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Abstract

Deep neural networks achieve outstanding results in chal-
lenging image classification tasks. However, the design of
network topologies is a complex task and the research com-
munity makes a constant effort in discovering top-accuracy
topologies, either manually or employing expensive archi-
tecture searches. In this work, we propose a unique narrow-
space architecture search that focuses on delivering low-cost
and fast executing networks that respect strict memory and
time requirements typical of Internet-of-Things (IoT) near-
sensor computing platforms. Our approach provides solutions
with classification latencies below 10ms running on a $35
device with 1GB RAM and 5.6GFLOPS peak performance.
The narrow-space search of floating-point models improves
the accuracy on CIFAR10 of an established IoT model from
70.64% to 74.87% respecting the same memory constraints.
We further improve the accuracy to 82.07% by including 16-
bit half types and we obtain the best accuracy of 83.45% by
extending the search with model optimized IEEE 754 reduced
types. To the best of our knowledge, we are the first that em-
pirically demonstrate on over 3000 trained models that run-
ning with reduced precision pushes the Pareto optimal front
by a wide margin. Under a given memory constraint, accuracy
is improved by over 7% points for half and over 1% points
further for running with the best model individual format.

Introduction
With an increasing number of published methods, data,
models, new available deep learning frameworks, and hype
of special purpose hardware accelerators that become more
commercially available, the design of an economical viable
artificial intelligence system becomes a formidable chal-
lenge. The availability of large scale datasets with known
ground truth (Deng et al. 2009; Stallkamp et al. 2011;
Krizhevsky and Hinton 2009) and widespread commercial
availability of increased computational performance, usually
achieved with graphics processing units (GPUs), enables the

∗IBM, the IBM logo, and ibm.com are trademarks or registered
trademarks of International Business Machines Corporation in the
United States, other countries, or both. Other product and service
names might be trademarks of IBM or other companies.
†Published as a conference paper at NeurIPS 2019

current growth of deep learning and explains the large inter-
est and the emergence of new businesses. Smart homes (Li
et al. 2019), smart grids (Fenza, Gallo, and Loia 2019) and
smart cities (Gaber et al. 2019) trigger a natural demand for
the Internet of Things (IoT), which are products designed
around low cost, low energy consumption and fast reaction
times due to the inherent constraints given by the final ap-
plication that typically demand for autonomy with long bat-
tery lifetimes or fast real-time operation. Experts estimate a
number of around 30 billion IoT devices by 2020 (Nordrum
2016) many of which serve applications that profit from ar-
tificial intelligence deployment.

In this context, we propose an automatic way to design
deep learning models satisfying user-given constraints that
are specially tailored to match typical IoT requirements,
such as inference latency bounds. Additionally, our ap-
proach is designed in a modular manner that allows future
adaptations and specializations for novel network topology
extensions to different IoT devices and reduced precision
arithmetic. In summary, our main contributions are the fol-
lowing:

• We propose an end-to-end approach to synthesize models
that satisfy IoT application and HW constraints.

• We propose a narrow-space architecture search algorithm
to leverage knowledge from large reference models to
generate a family of small and efficient models.

• We evaluate reduced precision formats for over 3000
models.

• We isolate IoT device characteristics and demonstrate
how our concepts operate with analytical network prop-
erties and map to final platform specific metrics.

The remainder of the paper is organized as follows. Sec-
tion describes the related work, Section introduces the core
design procedures, Section details and merges a full syn-
thesis workflow, Section states and discusses the obtained
results, and Section concludes all findings.

Related work
Automated architecture search potentially discovers better
models (Miikkulainen et al. 2019; Xie and Yuille 2017;
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Figure 1: Simple three layer architecture with default con-
figuration of search space with restricted sampling laws.

Zhong, Yan, and Liu 2017; Zoph and Le 2016; Zoph et al.
2018; Cai et al. 2018; Baker et al. 2016; Wistuba, Rawat,
and Pedapati 2019). However, traditional approaches re-
quire a vast amount of computing resources or cause ex-
cessive execution times due to full training of candidate
networks(Real et al. 2017). Early stopping based on learn-
ing curve predictors (Domhan, Springenberg, and Hutter
2015) or transferring learned wights improves the timings
(Wistuba 2018). A method called train Train-less Accu-
racy Predictor for Architecture Search (TAPAS) demon-
strates how to generalize architecture search results to new
data without the need of training during the search process
(Istrate et al. 2019). Architecture searches face the com-
mon challenge of defining the search space. Historically, it
happened that new networks are independently developed
by expert knowledge that outperform previously found net-
works generated by architectural search. In such cases, very
expensive reconsiderations lead to follow up work to cor-
rectly account for a richer search space (Pham et al. 2018;
Weng et al. 2019). Recent progress in the field, such as
MnasNet (Tan et al. 2018) and FBNet (Wu et al. 2018) focus
to tailor the search for smartphones by optimizing a multi-
objective function including inference time. MnasNet trains
a controller that adjusts to sample models that are more op-
timal according to the multi-objective. FBNet trains a super-
net by a differentiable neural architecture search (DNAS)
in a single step and claims to be 420× faster since addi-
tional model training steps are avoided. In contrast to solv-
ing a joint optimization problem in one step, our proposed
union of narrow-space searches follows a modular approach
that separates the search process of finding architectures that
strictly satisfy constraints from the training of candidate net-
works. That way, we can analyze ten-thousand architectures
with zero training cost while only a small subset of suitable
candidates are selected for training.

Compression, quantization and pruning techniques reduce
heavy computational needs based on the inherent error re-
silience of deep neural networks (Rybalkin et al. 2017).
Mobile nets (Howard et al. 2017a) or low-rank expansions
(Jaderberg, Vedaldi, and Zisserman 2014) change the topol-
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Figure 2: Statistics of number of parameters obtained when
sampling up to one million networks from the base config-
uration space and when sampling 1000 networks from the
restricted sampling laws.

ogy into layers that require fewer weights and cause re-
duced workload. Quantization studies the effect of using re-
duced precision floating point or fixed point formats (Hill et
al. 2018; Loroch et al. 2017), compression further tries to
reduce the binary footprint of activation and weight maps
(Cavigelli and Benini 2018), and pruning approaches avoid
computation by enforcing sparsity (Ashiquzzaman et al.
2019). We use floatx, an IEEE 754 compliant reduced pre-
cision library (Flegar et al. 2019), to assess data format spe-
cific aspects of networks. The novelty of our work is that
we jointly evaluate network topologies in combination with
reduced precision.

Core design procedures
Architecture search
It’s challenging to define a space S that produces enough
variation and simultaneously reduces the probability of sam-
pling suboptimal networks. We propose narrow-space archi-
tecture searches, where results are obtained over aggregation
of n independent searches S =

⋃n
i=1 Si. Since a good search

space should satisfy Sr ⊂ S where Sr = {M1, ...,Mn} is a set
of reference models, we construct S by designing narrow-
spaces that obey Mi ∈ Si in order to guarantee Sr ⊂ S. Instead
of considering superpositions, we have specialized search
spaces that produce simple sequence structure with resid-
ual bypass operations (ResNets (He et al. 2016a)) to even
high fan-out and convergent structures such as they occur in
the Inception module (Szegedy et al. 2015) or in DenseNets
(Huang et al. 2017a). The aggregation allows extending re-
sults easily with a tailored narrow-space search for new ref-
erence architectures. Next, we define a set of distribution law
configurations L1(Si), ...,Lk(Si) that allow drawing samples
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Figure 3: High correlations between the two analytical prop-
erties of network architectures.
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Figure 4: The run time dependent latency is best corre-
lated with the workload where different search space specific
characteristics are present.

in a biased way such that models satisfy properties of inter-
est. Figure 1 demonstrates with an example the advantages
over a uniform distribution among valid networks. Consider
a space of three-layer networks with allowed variations in
kernel shapes in {1,3,5,7} and output channels in [1,128]
leading to |S|= 46∗1283 = 8.6∗109 network configurations.

Figure 2 shows the statistics over up to 106 samples com-
pared against sampling only 1000 samples when using re-
stricted samplers L1,L2 and L3. The restricted random laws
enable to efficiently generate networks of interest in contrast
to the uniform sampler that fails to deliver high sampling
densities in certain regions. For example, only 132 out of
106 networks have less than 1000 parameters.

We define each narrow-space architecture search and its
sampling laws according to the following design goals: first,
the original model is included in the search space, second,
only valid models are generated with a topology that resem-
bles the original model, third, the main model-specific pa-
rameters are variated, fourth, the main way to generate small

and efficient models was achieved through lowering channel
widths in convolutional layers, and fifth, all random laws fol-
low a uniform distribution over available options where the
lower and upper limits where used as way to bias the models
to span several orders of magnitude targeting the range of
parameter and flop counts that are relevant for IoT applica-
tions.

Precision analysis
The precision analysis evaluates model accuracies when
models are running with reduced precision representations.
To follow a general methodology, we perform the preci-
sion analysis on the backend device that has different ex-
ecution capabilities than current or future targeted IoT de-
vices. The methodology enforces to use emulated compu-
tation throughout the analysis to assess accuracy indepen-
dent of the target hardware. Low precision can be applied
to model parameters, to the computations performed by the
models and to the activation maps that are passed between
operators. In this work, we follow the extrinsic quantization
approach (Loroch et al. 2017), where we enforce a precision
caused by the reduced type Tw,t of storage width 1+w+ t to
be applied to all model parameters and all activation maps
that are passed between operations. For the analysis, we fol-
low the IEEE 754 standard (Zuras et al. 2008) that defines
storage encoding, special cases (Nan, Inf), and rounding be-
havior of floating-point data. A sign s, an exponent e and
the significand m represent a number v = (−1)s ∗ 2e ∗m
where the exponent field width w and the trailing signifi-
cant field width t limit dynamic range and precision. Types
T5,10 and T8,23 correspond to standard formats half and float.
Our experiments are based on a PyTorch (pyt ) integration
of the GPU quantization kernel based on the high perfor-
mant floatx library (Flegar et al. 2019) that implements the
type Tw,t . The fast realization of the precision analysis allows
elaborating over 3’000 models with a full grid search of 214
types (w ∈ [1,8], t ∈ [1−23]) on the full validation data.

Deployment and performance characterization
To evaluate model execution performance on the IoT target
device we propose to perform a calibration to asses the ex-
ecution speed of models of interest. Despite many choices
of deep learning frameworks, ways of optimizing code de-
pending on compilation or version of software and even sev-
eral hardware platforms that accelerate deep learning mod-
els, we formulate the performance characterization general
and as most decoupled from the topology architecture search
and the precision analysis to ease later extensions. Perfor-
mance measurements on the IoT device are affected by ex-
plicit and implicit settings. In this work, we demonstrate our
search algorithm with performance measurements with the
least amount of assumptions and requirements on the run-
time. To that end, we selected a Raspberry-Pi 3(B+) as a rep-
resentative IoT device. It features a Broadcom BCM2837B0,
quad-core ARMv8 Cortex-A53 running at 1.4 GHz and the
board is equipped with 1GB LPDDR2 memory (pi3 ). The
Raspberry-Pi 3(B+) belongs to the general-purpose device
category that is shipped with peripherals (WiFi, LAN, Blue-
tooth, and USB, HDMI), a full operating system (Raspbian,
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Figure 5: Manual and automatic workflow. First, sampling laws are defined to generate models of interest. Second, models are
calibrated to check latency on the IoT device even if they are not yet trained. Third, models are trained to obtain their accuracy.
Since training is the most expensive task, it is essential to reduce the amount of trained model to candidates of interest only.

a Linux distribution) available for a low cost of about $35
per device (Mittal 2019). Throughout this work, we measure
the model inference latency on the target device by averag-
ing over 10 repetitions. We used a batch size of one to mini-
mize latency and internal memory requirements. The latency
study covers many relevant use cases, for example, the clas-
sification of sporadically arriving data in short time to pro-
long battery lifetime or frame processing of a video stream
where the classification has to be completed before the next
frame arrives.

For each model we consider two analytical properties, the
number of trainable parameters and the workload measured
as the number of floating-point operations required for in-
ference. The calibration relates analytical properties to exe-
cution performance and allows to separate runtime metrics.
Figure 3 and Figure 4 show high correlations between the
number of parameters, the workload and the measured la-
tency on the Raspberry-Pi 3(B+). Workload and parameters
follow a similar scaling over five orders of magnitude with
homogenous variations. The dynamic range of the latency
spans more than two orders of magnitude with higher varia-
tions for larger models. However, due to the compute-bound
nature of the kernels, the workload is the better latency time
indicator than the number of parameters.

Fast cognitive design algorithms
In this section, we leverage the architecture search, the pre-
cision analysis, and the HW calibration to synthesize use
case-specific solutions that satisfy given constraints. We ad-
dress two tasks: First, the constraint search solves for the
best model that satisfy given constraints. Second, the Pareto
front elaboration provides insights into trade-offs over the
full solution space. The two tasks are related. Solving the
first task on a grid of constraints provides solutions to the
second task while filtering the latter based on the given con-
straints allows returning to the former. Both tasks are solved
in a manual and automated way as shown in Figure 5. In
the manual task, the expert user defines the narrow-space
search and for each space a list of sampling laws. Collected
statistics over analytical network properties provide quick
feedback to adapt the settings to cover the range of interest.
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Additionally, network run time metrics can be measured
on the target device or estimated from calibration mea-
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models that outperform the reference with a wide margin for fixed constraints.

surements. Next, depending on the task type, either a few
candidate networks that satisfy constraints or a full wave
of networks are selected for training. Large scale train-
ing takes the most time, each training job is of complex-
ity O(ntrainCmodelE), proportional to the amount of training
data, the model complexity and the number of epochs the
model is trained for.

We designed a genetic and clustering based algorithm to
automatize the design of sampling laws. We define the valid
space with a list of variables with absolute minimal and max-
imal ratings. A sampling law L(Si) is defined as an ordered
set of uniform sampling laws L = (Ux[lx,hx], ...) with lower
and upper limits lx and hx per variable x. The genetic al-
gorithm automatically learns the search space specific sam-
pling law limits [lx,hx]. The cost function is defined in a two
step approach. First, the statistic (µm,σm) := En

m(L) is esti-
mated by computing means and standard deviations over the
metric m extracted from the n generated topologies. Second,
cost is computed as c((µm,σm),(τ1,τ2)) := |µm−σm−τ1|+
|µm +σm−τ2| in order that the high density range of the es-
timated distribution coincides with a given interval (τ1,τ2).
We avoided definitions based on single sided constraints like
µ < τ since such formulations might be either satisfied triv-
ially (using the smallest network) or satisfied by undesirable
laws having wide or narrow variations. We used the tourna-
ment selection variant of genetic algorithms (Goldberg and
Deb 1991) and defined mutations by randomly adapting the
sampling law of hyper-parameters lx and hx. We used an
initial population of ninit = 100 and run the algorithm for

nsteps = 900 steps while using neval = 10 samples to esti-
mate mean and standard deviation per configuration. This
way, one search considers (ninit + nsteps) ∗ neval = 10′000
networks. Since the final population might contain different
sampling laws of similar quality, we perform spectral clus-
tering (Stella and Shi 2003) to find k = 10 clusters with sim-
ilar sampling laws. We assemble a list of the most different
top-k laws by taking the best fitted law per cluster.

To elaborate the full search space with a Pareto op-
timal front, we split each decade into three intervals
[τ,2τ,5τ,10τ] and define a grid for τ = 103,104,105,106

spanning five orders of magnitude.
We run the genetic search algorithm multiple times by set-

ting the target bounds (τ1,τ2) in a sliding window manner
over consecutive values from the defined grid. Finally, we
accumulate results from 12 genetic searches each found 10
sampling laws, where we sampled each law nval = 100 times
to obtain the statistic of 12′000 network architectures per
narrow-space search. Figure 6 and Figure 7 show results for
manual and automatic sampled networks. Even though the
manual search allows to nicely cover the region of interest,
human expertise is required to correctly define the parame-
ters of the laws L1 up to L6. The naive sampling approach
in the full search space produces a narrow distribution and
is highly skewed towards larger networks. In contrast, the
genetic algorithm was able to equalize the distribution and
provides samples that cover much higher dynamic ranges,
especially extending the scale for smaller networks without
manually restricting the architecture.
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Figure 10: Final result showing the achievable tradeoffs be-
tween on the IoT device measured model latency and the
model accuracy. Our search is able to deliver models that
run below 10ms on the Raspberry Pi 3(B+) which we con-
sider as representative cost limited IoT device.

To study our algorithm we run full design space explo-
rations on the well established CIFAR-10 (Krizhevsky and
Hinton 2009) classification task and compare our results
with those obtained with established reference models. Fig-
ure 8 shows the trade-off between the model size and the
obtained accuracy including manual and automatic gener-
ated results of the aggregate search spaces. The Pareto opti-
mal front follows a smooth curve that saturates towards the
best accuracy obtainable for large models. The number of
parameters is logarithmic and the accuracy linearly scaled.
Even very small models with less than 1000 parameters can
achieve above 45% of accuracy. The accuracy increase per
decade of added parameters is in the order of 30%, 15%, 3%

and < 2% points and diminishes very quickly. This effect al-
lows constructing models that consist of multiple orders of
magnitude fewer parameters and provides economical inter-
esting solutions when IoT devices are powerful enough to
process data in real-time. We compare our results with three
sources of reference models, a) with traditional reference
models, b) with ProbeNets (Scheidegger et al. 2019) that are
designed to be small and fast and, c) with models that were
designed and run on the parallel ultra-low power (PULP)
platform (Conti et al. 2016). Traditional models include 30
reference topologies including variants of VGG (Simonyan
and Zisserman 2014), ResNets (He et al. 2016b), GoogleNet
(Szegedy et al. 2016), MobileNets (Howard et al. 2017b)
dual path nets (DPNs) (Chen et al. 2017) and DenseNets
(Huang et al. 2017b) where most of them (28/30) exceed 1M
parameters. ProbeNets are originally introduced to charac-
terize the classification difficulty and are by design consider-
ably smaller (Scheidegger et al. 2019). They act as reference
points for manual designed networks that cover the relevant
lower tail in terms of parameters. In the IoT relevant domain
(<10M parameters) our search outperforms all the listed ref-
erence models. The top three fronts in Figure 8 show the
results of the precision analysis. For each trained model we
evaluated the effect of running models with all configura-
tions of type Tw,t and we extract and plot the Pareto-optimal
front. We considered three cases, running all models with
half precision, running all models with the type T43 which
is the best choice for types of 8-bit length and running each
model with its individual best trade-off type Tw,t . We em-
pirically demonstrate that running with reduced precision
pushes the Pareto optimal front. Under a given memory con-
straint, accuracy improves by over 7% points for half and
over 1% points further for running with the model individ-
ual format. Figure 9 shows details about manual and auto-
matic searches both leading to very similar results. The right
figure shows results obtained for one narrow-space search,
where manually defined sampling laws lead to clusters. The
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automatic search was able to homogeneously cover a similar
range. Figure 10 shows inference times when the same set of
models is executed on the Raspberry Pi 3(B+). Similarly, to-
wards the small model end of the scale, given additional time
for the latency results in dominant accuracy gains, however
towards the traditional high accuracy domain, even slight
accuracy improvements are only achieved with even more
complex models that cause long evaluation times. Figure 11
demonstrates the scalability of our approach. We applied
our search for three constraints τ = 103,104,105 on thirteen
datasets (Scheidegger et al. 2019) where we spend a train-
ing effort of ten architectures per dataset and constraint. The
lines connect the best per constraint and dataset performing
architectures.

Conclusion
We studied the solution of synthesizing deep neural net-
works that are eligible candidates to efficiently run on IoT
devices. We propose a narrow-space search approach to
quickly leverage knowledge from existing architectures that
is modular enough to be further adapted to new design pat-
terns. Manually and automatically designed sampling laws
allows generating various models with the number of pa-
rameters covering multiple orders of magnitude. We demon-
strate that reduced precision improves top1 accuracy by over
8% points for constraint weight memory in the IoT rele-
vant domain. A strong correlation between model size and
latency enables to create small enough models that provide
superior inference response latencies below 10ms on a $35
edge device.
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