and high P-

GSK-3β (inactive) expression.  

Human tumor 

samples (125 

breast cancer), in 

vitro 

[7] 

 

Breast cancer GSK-3β 

High GSK-3β expression was 

associated with reduced distant 

relapse-free survival (DRFS). 

Tissue microarrays of 1,686 

patients, low expression in 36%, 

high expression in 38%. GSK-3β 

was acting as a tumor promoter. 

Human tumor 

samples.  
[8] 

Breast cancer GSK-3β 

Inhibition of GSK-3β inhibited 

tumor growth GSK-3β was 

acting as a tumor promoter. 

In vitro, in vivo [9] 

Breast cancer GSK-3β 

miR-34a binding to the PRKD1 

suppressed cancer stemness 

through the GSK3/β-catenin 

signaling pathway. GSK-3 was 

acting as a stemness suppressor.   

In vitro, in vivo [10] 

Breast cancer GSK-3β 

GSK-3 inhibition by the human 

THUMP domain-containing 

protein 1 (THUMPD1)/AKT 

resulted in SNAIL activation. 

GSK-3 was acting as a tumor 

suppressor. 

In vitro, in vivo [11] 

Cervical cancer GSK-3β 

High expression of forkhead 

box M1 (FOXM1) transcription 

factor was associated with poor 

prognosis and it activated AKT 

and inactivated GSK-3β which 

resulted in higher SNAIL 

activity and poor prognosis. 

GSK-3β was acting as a tumor 

suppressor. 

In vitro, human 

tumor samples 
[12] 

Colorectal 

cancer 

 

GSK-3β 

Nuclear accumulation of GSK-

3β was observed in 39% (33/85) 

and associated with short 

overall survival, larger tumor 

size, distant metastasis and loss 

of membranous β-catenin. This 

loss was present in 37% and 

associated with poor survival. 

Nuclear expression of GSK-3β 

and loss of membrane β-catenin 

were present in CRC with worse 

Human tissue 

microarrays 
[13] 



prognosis. GSK-3β was 

functioning as a tumor 

promoter, 

Colorectal 

cancer 
GSK-3β 

GSK-3β increased NF-κB 

expression, inhibition of GSK-3 

inhibited growth. GSK-3β was 

serving as a tumor promoter. 

Human tumors 

and in vitro 

studies 

[14] 

 

Colorectal 

cancer 
GSK-3β 

CXCL5 induced 

ERK/ELK1/SNAIL and AKT/β-

catenin, inhibited GSK-3β and 

promoted cancer metastasis. 

GSK-3β was acting as a tumor 

promoter. 

In vitro, in vivo. 

chemokine 

ELISA arrays 

from CRC 

patients 

[15] 

Gastric cancer GSK-3β 

P-GSK-3β (T216, active) was 

expressed in 46% of cases and 

associated with a good 

prognosis. GSK-3β was acting 

as a tumor suppressor. 

Human tissue 

arrays containing 

281 gastric cancer 

specimens and in 

vitro studies 

[16] 

 

Gastric cancer GSK-3β 

Higher GSK-3β levels were 

associated with a better 

prognosis. GSK-3β was acting 

as a tumor suppressor. 

Gene expression 

profiling in 63 

tumors 

[17] 

Hepatocellular 

carcinoma 
GSK-3β 

S9-P-GSK-3β was over-

expressed in 50% of tumor 

tissues and was associated with 

a poor prognosis. GSK-3β was 

acting as a tumor suppressor. 

178 patients with 

HCC after 

curative partial 

hepatectomy 

[18] 

Hepatocellular 

carcinoma 
GSK-3β 

Protein arginine 

methyltransferase 9 (PRMT9) 

activation of PI3K/AKT resulted 

in decreased GSK-3β activity 

and increased SNAIL signaling. 

GSK-3β was acting as a tumor 

suppressor 

In vitro, in vivo, 

human tumor 

samples 

[19] 

Laryngeal 

Cancer 
GSK-3β 

Suppression of miR-27a 

interaction with GSK-3β altered 

laryngeal differentiation in 

response to retinoic acid 

treatment. GSK-3β. GSK-3β was 

acting as a tumor suppressor. 

In vitro, human 

tumor samples 
[20] 

Laryngeal 

Cancer 
GSK-3β 

Alterations in the Tat-

interacting protein 30  (TIP30) 

tumor suppressor expression 

resulted in activation of AKT, 

inactivation of GSK-3β, 

deregulation of β-catenin and 

poor prognosis. Low TIP30 

staining was observed in 43.8% 

of patient samples while 

minimal TIP30 staining in non-

tumor cells was observed in 

In vitro, human 

tumor samples, 

105 laryngeal 

carcinomas 

[21] 



25.7% of samples. GSK-3β was 

acting as a tumor suppressor. 

Leukemia 

GSK-3β 

and 

GSK-3α 

Genetic deletion of GSK-3β in 

mice led to myelodysplastic 

disease syndrome (MDS), 

subsequent deletion of GSK-3α 

led to AML. Different roles of 

GSK-3α and GSK-3β in MDS 

progression into AML. GSK-3α 

and GSK-3β were acting as 

tumor suppressors. 

Gene knock out 

studies in mice, 

gene profiling.  

[22] 

 

Leukemia 

GSK-3α 

and 

GSK-3β 

GSK-3 stimulated acute 

lymphoblastic leukemia with 

mixed-lineage leukemia gene 

(MLL) growth by 

destabilization of the cyclin-

dependent kinase inhibitor 

p27(Kip1). GSK-3 promoted 

growth, GSK-3 was acting as a 

tumor promoter. 

In vitro, in vivo, 

in human AML 

patients 

[23] 

Leukemia GSK-3α 

GSK-3α was a target in AML. 

GSK-3α was serving as a tumor 

promoter. 

Chemical small 

molecule 

screening, in  

vitro, in vivo 

[24] 

Leukemia 

(AML) 

GSK-3α 

and  

GSK-3β 

GSK-3α and GSK-3β 

phosphorylation leading to their 

inhibition correlated with poor 

prognosis. S21-P-GSK3α and S9-

P-GSK-3β positively correlated 

with phosphorylation of AKT, 

BAD, and P70S6K, and 

negatively correlated with β-

catenin and FOXO3A. GSK-3α 

and GSK-3β were serving as 

tumor suppressors 

In vitro, human 

patient samples, 

reverse phase 

protein analysis 

(RPPA) in a 

cohort of 511 

AML patients 

[25] 

Leukemia 

(Natural Killer 

Cells cytotoxic 

to AML) 

GSK-3β 

and 

GSK-3α 

(GSK-3β) expression was 

elevated in AML-NK cells and 

decreased their activity as NK 

cells. Inhibition of GSK-3 

restored NK cytotoxicity by 

increasing TNF-α production. 

GSK-3 was serving as a tumor 

suppressor. 

In vitro, in vivo [26] 

Lung cancer GSK-3β 

High levels of TGFβ induced 

integrin β3/AKT, inhibited GSK-

3β activity, and induced SNAIL 

activity and promoted 

metastatic potential. GSK-3β 

was acting as a tumor 

suppressor.  

In vitro, in vivo, 

clinical data base 
[27] 



Lung cancer GSK-3α  

CREB induced GSK-3α which 

promoted lung cancer cell 

growth. GSK-3α was acting as a 

tumor promoter. 

In vitro, in vivo, 

human tumors 
[28] 

Lung cancer 

GSK-3α 

and 

GSK-3β 

Tivantinib was initially thought 

to be a c-MET inhibitor. 

Subsequently, GSK-3α and 

GSK-3β were determined to be 

targets of tivantinib in lung 

cancer cells. GSK-3α and GSK-

3β were acting as tumor 

promoter 

In vitro [29] 

Lung cancer 

(non-small cell) 

GSK-3α 

and 

GSK-3β 

GSK-3β levels were elevated in 

41% of human NSCLC samples 

and led to increased 

proliferation in comparison to 

normal tissues. GSK-3β was 

acting as a tumor promoter. 

In vitro, in vivo, 

29 human tumor 

specimens  

[30] 

Melanoma GSK-3α 

Elevated expression of GSK-3α 

in 72% of samples, but not GSK-

3β. 80% of tumors expressed 

elevated levels of catalytically 

active phosphorylated GSK-3α 

(Y279-P-GSK-3α), but not 

phosphorylated GSK3β (Y216-

P-GSK-3β).  Inhibition of GSK-

3α induced apoptotic death to 

retard tumorigenesis. GSK-3α 

was acting as a tumor promoter. 

In vitro, in vivo, 

39 human tumor 

samples. 

[31] 

Melanoma GSK-3β 

Neuron navigator 2 (NAV2) 

inhibited GSK-3β which 

increased β-catenin and SNAIL 

activity. GSK-3β was acting as a 

tumor suppressor. 

In vitro, in vivo, 

human tumor 

samples 

[32] 

Myeloma 

GSK-3α 

and 

GSK-3β 

Treatment with 

Thiadiazolidinone (TDZD; a 

GSK-3 non-competitive 

inhibitor) resulted in Forkhead 

transcription factors (FOXO3a) 

activation.  TDZD induced 

apoptosis in primary myeloma 

cells but not in normal CD34 

cells. GSK-3 was acting as a 

tumor promoter. 

In vitro, human 

myeloma cells, 

primary 

hematopoietic 

cells 

[33] 

Neuroblastoma GSK-3β 

Inhibition of GSK-3β with 9-

ING-41 suppressed growth via 

inhibition of XIAP. GSK-3β was 

acting as a tumor promoter. 

In vitro, in vivo [34] 

Oral Cancer GSK-3β 

AKT and GSK-3β expression 

was associated with a poor 

prognosis. Phosphorylated 

Human tumor 

specimens (118 

patient samples 

[35] 



GSK-3β (inactive) was 

associated with cervical lymph 

node (CLN) metastasis. GSK-3β 

was acting as a tumor 

suppressor. 

and normal 

controls). 

Oral squamous 

cell cancer 

GSK-3α 

and 

GSK-3β 

Links between GSK-3α and 

GSK-3β and cyclin D1 and 

TP53. Inactive GSK-3β was 

expressed at higher levels than 

inactive GSK-3α. Inactive GSK-

3β was detected at increased 

percentages in older patients 

(40->70 years old) than younger 

patients (<40 years old).  GSK-

3β was acting as a tumor 

suppressor. 

In vitro, 179 

human patient 

samples 

[36] 

Osteosarcoma GSK-3β 

The P2X7 receptor promoted 

PI3K/AKT and β-catenin 

activity and inhibited GSK-3β. 

GSK-3β was acting as a tumor 

suppressor. 

In vitro, in vivo, 

human tumor 

samples 

[37] 

Ovarian cancer GSK-3β 

GSK-3 expression was 

associated with increased tumor 

growth, poor prognosis and 

chemoresistance. GSK-3 was 

functioning as a tumor 

promoter. 

In vitro, in vivo, 

71 human tumor 

samples. 

[38] 

Ovarian cancer GSK-3β 

Constitutively active GSK-3β 

induced entry into the S phase, 

increased cyclin D1 expression 

and facilitated the proliferation 

of ovarian cancer cells. GSK-3 

inhibition prevented the tumor 

formation of the tumor in nude 

mice. GSK-3 was acting as a 

tumor promoter. 

In vitro, in vivo [39] 

Pancreatic 

cancer 

GSK-3α 

and 

GSK-3β 

GSK-3 promoted NF-κB 

activity. GSK-3β may have been 

the more important isozyme in 

regulating in NF-κB. GSK-3β 

was acting as a tumor promoter. 

Human tumors 

and in vitro 

studies. 

[40] 

Pancreatic 

cancer 
GSK-3β 

Inhibition of GSK-3 activity 

caused stabilization of β-catenin 

activity. GSK-3β expression was 

a strong prognosticator in 

PDAC. High expression of GSK-

3β was associated with better 

survival. PDAC Patients with 

GSK-3β expression > than the 

third quartile (Q3) had a 46% 

reduced risk of dying of 

Immuno-

fluorescence on 

human tumor 

microarray from 

163 patients. 

[41] 



pancreatic cancer. GSK-3β was 

acting as a tumor suppressor. 

Prostate Cancer Both 

GSK-3α and GSK-3β were 

detected at higher levels in 

25/79 and 24/79 tumor samples 

respectively, in comparison to 

normal prostatic tissue.  GSK-3α 

was elevated in low Gleason 

sum score tumors while GSK-3β 

was expressed in high Gleason 

tumors, and both isoforms 

correlated with high expression 

of the androgen receptor (AR). 

Treatment with a GSK-3 

inhibitor suppressed 

proliferation. GSK-3 was 

functioning as a tumor 

promoter.  

In vitro, in vivo 

and in 79 human 

tumor samples 

[42] 

Renal Cell 

Carcinoma 
GSK-3β 

miR-199a downregulated GSK-

3β and suppressed growth of 

RCC. 

GSK-3β was acting as a tumor 

promoter. 

Human tumor 

samples and in  

vitro. 

[43] 

Renal Cell 

Carcinoma 
GSK-3β 

miR-203a targeting GSK-3β  was 

detected at high levels in RCC 

and associated with a poor 

prognosis. miR-203a was 

overexpressed in 27 of 40 (68%) 

RCC patient samples. GSK-3β 

was acting as a tumor 

suppressor. 

In vitro, 40 RCC 

tumor samples. 

[44] 

 

 

Thyroid 

carcinomas 

GSK-3α 

and 

GSK-3β 

Junctional adhesion molecule A 

(JAM-A) was downregulated in 

anaplastic thyroid carcinomas 

and resulted in increased GSK-

3α, GSK-3β, and TP53 

phosphorylation. 

Human tissue 

arrays 
[45] 

Tongue (oral) 

cancer 
GSK-3β 

GSK-3β was detected at lower 

levels in 39% of patient samples 

in comparison to normal 

epithelial cells and was 

associated with reduced 

survival. In contrast, cyclinD, a 

target of GSK-3β was detected 

at higher levels in 65.9% of 

samples and was associated 

with a poor prognosis. GSK-3β 

was acting as a tumor 

suppressor 

41 Human tissue 

samples, 

immunohisto-

chemistry. 

[46] 
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Table S2. Examples of Preclinical Studies with GSK-3 Inhibitors and Nutraceuticals/Natural Products 

Involving Cancer Models 

Molecule Result Reference 

GSK-3 Inhibitors 

Lithium chloride 

Lithium chloride inhibited GSK-3 which suppressed 

proliferation in Eca-109 human esophageal cancer cells. 

GSK-3 was functioning as a tumor promoter. 

[1] 

AR-A014418 

Treatment with GSK-3β inhibitor AR-A014418 sensitized 

GMB cells to temozolomide. GSK-3β was functioning as 

a tumor promoter. 

[2] 

BIO BIO induced apoptosis, cell cycle arrest in glioblastoma cells. [3] 

Tideglusib, AZD1080,  

and BIO 

These GSK-3 inhibitors suppressed GSK-3 mediated 

phosphorylation of substrates involved in proliferation 

such as c-MYC in KRAS-dependent tumors. 

[4] 

ABC1183 

ABC1183 inhibited GSK-3α and GSK-3β. ABC1183 inhibited 

the growth of a numerous cancer cell lines by decreasing 

cell survival by inducing G2/M arrest by altering GSK-3 

and WNT/β-catenin signaling. 

[5] 

SB21673 

SB21673 inhibits GSK-3α and GSK-3β. c-JUN degradation was 

enhanced by SB21673 and breast cancer tumorigenesis 

was inhibited. 

[6] 

SB216763, 

GSK inhibitor XIII,  

and AR-A014418 

SB216763 and the GSK inhibitor III suppressed AR-

transcriptional activity as well as AR expression in 

prostate cancer cells. In contrast, AR-A014418 

stimulated proliferation. 

[7] 

Lithium chloride,  

SB216763, and 

GSK-3 IX (BIO) 

Treatment of MLL LSC with GSK-3 inhibitors resulted in 

reversion of MLL LSCs to a pre-LSC stage and reduced 

their growth. 

[8] 

GSK-3 IX (BIO)  

and SB216763 

Inhibition of GSK-3 suppressed maintenance of MLL 

leukemia. 
[9] 

GSK3-IX 
The GSK-3α and GSK-3β inhibitor GSK3-IX inhibited MLL 

leukemia maintenance and growth. 
[9] 

GS87 

GS87 is a novel GSK-3 inhibitor that was isolated upon 

screening for more optimal effective inhibitors that 

induce AML differentiation. GS87 inhibits both GSK-3α 

and GSK-3β.  

[10] 

Thiadiazolidinone (TDZD) 

TDZD is a non-competitive inhibitor of GSK-3. Treatment of 

human myeloma cells with TDZD resulted in apoptosis 

in primary myeloma cells but not in normal CD34 cells.  

[11] 

Combination of GSK-3 inhibitors with immunotherapy 

SB415286 and CD8+  

CTLs  

GSK-3 inhibitor treatment of CD8+ T cells inhibited TBX21 (T-

bet) expression and decreased PD-1 expression and 

increased cytolytic T cell responses. 

[12] 

LY2090314, tideglusib,  

SB415286 GSK-3 inhibitors 

and NK cells 

Treatment of NK cells with GSK-3 inhibitors LY2090314, 

tideglusib or SB415286, increased TNF-α levels and 

cytotoxicity towards AML cells. 

[13] 

SB216763 and  

GMB-specific CAR-T cells 

Treatment with GSK-3 inhibitor of antigen specific CAR-T 

cells lowered PD-1 expression and promoted long term 

survival, memory and tumor elimination. 

[14] 

Enzastaurin 
Enzastaurin was initially developed as a PKC-β inhibitor. One 

of its targets is GSK-3. It has been examined in clinical 
[15] 



studies with various cancer types, often in combination 

with bevacizumab. 

SB415286 or  

LiCl and TRAIL 

Inhibition of GSK-3 enhanced the induction of apoptosis 

mediated by TRAIL in gastric cancer cells.  
[16] 

Combination of GSK-3 inhibitors with chemotherapy 

CHIR99021 and  

paclitaxel 

Effects of combination of the GSK-3 inhibitor CHIR99021 and 

paclitaxel on lung cancer.  
[17] 

SB415286, RO 318220, 

lithium chloride and  

paclitaxel 

SB415286 inhibits both GSK-3α and GSK-3β. RO 318220 

inhibits PKC and GSK-3. More mitotic arrest was 

observed when GSK-3 inhibitors were combined with 

paclitaxel than in the absence of the GSK-3 inhibitors. 

[18] 

LY2090314 and 

nab-paclitaxel 

LY2090314 suppressed TAK1 levels. LY2090314 plus nab-

paclitaxel combined treatment increased the survival of 

mice in orthotopic pancreatic tumor models. 

[19] 

AR-A01441, TDZD-8,  

9-ING-41 and Camptosar 

AR-A01441, TDZD-8, and 9-ING-41 suppressed 

neuroblastoma growth, 9-ING-41 was most effective. 

The combination of 9-ING-41 and Camptosar was 

effective in suppressing tumor growth of xenografts. 

[20] 

9-ING-41, 9-ING-87 

and irinotecan 

Treatment with GSK-3 inhibitors and the chemotherapeutic 

drug irinotecan reduced drug resistance in a breast 

cancer PDX model. 

[21] 

AR-A014418 and  

gemcitabine 

GSK-3 inhibitor suppressed some of the genes induced by 

gemcitabine that are involved in drug resistance of 

PDAC cells. 

[22] 

Combination of GSK-3 inhibitors with other inhibitors or agonists 

9-ING-41 and either 

chloroquine and bafilomycin 

9-ING-41 have been examined either by itself or in 

combination with autophagy inhibitors chloroquine and 

bafilomycin on RCC lines 

[23] 

lithium chloride, SB216763, inhibitor IX 

(BIO) and NF-κB inhibitors PDTC 

parthenolide, or BAY 11-7082 and 

chemotherapeutic drugs. 

Combining GSK-3, NF-κB inhibitors and certain 

chemotherapeutic drugs resulted in increased 

osteosarcoma death both in vitro and in animal 

xenograft studies.   

[24] 

AR-A014418 and 

Troglitazone 

Treatment of prostate cancer cells with GSK-3 inhibitor and 

PPAR agonist suppressed NF-κB activity increased cell 

death.  

[25] 

6BIO and AR-ASO 

6BIO improved the targeting of antisense oligonucleotide 

(ASO) inhibitor and resulted in increased inhibition of 

AR signaling.  

[26] 

AR-A014418, 5-chloro-2,4-

dihydroxpyridine (CDHP)  

and 5FU 

GSK-3β inhibitor AR-A014418 induced head and neck cancer 

stem cells [CD44 (high)/ESA (low)] to undergo 

mesenchymal-to-epithelial transition (MET) back to 

CD44 (high)/ESA (high) cells. Furthermore, this 

combined treatment induced the cells to differentiate.  

[27] 

Inhibitors originally developed to target other signaling molecules which also target/inhibit GSK-3 activity 

Tivantinib 

Tivantinib was initially developed as a c-MET inhibitor but it 

was subsequently determined to target GSK-3α and 

GSK-3β in lung cancer cells. 

[28] 

 

GDC-0941 

GDC-0941 is a PI3K inhibitor. It increased the sensitivity of 

GBM cells to radiotherapy and reduced chemoresistance 

to temzolomide. 

[29] 

AktX. Lithium chloride 
AktX is an AKT inhibitor. The effects AktX and lithium 

chloride on brain cancer cells were determined. AktX 
[30] 



suppressed AKT and increased GSK-3β expression and 

inhibited glioma cell proliferation.  

Zidovudine 

Zidovudine is an anti-viral drug. Treatment of drug resistant 

pancreatic cells with zidovudine resensitized the cells to 

gemcitabine. Zidovudine suppressed the AKT/GSK-

3/SNAIL pathway.  

[31] 

Doxazosin 

Doxazosin is an antihypertensive drug. It was observed to 

inhibit PI3K/AKT signaling in GBM by upregulation of 

active GSK-3β and TP53. Treatment with doxazosin was 

associated with low neurotoxicity. 

[32] 

Erlotinib, SU11274,  

XAV939, everolimus 

EGFR, c-MET, WNT, mTORC1 blocker treatments in various 

combinations overcame drug resistance of NSCLC cells. 
[33] 

miR-101,  

temozomide  

Suppression of GSK-3β by miR-101 inhibits GSK-3β 

expression and restored sensitivity to temozomide in 

brain cancer cells. 

[34] 

Nutraceuticals/Natural Products which may alter GSK-3 activity 

Curcumin 

Curcumin suppressed Syk activity which inhibited AKT and 

induced GSK-3 activity and inhibited B lymphoma 

growth. 

[35] 

Curcumin and 

Tetrahydrocurcumin 

Curcumin induced GSK-3 activity and inhibited WNT/β-

catenin signaling and suppressed azoxymethane-

induced colon carcinogenesis. 

[36] 

Berberine 

Berberine inhibited AKT which resulted in GSK-3 activity in 

melanoma cells treated with alpha melanocyte 

stimulating hormone (α-MSH). Berberine suppressed 

induction of microphthalmia-associated transcription 

factor (MITF) and tyrosinase activity.  

[37] 

Berberine and 

lapatinib 

Combining berberine with the dual EGFR and HER receptor 

inhibitor lapatinib decreased lapatinib-resistance of 

breast cancer cells. Treatment with berberine and 

lapatinib induced higher levels of ROS and increased 

GSK-3 activity and decreased c-MYC levels.  

[38] 

Resveratrol 

Resveratrol increased GSK-3 activity which suppressed 

WNT/β-catenin signaling and decreased invasion and 

migration in breast cancer cells. 

[39] 

Apocynin 

The effects of apocynin and resveratrol on pancreatic cancer 

cells were mediated by decreased levels of 

phosphorylated GSK-3β and ERK1/2 present in the 

nucleus. 

[40] 

Microsclerodermin A 
Microsclerodermin A inhibited NF-κB activity in PDAC. 

Potential involvement of GSK-3. 
[41] 

Caffeine  
Caffeine inhibited JB6 mouse epidermal cells proliferation by 

suppression of AKT and activation of GSK-3. 
[42] 

Indirubin 

Indirubin inhibited GSK-3 and cyclin dependent kinase 

activity in leukemia cells. Indirubin may have competed 

for the ATP binding sites in the kinase domains of the 

proteins. 

[43] 

Tetrandrine 
Tetrandrine inhibited AKT which resulted in GSK-3 

activation in colon cancer cells. 
[44] 

Differentiation-inducing factor-1 

Differentiation-inducing factor-1 inhibited AKT and induced 

GSK-3 activity in colon cancer cells which resulted in 

apoptosis. 

[45] 



Dioscin 

The effects of dioscin on proliferation were examined with 

osteosarcoma cells. Dioscin inhibited AKT activity 

which resulted in GSK-3 activation. 

[46] 

Nimbolide 

Nimbolide inhibited PI3K activity in oral cancer cells which 

resulted in increased GSK-3 activity and inhibition of 

cytoprotective autophagy. 

[47] 

Oridonin 

Oridonin increased GSK-3 expression which resulted in c-

MYC degradation and growth inhibition and apoptosis 

in leukemia cells.   

[48] 

Apicidin 
Apicidin resistance in HCC may result from decreased GSK-

3 activity and increased WNT/β-catenin activity. 
[49] 

Wogonin 
Wogonin inhibits cell growth and induces apoptosis by 

inhibiting the expression of GSK-3β in lung cancer cells. 
[50] 

Sulforaphane 

Sulforaphane treatment resulted in induction of miR-19 and 

suppression of GSK-3β and increased WNT/β-catenin 

expression. 

[51] 

Butyrate 

Butyrate induced ROS and miR-22/SIRT-1 pathway in hepatic 

cancer cells which resulted in suppression of AKT, 

increased PTEN and GSK-3 and apoptosis. 

[52] 

Ursolic acid 

Treatment of ovarian carcinoma cells with ursolic acid 

resulted in inhibition of GSK-3 and induction of 

apoptosis 

[53] 

Gambogenic acid 
Gambogenic acid stimulated GSK-3 activity and inhibited 

growth in GBM cells. 
[54] 
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