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Abstract: In the first-quantised worldline approach to quantum field theory, a long-

standing problem has been to extend this formalism to amplitudes involving open fermion

lines while maintaining the efficiency of the well-tested closed-loop case. In the present

series of papers, we develop a suitable formalism for the case of quantum electrodynamics

in vacuum (part one and two) and in a constant external electromagnetic field (part three),

based on second-order fermions and the symbol map. We derive this formalism from

standard field theory, but also give an alternative derivation intrinsic to the worldline

theory. In this first part, we use it to obtain a Bern-Kosower type master formula for the

fermion propagator, dressed with N photons, in terms of the “N -photon kernel,” where off-

shell this kernel appears also in “subleading” terms involving only N −1 of the N photons.

Although the parameter integrals generated by the master formula are equivalent to the

usual Feynman diagrams, they are quite different since the use of the inverse symbol map

avoids the appearance of long products of Dirac matrices. As a test we use the N = 2

case for a recalculation of the one-loop fermion self energy, in D dimensions and arbitrary

covariant gauge, reproducing the known result. We find that significant simplification

can be achieved in this calculation by choosing an unusual momentum-dependent gauge

parameter.
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1 Introduction

Simultaneously with the modern diagrammatic approach to perturbative QED, in the early

fifties Feynman developed a representation of the QED S-matrix in terms of first-quantised

relativistic particle path integrals [1, 2]. For the simplest case, the one-loop effective action

in scalar QED, this representation can be written as

Γscal[A] =

∫ ∞
0

dT

T
e−m

2T

∫
P
Dx e−

∫ T
0 dτ [ 1

4
ẋ2+ieẋµAµ(x)] . (1.1)

Here m, e and T denote the mass, charge and proper-time of the loop scalar, and
∫
P Dx

the path integral over closed loops in (Euclidean) spacetime with periodicity T in the

proper-time (the subscript ‘P ’ stands for “periodic”). See appendix A for our conventions.

Similarly, the tree-level scalar propagator in a background field is given by

Dx′x[A] =

∫ ∞
0

dT e−m
2T

∫ x(T )=x′

x(0)=x
Dx e−

∫ T
0 dτ

[
1
4
ẋ2+ie ẋ·A(x)

]
, (1.2)

where the propagation is from x to x′. The external field in these formulas can be con-

verted into photons by specialising it to a sum of plane waves with definite momenta and

polarisations,

Aµ(x) =
N∑
i=1

εµi eiki·x. (1.3)

Each photon then gets effectively represented by a vertex operator (similar to those that

appear in string perturbation theory)

Vscal[k, ε] =

∫ T

0
dτ ε · ẋ(τ) eik·x(τ) , (1.4)

integrated along the scalar loop or line, with a coupling constant (−ie) attached. Since in

scalar QED any amplitude can be decomposed into scalar loops and/or lines adorned with

any numbers of external and internal photons,1 starting from the formulas (1.1) and (1.2)

one straightforwardly constructs a path integral representation for the full scalar QED

S-matrix [1].

To arrive at the analogous representation of the S-matrix in spinor QED, Feynman

then simply adds on spin by the introduction of a “spin factor” Spin[x(τ), A] in the path

integral [2]. For the closed loop case, this spin factor is

Spin[x(τ), A] = trγP exp

[
−i e

4
[γµ, γν ]

∫ T

0
dτ Fµν(x(τ))

]
, (1.5)

where Fµν denotes the field strength tensor, trγ the Dirac trace, and P the path-ordering

prescription. Inserted into (1.1) it will (up to a global factor) convert the scalar loop

effective action Γscal[A] into the spinor effective action Γspin[A]:

Γspin[A] = −1

2

∫ ∞
0

dT

T
e−m

2T

∫
P
Dx(τ) Spin[x(τ), A] e−

∫ T
0 dτ [ 1

4
ẋ2+ieẋµAµ(x)] . (1.6)

1Here we disregard the quartic scalar vertex induced in scalar QED by the requirement of multiplicative

renormalisability.
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This formalism, nowadays usually called the “worldline formalism,” was later on extended

to other field theories (see [3, 4] for a review and extensive bibliography). Nevertheless, it

appears that for several decades it was considered mainly as of conceptual interest, rather

than an alternative to the standard approach based on second quantisation and Feynman

diagrams. In 1982 Affleck, Alvarez and Manton in a remarkable paper [5] applied it to

Schwinger pair creation in a constant field in scalar QED, even at the multiloop level,

however, their “worldline instanton” formalism caught on only much later, after it was

extended to spinor QED and non-constant fields in [6, 7].

This state of affairs changed only in the early nineties, when Strassler [8], inspired by

the seminal work of Bern and Kosower [9, 10] on the field theory limit of string amplitudes,

developed an approach to the calculation of such worldline path integrals that mimics string

perturbation theory. The basic idea is quite simple, and was germinally presented already

in [11]: by suitable series expansions, the path integrals are reduced to Gaussian ones, and

then evaluated by formal Gaussian integration as in a one-dimensional field theory, using

appropriate “worldline Green’s functions.”

For example, in this formalism the calculation of the one-loop N -photon amplitude

in scalar QED, starting from the path integral representation (1.1), proceeds as follows:

after the above expansion of the interaction exponential, and truncation to Nth order, the

amplitude is represented as

Γscal(k1, ε1; . . . ; kN , εN ) = (−ie)N
∫ ∞

0

dT

T
e−m

2T

∫
P
Dx e−

∫ T
0 dτ 1

4
ẋ2

(1.7)

×Vscal[k1, ε1]Vscal[k2, ε2] · · ·Vscal[kN , εN ] .

The path integral is then split into an ordinary integral over the center-of-mass position

xµ0 ≡ 1
T

∫ T
0 dτ xµ(τ), and the path integral over the fluctuation variable qµ(τ) ≡ xµ(τ)−xµ0 ,

subject to the nonlocal constraint ∫ T

0
dτ qµ(τ) = 0 . (1.8)

The integral over xµ0 yields the global energy-momentum conservation factor

(2π)DδD
(∑N

i=1 ki
)
. The path integral over qµ(τ) is already in Gaussian form, but to arrive

at a closed-form evaluation it is convenient, as in string theory, first to rewrite the photon

vertex operator (1.4) in an exponential fashion as

V A
scal[k, ε] =

∫ T

0
dτ eik·x(τ)+ε·ẋ(τ)

∣∣∣
ε

= eik·x0

∫ T

0
dτ eik·q(τ)+ε·q̇(τ)

∣∣∣
ε
, (1.9)

where
∣∣
ε

denotes the projection onto the terms linear in ε. The path integration can then

be computed by simply completing the square, leading to the following master formula:

Γscal(k1, ε1; . . . ; kN , εN )

= (−ie)N (2π)DδD
(∑

ki

)∫ ∞
0

dT

T
(4πT )−

D
2 e−m

2T
N∏
i=1

∫ T

0
dτi

× exp

{
N∑

i,j=1

[
1

2
GBijki · kj − iĠBijεi · kj +

1

2
G̈Bijεi · εj

]}∣∣∣∣∣
ε1ε2···εN

. (1.10)

– 2 –
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Here we have introduced the Green function GB,

GB(τ, τ ′) ≡ |τ − τ ′| − (τ−τ ′)2

T , (1.11)

which (up to a constant that is irrelevant for our purposes here) is the Green’s function for

the second derivative operator adapted to the periodicity boundary condition q(T ) = q(0)

and the “string-inspired” constraint (1.8), and it is linked to the propagator of q(τ) by

〈qµ(τi)q
ν(τj)〉 = −GBijδµν = −GB(τi, τj)δ

µν (1.12)

where we are abbreviating GB(τi, τj) ≡ GBij etc. The subscript ‘B’ stands for “bosonic”

(a “fermonic” Green function GF will be introduced below). Besides GB itself, also its first

and second derivatives appear,

ĠB(τ, τ ′) = sign(τ − τ ′)− 2
τ − τ ′
T

, (1.13)

G̈B(τ, τ ′) = 2δ(τ − τ ′)− 2

T
. (1.14)

Here a ‘dot’ always means a derivative with respect to the first variable.

The factor (4πT )−
D
2 comes from the free path integral:∫

Dq(τ) e−
∫ T
0 dτ 1

4
q̇2

= (4πT )−
D
2 . (1.15)

The notation
∣∣
ε1ε2···εN

means that the exponential should be expanded, and only the terms

linear in each of the polarisation vectors be kept.

Although the master formula (1.10), as it stands, represents the off-shell one-loop

N -photon amplitudes in scalar QED, it was originally derived by Bern and Kosower in

the QCD context as a generating master expression from which to construct, by purely

algebraic means, parameter integral representations for the scalar, spinor and gluon loop

contributions to the on-shell N -gluon amplitudes [3, 9, 10, 12].

In the scalar QED case, it is still straightforward to relate the parameter integrals

resulting from the master formula to the ones obtained by a standard Feynman dia-

gram calculation [3, 8, 13]. For any ordered sector of the N -fold proper-time integral∫ T
0 dτ1 · · ·

∫ T
0 dτN , the integrand can be identified with the Schwinger-parameter represen-

tation of the Feynman diagram with the corresponding ordering of the photon legs, once

the Schwinger parameters are identified with the differences of adjacent proper-time vari-

ables. The quartic seagull vertex in this correspondence is presented by the delta function

contained in G̈B, equation (1.14). Despite this direct correspondence, the master formula

is extremely useful for its compactness, and for combining into one integral all the Feyn-

man diagrams with different orderings of the N photons. Although the latter property

may not appear significant at the one-loop level, when the N -photon amplitudes are used

as building blocks for multiloop amplitudes it allows one to write down highly nontrivial

integral representations combining Feynman diagrams of different topologies, that would

be hard to find using the standard formalism [3, 14].

– 3 –
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Moreover, the representation of the integrand in terms of worldline Green’s functions

that are adapted to the periodic boundary conditions makes it possible to improve it by

integration by parts (‘IBP’), without generating boundary terms. An essential element of

the original string-based approach by Bern and Kosower cited above was the discovery that

IBP could be used to eliminate all second derivatives G̈Bij . In this way they obtained an in-

tegrand for the N -gluon amplitude where the prefactor of the exponential is written purely

in terms of ĠBij , and which offered the possibility, based on worldsheet supersymmetry,

to pass from the scalar to the spinor to gluon loop by applying simple pattern-matching

rules to the integrand. Those involve the ‘τ -cycles’ ĠBi1i2ĠBi2i3 · · · ĠBini1 .

Later, Strassler [15] studied this IBP procedure in more detail for the case of the

off-shell photon amplitudes, and found that it bears also an interesting relation to gauge

invariance: a τ -cycle always appears multiplied by a corresponding ‘Lorentz-cycle’, de-

fined by

Z2(ij) ≡ 1

2
tr(fifj) = εi · kjεj · ki − εi · εjki · kj ;

Zn(i1i2 . . . in) ≡ tr

(
n∏
j=1

fij

)
(n ≥ 3), (1.16)

where fi is the field strength tensor associated to the ith photon/gluon,

fµνi ≡ k
µ
i ε
ν
i − εµi kνi . (1.17)

Thus the integrand after the IBP can be written in terms of “bosonic bi-cycles”

ĠB(i1i2 . . . in) ≡ ĠBi1i2ĠBi2i3 · · · ĠBini1Zn(i1i2 . . . in) , (1.18)

and certain left-overs called “tails” [3, 15–17].

Generalising the master formula (1.10) to the spinor QED case is a much less obvious

task, and requires some preliminary steps. For starters, we need to remove the path

ordering implied in the definition of the Feynman spin factor Spin[x(τ), A], equation (1.5).

This can be done using the following well-known identity, which represents the spin factor

in terms of an auxiliary path integral over Grassmann worldline fields ψµ(τ):

trγP exp

[
−i e

4
[γµ, γν ]

∫ T

0
dτ Fµν(x(τ))

]
=

∫
A
Dψ e−

∫ T
0 dτ ( 1

2
ψµψ̇µ−ieψµFµνψν) . (1.19)

Here the subscript ‘A’ means anti-periodicity, ψµ(0) + ψµ(T ) = 0 which implements the

Dirac trace. Apart from the removal of the path ordering, this replacement also leads to

the appearance of a “worldline supersymmetry” between the x and ψ fields,

δxµ = −2ζψµ ;

δψµ = ζẋµ , (1.20)

with a constant Grassmann parameter ζ. Although this supersymmetry is broken by the

boundary conditions, its existence has far-reaching consequences in the worldline formal-

ism [3, 8, 14].

– 4 –
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After this replacement, one can proceed as in the scalar case, and find the following

generalisation of (1.7):

Γspin(k1, ε1; . . . ; kN , εN ) = −1

2
(−ie)N

∫ ∞
0

dT

T
e−m

2T

∫
P
Dx e−

∫ T
0 dτ 1

4
ẋ2

∫
A
Dψ e−

∫ T
0 dτ 1

2
ψ·ψ̇

×Vspin[k1, ε1]Vspin[k2, ε2] · · ·Vspin[kN , εN ] . (1.21)

Here the photon vertex operator now takes the form

Vspin[k, ε] ≡
∫ T

0
dτ
[
ε · ẋ(τ) + 2iε · ψ(τ)k · ψ(τ)

]
eik·x(τ)

=

∫ T

0
dτ
[
ε · ẋ(τ)− iψ(τ) · f · ψ(τ)

]
eik·x(τ) . (1.22)

Again the path integral (1.21) is Gaussian, so that the only new information required for

its evaluation is the Green function for the Grassmann path integral. This one is simply

GF (τ, τ ′) ≡ sign(τ − τ ′), and relates to the propagator of the ψ field by

〈ψµ(τ)ψν(τ ′)〉 =
1

2
GF (τ, τ ′)δµν . (1.23)

However, to arrive at a closed-form evaluation some rewriting is still necessary. This could

be done in various ways, but we find it convenient to use the N = 1 worldline superspace

formalism [3, 18]: we introduce a Grassmann super-partner θ for the proper-time τ , and

use it to combine the worldline fields xµ and ψµ into a superfield

Xµ(τ) ≡ xµ(τ) +
√

2 θψµ(τ) . (1.24)

Introducing also Qµ ≡ Xµ − xµ0 , and the super derivative

D ≡ ∂

∂θ
− θ ∂

∂τ
(1.25)

we can then rewrite the kinetic term as∫
dτ

(
1

4
q̇2 +

1

2
ψ · ψ̇

)
= −1

4

∫
dτ

∫
dθ QD3Q , (1.26)

(where
∫
dθθ = 1), and the vertex operator (1.22) in a way analogous to the scalar

case (1.4),

Vspin[k, ε] =

∫ T

0
dτ

∫
dθ ε ·DQ eik·X = eik·x0

∫ T

0
dτ

∫
dθ eik·Q+ε·DQ

∣∣∣
ε
. (1.27)

The double path integral in (1.21) is then ready for a formal Gaussian integration, which

leads to the following master formula:

Γspin(k1, ε1; . . . ; kN , εN )

= −2
D
2
−1(−ie)N (2π)DδD

(∑
ki

)∫ ∞
0

dT

T
(4πT )−

D
2 e−m

2T
N∏
i=1

∫ T

0
dτi

∫
dθi

× exp

{
N∑

i,j=1

[
1

2
Ĝijki · kj + iDiĜijεi · kj +

1

2
DiDjĜijεi · εj

]}∣∣∣∣∣
ε1...εN

. (1.28)
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p

(p2 +m2)−1

−e(2p+ k)µ

νµ

α β e(σµν)αβk
ν

k

−2e2ηµν

k

µ

µ

p

p

p

Figure 1. Feynman rules for spinor QED in the second-order formalism.

Here we have introduced the super Green’s function Ĝ, which combines GB and GF :

〈Qµ(τ, θ)Qν(τ ′, θ′)〉 = −Ĝ(τ, θ; τ ′, θ′)δµν ,

Ĝ(τ, θ; τ ′, θ′) ≡ GB(τ, τ ′) + θθ′GF (τ, τ ′) , (1.29)

which satisfies the Green equation in superspace 1
2D

3Ĝ(τ, θ; τ ′, θ′) = δ(τ − τ ′)δ(θ − θ′).
In the determination of the absolute sign of the amplitude, besides the θi and dθi also

the εi have to be treated as Grassmann variables, and anticommuted into the standard

ordering ε1 . . . εN at the end (after the determination of the sign, the polarisation vectors

turn into ordinary commuting quantities again, of course). Our convention for the ordering

of the θ integrals is
∫
dθ1 · · ·

∫
dθNθN · · · θ1 = 1. A factor of 2

D
2 comes from the free ψ path

integral (which just counts the spin degrees of freedom). Here we assume that D is even.

The parameter integrals resulting from the expansion of this master formula correspond

to the Schwinger parameter integrals obtained by Feynman diagrams in the same way as

described above for scalar QED, however the comparison has to be done not with the usual

first-order Dirac formalism, but with the less familiar second-order formulation of spinor

QED [13, 19–22]. Its Feynman rules (see [21]) are, up to global factors for statistics and

degrees of freedom, the ones for scalar QED with the addition of a third vertex due to the

spin factor, involving σµν ≡ 1
2 [γµ, γν ]. We display them in figure 1.

Of course the final results for physical amplitudes coincide with those of the better

known first order formalism.

During the last two decades, these “string-inspired” representations have already found

a considerable number of applications in QED, both for the calculation of photon ampli-

tudes [8, 14, 23] and the effective action itself [24–28]. They have been generalised to

include constant external fields [23, 29–33] as well as finite temperature [34–39]. Their

– 6 –
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non-Abelian generalisation was used in the first calculation of the one-loop five-gluon am-

plitudes [40], a calculation of the non-Abelian heat-kernel coefficients to fifth order [41], a

calculation of the two-loop effective Lagrangian for a constant SU(2) background field [42],

and very recently for obtaining gauge-invariant decompositions of the off-shell three- and

four-gluon amplitudes [43–46]. In the non-Abelian case, it may be helpful to generate the

particle color factor, and take care of the path ordering, by adding suitable auxiliary fields,

in the same way as Grassmann variables take care of the spin factor and path ordering

in (1.19) — see, for example, [47–50]. Further applications to QCD-related topics can be

found in references [51–53].

Extensions to curved space [54] and quantum gravity [55, 56] have also been considered,

addressing in particular induced effective actions and graviton self-energies [57–59], QED

in curved spaces [60], gravitational corrections to the Euler-Heisenberg Lagrangians [61, 62]

and related amplitudes [63], and studies of one-loop photon-graviton conversion in strong

magnetic fields [64, 65]. The case of higher spin fields has also been approached using

worldlines [66–69], as has quantum field theory on non-commutative spaces [70–73] and

spaces with boundary [74–76].

However, with a few exceptions as in [77–80] and [81–86], these applications have been

restricted to processes involving only closed scalar or spinor loops, not open lines. For the

scalar QED case, Daikouji et al. [87] have obtained the following master formula, analogous

to (1.10), for the scalar propagator dressed with N photons:

Dp′p(k1, ε1; · · · ; kN , εN ) = (−ie)N (2π)DδD
(
p+ p′ +

N∑
i=1

ki

)∫ ∞
0

dT e−m
2T (1.30)

×
N∏
i=1

∫ T

0
dτi e−Tb

2+
∑N
i,j=1[∆ijki·kj−2i•∆ijεi·kj−•∆•ijεi·εj ]

∣∣∣
ε1ε2···εN

.

Here we have introduced the vector

b ≡ p′ + 1

T

N∑
i=1

(kiτi − iεi), (1.31)

and a different worldline Green’s function ∆(τ, τ ′) has been used for the q propagator:

〈qµ(τ)qν(τ ′)〉 = −2∆(τ, τ ′)δµν ,

∆(τ, τ ′) =
|τ − τ ′|

2
− τ + τ ′

2
+
ττ ′

T
. (1.32)

Instead of the string-inspired boundary conditions (1.8), this Green’s function is adapted

to Dirichlet boundary conditions,

qµ(0) = qµ(T ) = 0 . (1.33)

These boundary conditions break the translation invariance in proper-time, so that one now

has to distinguish between derivatives with respect to the first and the second argument.

– 7 –
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k2

+ p −p′
+

kN k3 k1 k2

· · ·
· · ·

+
p −p′

+

kN k3 k1 k2

· · ·
· · ·

p −p′

kN k3 k2 k1

· · ·

p −p′

kN k3 k1

· · ·

......

+ +

+ +

Figure 2. Multi-photon Compton scattering diagram in scalar QED (we do not distinguish the

propagator of the matter field between scalar or spinor QED, choosing to indicate both with a

solid line). The seagull vertices in the second row are once again produced by the δ-function in the

second derivative of the open-line Green function ∆.

A convenient notation is [88] to use left and right dots to indicate derivatives with respect

to the first and the second argument, respectively:

•∆(τ, τ ′) =
τ ′

T
+

1

2
sign(τ − τ ′)− 1

2
,

∆•(τ, τ ′) =
τ

T
− 1

2
sign(τ − τ ′)− 1

2
,

•∆•(τ, τ ′) =
1

T
− δ(τ − τ ′) . (1.34)

We will also need the coincidence limits

∆(τ, τ) =
τ2

T
− τ ;

•∆(τ, τ) = ∆•(τ, τ) =
τ

T
− 1

2
. (1.35)

Note that, apart from the different boundary conditions, the Green’s functions ∆ and

GB differ also by a conventional factor of two in their normalisation. Finally, since ∆

is somewhat less convenient than GB, it is sometimes useful to observe that the two are

related by

2∆(τ, τ ′) = GB(τ, τ ′)−GB(τ, 0)−GB(0, τ ′) . (1.36)

The master formula (1.30) represents the un-truncated dressed propagator, that is the

sum of diagrams given in figure 2, where the final scalar propagators at each end are

included. This technical point will play an important role in the following. The momenta

p, p′, k1, . . . , kN are all ingoing.

In [87] it was obtained by a comparison with the Schwinger-parameter representation

of the corresponding Feynman diagrams. The same formula has recently been rederived

from the path integral representation (1.2) in [89].
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The worldline formalism has also been applied to the fermion line case [78, 80], but

a Bern-Kosower type master formula for the dressed propagator has not been derived so

far. The purpose of the present paper is to solve this long-standing problem, obtain such

a formula, and to demonstrate its usefulness as an alternative to the standard Feynman

diagram formalism. We will start from the well-known second-order representation of the

x-space Dirac propagator Sx
′x[A] in a Maxwell background,

Sx
′x[A] =

[
m+ i /D

′]
Kx′x[A] , (1.37)

where /D = γµDµ, Dµ = ∂µ + ieAµ and2

Kx′x[A] ≡
〈
x′
∣∣∣[m2 −DµD

µ +
i

2
eγµγνFµν

]−1∣∣∣x〉 . (1.38)

For this “kernel” function, we will then derive the following path integral representation:

Kx′x[A] =

∫ ∞
0

dT e−m
2T e−

1
4

(x−x′)2
T

∫ q(T )=0

q(0)=0
Dq e−

∫ T
0 dτ

(
1
4
q̇2+ie q̇·A+iex

′−x
T
·A
)

× 2−
D
2 symb−1

∫
ψ(0)+ψ(T )=0

Dψ e−
∫ T
0 dτ

[
1
2
ψµψ̇µ−ieFµν(ψ+η)µ(ψ+η)ν

]
. (1.39)

Here ηµ is an external Grassmann Lorentz vector, and the “symbol map,” symb, converts

products of η’s into fully antisymmetrised products of Dirac matrices; we will discuss the

details in section 3 below.

Following this we perform the usual projection onto an N -photon background, and

use the path integral representation (1.39) to derive master formulas for the N -photon

kernel K both in configuration and in momentum space. Those master formulas, given

later in (4.6) and (5.3), are the central results of the paper.

Returning from the kernel K to the propagator itself, we will then also Fourier trans-

form our starting identity (1.37) to momentum space. Projected on the N -photon sector,

it turns into

Sp
′p
N [k1, ε1; . . . ; kN , εN ] = (/p

′ +m)Kp′p
N [k1, ε1; . . . ; kN , εN ]

−e
N∑
i=1

/εiK
p′+ki,p
(N−1) [k1, ε1; . . . ; k̂i, ε̂i; . . . ; kN , εN ] . (1.40)

Here in the second term the ‘hat’ on εi and ki means omission. We will work out this

formula for N = 0, 1, 2 to see how the equivalence to the standard formalism comes about

in detail. As expected, the scalar QED calculations are close to the standard field theory

ones, while in the fermion case nontrivial rearrangements have to be done to match the

textbook Feynman diagram calculations.

The organisation of this paper, the first part in a series of three, is as follows: as

a warm-up, in section 2 we shortly retrace the derivation of the scalar open line master

formula (2.23) from the path integral representation (1.2), following [89]. In section 3

2See appendix A for our conventions.
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we derive the worldline path integral representation (1.39) of the kernel K starting from

field theory. Sections 4 and 5 contain the derivations of the configuration and momentum

space master formulas, respectively. In section 6 we provide a different derivation of the N -

photon kernel that keeps track of the orbital and spin contributions to the basic interaction

between the electron and the photon in the underlying second-order formalism. We then

move on from the N -photon kernel to the fully dressed electron propagator in section 7.

We work out the cases N = 0, 1, 2 and study the equivalence to the standard formalism,

still off-shell, which happens in a quite non-obvious way. As a state-of-the-art application,

in section 8 we recalculate the one-loop fermion self energy (in arbitrary dimension and

covariant gauge). Section 9 offers our summary, and an outlook on future applications

and generalisations.

There are four appendices: appendix A lists our conventions. Appendix B offers an

alternative, more “principled,” derivation of the worldline path-integral representation of

the electron propagator that, contrary to the one given in the main text, minimises the use

of field theory concepts. Appendix C is devoted to the representation of the Feynman spin

factor in terms of a Grassmann path integral. Finally, in D we prove a hypergeometric

identity that we use in section 8 to simplify our result for the fermion self energy.

The forthcoming second part of this series will be devoted to the use of the master

formulas derived here for on-shell calculations such as cross-sections, the third part to the

inclusion of a constant electromagnetic background field.

2 The dressed propagator in scalar QED

In this section, we wish to derive the master formula, eventually given in (2.23), for the

dressed propagator, and discuss some of its properties.

2.1 Derivation of the scalar master formula

Starting from (1.2), and proceeding as in the closed-loop case, we get a representation of

this propagator in terms of the photon vertex operator (1.4) analogous to (1.7):

Dx′x
N (k1, ε1; · · · ; kN , εN ) = (−ie)N

∫ ∞
0

dT e−m
2T

∫ x(T )=x′

x(0)=x
Dx e−

∫ T
0 dτ 1

4
ẋ2

×Vscal[k1, ε1]Vscal[k2, ε2] · · ·Vscal[kN , εN ] . (2.1)

Shifting the path integration variable as

x(τ) = x0(τ) + q(τ) , (2.2)

where x0 is the straight-line trajectory

x0(τ) = x+ (x′ − x)
τ

T
, (2.3)

reduces the boundary conditions to Dirichlet boundary conditions,

q(0) = q(T ) = 0 . (2.4)
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Rewriting the photon vertex operator as in (1.9), (2.1) becomes

Dx′x
N (k1, ε1; · · · ; kN , εN )

= (−ie)N
∫ ∞

0
dT e−m

2T e−
1

4T
(x−x′)2

∫ q(T )=0

q(0)=0
Dq e−

1
4

∫ T
0 dτ q̇2

×
N∏
i=1

∫ T

0
dτi e

∑N
i=1

(
εi· (x

′−x)
T

+εi·q̇(τi)+iki·(x′−x)
τi
T

+iki·x+iki·q(τi)
)∣∣∣
ε1ε2···εN

. (2.5)

The path integral can now be performed by formal Gaussian integration using the worldline

Green function ∆(τ, τ ′), leading to

Dx′x
N (k1, ε1; · · · ; kN , εN ) = (−ie)N

∫ ∞
0

dT e−m
2T e−

1
4T

(x−x′)2(
4πT

)−D
2

×
N∏
i=1

∫ T

0
dτi e

∑N
i=1

(
εi· (x

′−x)
T

+iki·(x′−x)
τi
T

+iki·x
)

(2.6)

×e
∑N
i,j=1

[
∆ijki·kj−2i•∆ijεi·kj−•∆•ijεi·εj

]∣∣∣
ε1ε2···εN

.

(the free path integral normalisation (1.15) holds for Dirichlet boundary conditions as well).

Finally, we also Fourier transform the scalar legs of the master formula in equation (2.6)

to momentum space:

Dp′p
N (k1, ε1; · · · ; kN , εN ) ≡

∫
dDx

∫
dDx′ eip·x+ip′·x′ Dx′x(k1, ε1; · · · ; kN , εN ) . (2.7)

After a change of variables from x, x′ to x±, defined by

x+ =
1

2
(x+ x′) ,

x− = x′ − x , (2.8)

the integral over x+ produces the delta-function for the total conservation of energy-

momentum:

Dp′p
N (k1, ε1; · · · ; kN , εN )

= (−ie)N (2π)DδD

(
p+ p′ +

N∑
i=1

ki

)∫ ∞
0

dT e−m
2T (4πT )−

D
2

∫
dDx− e−

1
4T
x2
−

×
N∏
i=1

∫ T

0
dτi eix−·

(
p′+ 1

T

∑N
i=1(kiτi−iεi)

)
e
∑N
i,j=1

[
∆ijki·kj−2i•∆ijεi·kj−•∆•ijεi·εj

]∣∣∣
ε1ε2···εN

.

(2.9)

Performing also the x− integral, one arrives at the momentum space master formula given

in the introduction, (1.30).
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Let us also introduce some more notation here. The result of expanding out the

exponential factor in (1.30) will be named (−i)N P̄N e(·), namely

(−i)N P̄N e(·) = e−Tb
2+

∑N
i,j=1

[
∆ijki·kj−2i•∆ijεi·kj−•∆•ijεi·εj

]∣∣∣
ε1ε2···εN

, (2.10)

where now

e(·) ≡ e−Tb
2
0+

∑N
i,j=1 ∆ijki·kj , (2.11)

and

b0 ≡ b|ε1=···=εN=0 = p′ +
1

T

N∑
i=1

kiτi (2.12)

(the ‘bar’ on PN is to distinguish it from the corresponding quantity for the closed loop [3]).

2.2 Off-shell IBP

One of the advantages of this master formula’s encoding of the usual Feynman-parameter

integrals in terms of the worldline Green function ∆ is that IBP can be used to remove the

second derivative •∆•, and thus the seagull vertex. This homogenises the integrand and

leads to the automatic appearance of field strength tensors, which again can be arranged

into bi-cycles. Those now take the form (compare (1.18))

•∆(i1i2 . . . in) ≡ •∆i1i2
•∆i2i3 · · · •∆ini1Zn(i1i2 . . . in) (n ≥ 2) , (2.13)

whilst for n = 1 we use
•∆(i) ≡ •∆iiεi · ki.

The same IBP algorithm as in the closed-loop case [3, 16] can be used, and non-vanishing

boundary terms are still not generated due to ∆(τ, τ ′) obeying Dirichlet boundary condi-

tions. The resulting integrand will be called (−i)N Q̄N e(·). Q̄N in general will contain both

∆•(τ, τ ′) and •∆(τ, τ ′), but we will standardise it using the identity ∆•(τ, τ ′) = •∆(τ ′, τ) to

trade the former for the latter throughout.

We will call this IBP algorithm “Off-shell IBP” because it is designed not to gener-

ate any boundary terms. Below we will define an alternative IBP procedure that seems

preferable in the on-shell case.

Let us work out the integrand for N = 1, 2. ForN = 1, the expansion of the exponential

factor in (1.30) yields

P̄1 = 2•∆11ε1 · k1 − 2ε1 · b0 . (2.14)

Here there are no second derivatives yet, so Q̄1 = P̄1.

For N = 2 we find

P̄2 = 4(•∆12ε1 · k2 + •∆11ε1 · k1 − ε1 · b0)(•∆21ε2 · k1 + •∆22ε2 · k2 − ε2 · b0)

−
(

2

T
− 2•∆•12

)
ε1 · ε2 . (2.15)
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Here the last term asks for IBP, which transforms it as

2•∆•12ε1 · ε2 −→ −
(

4•∆12
•∆21k1 · k2 + 2•∆11

•∆21k
2
1 + 2•∆12

•∆22k
2
2

−2•∆12k2 · b0 − 2•∆21k1 · b0
)
ε1 · ε2 , (2.16)

where we have used the identity ∂
∂τi

∆ii = 2•∆ii. Sorting according to cycles, Q̄2 can be

written as

Q̄2 = 4•∆(12) + 4•∆12ε1 · k2(•∆(2)− ε2 · b0) + 4(•∆(1)− ε1 · b0)•∆21ε2 · k1

+4(•∆(1)− ε1 · b0)(•∆(2)− ε2 · b0) (2.17)

−
(

2

T
+ 2•∆11

•∆21k
2
1 + 2•∆12

•∆22k
2
2 − 2•∆12k2 · b0 − 2•∆21k1 · b0

)
ε1 · ε2 .

2.3 The QED Ward identity

The amplitude Dp′p
N (k1, ε1; · · · ; kN , εN ) should fulfill the QED Ward identity, i.e. replac-

ing any

εi → ki (2.18)

should give something that does not contribute on-shell. This property is not obvious

from the master formulas (2.9) or (1.30), but is easily seen in the path-integral representa-

tion (2.1). The replacement (2.18) turns the vertex operator Vscal[ki, εi] into

Vscal[ki, ki] =
1

i

∫ T

0
dτi

d

dτi
eiki·x(τ) = −i( eiki·x(T ) − eiki·x(0))

= −i( eiki·x
′ − eiki·x) . (2.19)

Under the Fourier transformation (2.7), the first term in brackets will change the denom-

inator of the right-most scalar propagator (in the conventions of figure 2) from p′2 + m2

to (p′ + ki)
2 +m2, while the second term changes the denominator of the left-most scalar

propagator from p2 + m2 to (p + ki)
2 + m2. Thus neither term conserves the double pole

that by the LSZ theorem is necessary for contributing to the on-shell matrix element.

We can take advantage of the Ward identity to achieve manifest gauge invariance at

the integrand level. Namely, let us choose for each ki a “reference vector” ri such that

ki · ri 6= 0, and define the modified vertex operator

Vscal[k, ε, r] ≡ Vscal[k, ε] + i
ε · r
k · r

∫ T

0
dτ

d

dτ
eik·x(τ)

=

∫ T

0
dτ
r · f · ẋ
r · k eik·x(τ) =

∫ T

0
dτ eik·x(τ)+ r·f ·ẋ

r·k

∣∣∣
f
. (2.20)

Plugging this back into (2.1) and Fourier transforming to momentum space the on-shell

version of the master formula for the dressed propagator in terms of the field strength
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tensors is given by

Mp′p(k1, f1; · · · ; kN , fN )

≡ (p′2 +m2)Dp′p
N (k1, f1; · · · ; kN , fN )(p2 +m2)

= (−ie)N (2π)DδD
(
p+ p′ +

N∑
i=1

ki

)∫ ∞
0

dT e−m
2T (4πT )−

D
2

∫
dDx− e−

1
4T
x2
−

×
N∏
i=1

∫ T

0
dτi e

ix−·
(
p′+ 1

T

∑N
i=1(kiτi+i

fi·ri
ri·ki

)
)

×e
∑N
i,j=1

[
∆ijki·kj−2i•∆ij

ri·fi·kj
ri·ki

+•∆•ij
ri·fi·fj ·rj
ri·ki rj ·kj

]∣∣∣
f1f2···fN

, (2.21)

which will be discussed more in the forthcoming part 2. Retracing the derivation of the

master formula (1.10) with this modified vertex operator, we arrive at the “covariantised

Bern-Kosower master formula” (henceforth we usually omit the global energy-momentum

conservation factor)

Γscal[k1, ε1; . . . ; kN , εN ]

= (−ie)N
∫ ∞

0

dT

T
(4πT )−

D
2 e−m

2T
N∏
i=1

∫ T

0
dτi (2.22)

× exp

{
N∑

i,j=1

[
1

2
GBijki · kj − iĠBij

ri · fi · kj
ri · ki

− 1

2
G̈Bij

ri · fi · fj · rj
ri · ki rj · kj

]}∣∣∣∣∣
f1f2...fN

.

In [17] this version of the master formula was obtained by IBP at the parameter inte-

gral level and called the “R-representation.” Note that it reduces to the original master

formula (1.10) if ri · εi = 0 for all i.

2.4 Alternative forms of the master formula

Finally, let us also give two alternative forms of the master formula (1.30). Writing the

worldline Green function explicitly, and taking advantage of some cancellations in the

exponent, one can rewrite it as

Dp′p
N (k1, ε1; · · · ; kN , εN )

= (−ie)N
∫ ∞

0
dT e−T (m2+p′2)

∫ T

0

N∏
i=1

dτi e
∑N
i=1(−2ki·p′τi+2iεi·p′) (2.23)

×e
∑N
i,j=1

[( |τi−τj |
2
−
τi+τj

2

)
ki·kj−i(sign(τi−τj)−1)εi·kj+δ(τi−τj)εi·εj

]∣∣∣
ε1ε2···εN

.

And this can be written even more compactly at the expense of introducing some more

notation. Namely, defining

k0 ≡ p′ , kN+1 ≡ p , τ0 ≡ T , τN+1 ≡ 0 , ε0 ≡ 0 , εN+1 ≡ 0 , (2.24)
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we can, using energy-momentum conservation in the exponent, arrive at the following form:

Dp′p
N (k1, ε1; · · · ; kN , εN )

= (−ie)N
∫ ∞

0
dT e−m

2T

×
∫ T

0

N∏
i=1

dτi e
∑N+1
i,j=0

[
1
2
|τi−τj |ki·kj−isign(τi−τj)εi·kj+δ(τi−τj)εi·εj

]∣∣∣
ε1ε2···εN

. (2.25)

It is this form of the momentum space master formula that was previously obtained by

Daikouji et al. [87] by a direct comparison with the corresponding Feynman-Schwinger

parameter integrals and later in [89] using the worldline formalism. It turns out that the

above formula has the advantage of leading to manifest worldline Poincarè invariance on

the mass-shell of the scalar particle [50]. This provides a worldline analogue of the well-

known fact that in string theory the worldsheet theory becomes conformally invariant only

if all vertex operator insertions are on-shell.

3 Path integral representation of the electron propagator in an Abelian

background field

Contrary to the scalar case, there are various routes to obtain a worldline path integral

representation of the fermion propagator in a Maxwell background. In this section, we

will present a field-theory based construction that essentially follows [90], delegating some

technical details to appendix C. The same representation is rederived in appendix B from

an intrinsic worldline point of view.

The most specific feature of the method presented here, is the use of “Weyl symbols”,

defined in (3.6) below, to represent fermionic operators [91–93]. See [94–96, 98] for the

alternative “holomorphic representation.”

We look for a path integral representation of

Sx
′x[A] = =

〈
x′
∣∣[m− i /D]−1∣∣x〉 =

〈
x′
∣∣[m− i/∂ + e /A

]−1∣∣x〉 =
〈
x′
∣∣[m+ /p+ e /A

]−1∣∣x〉 .
(3.1)

We start with using the Gordon identity

/D
2

= −DµD
µ +

i

2
eγµγνFµν , (3.2)

to rewrite [
m− i /D

]−1
=
[
m+ i /D

][
m+ i /D

]−1[
m− i /D

]−1

=
[
m+ i /D

][
m2 −DµD

µ +
i

2
eγµγνFµν

]−1

. (3.3)

This brings us to the formulas defining the second-order representation that we already

quoted in the introduction, (1.37) and (1.38). The kernel Kx′x[A] is formally identical with
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the propagator for a scalar particle in the background containing the gauge field A and the

matrix-valued potential V = i
2 eγ

µγνFµν . It is thus straightforward to obtain the following

path integral representation for it (see, e.g., [3])

Kx′x[A] =

∫ ∞
0

dT e−m
2T

∫ x(T )=x′

x(0)=x
DxP e−

∫ T
0 dτ

(
1
4
ẋ2+ie ẋ·A+ i

2
eγµγνFµν

)
, (3.4)

which generalises (1.6) to the open-line case. We now wish to remove the path-ordering P.

This requires an identity like the one we used for the closed-loop case, (1.19), but without

taking the trace. As we show in appendix C, this identity is

Pe−
∫ T
0 dτ i

2
eFµνγµγν = 2−

D
2 symb−1

∫
A
Dψ e−

∫ T
0 dτ

[
1
2
ψµψ̇µ−ieFµν(ψ+η)µ(ψ+η)ν

]
. (3.5)

Here the symbol map, symb, is defined by

symb
(
γα1α2···αn) ≡ (−i

√
2)nηα1ηα2 . . . ηαn , (3.6)

where γαβ···ρ denotes the totally antisymmetrised product of gamma matrices:

γα1α2···αn ≡ 1

n!

∑
π∈Sn

sign(π)γαπ(1)γαπ(2) · · · γαπ(n) . (3.7)

Note that in D dimensions the right-hand of (3.6) side will vanish for more than D factors

by the Grassmann property of the ηα.

Putting the pieces together, we arrive at our final path integral representation for the

kernel as given in the introduction, equation (1.39). Together with (1.37) it is a suitable

starting point for calculating the fermionic propagator Sx
′x[A] in the string-inspired for-

malism.

4 Master formula for the N -photon kernel in x-space

Choosing A(x) as a sum of N plane waves with polarisation vectors εµi and wave vectors

kµi as in (1.39), and keeping only the terms containing each polarisation vector linearly, we

get the “N -photon dressed” version of the kernel Kx′x:

Kx′x
N (k1, ε1; . . . ; kN , εN ) = (−ie)N2−

D
2

∫ ∞
0

dT e−m
2T e−

1
4

(x−x′)2
T

∫ q(T )=0

q(0)=0
Dq e−

∫ T
0 dτ q̇

2

4

×symb−1

∫
ψ(0)+ψ(T )=0

Dψ e−
∫ T
0 dτ 1

2
ψψ̇ V x′x

η [k1, ε1] · · ·V x′x
η [kN , εN ] .

(4.1)

Here V x′x
η [k, ε] is the photon vertex operator for the open line, which now reads

V x′x
η [k, ε] =

∫ T

0
dτ

[
ε ·
(
x′ − x
T

+ q̇

)
+ 2iε ·

(
ψ + η

)
k ·
(
ψ + η

)]
eik·
(
x+(x′−x) τ

T
+q(τ)

)
.

(4.2)
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We could now do the double path integral as it stands, using the Green functions GB and

GF and standard Gaussian combinatorics. However, if we aim at a closed-form expression

valid for any N , it will be necessary to find a suitable extension of the exponentiation

formula (1.9) to the fermionic case. As we explained already in the introduction for the

closed-loop case, an elegant way to achieve this is though the introduction of N = 1

worldline superspace, as motivated by the underlying worldline supersymmetry (1.20).

Thus, introducing the worldline superfield

Qµ(τ) ≡ qµ(τ) +
√

2 θψµ(τ) , (4.3)

and using the superspace conventions introduced in the introduction, we can rewrite the

vertex operator (4.2) in the form

V x′x
η [k, ε] =

∫ T

0
dτ

∫
dθ ε ·

[
−θ x

′ − x
T

+
√

2η +DQ

]
eik·
[
x+(x′−x) τ

T
+
√

2θη+Q(τ)
]
. (4.4)

Recall that for the time being we must also treat the polarisation vectors εi as Grassmann

variables. After the usual formal exponentiation of the prefactor, we obtain the required

purely exponential form of the vertex operator:

V x′x
η [k, ε] =

∫ T

0
dτ

∫
dθ eik·x+x′−x

T
(θε+iτk)−

√
2η·(ε+iθk)+ε·DQ+ik·Q

∣∣∣
ε
. (4.5)

Thus the path integral is ready for evaluation by completion of the square, which yields

the following Bern-Kosower type master formula for the N -photon kernel in x-space:

Kx′x
N (k1, ε1; . . . ; kN , εN )

= (−ie)N symb−1

∫ ∞
0

dT

(4πT )
D
2

e−m
2T e−

1
4

(x−x′)2
T

∫ T

0
dτ1 · · ·

∫
dθN

× e
∑N
i=1

[
iki·x+x′−x

T
(θiεi+iτiki)−

√
2η·(εi+iθiki)

]
× e

∑N
i,j=1

[
∆̂ijki·kj+2iDi∆̂ijεi·kj+DiDj∆̂ijεi·εj

]∣∣∣
ε1ε2···εN

. (4.6)

Here ∆̂ is now the super worldline Green’s function appropriate for the combination of

Dirichlet and antiperiodic boundary conditions at hand:

∆̂(τ, θ; τ ′, θ′) ≡ ∆(τ, τ ′) +
1

2
θθ′GF (τ, τ ′) . (4.7)

Let us also write explicitly the derivatives of this Green’s function that appear in the master

formulas:

Di∆̂ij =
1

2
θjGFij − θi•∆ij ;

Dj∆̂ij = −1

2
θiGFij − θj∆•ij ;

DiDj∆̂ij = −1

2
GFij + θiθj

•∆•ij (4.8)

(no summation convention).
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5 Master formula for the N -photon kernel in momentum space

In the following we give the momentum space version of the master formula derived above.

We eventually specialise to D = 4 and work out the explicit form of the kernel for some

simple cases.

5.1 The master formula

We begin by Fourier transforming the master formula (4.6) to momentum space,

Kp′p
N (k1, ε1; . . . ; kN , εN ) =

∫
dDx

∫
dDx′ eip·x+ip′·x′ Kx′x

N (k1, ε1; . . . ; kN , εN ) . (5.1)

After a change of variables from x, x′ to x± as in (2.8), the x+-integral produces the global

momentum conservation factor (2π)DδD(p+ p′+
∑N

i=1 ki), which we omit in the following.

The x−-integral can, using momentum conservation, be written as∫
dDx− e−

1
4

x2
−
T

+
[
ip′+ 1

T

∑N
i=1(θiεi+iτiki)

]
·x− = (4πT )

D
2 eT

[
ip′+ 1

T

∑N
i=1(θiεi+iτiki)

]2
. (5.2)

This brings us to

Kp′p
N (k1, ε1; . . . ; kN , εN ) = (−ie)N symb−1

∫ ∞
0

dT e−m
2T

∫ T

0
dτ1 · · ·

∫
dθN eExp

∣∣∣
ε1ε2···εN

,

(5.3)

where

Exp = T

[
ip′ +

1

T

N∑
i=1

(θiεi + iτiki)

]2

−
N∑
i=1

√
2η · (εi + iθiki)

+
N∑

i,j=1

[
∆̂ijki · kj + 2iDi∆̂ijεi · kj +DiDj∆̂ijεi · εj

]
. (5.4)

Using (4.8), (1.34) and momentum conservation, this can be written explicitly as (in the

following we often abbreviate sign(τi − τj) by σij and δ (τi − τj) by δij)

Exp = −p′2T −
N∑
i=1

√
2η · (εi + iθiki) +

1

2

N∑
i,j=1

θiθjσijki · kj

+

N∑
i=1

(iθiεi − τiki) ·
(
p′ − p−

N∑
j=1

σijkj

)
− i

N∑
i,j=1

σijεi · kjθj

−1

2

N∑
i,j=1

(
σij + 2θiθjδij

)
εi · εj . (5.5)

This appears to be the most useful form of writing the exponent of the momentum-space

master formula. Nevertheless, let us mention in passing that there is also a suggestive form

of the exponent that generalises (2.25). There we found that, in the scalar case, with the
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additional definitions (2.24) the exponent can be rewritten purely in terms of the functions

|τi− τj |, sign(τi− τj) and δ(τi− τj), that is, in terms of the Green’s function for the second

derivative on the line

g(τ, τ ′) ≡ 1

2
|τ − τ ′| , (5.6)

and its derivatives. Worldline supersymmetry then leads one to suspect that, in spinor

QED, a similar rewriting should be possible in terms of the supersymmetric generalisation

of this Green’s function, and its super-derivatives. This Green function can be given in

terms of the super-distance on the line, |τ − τ ′|+ θθ′sign(τ − τ ′), as (see, e.g., [11, 99]):

ĝ(τ, θ; τ ′, θ′) ≡ 1

2
(|τ − τ ′|+ θθ′sign(τ − τ ′)) (5.7)

so that

Di ĝij = −1

2
(θi − θj)σij

DiDj ĝij = −1

2
(σij + 2θiθjδij) . (5.8)

And indeed, further defining θ0 = θN+1 ≡ 0 we can rewrite the kernel in the following,

more compact way:

Kp′p
N (k1, ε1; . . . ; kN , εN )

= (−ie)N symb−1

∫ ∞
0

dT e−m
2T

∫ T

0
dτ1 · · ·

∫
dθN

× e−
√

2η·
∑N
i=1(εi+iθki)+

∑N+1
i,j=0

[̂
gijki·kj+2iDîgijεi·kj+DiDjĝijεi·εj

]∣∣∣
ε1···εN

. (5.9)

5.2 The master formula for D = 4

So far everything we have done is valid in any even dimension. From now on we specialise

to the four-dimensional case, which will allow us to process the master formula further.

The right-hand side of the symbol identity (3.6) then can have at most four factors. Since

moreover the kernel Kp′p
N is even in the ηαs (which is clear already from the definition of

the kernel in x-space, (1.38), but is also easy to check from (5.3)), the symbol map will

appear now only with zero, two or four ηαs. Thus all we shall ever need is

symb−1(1) = 1l ;

symb−1(ηα1ηα2) = −1

4
[γα1 , γα2 ] ; (5.10)

symb−1(ηα1ηα2ηα3ηα4) =
1

96

∑
π∈S4

sign(π)γαπ(1)γαπ(2)γαπ(3)γαπ(4) = − i
4
εα1α2α3α4γ5 .

Expanding out the master formula (5.3), (5.4) in powers of η, and using (5.10), we can write

Kp′p
N = (−ie)N Kp

′p
N

(p2 +m2) (p′2 +m2)
;

Kp
′p
N = AN11 +BNαβσ

αβ − iCNγ5 , (5.11)
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where σαβ = 1
2 [γα, γβ ] and

AN = (p2 +m2)(p′2 +m2)

∫ ∞
0

dT e−m
2T

∫ T

0
dτ1 · · ·

∫ T

0
dτN eExp(η=0)

∣∣∣
θN ···θ1ε1···εN

;

Bαβ
N = (p2 +m2)(p′2 +m2)

∫ ∞
0

dT e−m
2T

∫ T

0
dτ1 · · ·

∫ T

0
dτN

×1

2

N∑
i,j=1

(εi + iθiki)
α(εj + iθjkj)

β eExp(η=0)
∣∣∣
θN ···θ1ε1···εN

; (5.12)

CN = (p2 +m2)(p′2 +m2)

∫ ∞
0

dT e−m
2T

∫ T

0
dτ1 · · ·

∫ T

0
dτN

× 1

4!

N∑
i,j,k,l=1

ε(εi + iθiki, εj + iθjkj , εk + iθkkk, εl + iθlkl) eExp(η=0)
∣∣∣
θN ···θ1ε1···εN

.

Here we use the notation ε(a, b, c, d) ≡ εαβγδaαbβcγdδ. The factors (p2 + m2)(p′2 + m2)

have been introduced for later convenience. The coefficient matrix Bαβ
N will be taken to be

antisymmetric.

We note that, comparing (1.38) and (5.11), it is clear that the contribution to Kp
′p
N

involving AN has a part that by itself just gives, after dropping the unit matrix, the

(truncated) dressed propagator in scalar QED. Thus we will denote this contribution by

Ascal
N , and write AN = Ascal

N +AψN .

5.3 Explicit form of the kernel for D = 4 and N = 0, 1, 2

Let us work out here the explicit form of the kernel for N = 0, 1, 2, as illustrative examples

and since these results will be needed for our calculations below in any case. Here we

use (5.3) and (5.4) rather than (5.9). The algebra is simple, starting with the expansion of

the exponent and the truncation to the terms that are linear in all θi and εi, only it should

be kept in mind that all Grassmann variables (including the dθi) anticommute with each

other, and that, to determine the absolute sign of the kernel, it is necessary to anticommute

all the polarisation vectors to the left (or the right) of all other Grassmann variables, and

into the standard ordering ε1 · · · εN . Since we are computing the equivalent of tree-level

diagrams in momentum space, it is furthermore clear a priori that nontrivial or divergent

parameter integrals cannot arise. In the following we will also set the electron charge e = 1.

For Kp′p
0 we find simply

Kp′p
0 = symb−1

∫ ∞
0

dT e−m
2T−p′2T =

1l

p′2 +m2
=

1l

p2 +m2
, (5.13)

which coincides with the scalar propagator of the second order formalism shown in figure 1.

For N = 1 we find

Kp′p
1 = (−i) symb−1

∫ ∞
0

dT e−(m2+p′2)T

∫ T

0
dτ

∫
dθ

×exp
{
−
√

2η · (ε+ iθk) + (p′ − p) · (iθε− τk)
}∣∣∣
ε

(5.14)
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= (−i) symb−1
(
i(p′ − p) · ε+ 2iε · ηk · η

)∫ ∞
0

dT e−(m2+p′2)T

∫ T

0
dτ e−τk·(p

′−p)

=
(p′ − p) · ε1l + 1

2(/k/ε − /ε/k)

(p2 +m2)(p′2 +m2)
=

/ε/p− /p′/ε
(p2 +m2)(p′2 +m2)

=
/ε(/p−m)− (/p′ −m)/ε

(p2 +m2)(p′2 +m2)
,

which we shall later relate to the electron-photon vertex. Finally the calculation for N = 2

leads in the first place to the integral representation

Kp′p
2 = (−i)2symb−1

∫ ∞
0

dT e−(m2+p′2)T

∫ T

0
dτ1dτ2

×
{

4ε1 · ηε2 · ηk1 · ηk2 · η + 2k1 · k2ε1 · ηε2 · η σ12 + 2ε1 · ε2k1 · ηk2 · ησ12

−2
[
ε1 · ηk1 · ηε2 · (p′ − p) + (1↔ 2)

]
− 2
[
ε1 · η(k1 + k2) · ηε2 · k1σ12 + (1↔ 2)

]
−ε1 · (p′ − p+ σ21k2)ε2 · (p′ − p+ σ12k1)− ε1 · k2ε2 · k1 + k1 · k2ε1 · ε2

+2ε1 · ε2δ12

}
ek1·k2|τ1−τ2|−(p′−p)·(τ1k1+τ2k2) . (5.15)

Note that in (5.15), as well as in the final line of (5.14), the polarisation vectors have turned

back into ordinary vectors, leaving the vector η as the only anticommuting quantity.

For Kp′p
2 , due to the presence of the σij factors in the integrand performing the pa-

rameter integrals now requires a case distinction between τ1 ≥ τ2 and τ1 ≤ τ2. From our

starting point (4.1) it is clear that these two sectors differ only by an interchange of the

two photons, so that it is sufficient to calculate the contribution of the first one. Special

treatment is needed for the last term in braces in (5.15), involving δ12; it corresponds to

the contribution of the seagull vertex, and has to be split between the two sectors. Thus

we have to calculate two integrals:∫ ∞
0

dT e−(m2+p′2)T

∫ T

0
dτ1

∫ τ1

0
dτ2 ek1·k2(τ1−τ2)−(p′−p)·(τ1k1+τ2k2)

=
1

(m2 + p2)[m2 + (p′ + k1)2](m2 + p′2)
, (5.16)

∫ ∞
0

dT e−(m2+p′2)T

∫ T

0
dτ1

∫ T

0
dτ2 δ(τ1 − τ2) ek1·k2|τ1−τ2|−(p′−p)·(τ1k1+τ2k2)

=
1

(m2 + p2)(m2 + p′2)
. (5.17)

we can write Kp′p
2 as

Kp′p
2 =

1

(m2 + p2)(m2 + p′2)

×
{
−2ε1 · ε2 +

[
1

m2 + (p′ + k1)2

(
ε1 · (p′ − p− k2)ε2 · (p′ − p+ k1)

+ε1 · k2ε2 · k1 − k1 · k2ε1 · ε2 +
1

2
ε1 · ε2[/k1, /k2] +

1

2
k1 · k2[/ε1, /ε2]

+
1

2
ε1 · k2[/ε2, /k1]− 1

2
[/ε1, /k2]ε2 · k1 −

1

2
ε1 · (p′ − p− k2)[/ε2, /k2]

−1

2
[/ε1, /k1]ε2 · (p′ − p+ k1) + iγ5ε(ε1, ε2, k1, k2)

)
+ (1↔ 2)

]}
. (5.18)
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In the decomposition (5.11) this reads

Ascal
2 = 2ε1 · ε2 −

[
1

m2 + (p′ + k1)2
ε1 · (p′ − p− k2)ε2 · (p′ − p+ k1) + (1↔ 2)

]
Aψ2 = −

[
1

m2 + (p′ + k1)2
+ (1↔ 2)

]
1

2
tr(f1f2)

Bαβ
2 =

1

m2 + (p′ + k1)2

(
−ε1 · ε2 k

α
1 k

β
2 − k1 · k2 ε

α
1 ε
β
2 − ε1 · k2 ε

α
2 k

β
1 + ε2 · k1 ε

α
1 k

β
2

+ε1 · (p′ − p− k2)εα2 k
β
2 + ε2 · (p′ − p+ k1)εα1 k

β
1

)
+ (1↔ 2)

C2 =

(
1

m2 + (p′ + k1)2
+

1

m2 + (p′ + k2)2

)
εα1 ε

β
2k

γ
1k

δ
2εαβγδ . (5.19)

To compare with the standard formalism, one can complete the antisymmetrised products

of Dirac matrices to full products, to arrive at

Kp′p
2 =

1

(m2 + p2)(m2 + p′2)

{
1

m2 + (p′ + k1)2

[
−/ε1(/p

′ + /k1 +m)/ε2(/p−m)

−(/p
′ −m)/ε1/ε2(/p−m) + (/p

′ −m)/ε1(/p
′ + /k1 −m)/ε2

]
+(1↔ 2)

}
. (5.20)

For checking the equivalence of (5.18) and (5.20), note that the first equation decomposes

Kp′p
2 in terms of the standard basis of the Dirac representation of the Clifford algebra,

given by the 16 matrices {ΓA} ≡ {1l, γµ, σµν , γµγ5, γ5}, of which only the even subalgebra

appears here, however. The coefficients of the decomposition X = xAΓA of an arbitrary

4× 4 matrix X in this basis can be obtained using the trace:

xA =
1

4
tr (XΓA) , (5.21)

where ΓA denotes the inverse of ΓA. In this way one finds, for arbitrary Lorentz vectors

a, b, c, d, the identity

/a/b/c/d = (a · b c · d− a · c b · d+ a · d b · c)1l− iε(a, b, c, d)γ5 (5.22)

−1

2

(
[/a, /b]c · d− [/a, /c]b · d+ [/a, /d]b · c+ [/b, /c]a · d− [/b, /d]a · c+ [/c, /d]a · b

)
.

Using this formula it is straightforward to go from (5.20) to (5.18).

6 Spin-orbit decomposition of the N -photon kernel

The vertex operator (4.2) representing the coupling of the fermion line to a photon separates

this interaction into two parts: the first part in the square brackets on the right-hand side

is the same as for the scalar case, and thus must represent the orbital degree of freedom

of the fermion, the second one implements the fermion spin and we refer to this as the
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spin interaction. This suggests that useful physical information should be contained in a

decomposition of the kernel KN in terms of the number of spin interactions:

KN =

N∑
S=0

KNS , (6.1)

where KNS denotes the contribution to the kernel involving S spin and N -S orbital inter-

actions. In particular, KN0 coincides (up to the unit matrix in spin-space) with the kernel

for scalar QED.

While this decomposition could be extracted from our various superfield master for-

mulas above, here we find it more convenient to return to the component version of the

fermionic path integral, equation (4.1), and to draw on known results for the closed-loop

case. Let us denote by Vη the spin part of the integrand of the vertex operator (4.2),

omitting the exponential factor:

Vη[k, ε] ≡ 2iε ·
(
ψ + η

)
k ·
(
ψ + η

)
= −i

(
ψ + η

)
· f ·

(
ψ + η

)
(6.2)

(note that, in the component formalism, the polarisation vectors remain ordinary commut-

ing vectors throughout).

For η = 0, it is known from the closed-loop case how to Wick-contract a product of any

number of such objects in closed form [3, 9, 10, 15]. Namely, define a “fermionic bi-cycle

of length n” by

GF (i1i2 . . . in) ≡ GFi1i2GFi2i3 · · ·GFini1Zn(i1i2 . . . in) (n ≥ 2) , (6.3)

where Zn was defined in (1.16). Then the Wick contraction of S factors of Vη=0 can be

written as

Wη=0(k1, ε1; . . . ; kS , εS) ≡ iS
〈
Vη=0[k1, ε1] · · ·Vη=0[kS , εS ]

〉
=

∑
partitions

(−1)cyGF (i1i2 . . . in1)GF (in1+1 . . . in1+n2)

× · · ·GF (in1+...+ncy−1+1 . . . in1+...+ncy) .

(6.4)

Here in the last line the sum runs over products of up to S bi-cycles, cy = 1, . . . , S, cy

denoting the number of cycles and nk the length of the cycle k, and over all inequivalent

possibilities to distribute the indices 1, . . . , S among the arguments of the bi-cycles. Here

two bi-cycles are considered equivalent if their arguments can be identified by cyclic rotation

and/or inversion; e.g., GF (1234) is equivalent to GF (2341), GF (4321) and GF (3214), but

inequivalent to GF (1243) and GF (1324) (inequivalent cycles first appear at the four-point

level). Products of cycles are considered equivalent if all of their factors are equivalent.

For example,

Wη=0(k1, ε1) = 0 ;

Wη=0(k1, ε1; k2, ε2) = −GF (12) ;
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Wη=0(k1, ε1; k2, ε2; k3, ε3) = −GF (123) ;

Wη=0(k1, ε1; k2, ε2; k3, ε3; k4, ε4) = −GF (1234)−GF (1243)−GF (1324)

+GF (12)GF (34) +GF (13)GF (24) +GF (14)GF (23) .

(6.5)

For arbitrary S, a closed-form expression for Wη=0 can be given in terms of a Pfaffian

determinant:

Wη=0(k1, ε1; . . . ; kS , εS) = 2S
√

det
(
GFijvi · vj

)
, (6.6)

where i = 1, . . . , 2S and {vi} is the joined set of all momentum and polarisation vectors

(in any ordering).

Since the transition to η 6= 0 amounts only to the shift ψ(τ)→ ψ(τ)+η, it can be simply

implemented by adding, to the cycle products of (6.4), all possible terms where cycles get

broken into chains by insertions of ηs. Defining a “fermionic bi-chain of length n” by

GF |i| ≡ ηfiη ;

GF |i1i2 . . . in| ≡ 2GFi1i2GFi2i3 · · ·GFi(n−1)inηfi1fi2 · · · finη (n ≥ 2) (6.7)

we can generalise (6.4) to

Wη(k1, ε1; . . . ; kS , εS) ≡ iS
〈
Vη[k1, ε1] · · ·Vη[kS , εS ]

〉
=

∑
partitions

(−1)cyGF (i1i2 . . . im1)GF (im1+1 . . . im1+m2) · · ·

×GF (im1+...+mcy−1+1 . . . im1+...+mcy)

×GF |im1+...+mcy+1 . . . im1+...+mcy+n1 | · · ·
×GF |im1+...+mcy+n1+...nch−1+1 . . . iS | , (6.8)

where now cy denotes the number of cycles, ch the number of chains. Again the sum

runs over all inequivalent partitions, where for the chains the only equivalence relation is

inversion, GF |i1i2 . . . in| = GF |in . . . i2i1|. Note that the sign of a term still depends only

on the number of cycles it contains. For example,

Wη(k1, ε1) = GF |1| = ηf1η ;

Wη(k1, ε1; k2, ε2) = −GF (12) +GF |12|+GF |1|GF |2| ,

= −1

2
GF12GF21tr (f1f2) + 2GF12ηf1f2η + ηf1η ηf2η ;

Wη(k1, ε1; k2, ε2; k3, ε3) = −GF (123)−
[
GF (12)GF |3|+ 2 cycl. perm.

]
+GF |123|+GF |231|+GF |312|

+
[
GF |12|GF |3|+ 2 cycl. perm.

]
+GF |1|GF |2|GF |3| ,
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= −GF12GF23GF31tr (f1f2f3)

−
[

1

2
GF12GF21tr (f1f2)ηf3η + 2 cycl. perm.

]
+2
[
GF12GF23 ηf1f2f3η +GF23GF31 ηf2f3f1η

+GF31GF12 ηf3f1f2η ] + 2
[
GF12 ηf1f2η ηf3η + 2 cycl. perm.

]
+ηf1η ηf2η ηf3η . (6.9)

Here we must remember once more that no more than D factors of η can appear in a

term. Thus in four dimensions the last term appearing in Wη(k1, ε1; k2, ε2; k3, ε3) above

can already be omitted, since it carries six factors of η.

We now combine these results for the spin part with (4.1) and the results of subsec-

tion 2.1 to arrive at the following explicit representation of the spin-orbit decomposition:

KNS =
∑

{i1i2...iS}

K
{i1i2...iS}
NS ,

K
{i1i2...iS}
NS = (−ie)N (−i)N symb−1

∫ ∞
0

dT e−m
2T

N∏
i=1

∫ T

0
dτi

×Wη(ki1 , εi1 ; . . . ; kiS , εiS )P̄
{i1i2...iS}
NS e−Tb

2
0+

∑N
i,j=1 ∆ijki·kj . (6.10)

In the above the sum runs over all choices of S out of the N variables, and the bosonic

prefactor polynomial P̄
{i1i2...iS}
NS is now defined by (compare (1.30), (2.11), (2.12))

e−Tb
2+

∑N
i,j=1

[
∆ijki·kj−2i•∆ijεi·kj−•∆•ijεi·εj

]∣∣
εi1=···=εiS=0

∣∣
εiS+1

···εiN

≡ (−i)N−SP̄ {i1i2...iS}NS e−Tb
2
0+

∑N
i,j=1 ∆ijki·kj . (6.11)

Here the notation on the left-hand side means that one first sets the polarisation vectors

εi1 , . . . , εiS equal to zero, and then selects all the terms linear in the surviving polarisation

vectors. In particular, one has the extremal cases

P̄
{}
N0 = P̄N ,

P̄
{12...N}
NN = 1 . (6.12)

Thus keeping only the S = 0 term we get the N -photon kernel for scalar QED.

As an example, we arrive at the following concise rewriting of the two-photon kernel,

which was previous given in equation (5.15):

Kp′p
2 = symb−1

∫ ∞
0

dT e−(m2+p′2)T

∫ T

0
dτ1dτ2 ek1·k2|τ1−τ2|−(p′−p)·(τ1k1+τ2k2)

×
{
P̄2 +Wη(k1, ε1)P̄

{1}
21 +Wη(k2, ε2)P̄

{2}
21 +Wη(k1, ε1; k2, ε2)

}
. (6.13)
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Here P̄2 was given in (2.15), Wη(k2, ε2) in (6.9) and

P̄
{1}
21 = 2(•∆21ε2 · k1 + •∆22ε2 · k2)− 2ε2 · b0 ,
P̄
{2}
21 = 2(•∆11ε1 · k1 + •∆12ε1 · k2)− 2ε1 · b0 . (6.14)

Alternatively, in (6.10) we can replace P̄
{i1i2...iS}
NS by the corresponding partially integrated

Q̄
{i1i2...iS}
NS (note that the IBP procedure will not generate terms with derivatives acting on

the GFij factors coming from the spin part).

7 The dressed electron propagator in momentum space

Here we finally complete the transition from the second order formalism back to the familiar

first order formalism by transforming KN to the physical N -photon dressed propagator of

the Dirac field.

7.1 From K to S

The main object of interest in this paper is the dressed electron propagator in momen-

tum space. A straightforward Fourier transformation of the x-space formulas (3.1), (3.3)

yields (1.40), which we repeat here for convenience:

Sp
′p
N [k1, ε1; . . . ; kN , εN ] = (/p

′ +m)Kp′p
N [k1, ε1; . . . ; kN , εN ]

−e
N∑
i=1

/εiK
p′+ki,p
(N−1) [k1, ε1; . . . ; k̂i, ε̂i; . . . ; kN , εN ] . (7.1)

Here in the first term on the right-hand side all the polarisation vectors come from the

kernel K, while in the others one was taken from the photon field contained in the covariant

derivative acting on K in formula (1.37).

Here it must also be remarked that our derivation of this identity contained some

arbitrariness: in the first line of (3.3) we could have placed the factor
[
m + iD/

]
to the

right of the others, rather than to the left. If we do this, instead of (1.40) we get the

“reversed” identity

Sp
′p
N [k1, ε1; . . . ; kN , εN ] = Kp′p

N [k1, ε1; . . . ; kN , εN ](−/p+m)

−e
N∑
i=1

Kp′,p+ki
(N−1) [k1, ε1; . . . ; k̂i, ε̂i; . . . ; kN , εN ]/εi . (7.2)

Whichever of the two representations we use of the untruncated propagator Sp
′p
N , for most

purposes it will be necessary to eventually introduce also the truncated (or amputated)

one, which we denote by Ŝp
′p
N . With our conventions, the two are related by

Ŝp
′p
N ≡ (−/p′ +m)Sp

′p
N (/p+m), (7.3)

which simply removes the propagators associated to the external electron legs with mo-

menta p and p′.
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7.2 The cases N = 0, 1, 2

We will now extend our study of the cases N = 0, 1, 2 in D = 4 from the kernel to the

propagator. This has the double purpose of studying how the equivalence with the standard

first-order Feynman rules comes about, and preparing our applications below.

We start with N = 0, that is the free propagator. Combining (5.13) with (1.40) gives

Sp
′p

0 = (/p
′ +m)

1l

p′2 +m2
= (/p

′ +m)(/p
′ +m)−1(−/p′ +m)−1 = (/p+m)−1 . (7.4)

For N = 1, eq. (1.40) gives, using (5.13) and (5.14), as well as momentum conservation,

we find

Sp
′p

1 = (/p
′ +m)Kp′p

1 [ε, k]− /εKp′+k,p
0

= (/p
′ +m)

/ε(/p−m)− (/p′ −m)/ε

(p2 +m2)(p′2 +m2)
− /ε

p2 +m2

=
(/p′ +m)/ε(/p−m)

(p2 +m2)(p′2 +m2)
. (7.5)

It is this result that in fact motivates (7.3) from which we get

Ŝp
′p

1 = (−/p′ +m)
(/p′ +m)/ε(/p−m)

(p2 +m2)(p′2 +m2)
(/p+m) = −/ε , (7.6)

and we have reproduced the Dirac vertex as expected.

For N = 2, eq. (1.40) yields, now using (5.14) and (5.20),

Sp
′p

2 = (/p
′ +m)Kp′p

2 [ε1, k1; ε2, k2]− /ε1K
p′+k1,p
1 [ε2, k2]− /ε2K

p′+k2,p
1 [ε1, k1]

=
(/p′ +m)

(p2 +m2)(p′2 +m2)

{
1

(p′ + k1)2 +m2

[
−/ε1(/p

′ + /k1 +m)/ε2(/p−m)

−(/p
′ −m)/ε1/ε2(/p−m) + (/p

′ −m)/ε1(/p
′ + /k1 −m)/ε2

]
+ (1↔ 2)

}
−
{
/ε1

/ε2(/p−m)− (/p′ + k1 −m)/ε2

[(p′ + k1)2 +m2](p2 +m2)
+ (1↔ 2)

}
. (7.7)

It is then easy to verify that

Ŝp
′p

2 = (−/p′ +m)Sp
′p

2 (/p+m) = /ε1

/p′ + /k1 +m

(p′ + k1)2 +m2
/ε2 + /ε2

/p′ + /k2 +m

(p′ + k2)2 +m2
/ε1 . (7.8)

This is indeed what we get in the standard formalism from the two corresponding Feynman

diagrams in figure 3.

8 The fermion self-energy

Since the master formulae given in equations (7.1), (7.2) hold off-shell, for the N = 2

case they can, by sewing together the two photon legs, be used for the construction of the

one-loop fermion self energy, indicated in figure 4. We will carry out this calculation for

an arbitrary dimension D and gauge parameter ξ, and in close analogy to the worldline

calculation of the self-energy in scalar QED performed in [89].
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p −p′

k1

k2

+

p

k2

−p′
k1

p−p′

+

k2

k1

−p′

+

Figure 3. Feynman diagrams for the Compton scattering amplitude in the standard formalism.

k

p p

p+ k

Figure 4. Electron self-energy diagram.

8.1 Construction of the self energy diagram by sewing

The dressed electron propagator in momentum space for N = 2 is

Sp
′p

2 =
(
/p
′ +m

)
Kp′p

2 (k1, ε1; k2, ε2)− /ε1K
p′+k1,p
1 (k2, ε2)− /ε2K

p′+k2,p
1 (k1, ε1) . (8.1)

We can immediately apply the decomposition (5.11) of K2 with the explicit results for

the coefficients in (5.19). Sewing consists of replacing k1 = −k = −k2 which forces also

p′ = −p and setting

ε1µε2ν →
δµν
k2
− (1− ξ)kµkν

k4
, (8.2)

which generates the photon propagator in an arbitrary covariant gauge. Following these

substitutions, we then integrate over the loop momentum kµ.

With these identifications it is easy to check that C2

∣∣
−k1=k=k2

= 0 and that

Bαβ
2

∣∣
−k1=k=k2

∝ Dkαkβ + k2δαβ + 2(1− ξ)kαkβ . (8.3)

Multiplying this into the anti-symmetric matrix σαβ gives a result that vanishes. This leaves

A2 that is split into its scalar and spin parts that take the following form after sewing:

Ascal
2

∣∣
−k1=k=k2

→ 2

k2

[
D − (2p+ k)2

(p+ k)2 +m2
− (1− ξ)

(
1− k · (2p+ k) (2p+ k) · k

k2 ((p+ k)2 +m2)

)]
,

Aspin
2

∣∣
−k1=k=k2

→ − 2(D − 1)

(p+ k)2 +m2
, (8.4)

where we have taken advantage of the freedom to change the variable of integration k → −k
to simplify the results. Note that the spin contribution to A is independent of the gauge

parameter since the spin interaction is already written in terms of the field strength tensor,

whilst the gauge dependent scalar piece is familiar from scalar QED — see [89]. Putting

these together the contribution to the self energy from A2 becomes (dDk̄ := dDk
(2π)D

)

Asew
2 =

∫
dDk̄

k2

[
D − (2p+ k)2 + (D − 1)k2

(p+ k)2 +m2
+ (1− ξ)

(
(k2 + 2p · k)2

k2 ((p+ k)2 +m2)
− 1

)]
. (8.5)

– 28 –



J
H
E
P
0
8
(
2
0
2
0
)
0
1
8

(we have dropped a factor of 2 that is over-counted due to the permutation symmetry

of external legs before the sewing takes place). Now, the very first and very last terms

correspond to the diagrams with the seagull vertex and these vanish in dimensional regu-

larisation. They can therefore be dropped so that (reinstating the electron charge)

Kp′p
(2,sew) = e2

∫
dDk̄

k2

[
(2p+ k)2 + (D − 1)k2

(m2 + p2)2[m2 + (p+ k)2]

− (1− ξ) (k2 + 2p · k)2

k2(m2 + p2)2[m2 + (p+ k)2]

]
. (8.6)

We must add to this the subleading terms. Likewise using the N = 1 result, (5.14),

applying the sewing procedure to −/ε1K1 and −/ε2K1 we find that each such term provides

(here j 6= i)

− ε/iKp′+ki,p
(1,sew) (kj , εj)

=

∫
dDk̄

k2

[
(2/p− (D − 2)/k)

(p2 +m2)((p+ k)2 +m2)
− (1− ξ) /k

k2

k2 + 2p · k
(p2 +m2)((p+ k)2 +m2)

]
. (8.7)

After combining these terms with (8.6) and using partial fraction decomposition, only five

different integrals remain to be computed, and those are already known from the scalar

QED case [89]:

I1 =

∫
dDq

(2π)D
1

[m2 + (p+ q)2]
=

(m2)
D
2
−1

(4π)
D
2

Γ

(
1− D

2

)
;

I2 =

∫
dDq

(2π)D
1

q2[m2 + (p+ q)2]
= −(m2)

D
2
−2

(4π)
D
2

Γ

(
1− D

2

)
2F1

(
2− D

2
, 1;

D

2
;− p2

m2

)
;

Iµ3 =

∫
dDq

(2π)D
qµ

q2[m2 + (p+ q)2]
= − pµ

2p2

[
I1 + (p2 +m2)I2

]
;

J1 =

∫
dDq

(2π)D
1

q4[m2 + (p+ q)2]
=

(m2)
D
2
−3

(4π)
D
2

Γ

(
1− D

2

)
2F1

(
3− D

2
, 2;

D

2
;− p2

m2

)
;

Jµ2 =

∫
dDq

(2π)D
qµ

q4[m2 + (p+ q)2]
= − pµ

2p2

[
I2 + (p2 +m2)J1

]
. (8.8)

In terms of these integrals, we can write the two contributions to Sp
′p

(2,sew) as

(/p
′ +m)Kp′p

(2,sew) = e2 /p′ +m

(m2 + p2)2

[
4p2I2 + 4p · I3 +DI1 + (m2 + p2)2(ξ − 1)J1

]
(8.9)

and

− /ε(i,sew)K
p′+kj ,p
(1,sew) =

e2

m2 + p2

[
2/pI2 − (D − 2)/I3 − (ξ − 1)(m2 + p2)/J2

]
. (8.10)
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Using the integration results above, we may write the contribution to the self energy

in the following way:

Sp
′p

(2,sew) = e2 (/p′ +m)

(m2 + p2)2

(m2)
D
2
−2

(4π)
D
2

Γ

(
1− D

2

)
×
{

(D − 2)m2 + 2(m2 − p2) 2F1

(
2− D

2
, 1;

D

2
;− p2

m2

)
+ (ξ − 1)

(m2 + p2)2

m2 2F1

(
3− D

2
, 2;

D

2
;− p2

m2

)}
− e2 /p′

2p2(m2 + p2)

(m2)
D
2
−2

(4π)
D
2

Γ

(
1− D

2

)
×
{
−
[
4p2 + (D − 2)(m2 + p2)

]
2F1

(
2− D

2
, 1;

D

2
;− p2

m2

)
+ (D − 2)m2

− (ξ − 1)(m2 + p2)

[
2F1

(
2− D

2
, 1;

D

2
;− p2

m2

)
− m2 + p2

m2 2F1

(
3− D

2
, 2;

D

2
;− p2

m2

)]}
. (8.11)

We are not quite done, however, as we should amputate the external fermions according

to (7.3)

Ŝ p′p
(2,sew) = (−/p′ +m)Sp

′p
(2,sew) (/p+m) ; (8.12)

doing this we can decompose the final result to (our notation follows [100])

Ŝ p′p
2,sew = α(p2, D)/p

′ + β(p2, D)11

where

α(p2, D) =
e2

2p2

(m2)
D
2
−2

(4π)
D
2

Γ

(
1− D

2

)
(D − 2)

×
{

2F1

(
2− D

2
, 1;

D

2
;− p2

m2

)
(m2 − p2)

[
1 +

ξ − 1

D − 2

]
−m2

− 2F1

(
3− D

2
, 2;

D

2
;− p2

m2

)
(m2 + p2)2

m2

ξ − 1

D − 2

}
,

β(p2, D) =
e2(m2)

D
2
−2m

(4π)
D
2

Γ

(
1− D

2

)
(D + ξ − 1) 2F1

(
2− D

2
, 1;

D

2
;− p2

m2

)
. (8.13)

Further simplification can be achieved by using the following identity for the hypergeomet-

ric function 2F1 which we prove in appendix D:

2F1(a, 1, 2− a;−z)(1− z)(1− 2a) + 2F1(a+ 1, 2, 2− a;−z)(1 + z)2 = 2(1− a) , (8.14)

so that with a = 2− D
2 and z = p2

m2 we get

2F1

(
2− D

2
, 1,

D

2
;− p2

m2

)
(m2 − p2)(D − 3)

+ 2F1

(
3− D

2
, 2,

D

2
;− p2

m2

)
(m2 + p2)2

m2
= (D − 2)m2. (8.15)
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Applying this identity to the coefficient function α(p2, D) we obtain the simpler represen-

tation3

α(p2, D) =
e2

2p2

(D − 2)(m2)
D
2
−2

(4π)
D
2

Γ

(
1− D

2

)
× ξ
{

(m2 − p2) 2F1

(
2− D

2
, 1;

D

2
;− p2

m2

)
−m2

}
. (8.16)

In particular, it can now be seen that the coefficient function α(p2, D) is absent for ξ = 0

(Landau gauge).

Davydychev et al. have computed the self-energy in an arbitrary gauge and dimension

for a non-Abelian SU(N) theory [100]. We find complete agreement with their results after

putting their group parameter CF = 1 for the U(1) symmetry of QED and transforming

to Euclidean space (note that their gauge parameter, ξD, is related to ours by ξD = 1− ξ).

8.2 Special gauge choices

Given that our treatment of the propagator naturally splits it up into the two terms that

we have referred to as leading and subleading, we pause here to discuss a natural question

that arises with respect to the gauge parameter, ξ, that we have so far left arbitrary. We

will show that it is possible to choose ξ such that either one of these pieces vanishes.

Firstly we consider removing the subleading piece. This cannot be done at the level

of the integrand in (8.7) so we instead consider the final two terms in (8.11). Apply-

ing (8.15), one is led to the following value of ξ that makes these two terms cancel, which

we call ξ1(p2, D):

ξ1(p2, D) = 1 +
[4p2 + (D − 2)(p2 +m2)]2F1(2− D

2 , 1; D2 ;− p2

m2 )− (D − 2)m2

(D − 2)m2 − 2F1(2− D
2 , 1; D2 ;− p2

m2 )[m2 + p2 + (D − 3)(m2 − p2)]
.

(8.17)

However, this gauge parameter cannot be used in D = 4, since the denominator becomes

singular. In fact, in four dimensions the 1
ε -pole of the subleading term is gauge independent,

and proportional to the expression

e2

m2 + p2

[
(p2 −m2)/p+ 2mp2

]
. (8.18)

3As an aside, we note that the same identity can be used to simplify the expressions given in [89] for the

self energy and vertex in scalar QED. E.g. the scalar self energy can be rewritten (in our present notation)

e2(m2)
D
2
−2

(4π)
D
2

Γ

(
1 − D

2

)[
m2 − 2(m2 − p2)2F1

(
2 − D

2
, 1;

D

2
;− p2

m2

)
+ (1 − ξ)

(p2 +m2)2

m2 2F1

(
3 − D

2
, 2;

D

2
;− p2

m2

)]
=
e2(m2)

D
2
−2

(4π)
D
2

Γ

(
1 − D

2

)[
m2 [1 + (1 − ξ)(D − 2)]

− (m2 − p2)2F1

(
2 − D

2
, 1;

D

2
;− p2

m2

)
[2 + (1 − ξ)(D − 3)]

]
.
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The gauge parameter can, however, be used for QED in D = 2 dimensions, where it

becomes

ξ1(p2, D) = −1− 2(D − 2) + . . . (8.19)

Here we give also the linear term in the ε expansion since, due to the pole contained in

the prefactor Γ(1 − D
2 ) in (8.11), it will have to be included if one wishes to remove the

subleading term completely.

For the leading contribution, the analysis is the same. We find that it vanishes for a

gauge parameter ξ2(p2, D),

ξ2(p2, D) = 1 +
(D − 2)m2 + 2(m2 − p2)2F1(2− D

2 , 1; D2 ;− p2

m2 )

(D − 3)(m2 − p2)2F1(2− D
2 , 1; D2 ;− p2

m2 )− (D − 2)m2
. (8.20)

This time the gauge parameter does not become singular in four dimensions, and expanding

around D = 4 we find that the leading contribution to the propagator can be removed using

ξ2(p2, D) = 3
p2 −m2

m2 + p2
+
p2 −m2

m2 + p2

[
3
m2

p2
log

(
1 +

p2

m2

)
− 2

]
(D − 4) + . . . (8.21)

Note that, in the massless limit, this becomes ξ2(p2, D) → 3 − 2(D − 4), whose constant

term corresponds to Yennie-Fried gauge, ξ = 3. On the other hand, expanding around

D = 2 we find

ξ2(p2, D) = −1 +
3p2 −m2

m2 − p2
(D − 2) + . . . (8.22)

Thus in D = 2 both gauge parameters start with ξ = −1, so that here we can achieve more

than in four dimensions: we can remove the pole of the leading and subleading contribution

simultaneously, and the finite part of one or the other. This does not come unexpected,

since it had been noted already in [101] that the ξ = −1 gauge in two dimensions has

the property of removing the divergence of the one-loop fermion propagator (which in two

dimensions is an IR one). More recently, this property has turned out to be extremely

useful for multiloop calculations in the Schwinger model [102]. It will be interesting to see

whether further simplification can be achieved by one of the generalisations (8.19), (8.22).

Another open question is whether there exist similar choices of gauge that can remove

various contributions at higher order, since it would be advantageous to have the option

of removing the leading term, especially when considering amplitudes with a large number

of photons attached to the line. This is because the leading contribution at order N ,

(/p′ + m)KN involves the N -photon kernel which is progressively more complicated than

the N subleading contributions of the form /εiKN−1. This is clear even in the results for

N = 1 or N = 2 presented above in section 7. At higher order the simplifications gained

by being able to discount KN could be substantial and may help to streamline various

calculations. We leave this for examination in future work.
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9 Conclusions and outlook

In this article we have presented a new — and long overdue — approach to the worldline

path integral representation of the open Dirac-fermion line dressed with N photons. The

formalism is designed to extend to the open-line case the main calculational advantages of

the well-established worldline formulation of the closed fermion loop, such as:

1. Making possible the derivation of compact master formulas representing whole classes

of Feynman diagrams differing by the ordering of the photon legs along a loop or line.

2. Keeping a close analogy between scalar and spinor QED calculations, in particular

with respect to the simple dependence on the loop mass.

3. Minimising the effort in Dirac algebra manipulations through the use of the symbol

map, which effectively avoids long products of Dirac matrices by an early projection

onto the Clifford basis.

4. Allowing the generation of gauge-invariant structures by integration-by-part algo-

rithms, rather than the usual tedious analysis of the QED Ward identities.

Our formalism is based on the second-order approach to spinor QED, which has been

known for decades as an alternative to the standard Dirac approach [20, 21] but rarely

been considered as an alternative for state-of-the-art calculations (although in recent years

it has been used as a starting point for the construction of non-standard abelian gauge

theories [103–108]). It is also close in spirit to first-quantised string theory, and thus shares

some of the superior organisation of string amplitudes, particularly with respect to gauge

invariance, permutation symmetry and worldline supersymmetry.

In the present first part of this series of papers we have focused on the construction of a

Bern-Kosower type master formula for the fermion propagator dressed with N photons, still

off-shell and geared towards the construction of multiloop amplitudes. We have given this

formula in two versions, once using worldline superfields and once via a spin-orbit decom-

position that should contain additional physical information. Both versions are amenable

to numerical implementation. We have explicitly worked out the cases N = 0, 1, 2, and

demonstrated in detail how the equivalence to the standard approach works. The N = 2

result has further been used for a recalculation of the one-loop fermion self energy for ar-

bitrary dimension and arbitrary gauge parameter ξ. Cancellations for special values of ξ

have been found that look promising for investigation at higher-loop order.

The forthcoming second part will focus on on-shell amplitudes and cross sections in-

volving open fermion lines, and in the third part we will add an external constant field

(partial results of the third part have already been published in [109, 110]).

In an independent publication we will use the formalism for an extension of the gener-

alised 2N -point Landau-Khalatnikov-Fradkin transformation introduced in [89] for scalar

QED, to the spinor QED case. Future additional articles will further be devoted to the

application of the formalism to multi-loop g− 2 calculations, and to the derivation of Ball-

Chiu form factors. Generalisations to the non-abelian case and to the inclusion of axial

couplings are also under consideration.
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A Conventions

On the side of the worldline formalism, we work throughout in Euclidean space with metric

(+ + + +), and use Dirac matrices fulfilling {γµ, γν} = −2δµν . On the field theory side,

we Wick rotate to Minkowski space with metric ηµν = diag(−+ + +), and use {γµ, γν} =

−2ηµν . We further define ε0123 = +1 and γ5 = iγ0γ1γ2γ3. The fermion propagator

becomes −i/(/p+m) and the first-order Dirac vertex −ieγµ. The sign of the effective action

corresponds to a tree-level term −1
4FµνF

µν in both Euclidean and Minkowskian spacetimes.

The covariant derivative is Dµ = ∂µ + ieAµ. These Minkowski space conventions coincide

with the textbook of Srednicki [111] except for the sign of the electric charge and that we

use ingoing momenta in Feynman diagrams instead of outgoing ones. The Feynman rules

for the second-order formalism have been given in the introduction, figure 1.

B Intrinsic worldline approach to the electron propagator

In this appendix, we rederive the path-integral representation of the electron propagator

in a more “principled” way, using the principles of quantum mechanics, gauge theory and

(worldline) supersymmetry but no field-theory input.

As is well-known, a spin 1/2 particle can be described in a manifestly covariant way by

a gauge model with one local supersymmetry on the worldline. For the massless case, the

phase space action depends on the particle space time coordinates xµ joined by the real

Grassmann variables ψµ, supersymmetric partners of the former that supply the degrees of

freedom associated to spin. In addition, there are Lagrange multipliers e (the einbein) and

χ (the gravitino), with commuting and anti-commuting character, respectively, that gauge

suitable first class constraints (they form the supergravity multiplet in one dimension).

Eventually, their effect is to eliminate negative norm states from the physical spectrum,

and make the particle model consistent with unitarity at the quantum level.

The action for the massless particle takes the form (given here in Minkowski space)

S =

∫
dτ

(
pµẋ

µ +
i

2
ψµψ̇

µ − eH − iχQ
)
, (B.1)

where the first class constraints are given by

H =
1

2
p2 , Q = pµψ

µ , (B.2)
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that generate through Poisson brackets the N = 1 susy algebra in one dimension

{Q,Q} = −2iH . (B.3)

This algebra is computed by using the graded Poisson brackets of the phase space coordi-

nates, {xµ, pν} = δµν and {ψµ, ψν} = −iδµν , fixed by the symplectic term of the action.

The gauge transformations are generated on the phase space coordinates (x, p, ψ)

through Poisson brackets with V ≡ ζH + iεQ, where ζ and ε are local parameters with ap-

propriate Grassmann parity whilst on gauge fields the gauge transformations are obtained

by using the structure constants of the constraint algebra and turn out to be

δxµ = ζpµ + iεψµ; δpµ = 0 ; δψµ = −εpµ ; (B.4)

δe = ζ̇ + 2iχε ; δχ = ε̇ . (B.5)

Let us now study canonical quantisation to uncover the consequences of the constraints,

and see how the Dirac equation emerges. Promoting the phase space variables to operators

one finds the following (anti) commutation relations

[x̂µ, p̂ν ] = iδµν , {ψ̂µ, ψ̂ν} = ηµν , (B.6)

while other graded commutators vanish. The former relations are realised on the usual

infinite dimensional Hilbert space of functions of the particle coordinates. The latter rela-

tions are seen to give rise to a Clifford algebra that may be identified with the algebra of

the Dirac gamma matrices Γµ, satisfying {Γµ,Γν} = 2ηµν and as such they can be realised

on the finite dimensional Hilbert space of spinors as

ψ̂µ → 1√
2

Γµ , (B.7)

with dimension 2[D2 ]. The full Hilbert space is the direct product of the two Hilbert spaces

obtained above and is identified with the space of spinor fields.

The full information of the physical states, |Ψ〉, resides in the constraints implemented

à la Dirac. In particular, the constraint due to the susy charge Q̂ = p̂µψ̂
µ gives rise to the

massless Dirac equations

p̂µψ̂
µ|Ψ〉 = 0 → Γµ∂µΨ(x) = 0. (B.8)

Likewise the constraint Ĥ|Ψ〉 = 0 leads to the massless Klein Gordon equation for all

components of the spinor Ψ, and is automatically satisfied as a consequence of the algebra

Q̂2 = Ĥ. Thus, we recognise how a first quantised description of a spin 1/2 particle emerges

from canonical quantisation of a constrained system.

To study the corresponding path integral quantisation it is useful to eliminate the

momenta pµ to obtain the action in configuration space

Sc[x, ψ, e, χ] =

∫
dτ

(
1

2
e−1(ẋµ − iχψµ)2 +

i

2
ψµψ̇

µ

)
, (B.9)

whose local symmetries may be recovered from the phase space ones.
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Finally, a Wick rotation to Euclidean proper time produces the Euclidean action

SE [x, ψ, e, χ] =

∫
dτ

(
1

2
e−1(ẋµ − χψµ)2 +

1

2
ψµψ̇

µ

)
. (B.10)

The massive case is slightly more subtle. To obtain it we use a method of introducing

a mass term starting from the massless theory formulated in one dimension higher. We

denote the extra dimension by x5, and coordinates by xM = (xµ, x5), so that indices split

as M = (µ, 5). The massless spin 1/2 particle in one dimension higher is described by the

phase space action

S =

∫
dτ

(
pM ẋ

M +
i

2
ψM ψ̇

M − e

2
pMp

M − iχ pMψM
)
. (B.11)

Now one imposes the constraint4 p5 = m, where m is a constant to be identified as the

mass of the particle in one dimension lower. The action now takes the form

S =

∫
dτ

(
pµẋ

µ +mẋ5 +
i

2
ψµψ̇

µ +
i

2
ψ5ψ̇5 − e1

2
(pµp

µ +m2)− iχ(pµψ
µ +mψ5)

)
.

(B.12)

The term with the coordinate x5 is a total derivative and can be dropped from the action

but ψ5 is retained. Let us check that this indeed describes a free, massive spin 1/2 particle,

at least in even dimensions. We focus directly on D = 4 dimensions and note that on top

of the operators in (B.6) one finds the extra fermionic operator ψ̂5 that can be identified

with Γ5/
√

2, where Γ5 is the usual chirality matrix obeying (Γ5)2 = 1. The susy constraint

pµψ
µ +mψ5 = 0 becomes at the quantum level

(−iΓµ∂µ +mΓ5)Ψ = 0 . (B.13)

One can multiply this by Γ5 and recognise that the set γ̃µ = Γ5Γµ satisfies the standard

(with signature − + ++) Clifford algebra {γ̃µ, γ̃ν} = −2ηµν which leads to the massive

Dirac equation

(−i/∂ +m)Ψ = (/p+m)Ψ = 0 , (B.14)

as required.

However, our goal here is to get the massive Dirac equation through path-integral

quantisation. Let us start from the action in eq. (B.11), suitably Wick rotated to

S[x, p, ψ, ψ5, e, χ]

=

∫
dτ

[
−ipµẋµ +

1

2
ψµψ̇

µ +
1

2
ψ5ψ̇5 +

e

2
(pµp

µ +m2) + iχ(pµψ
µ +mψ5)

]
. (B.15)

It enters the path integral as

Z ∼
∫
DxDpDψDψ5DeDχ

Vol(Gauge)
e−S[x,p,ψ,ψ5,e,χ] . (B.16)

4This constraint Poisson-commutes with the Hamiltonian so does not generate any further constraints.
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Integrating out the momentum gives the configuration space action. Before gauge fixing,

and in Euclidean time, it takes the form

S[x, ψ, ψ5, e, χ] =

∫ 1

0
dτ

1

2

(
e−1(ẋ− χψ)2 + ψψ̇ + ψ5ψ̇5 + em2 + 2iχmψ5

)
, (B.17)

where we have suppressed obvious indices. There are two local symmetries to take care of,

reparameterisations and local supersymmetry, with gauge fields e and χ, respectively.

We start using the reparameterisation invariance to fix e(τ) ≡ 2T in that Lagrangian

which, on the line, reduces the path integral
∫
De(τ) to the proper-time integral with trivial

Faddeev-Popov measure
∫∞

0 dT . For fixed T , we then rescale τ → Tτ . The gravitino field χ

is the gauge field for the local worldline supersymmetry, and on an interval can be gauge-

fixed to a constant Grassmann variable Θ, the super-partner of the global proper-time

T . The gravitino path integral
∫
Dχ(τ) then gets replaced by the ordinary Grassmann

integral
∫
dΘ.

Next, let us consider the terms in the worldline action that depend on the gravitino

field χ(τ). Since χ2(τ) = 0, those terms can be written as

Sχ ≡
1

T

∫ T

0
dτχ

(
−1

2
ẋ · ψ + imψ5

)
. (B.18)

We can then use the nilpotency of Θ to replace the exponential by its argument, and

perform the integral:∫
Dχ e−Sχ =

∫
dΘ e−SΘ =

1

T

∫ T

0
dτ
(1

2
ẋ · ψ − imψ5

)
. (B.19)

At this stage, we have

Z =

∫ ∞
0

dT e−m
2T

∫
I
DxDψDψ5

1

T

∫ T

0
dτ

(
1

2
ẋ · ψ − imψ5

)
e−

∫ T
0 dτ ( 1

4
ẋ2+ 1

2
ψψ̇+ 1

2
ψ5ψ̇5) .

(B.20)

We must now think about the boundary conditions to be imposed on the Grassmann fields

ψ(τ) and ψ5(τ). For the coordinate path integral, passing from the closed loop to the open

line case means replacing the homogeneous boundary conditions xµ(T ) − xµ(0) = 0 by

inhomogeneous ones,

xµ(T )− xµ(0) = x′µ − xµ , (B.21)

so that we calculate off-diagonal elements of the kernel. Likewise the propagator will

depend upon the initial and final spin states, so we should expect that the anti-periodicity

condition

ψµ(T ) + ψµ(0) = 0 , (B.22)

be replaced by the inhomogeneous (“twisted”) condition

ψµ(T ) + ψµ(0) = ηµ , (B.23)
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where ηµ is a constant external Grassmann vector that should generate the spin structure

of the kernel. But here we run into the following subtlety with the variation of the action.

The variation of the free particle action is

δSψ =

∫ T

0
dτ δψµψ̇

µ +
1

2

(
ψµδψ

µ
)∣∣∣τ=T

τ=0
. (B.24)

The first term gives us the local equation of motion ψ̇µ = 0. In the closed loop case,

we would have anti-periodic boundary conditions on ψ and δψ which would lead to the

vanishing of the surface term in (B.24). In the open-line case, instead we have (B.23) but

δψ remains anti-periodic, resulting in a non-zero contribution from the surface term,

1

2

(
ψ · δψ

)∣∣∣τ=T

τ=0
=

1

2
η · δψ(T ) . (B.25)

If the choice of twisted boundary conditions is to be consistent, this non-local term should

be cancelled by something. To see what is missing, note that we can switch from anti-

periodic boundary conditions on ψ(τ) to twisted ones on ξ(τ) by setting

ψµ(τ) +
1

2
ηµ = ξµ(τ) (B.26)

and that the result of this transformation can be written as∫ T

0
dτ

1

2
ψ(τ) · ψ̇(τ) −→

∫ T

0
dτ

1

2
ξ(τ) · ξ̇(τ) +

1

2
ξ(T ) · ξ(0) . (B.27)

Under an infinitesimal shift of ξ(τ), the second term on the right-hand side produces an

additional term 1
2δξ(T ) · ξ(0) + 1

2ξ(T ) · δξ(0) which is just right to cancel the surface term

in (B.24) (with ψ now replaced by ξ).5 This leads us to understand that the precise version

of (B.20) is

Z =

∫ ∞
0

dT e−m
2T

∫ x(T )=x

x(0)=x′
Dx

∫
ξ(T )+ξ(0)=η

Dξ

∫
ξ5(T )+ξ5(0)=η5

Dξ5

× 1

T

∫ T

0
dτ

(
1

2
ẋ · ξ − imξ5

)
e−

∫ T
0 dτ 1

4
ẋ2

e−
∫ T
0 dτ 1

2
ξ·ξ̇− 1

2
ξ(T )·ξ(0)

× e−
∫ T
0 dτ 1

2
ξ5ξ̇5− 1

2
ξ5(T )ξ5(0) . (B.28)

We now turn our attention to the prefactor ( 1
2 ẋ · ξ − imξ5). In the second term, the

equation of motion ξ̇5 = 0 means that Ehrenfest’s theorem gives

d

dτ
〈ξ5(τ)〉 = 0 . (B.29)

Thus this term is actually independent of τ , so that we are free to replace it by the average

of its endpoint values, and then apply the boundary conditions:

〈ξ5(τ)〉 −→ 1

2

(
ξ5(T ) + ξ5(0)

)
=

1

2
η5 . (B.30)

5In the coherent state approach to the spinning particle path integral on the line, there appear similar

boundary terms in the action which, unlike in the present case, are local. However, their net effect is the

same as we have here; namely, their variation cancel boundary terms coming from the variation of the

kinetic action [88, 97].
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Similarly, for the first term we can invoke the above-mentioned fact that Q = ẋ · ξ is the

conserved charge associated to the worldline supersymmetry transformations (1.20). Thus

we have also

d

dτ
〈ẋ · ξ〉 = 0 , (B.31)

and we use this again to replace the τ -integrand by the average of its endpoint values:

〈ẋ(τ) · ξ(τ)〉 −→ 1

2

(
ẋ(T ) · ξ(T ) + ẋ(0) · ξ(0)

)
(B.32)

Now we need to figure out the effect of a factor ẋµ(T ) or ẋµ(0) inserted into the free

x-path integral. An insertion of ẋ(T ) into the free path integral will, after the transforma-

tions (2.2), (2.3), turn into

ẋ(T ) −→ x′ − x
T

+ q̇(T ) . (B.33)

The fluctuation term q̇(T ) leads to an insertion under the path integral over q that is odd in

q, and thus vanishes. Moreover from the explicit result for the free x-space propagator, (2.6)

with N = 0, we see that this term could as well be represented as a derivative −2 ∂
∂x′µ ,

acting on the final point of the trajectory. Similarly, an insertion ẋ(0) can be represented as

a derivative 2 ∂
∂xµ of the amplitude with respect to the initial point x which by translation

invariance can be replaced by −2 ∂
∂x′µ . After this, we are ready to use the Grassmann

boundary conditions to replace further

ẋ(T ) · ξ(T ) + ẋ(0) · ξ(0) −→ −2
∂

∂x′
·
(
ξ(T ) + ξ(0)

)
−→ −2

∂

∂x′
· η . (B.34)

The prefactor term is now completely expressed in terms of external quantities, and does not

involve the path integral variables any more. Thus the path integrals can now be performed.

The Grassmann path integrals just yield global normalisation factors, independent even of

η and η5 (as can be seen most simply by applying the transformation of variables (B.26) in

reverse). The x path integral together with the global T integration yields the free scalar

propagator Dxx′
0 . Thus we have now simply (up to normalisation)

Z =
(
−iη · ∂

∂x
+mη5

)
Dxx′

0 (B.35)

The remaining task of matching this to (1.37) (for the free case A = 0) parallels our

discussion for the operator formalism above. We require a rule for mapping the Grassmann

variables to gamma matrices. It would be inconsistent to map η5 to 1 and ηµ to −γµ, so

we are instead led to identify η5 with γ5, and reuse the fact that γ5γ
µ are equivalent to γµ

so we finally choose the assignation

η5 −→ γ5, ηµ −→ −γ5γ
µ . (B.36)

In this way Z gets mapped into γ5S
xx′ , rather than Sxx

′
, but this is equivalent, and the best

we can do. It may appear awkward to introduce γ5 in this seemingly non-chiral context,

but the fact is that its appearance is a common feature of first-principle approaches to the

path integral representation of the massive fermion propagator.
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C Path-ordered path integrals and symbol map

In this appendix, we prove the identity (3.5) that allows us to replace the Feynman spin

factor (1.5) with a path integral over Grassmann variables via the symbol map. Our proof

essentially follows [90].

First, by standard functional calculus we can rewrite

P
{
e−

i
2
e
∫ T
0 dτ γµFµνγν

}
= e

i e
2

∫ T
0 dτFµν(x(τ)) δ

δθν (τ)
δ

δθµ(τ)P
[

e
∫ T
0 dτ θλ(τ)γλ

]∣∣∣
θ=0

(C.1)

with Grassmann-valued functions θµ(τ) that anticommute with the γµ.

Next, we remove the path-ordering operator using the identity

P
[

e
∫ T
0 dτ θ(τ)·γ

]
= e

∫ T
0 dτ θ(τ)·γ e

1
2

∫ T
0 dτ

∫ T
0 dτ ′θµ(τ)sign(τ−τ ′)δµνθν(τ ′) . (C.2)

Now on the right-hand side the first exponential can be rewritten as

e
∫ T
0 dτ θ(τ)·γ = e

i γ
µ
√

2
∂
∂ηµ ei

√
2
∫ T
0 dτ θν(τ)ην

∣∣∣
η=0

, (C.3)

where the ηµ, µ = 1, . . . , D are Grassmann numbers that again must anticommute with the

γµ, while the second exponential can be replaced by a Gaussian Grassmann path integral:

e
1
2

∫ T
0 dτ

∫ T
0 dτ ′θµ(τ)sign(τ−τ ′)δµνθν(τ ′) =

∫
ψ(0)+ψ(T )=0Dψ e−

∫ T
0 dτ [ 1

2
ψ·ψ̇−i

√
2 θ·ψ]∫

ψ(0)+ψ(T )=0Dψ e−
∫ T
0 dτ 1

2
ψ·ψ̇

. (C.4)

Here the denominator is the free path-integral normalisation, which is equal to 2
D
2 in D

(even) dimensions. Thus the previous three equations can be combined to

P
[

e
∫ T
0 dτ θ(τ)·γ

]
= 2−

D
2 e

i γ
µ
√

2
∂
∂ηµ

∫
ψ(0)+ψ(T )=0

Dψ e−
∫ T
0 dτ [ 1

2
ψ·ψ̇−i

√
2 θµ(ψµ+ηµ)]

∣∣∣
η=0

. (C.5)

Now we act on this with the functional operator of (C.1). This produces

e
i e
2

∫ T
0 dτFµν(x(τ)) δ

δθν (τ)
δ

δθµ(τ) e−
∫ T
0 dτ [ 1

2
ψ·ψ̇−i

√
2 θµ(ψµ+ηµ)]

= e−
∫ T
0 dτ [ 1

2
ψ·ψ̇−ie(ψµ+ηµ)Fµν(ψν+ην)] , (C.6)

and thus by combining the previous two equations with our starting identity (C.1) we get

P
{

e−
1
2
e
∫ T
0 dτ γµFµνγν

}
= 2−

D
2 e

i γ
µ
√

2
∂
∂ηµ

∫
Dψ e−

∫ T
0 dτ [ 1

2
ψ·ψ̇−ie(ψµ+ηµ)Fµν(ψν+ην)]

∣∣∣
η=0

.

(C.7)

The final step is to observe that the operation

e
i γ
µ
√

2
∂
∂ηµ f(η)

∣∣∣
η=0

(C.8)

order by order just corresponds to the replacement of products of ηαs by antisymmetrised

products of γα, that is, to the inverse of the symbol map defined in (3.6). This completes

the proof of the identity (3.5).
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D Proof of the hypergeometric identity (8.15)

In this appendix we show how to reduce the hypergeometric identity (8.15)

2F1(a, 1; 2− a;−z)(1− z)(1− 2a) + 2F1(a+ 1, 2; 2− a;−z)(1 + z)2 = 2(1− a) (D.1)

to known identities. The arguments of the hypergeometric functions appearing in this iden-

tity are of the special kind which makes it possible to rewrite them in terms of Associated

Legendre functions of the first kind Pµν (z) using the identity (eq. 15.4.15 of [112])

2F1(a, b; a−b+1; z) = Γ(a−b+1)(1−z)−b(−z)
1
2

(b−a)P b−a−b

(
1 + z

1− z

)
(−∞ < z < 0) . (D.2)

Applying this identity (with a and b interchanged and z → −z) we find

2F1(a, 1; 2− a;−z) = Γ(2− a)(1 + z)−az
a−1

2 P a−1
−a

(
1− z
1 + z

)
,

2F1(a+ 1, 2; 2− a;−z) = Γ(2− a)(1 + z)−a−1z
a−1

2 P a−1
−a−1

(
1− z
1 + z

)
. (D.3)

For the Legendre functions one has the “varying degree identity” (eq. 8.5.3 of [112])

(ν − µ+ 1)Pµν+1(x) = (2ν + 1)xPµν (x)− (ν + µ)Pµν−1(x) . (D.4)

Using this identity with µ = a− 1, ν = −a and x = 1−z
1+z yields

2(1− a)P a−1
1−a

(
1− z
1 + z

)
= (1− 2a)

1− z
1 + z

P a−1
−a

(
1− z
1 + z

)
+ P a−1

−a−1

(
1− z
1 + z

)
. (D.5)

Multiplying both sides by a factor of Γ(2 − a)(1 + z)1−az
a−1

2 , and combining the result

with (D.3), leads to (D.1) provided that

Γ(2− a)(1 + z)1−az
a−1

2 P a−1
1−a

(
1− z
1 + z

)
!

= 1 , (D.6)

which can be verified using the identity (eq. 8.6.16 of [112]),

P−νν (x) =
2−ν(1− x2)

1
2
ν

Γ(ν + 1)
, (D.7)

now with ν = 1− a (and x = 1−z
1+z ).
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