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Proofs of statements and details about the instances

EC.1. Proofs of statements

Proposition 1. There are no dominance relations between inequalities RCII-a and RCII-b.

Proof. Consider a vrptf instance with |VC |=6, |VF |= 1, with VC = {1,2,3,4,5,6} and VF = {7}.

In addition, let Q= 10 and q1 = 4, q2 = 3, q3 = 5, q4 = q5 = q6 = 2. First select a set S = {1,2,4,7}

and such that the nodes {1,2,4,7} are visited on a route while customers {3,5,6} are assigned to

facility node 7 of S. The right-hand side of inequality (15) becomes ⌈18/10⌉ − 0 = 2, while the

right-hand side of (17) has value ⌈9/10⌉−0 = 1 and (15) is stronger than (17). Now consider a set

S = {1,2,3,4,5} containing five customers all visited on a route. Customer 6 is associated with a

node in V ′ \S. The right-hand side of (15) takes value ⌈18/10⌉− 1/4 = 7/4, while the right-hand

side of (17) becomes ⌈16/10⌉ − 0 = 2 and the second inequality is stronger than the first one.

Moreover, note that the FrCC inequalities (4) are dominated by (15), for the first example, and

by both (15) and (17) for the second one. �

Lemma 2. Let o∈R with ô > 0 and T = {m∈R, n ∈Z :m+n≥ o,m≥ 0}. The inequality

m+ ôn≥ ô⌈o⌉ (18)

is valid for T .

Proof. We have two cases:

(i) n≥ ⌈o⌉. As m≥ 0, we have
m

ô
≥ 0, hence

m

ô
+n≥ ⌈o⌉;

(ii) n≤ ⌊o⌋. As 0< ô < 1 we have that

⌊o⌋−n≥ ô(⌊o⌋−n). (EC.1)

Since o= ⌊o⌋+ ô and using inequality (EC.1), inequality m+n≥ o can be rewritten as:

m≥ ô+ ô(⌊o⌋−n). (EC.2)

The right-hand side of inequality (EC.2), can be rewritten as:

ô(1+ ⌊o⌋)− ôn= ô⌈o⌉− ôn (EC.3)

thus obtaining m≥ ô⌈o⌉− ôn. �
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Theorem 1. Let αe ≥ 0, ∀e∈E, βi ≥ 0, ∀i∈ V ′ and γij ≥ 0, ∀(i, j)∈A and consider the follow-

ing inequality valid for formulation TI:

∑

e∈E

αexe +
∑

i∈V ′

βiyi+
∑

(i,j)∈A

γijzij ≥ o (19)

where o∈R and ô > 0. Then the following inequality:

∑

e∈E

ϕo(αe)xe+
∑

i∈V ′

ϕo(βi)yi+
∑

(i,j)∈A

ϕo(γij)zij ≥ ⌈o⌉ (20)

where ϕo(m) = ⌊m⌋+min

{

m̂

ô
,1

}

, m ∈R, o ∈R, ô > 0, is also a valid inequality for formulation

TI.

Proof. Let E1 ⊆E, E2 =E \E1, V 1 ⊆ V ′, V 2 = V ′ \ V 1 and A1 ⊆A, A2 =A \A1. Starting from

inequality (19) we can round up the coefficients in E2, V 2 and A2 to obtain:
∑

e∈E1

αexe +
∑

i∈V 1

βiyi+
∑

(i,j)∈A1

γijzij +
∑

e∈E2

⌈αe⌉xe +
∑

i∈V 2

⌈βi⌉yi +
∑

(i,j)∈A2

⌈γij⌉zij ≥ o. (EC.4)

Writing αe = ⌊αe⌋ + α̂e, ∀e ∈ E
1, βi = ⌊βi⌋ + β̂i, ∀i ∈ V

1, and γij = ⌊γij⌋ + γ̂ij , ∀(i, j) ∈ A
1 and

re-arranging terms, we get:

(
∑

e∈E1

α̂exe +
∑

i∈V 1

β̂iyi+
∑

(i,j)∈A1

γ̂ijzij)+

(
∑

e∈E1

⌊αe⌋xe +
∑

e∈E2

⌈αe⌉xe +
∑

i∈V 1

⌊βi⌋yi +
∑

i∈V 2

⌈βi⌉yi +
∑

(i,j)∈A1

⌊γij⌋zij +
∑

(i,j)∈A2

⌈γij⌉zij)≥ o.
(EC.5)

The first part of inequality (EC.5) is non-negative, and the second part is integral for all x, w and

z integral. Applying Lemma 2 we get:

1

ô
(
∑

e∈E1

α̂exe +
∑

i∈V 1

β̂iyi +
∑

(i,j)∈A1

γ̂ijzij)+

(
∑

e∈E1

⌊αe⌋xe +
∑

e∈E2

⌈αe⌉xe +
∑

i∈V 1

⌊βi⌋yi+

∑

i∈V 2

⌈βi⌉yi +
∑

(i,j)∈A1

⌊γij⌋zij +
∑

(i,j)∈A2

⌈γij⌉zij)≥ ⌈o⌉.

(EC.6)

The coefficients of variables {xe} in (EC.6) are ⌊αe⌋+
α̂e

ô
if e∈E1 and ⌈αe⌉ if e∈E

2. Similarly, the

coefficients of variables {yi} in (EC.6) are ⌊βi⌋+
β̂i

ô
if i∈ V 1 and ⌈βi⌉ if i∈ V 2 and the coefficients

of variables {zij} are ⌊γij⌋+
γ̂ij
ô

if (i, j)∈A1 and ⌈γij⌉ if (i, j)∈A2.

The best choices of coefficients for the sets E1, V 1 and A1 are E1 = {e ∈E : α̂e ≤ ô}, V 1 = {i ∈

V ′ : β̂i ≤ ô} and A1 = {(i, j)∈A : γ̂ij ≤ ô}, respectively.

By defining ϕo(m) = ⌊m⌋+min

{

m̂

ô
,1

}

, m∈R, o∈R, ô > 0, inequality (EC.6) becomes inequal-

ity (20).�
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Theorem 2. Let us associate penalties λi ∈R, ∀i∈ VC , with constraints (27), and λi ≤ 0, ∀i∈

VF , with constraint (28). For each i ∈ VC , define aiℓ = aiℓ +
∑

j∈VF (Rℓ)
bjiℓ, and let Ri = {ℓ ∈ R :

aiℓ > 0}. For each i∈ VC compute:

νi = qimin
ℓ∈Ri

{

(cℓ+ pℓ)−
∑

j∈VC
ajℓλj −

∑

j∈VF
ajℓλj

∑

j∈VC
ajℓqj

}

(30)

A feasible DSP solution u of cost z(DSP (λ)) is given by the following expressions:

ui = νi +λi,∀i∈ VC , and ui = λi,∀i∈ VF . (31)

Proof. Consider a route ℓ∈R. Since ℓ∈Ri, ∀i∈ VC(Rℓ), from expression (30) we derive:

νi ≤ qi
(cℓ+ pℓ)−

∑

j∈VC
ajℓλj −

∑

j∈VF
ajℓλj

∑

j∈VC

ajℓqj
, ∀i∈ VC(Rℓ). (EC.7)

Given a route ℓ∈R, from expression (31) we obtain:

∑

i∈VC

aiℓui +
∑

i∈VF

aiℓui ≤
∑

i∈VC

aiℓqi
(cℓ+ pℓ)−

∑

j∈VC
ajℓλj −

∑

j∈VF
ajℓλj

∑

j∈VC

ajℓqj
+

∑

i∈VC

aiℓλi +
∑

i∈VF

aiℓλi.

(EC.8)

Inequality (EC.8) can be written as:

∑

i∈VC

aiℓui +
∑

i∈VF

aiℓui ≤ cℓ+ pℓ, (EC.9)

that corresponds to the constraint of problem DSP for route ℓ.�

Let E(S) denote the set of edges in G with both end-nodes in S and, given two disjoint vertex sets

S1, S2, let E(S1 : S2) denote the set of edges crossing from S1 to S2 (i.e., E(S1 : S2) = δ(S1)∩δ(S2))

(if S1 = {i}, we simply write E(i : S2) instead of E({i} : S2)).

Theorem 3. The LP-relaxation of the SP formulation satisfies both CI and FrCI inequalities,

and a weak form of MI inequalities.

Proof. Consider a set S ⊆ V ′ with VC(S) 6= ∅ and let T = VC(S) be the set of customers contained in

S. Define the surrogate constraint obtained by adding partitioning constraints (27) corresponding

to customers in T after having multiplied the equation associated with i∈ T by qi:

∑

ℓ∈R

qℓ(T )ξℓ = q(T ), (EC.10)



ec4 e-companion to Baldacci, Ngueveu, Wolfler Calvo: VRP with Transhipment Facilities

where q(T ) =
∑

i∈S
qi and qℓ(T ) =

∑

i∈S
qiaiℓ. Since qℓ(T )≤min[Q,q(T )], we have

∑

ℓ∈R(T )

ξℓ ≥max[1, q(T )/Q], (EC.11)

where R(T ) = {ℓ ∈ R : aiℓ = 1 for some i ∈ T}. Given a route ℓ ∈ R(T ), define qℓ(T ) as the total

demand of the customers not in T assigned to the route, i.e. qℓ(T ) = qℓ(T ), where T = (VC \ T )∩

VC(Rℓ). As qℓ(T )+ qℓ(T )≤Q we have:

∑

ℓ∈R(T )

Qξℓ ≥
∑

ℓ∈R

qℓ(T )ξℓ+
∑

ℓ∈R

qℓ(T )ξℓ. (EC.12)

From equations (EC.10) and inequalities (EC.12) we derive:

∑

ℓ∈R(T )

ξℓ ≥max

{

1,
1

Q

(

q(T )+
∑

ℓ∈R

qℓ(T )ξℓ

)}

. (EC.13)

Note that any route ℓ∈R(T ) contains at least two edges, one having an ending node in S and the

other in S. Therefore, we have:
∑

{i,j}∈δ(S)

ηℓijξℓ ≥ 2ξℓ. (EC.14)

Adding inequality (EC.14) for all ℓ∈R(T ) we obtain:

∑

ℓ∈R(T )

∑

{i,j}∈δ(S)

ηℓijξℓ ≥ 2
∑

ℓ∈R(T )

ξℓ. (EC.15)

Thus inequalities (EC.13) become

∑

ℓ∈R(T )

ρℓ(S)ξℓ ≥ 2max

{

1,
1

Q

(

q(T )+
∑

ℓ∈R

qℓ(T )ξℓ

)}

, (EC.16)

where ρℓ(S) =
∑

{i,j}∈δ(S) η
ℓ
ij . Since

qℓ(T )≥
∑

j∈T

∑

k∈VF (S)

bkjℓqj +
1

2

∑

j∈T

qj
∑

{i,h}∈E(S:{j})

ηℓih (EC.17)

from (EC.17) we obtain:

∑

ℓ∈R(T )

ρℓ(S)ξℓ ≥ 2max{1,
1

Q
(q(T )+

∑

ℓ∈R

(
∑

j∈T

∑

k∈VF (S)

bkjℓqj +
1

2

∑

j∈T

qj
∑

{i,h}∈E(S:{j})

ηℓih)ξℓ)}. (EC.18)

We have:

i) q(T ) =
∑

ℓ∈R
qℓ(T )ξℓ =

∑

i∈T
qi(
∑

ℓ∈R
aiℓξℓ)+

∑

i∈T
qi(
∑

ℓ∈R

∑

k∈VF (Rℓ)
bkiℓξℓ);

ii)
∑

ℓ∈R

∑

j∈T

∑

k∈VF (S) b
k
jℓqjξℓ =

∑

j∈T
qj(
∑

ℓ∈R

∑

k∈VF (S) b
k
jℓξℓ).

Using the equations (32)-(35) linking variables variables ξ with (x, z,w), we derive:

i)
∑

i∈T
qi(
∑

ℓ∈R
aiℓξℓ) =

∑

i∈VC (S) qiyi;
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ii)
∑

i∈T
qi(
∑

ℓ∈R

∑

k∈VF (Rℓ)
bkiℓξℓ)+

∑

j∈T
qj(
∑

ℓ∈R

∑

k∈VF (S) b
k
jℓξℓ)≥

∑

(i,j)∈A:
j∈VF (S)

qizij ;

iii) 1
2

∑

j∈T
qj(
∑

ℓ∈R
)
∑

{i,h}∈E(S:{j}) η
ℓ
ihξℓ =

1
2

∑

i∈VC (S)

∑

j∈S
qix{i,j}.

Using the above equations, from (EC.18) we obtain:

∑

e∈δ(S)

xe ≥ 2max







1,
1

Q





∑

i∈VC (S)

qiyi+
∑

(i,j)∈A:j∈VF (S)

qizij +
1

2

∑

i∈VC (S)

∑

j∈S

qix{i,j}











(EC.19)

�

Theorem 4. Let (x, z, y) be a solution of the LP-relaxation of formulation TI and assume that

qi ≤ Q, ∀i ∈ VC , and that xe = 0, e = {i, j} ∈ E \ {{0, h} : h ∈ V ′}, if qi + qj > Q. The separation

problem for MI inequalities (10) is solvable in polynomial time.

Proof. Consider the MI inequality for a given set S ⊆ V ′, S 6= ∅:

∑

e∈δ(S)

xe ≥
2

Q





∑

i∈VC (S)

qiyi +
∑

(i,j)∈A:j∈VF (S)

qizij +
∑

i∈VC (S)

∑

j∈S

qix{i,j}



 . (EC.20)

We have:
∑

e∈δ(S)

xe =
∑

e∈E(0:S)

xe +
∑

e∈E(S:S)

xe, (EC.21)

and for each i∈ V ′ (see equation (2)):

∑

e∈δ(i)

xe = 2yi = x{0,i} +
∑

e∈E(i:S)

xe +
∑

e∈E(i:S)

xe. (EC.22)

From equation (EC.22), the term
∑

i∈VC (S) qiyi of inequality (EC.20) can be rewritten as follows:

∑

i∈VC (S)

qiyi =
∑

i∈VC (S)

qi
2



x{0,i} +
∑

e∈E(i:S)

xe +
∑

e∈E(i:S)

xe



 . (EC.23)

The MI inequality (EC.20) can be rewritten as:

∑

e∈E(0:S)

xe +
∑

e∈E(S:S)

xe ≥
∑

i∈VC (S)

qi
Q
x{0,i} +

∑

i∈VC (S)

∑

e∈E(i:S)

qi
Q
xe+

∑

i∈VC (S)

∑

e∈E(i:S)

qi
Q
xe +

2

Q

∑

(i,j)∈A:
j∈VF (S)

qizij +
∑

i∈VC (S)

∑

j∈S

qi
Q
x{i,j} +

∑

i∈VC (S)

∑

j∈S

qi
Q
x{i,j}.

(EC.24)

We also have:
∑

e∈E(0:S)

xe =
∑

e∈E(0:VC (S))

xe +
∑

e∈E(0:S\VC (S))

xe, (EC.25)
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and
∑

e∈E(S:S)

xe =
∑

j∈S

∑

{i,j}∈E(j:VC (S))

x{i,j} +
∑

j∈S

∑

{i,j}∈E(j:(V ′\VC(S))\S)

x{i,j}. (EC.26)

Notice that S \VC(S) = VF (S) and that (V ′ \VC(S))\S = VF (S). Then, inequality (EC.24) can be

rewritten as:
∑

e∈E(0:VC (S))

xe +
∑

e∈E(0:VF (S))

xe +
∑

j∈S

∑

{i,j}∈E(j:VC (S))

x{i,j} +
∑

j∈S

∑

{i,j}∈E(j:VF (S))

x{i,j} ≥

∑

i∈VC (S)

qi
Q
x{0,i} +

∑

i∈VC (S)

∑

e∈E(i:S)

qi
Q
xe +

∑

i∈VC (S)

∑

e∈E(i:S)

qi
Q
xe+

2

Q

∑

(i,j)∈A:
j∈VF (S)

qizij +
∑

i∈VC (S)

∑

j∈S

qi
Q
x{i,j} +

∑

i∈VC (S)

∑

j∈S

qi
Q
x{i,j}.

(EC.27)

Notice that as qi = 0, ∀i∈ VF , we have:

∑

i∈VC (S)

∑

e∈E(i:S)

qi
Q
xe =

∑

i∈S

∑

e∈E(i:S)

qi
Q
xe =

∑

i∈S

∑

e∈E(i:VC (S))

qi
Q
xe +

∑

i∈S

∑

e∈E(i:VF (S))

qi
Q
xe, (EC.28)

∑

i∈VC (S)

∑

e∈E(i:S)

qi
Q
xe =

∑

i∈S

∑

e∈E(i:S)

qi
Q
xe, (EC.29)

and
∑

i∈VC (S)

∑

j∈S

qi
Q
x{i,j} =

∑

i∈S

∑

j∈S

qi
Q
x{i,j}. (EC.30)

Inequality (EC.27) can be rewritten as:
∑

{0,i}∈E(0:VC (S))

(1− qi/Q)x{0,i} +
∑

e∈E(0:VF (S))

xe +
∑

j∈S

∑

{i,j}∈E(j:VC (S))

(1− (qi+ qj)/Q)x{i,j}+

∑

j∈S

∑

{i,j}∈E(j:VF (S))

(1− qj/Q)x{i,j} ≥
∑

i∈S

∑

e∈E(i:S)

qi
Q
xe +

2

Q

∑

(i,j)∈A:
j∈VF (S)

qizij +
∑

i∈S

∑

j∈S

qi
Q
x{i,j}.

(EC.31)

Since

∑

i∈S

∑

e∈E(i:S)

qi
Q
xe +

∑

i∈S

∑

j∈S

qi
Q
x{i,j} =

∑

j∈S









∑

{j,i}∈δ(j):
j<i

qi
Q
x{j,i} +

∑

{i,j}∈δ(j):
i<j

qi
Q
x{i,j}









=

∑

j∈V ′









∑

{j,i}∈δ(j):
j<i

qi
Q
x{j,i} +

∑

{i,j}∈δ(j):
i<j

qi
Q
x{i,j}









−
∑

j∈S









∑

{j,i}∈δ(j):
j<i

qi
Q
x{j,i} +

∑

{i,j}∈δ(j):
i<j

qi
Q
x{i,j}









,

(EC.32)

and
∑

(i,j)∈A:
j∈VF (S)

qizij = q(VC)−
∑

i∈VC(S)

qiyi −
∑

i∈VC(S)

qiyi −
∑

(i,j)∈A:

j∈VF (S)

qizij =

q(VC)−
∑

i∈VC

qiyi−
∑

(i,j)∈A:

j∈VF (S)

qizij ,
(EC.33)
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inequality (EC.31) can be rewritten as:

∑

{0,i}∈E(0:VC (S))

(1− qi/Q)x{0,i} +
∑

e∈E(0:VF (S))

xe +
∑

j∈S

∑

{i,j}∈E(j:VC (S))

(1− (qi+ qj)/Q)x{i,j}+

∑

j∈S









∑

{j,i}∈δ(j):
j<i

qi
Q
x{j,i} +

∑

{i,j}∈δ(j):
i<j

qi
Q
x{i,j}









+
∑

j∈S

∑

{i,j}∈E({j}:VF (S))

(1− qj/Q)x{i,j}+

2

Q

∑

(i,j)∈A:

j∈VF (S)

qizij ≥
∑

j∈V ′









∑

{j,i}∈δ(j):
j<i

qi
Q
x{j,i} +

∑

{i,j}∈δ(j):
i<j

qi
Q
x{i,j}









+
2

Q
(q(VC)−

∑

i∈VC

qiyi).

(EC.34)

Notice that, as qi ≤Q, ∀i∈ VC , xe = 0, e= {i, j} ∈E \{{0, h} : h∈ V ′}, if qi+qj >Q, all the variable

coefficients of the above inequality are nonnegative whereas the right-hand-side of the inequality

does not depend on the set S.

The most violated constraint (EC.34) can now be found by computing a minimum s-t cut on

an directed capacitated graph G = (V ,A) with V = V ′ ∪ {s, t} and A = {(i, j), (j, i) : ∀{i, j} ∈

E \ {{0, j} : j ∈ V ′}} ∪ {(s, i) : {0, i} ∈E} ∪ {(i, t) : i ∈ V ′}. The additional nodes s and t represent

source and sink node, respectively. The arcs capacities are defined as follows:

• Every arc (s, i), i∈ VC is associated with a capacity (1− qi/Q)x{0,i};

• Every arc (s, i), i∈ VF is associated with a capacity x{0,i};

• Every arc (i, j), i∈ VC , j ∈ V
′ is associated with a capacity (1− (qi+ qj)/Q)x{i,j};

• Every arc (i, j), i∈ VF , j ∈ V
′ is associated with a capacity (1− qj)x{i,j};

• Every arc (j, t), j ∈ VC , is associated with a capacity
∑

{j,i}∈δ(j):
j<i

qi
Q
x{j,i} +

∑

{i,j}∈δ(j):
i<j

qi
Q
x{i,j};

• Every arc (j, t), j ∈ VF , is associated with a capacity 2
Q

∑

(i,j)∈A:

j∈VF (S)

qizij + (
∑

{j,i}∈δ(j):
j<i

qi
Q
x{j,i} +

∑

{i,j}∈δ(j):
i<j

qi
Q
x{i,j}).

Let (S,V \S) be the minimum s-t cut of G and assume that t∈ S. One can see that if the cut

capacity is strictly smaller than right-hand-side of inequality (EC.34) then node set S = S \ {t}

defines the most violated inequality (EC.34). No violated inequality exists if the cut has a capacity

greater than or equal to the value of the right-hand-side of (EC.34). �

EC.2. Details of the heuristic algorithms
EC.2.1. A constructive heuristic

Given an instance of vrptf, we define a complete graphG= (V ,E) where the node set V = {0}∪VC

contains the depot and the customer nodes. Each edge e∈E has a cost given by re. Each customer

i∈ VC has a demand equal to qi and the capacity of the vehicles is set to Q. Let m=
⌈
∑

i∈Vc
qi/Q

⌉

be a lower bound on the minimum number of routes required. The details of our implementation

of the three phases are as following.
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(i) m “seed” customers are randomly selected to initialize the m routes of the emerging cvrp

solution. The remaining customers are partitioned into m subsets by heuristically solving a

Generalized Assignment Problem (gap) where each bin k is associated with the k-th customer

selected to initialize a route. The assignment cost aik for allocating customer i to bin k is

r0i +αr{i,k} − βr0k, where α,β are nonnegative parameters. The gap is solved heuristically.

If, for a given m, the gap solution is infeasible, we set m=m+ 1 and we repeat the above

procedure.

(ii) The route for a subset of customers is determined by solving a tsp on the subgraph induced

by the subset. We apply a 3-opt procedure to a starting tour obtained by generating a random

sequence of the customers.

(iii) The solution obtained at step (ii) is locally optimized using a classical multiroute improvement

procedure consisting of two types of operations: (a) movement of a customer from one route

to another; (b) exchange of two customers belonging to different routes. We try all possible

such operations until no improvement can be obtained. Each route of the modified solution

is then re-optimized with the 3-opt procedure.

Since the initial partitioning and the tsp solutions are based on random choices, we can obtain

different solutions executing the three phases several times. In our implementation we run them

2000 times: for the first 1000 runs we set α= 1.1 and β = 0.7 (see step (i)), while in the last 1000

runs we set β = 0, leaving α unchanged.

The cvrp solution so far obtained, is optimized by iteratively applying two re-optimization

procedures: procedure Squeeze used by Baldacci et al. (2007) for the cmrsp, and procedure LS-

multiple. The two procedures are repeated in sequence until the current solution can be improved.

Procedure Squeeze tries to re-optimize the routing (i.e. the set E) by allowing a few changes in

the customer connections (set A). Procedure LS-multiple is a multiroute improvement procedure

based on customer exchanges among the routes of the current solution.

EC.2.2. A Lagrangean heuristic

Procedure CG is interwoven with a heuristic algorithm that produces a feasible vrptf solution of

cost ẑ using the route sets R̃ (see Step 2 of procedure CG). Given the current DSP (λ) solution,

define vector ξ̃ as follows:

ξ̃ℓ =
∑

i∈VC

aiℓ
qi

q(Rℓ)
ζ iℓ, ℓ∈ R̃, (EC.35)

by setting ζ iℓ(i) = 1 and ζ iℓ = 0, ∀ℓ∈ R̃ \ {ℓ(i)}, ∀i∈ VC . Define C(ℓ) = VC(Rℓ)∪VA(Rℓ), i.e. C(ℓ) is

the set of customers either visited on the route or assigned to facilities in VF (Rℓ). The heuristic

algorithm performs the following steps.

1. Initialization. Initialize ẑ = 0, SOL= ∅ and δ(i) = 0, and ∀i∈ V ′.
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2. Extract a subset of routes SOL ⊆ R̃. Let ℓ∗ be the route of R̃ where ξ̃ℓ∗ =max{ξ̃ℓ : ℓ ∈ R̃}.

Remove ℓ∗ from R̃. If δ(i) = 0, for some i ∈ C(ℓ∗), then update SOL = SOL ∪ {ℓ∗}, δ(i) =

δ(i)+ aiℓ, ∀i∈C(ℓ∗), and δ(i) = δ(i)+ aiℓ, ∀i∈ VF (R
∗
ℓ ). Repeat step 2 until R̃ = ∅.

3. Modify the route set SOL so that δ(i)≤ 1, ∀i∈ V ′.

a) Remove from SOL any route ℓ∈ SOL such that δ(i)> 1, ∀i∈C(ℓ∗), and update δ(i), ∀i∈ V ′,

accordingly. For each ℓ∈ SOL, compute the savings that can be achieved by removing from

route ℓ every customer i ∈ C(ℓ∗) having δ(i) > 1. Let ℓ∗ ∈ SOL be the route of maximum

saving. Remove from route ℓ∗ every customer i∈C(ℓ∗) with δ(i)> 1, and update δ(i). Repeat

step 3.a until δ(i)≤ 1, for each i∈ VC .

b) For each ℓ ∈ SOL, compute the total number α(ℓ) of customers assigned to every facility

i∈ VF (R
∗
ℓ ) having δ(i)> 1. Let ℓ∗ be the route having the minimum α(ℓ) value. Remove from

route ℓ∗ every facility i∈ VF (Rℓ∗) with δ(i)> 1, update δ(i), and δ(j), ∀j ∈ VC , accordingly.

Repeat step 3.b until δ(i)≤ 1, for each i∈ VF .

c) For each ℓ ∈ SOL, remove any facility i ∈ VF (Rℓ) with δ(i) = 1 and without customers

assigned to it, and update δ(i) = δ(i)− 1.

4. Insert unrouted customers. For each unrouted customer i (i.e., δ(i) = 0) perform the follow-

ing operations. Compute the minimum extra-cost exc(i, ℓ) for inserting i in route ℓ ∈ SOL

without considering assignment of i to facilities in VF (Rℓ). We set exc(i, ℓ) = ∞ if the total

load of the resulting route ℓ exceeds the vehicle capacity Q. Let ℓ∗ be such that exc(i, ℓ∗) =

minℓ∈SOL[exc(i, ℓ)]. If exc(i, ℓ
∗) =∞, then set ẑ =∞ and stop; otherwise, insert customer i in

route ℓ∗ in the position of cost exc(i, ℓ∗) and set δ(i) = 1.

5. Define the vrptf solution ξ. Define ξℓ =1, for each ℓ∈ SOL, and ξℓ = 0, for each ℓ∈R \SOL.

6. Local optimization. Locally optimize solution ξ by iteratively applying the two re-optimization

procedures Squeeze and LS-multiple used also for the constructive heuristic.

EC.3. Details about the instances
EC.3.1. Real-world based instances

A set of six test instances for each area (North, Centre and South) were generated by the company

based on the following settings.

• The set of customers is selected from the customers that are currently served on a daily basis by

using different criteria. The number of customers varies from a minimum of 54 up top a maximum

of 164. The customer demands were computed based on historical data;

• The set of facilities corresponds to the existing set of facilities and can also include new facilities

that the company want evaluate in order to revise the current distribution network. Instances with

4, 6, 7, 9, 12, 13, and 18 facilities were generated;
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Figure EC.1 Real-world instances: North area

• Two types of fleet of vehicles were considered: vehicles with capacity equal to 24 pallets (single-

unit 3 axes type of trucks) and vehicles with capacity equal to 36 pallets (single-trailer 3 axes type

of trucks), respectively;

• The routing cost of a pair of nodes i and j of the network were computed as r{i,j} = c distij

where distij represents the distance in kilometer between nodes i and j computed using a digital

map of the Italian territory, and c is the routing cost per kilometers (currency in expressed in Euro

(e)) associated with the type of vehicle (either single-unit or single-trailer);

• Set {Fi} of facilities to which the customers can be assigned are defined directly by the company

using different criteria. These criteria take into account the customer demand, required level of

service, a priori agreements between the customers and the company, and the distance matrix [dij ]

used to compute the routing costs;

• The distribution from the facilities to the customers is performed by means of a fleet of single-

unit 2 axes type of trucks with a vehicle capacity ranging from 6 to 8 pallets. The distribution cost

from the facilities depends on the type of contract that has been defined between the company and

the third-party contractor and vary from facility to facility. The distribution cost is a function of

the number of pallets associated with the order and the distance between the customer location

and the facility. Therefore the assignment cost matrix is defined by the company using the current

distribution tariff agreed with the third-party companies.

A total number of 18 instances were generated, 6 instances per areas or depots. Figures EC.3.1,

EC.3.1, and EC.3.1 illustrate the layout of the three distributions ares. In the figure, the three

depots are represented with squares, and rhombus and circles represent facilities and customers,

respectively.

EC.3.2. lrp based instances

From each lrp instance we derived a vrptf instance as follows.
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Figure EC.2 Real-world instances: Centre area

Figure EC.3 Real-world instances: South area

i) The set VF of facilities, the set VC of customers (and the associated demands), correspond to

the set of depots and customers of the original lrp instance;

ii) The vehicle capacity Q is equal to the vehicle capacity of the original lrp instance;

iii) The depot coordinates were defined as follows. Let xmin and xmax be the minimum and maxi-

mum x-coordinates among the customers and the facilities x-coordinate, respectively; similarly

define ymin and ymax. The coordinate (x, y) of the central depot are defined as follows:

x= xmin + ⌊(xmax −xmin)/2⌋ and y= ymin + ⌊(ymax − ymin)/2⌋. (EC.36)

The routing and connection costs were generated as follows.

Class A. Routing and assignment costs of a pair of nodes i, j are equal to the Euclidean distance

eij, computed according to the TSPLIB EUC 2D standard.

Class B. For each pair of nodes i, j, the routing cost is r{i,j} = ⌊αeij⌋, while the assignment cost

is dij = ⌊(10−α)eij⌋, where α= 7.0.
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For all the instances, every customer can be assigned to every facility, i.e. Fi = VF , ∀i∈ VC .

We generated a total number of 150 instances, 75 instances per class. The dimensions of the

instances vary from very small instances with 12 customers and two facilities up to very large

instances with 150 customers and 20 facilities.

EC.4. Details about the computational results on lrp based instances

This section reports the complete details about the computational results on lrp based instances.
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Table EC.1 Results on Class A: Akca et al. (2009) lrp based instances

Name z∗ #r #f #c %UB1 %UB2 %LB1 %LB2 tDA %LBC tC %LB tLB #cuts #cols #N %Opt tTOT

cr30x5a-1 621 5 0 0 100.0 100.0 99.4 100.0 2.6 98.8 2.7 100.0 0.1 0 303 1 100.0 8

cr30x5a-2 665 5 1 2 100.2 102.1 90.6 94.0 2.8 97.5 2.5 99.1 3.2 275 2185 23 100.0 20

cr30x5a-3 575 5 1 2 100.7 100.0 90.8 96.5 2.5 98.5 2.2 98.5 1.3 252 1160 93 100.0 29

cr30x5b-1 727 5 1 1 100.0 100.0 96.4 98.5 2.9 99.7 2.9 100.0 1.3 479 959 1 100.0 10

cr30x5b-2 826 6 0 0 100.0 100.6 92.5 93.6 1.5 93.0 3.7 97.6 2.1 78 1609 367 100.0 79

cr30x5b-3 788 7 1 1 100.1 100.0 94.6 96.1 32.5 94.2 2.8 97.6 1.9 94 1096 1335 100.0 1061

cr40x5a-1 738 7 3 8 100.0 100.0 95.5 97.5 19.5 94.9 4.2 97.9 2.5 98 1530 151 100.0 82

cr40x5a-2 786 6 1 1 100.5 101.0 92.7 96.9 5.2 95.8 8.3 98.2 3.8 357 1627 986 99.3 3615

cr40x5a-3 807 6 4 4 101.1 101.5 94.8 98.0 21.4 95.2 5.3 98.5 2.8 405 1212 562 98.8 3631

cr40x5b-1 964 8 0 0 100.0 101.0 95.9 98.1 11.1 95.6 6.0 98.9 1.3 238 646 187 100.0 49

cr40x5b-2 901 8 2 3 100.0 100.1 93.1 95.7 3.3 95.5 7.9 98.1 3.4 372 910 41 100.0 34

cr40x5b-3 887 8 2 5 100.5 100.5 95.2 96.7 13.5 95.0 6.4 98.1 1.5 295 876 378 100.0 81

Table EC.2 Results on Class A: Prins et al. (2004) lrp based instances

Name z∗ #r #f #c %UB1 %UB2 %LB1 %LB2 tDA %LBC tC %LB tLB #cuts #cols #N %Opt tTOT

ppw-20-5-0-a 253 5 1 1 100.0 100.0 95.2 96.7 1.5 98.5 1.2 100.0 0.2 11 394 1 100.0 5

ppw-20-5-0-b 211 3 1 2 100.0 100.0 85.3 94.4 7.8 100.0 0.5 97.8 0.6 120 803 17 100.0 12

ppw-20-5-2-a 247 5 1 3 100.0 100.0 90.8 94.5 3.2 95.4 1.3 97.4 0.4 157 711 197 100.0 14

ppw-20-5-2-b 189 3 1 2 100.0 100.0 85.7 93.1 1.6 100.0 0.3 100.0 1.1 181 2212 1 100.0 5

ppw-50-5-0-a 616 12 1 1 100.2 100.2 97.0 98.9 1.6 93.9 14.8 98.9 2.3 224 794 332 100.0 87

ppw-50-5-0-b 400 6 1 2 100.0 102.0 91.8 95.6 6.3 96.8 9.8 96.7 11.9 362 2964 15 96.9 3621

ppw-50-5-2’-a 653 12 0 0 100.5 100.0 95.9 96.1 1.6 95.6 13.4 99.5 2.6 323 827 85 100.0 48

ppw-50-5-2’-b 351 6 0 0 100.3 100.0 91.1 92.9 5.3 99.0 10.6 99.4 6.9 973 2391 204 99.7 3619

ppw-50-5-2-a 587 12 1 2 100.0 100.0 96.7 98.3 1.5 93.6 11.1 98.9 2.1 828 880 949 100.0 126

ppw-50-5-2-b 357 6 0 0 100.0 100.3 92.3 93.4 11.3 96.7 13.3 96.7 6.5 514 2174 61 97.1 3625

ppw-50-5-3-a 586 12 1 3 100.2 100.0 94.8 95.4 20.5 92.2 12.4 95.9 2.0 152 728 20734 97.9 3630

ppw-50-5-3-b 381 6 0 0 100.0 100.0 91.2 94.4 28.3 95.9 8.4 96.8 6.4 493 3335 395 97.4 3644

ppw-100-5-0-a 1158 25 2 2 100.9 100.9 97.7 98.8 3.1 93.8 216.9 99.3 10.6 12 1417 1312 100.0 507

ppw-100-5-0-b 679 11 3 3 100.0 100.0 91.2 95.3 146.6 91.6 115.2 96.7 42.6 2019 5451 7 96.8 3819

ppw-100-5-2-a 1010 24 1 1 100.6 100.4 96.8 97.4 3.1 91.7 193.0 97.5 14.0 640 1672 5639 97.8 3735

ppw-100-5-2-b 569 12 1 1 100.0 100.2 94.8 95.6 99.5 90.0 110.1 96.0 30.8 1040 3019 302 96.2 3783

ppw-100-5-3-a 1068 23 2 3 100.7 100.7 97.1 98.2 29.1 93.6 146.8 98.6 8.8 561 1312 8235 98.9 3686

ppw-100-5-3-b 612 11 0 0 100.0 100.7 92.7 95.6 55.7 93.8 131.5 97.1 27.9 1105 5207 183 97.4 3733

ppw-100-10-0-a 1215 24 1 1 100.1 100.7 97.9 98.7 47.9 89.9 154.4 98.9 11.2 372 1040 2420 100.0 991

ppw-100-10-0-b 693 11 1 1 100.0 101.9 94.2 96.6 208.8 93.2 159.1 97.4 38.3 1006 4232 84 97.6 3869

ppw-100-10-2-a 1030 24 0 0 100.8 100.0 96.2 97.7 134.6 90.6 163.8 97.7 9.9 85 1182 6064 98.2 3853

ppw-100-10-2-b 582 11 0 0 100.0 100.9 93.4 95.7 127.1 91.2 133.3 96.4 54.6 829 4798 30 96.5 3809

ppw-100-10-3-a 1055 24 4 6 100.0 100.3 97.6 98.3 121.6 88.7 142.1 99.3 14.8 30 1327 245 100.0 424

ppw-100-10-3-b 608 11 1 2 100.0 101.6 91.2 92.9 98.7 89.7 123.0 94.6 46.8 919 6930 24 94.8 3773
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Table EC.3 Results on Class A: different authors lrp based instances

Name z∗ #r #f #c %UB1 %UB2 %LB1 %LB2 tDA %LBC tC %LB tLB #cuts #cols #N %Opt tTOT

Christ-50x5 514 5 2 2 100.6 103.1 95.7 97.3 58.1 98.2 8.3 99.2 7.9 1086 3231 54 100.0 130

Christ-50x5 B 533 5 1 2 100.2 100.4 92.5 95.9 84.8 96.4 7.9 96.8 7.7 592 4284 175 97.2 3698

Christ-75x10 783 9 3 6 100.0 100.0 93.4 94.6 40.0 93.6 58.2 97.1 28.6 665 6206 22 97.3 3676

Christ-75x10 B 814 9 3 5 100.0 101.8 94.0 95.2 112.9 94.2 46.0 97.5 33.3 1096 6417 235 97.8 3750

Christ-100x10 831 8 0 0 100.0 101.4 92.9 93.8 321.8 94.8 63.6 96.8 126.1 1335 17779 5 96.9 3987

Gaskell-21x5 371 4 1 2 100.0 100.0 97.1 98.7 1.3 98.1 1.3 100.0 0.3 157 534 1 100.0 5

Gaskell-22x5 554 3 3 4 102.0 100.0 82.3 88.6 83.7 97.3 1.0 99.8 46.0 301 3410 5 100.0 145

Gaskell-29x5 503 4 1 1 102.2 100.0 88.3 94.0 119.1 93.7 1.6 98.0 67.1 223 1936 67 100.0 683

Gaskell-32x5-2 427 3 0 0 100.0 100.0 92.4 98.9 459.5 100.0 1.4 100.0 97.3 6 5890 1 100.0 567

Gaskell-32x5 479 4 1 1 100.0 100.0 91.7 95.7 224.3 98.7 2.4 100.0 49.8 330 2149 1 100.0 280

Gaskell-36x5 411 4 1 1 100.2 100.2 96.4 96.7 8.8 99.0 3.7 100.0 1.3 140 1875 1 100.0 17

Min-27x5 3083 4 1 1 100.0 100.0 89.4 95.2 17.1 99.2 1.7 100.0 1.5 364 1357 1 100.0 24

Perl83-12x2 100 2 0 0 100.0 100.0 92.1 99.3 0.8 100.0 0.1 100.0 0.1 25 417 1 100.0 2

Perl83-55x15 453 10 3 3 101.5 101.3 96.8 97.9 38.2 94.6 17.5 99.3 3.5 324 2422 467 100.0 278

Perl83-85x7 618 11 2 3 100.2 101.1 96.9 97.7 36.1 92.7 59.5 98.2 13.0 580 3516 1835 98.8 3736

P111112-100x10 1346 11 0 0 100.0 100.6 92.1 94.5 163.2 92.2 112.2 95.4 46.4 976 7651 196 95.6 3846

P111122-100x20 1252 11 1 2 100.0 102.6 93.8 96.1 453.1 93.3 148.3 98.7 58.2 70 5927 625 98.8 4138

P111212-100x10 1266 10 0 0 100.0 100.6 92.8 95.8 46.8 93.1 118.8 96.8 57.4 1144 4786 5 96.9 3718

P111222-100x20 1338 11 1 1 100.0 100.4 91.5 94.0 379.0 90.8 208.6 96.1 74.5 1542 5446 19 96.1 4053

P112112-100x10 1236 11 3 3 100.0 100.0 89.6 93.2 196.6 93.1 173.0 96.7 134.8 2344 9884 15 96.8 3889

P112122-100x20 1047 10 3 3 100.0 100.0 84.6 86.8 485.6 92.4 278.6 94.2 227.5 2348 16311 3 94.2 4177

P112212-100x10 892 11 2 2 100.4 100.0 89.0 90.6 220.3 88.6 107.2 92.1 83.5 1045 9920 15 92.1 3918

P112222-100x20 1006 10 1 1 100.0 103.0 93.4 94.4 93.4 94.7 170.8 95.7 176.1 1039 7578 8 95.7 3747

P113112-100x10 1158 11 0 0 100.0 102.9 89.5 91.8 319.1 93.8 176.5 94.0 58.5 1295 6782 8 94.2 4007

P113122-100x20 1190 11 4 6 100.0 102.3 87.8 90.3 227.5 92.9 221.0 96.1 163.0 2200 10465 13 96.1 3914

P113212-100x10 1154 10 1 1 100.0 104.9 92.9 93.6 48.9 93.1 125.8 95.2 63.8 927 4778 97 95.3 3717

P113222-100x20 1078 11 0 0 100.0 100.0 90.6 91.8 73.2 94.4 235.0 94.3 101.7 1164 5276 68 94.5 3748

P131112-150x10 1833 16 1 1 100.8 100.0 93.7 95.1 171.8 90.2 669.4 95.6 134.3 1112 7283 37 95.7 3946

P131122-150x20 1769 16 1 1 100.0 100.8 92.5 95.5 579.3 89.8 872.2 95.9 137.6 34 9383 56 95.9 4411

P131212-150x10 1802 16 1 2 100.0 101.2 93.5 96.2 318.2 91.1 500.7 97.1 171.2 2076 9637 18 97.2 4147

P131222-150x20 1802 15 2 2 100.0 100.5 93.2 95.2 600.7 89.8 892.7 95.6 119.4 870 7002 87 95.7 4371

P132112-150x10 1783 16 3 3 100.0 101.0 91.8 95.0 969.1 93.3 1147.1 96.5 286.1 3288 11779 60 96.7 4815

P132122-150x20 1541 15 1 1 100.0 100.1 88.8 90.4 731.2 91.0 1240.3 93.8 429.3 3329 23858 2 93.8 4508

P132212-150x10 1251 16 0 0 100.0 101.0 91.5 92.6 240.4 90.8 766.6 94.3 180.1 2126 11721 13 94.3 4073

P132222-150x20 1184 16 1 1 100.0 100.0 92.7 93.7 513.2 89.9 985.7 95.8 514.0 2487 11655 3 95.8 4368

P133112-150x10 1899 16 2 2 100.0 103.2 92.4 93.8 617.6 93.0 1182.5 94.7 409.5 2545 12407 6 94.8 4434

P133122-150x20 1498 16 2 2 100.0 100.8 92.5 93.4 1061.3 90.8 755.5 94.5 190.7 1966 9534 88 94.6 4908

P133212-150x10 1245 16 1 1 100.0 103.9 93.1 94.1 649.9 93.4 818.1 95.6 108.3 1602 7306 39 95.7 4510

P133222-150x20 1551 16 0 0 100.0 100.1 90.3 91.0 836.0 89.3 1069.9 91.5 321.5 1317 10764 222 91.6 4688
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Table EC.4 Results on Class B: Akca et al. (2009) lrp based instances

Name z∗ #r #f #c %UB1 %UB2 %LB1 %LB2 tDA %LBC tC %LB tLB #cuts #cols #N %Opt tTOT

cr30x5a-1 4176 5 2 8 100.0 100.2 98.8 99.2 3.4 97.0 2.6 99.5 1.9 426 770 13 100.0 13

cr30x5a-2 4428 5 1 6 100.6 103.3 89.9 92.8 3.2 96.3 3.2 98.2 5.2 338 1431 50 98.3 3609

cr30x5a-3 3655 5 2 11 101.8 100.5 91.5 96.7 3.2 98.7 2.4 98.2 3.3 633 1610 34 100.0 24

cr30x5b-1 4844 5 1 5 102.4 100.0 94.7 97.1 3.0 97.3 3.0 98.4 5.9 893 1141 22 100.0 26

cr30x5b-2 4931 6 4 13 103.3 102.0 95.9 97.2 4.1 95.2 3.1 98.6 0.9 236 656 100 100.0 28

cr30x5b-3 4626 6 3 15 108.3 100.6 95.4 96.5 1.7 94.5 2.1 96.6 0.4 1 707 3330 98.9 3605

cr40x5a-1 4221 6 4 21 100.0 100.5 95.4 96.8 3.5 94.6 5.1 97.4 3.0 15 2112 90 100.0 50

cr40x5a-2 4804 6 4 17 102.0 101.4 91.6 96.9 4.3 94.6 7.1 97.3 5.4 2647 919 282 98.3 3616

cr40x5a-3 4577 6 4 25 106.9 103.9 94.9 97.4 7.4 96.7 3.7 98.8 10.4 1546 1605 213 100.0 2085

cr40x5b-1 6334 9 3 13 102.5 100.5 94.1 96.3 15.2 92.0 5.4 97.0 2.4 592 993 175 100.0 74

cr40x5b-2 5933 8 3 14 100.6 102.1 95.3 96.8 7.5 93.4 6.3 97.2 2.4 219 930 362 100.0 136

cr40x5b-3 5279 8 3 14 102.7 100.9 97.3 98.6 5.6 97.1 5.1 99.4 3.0 1610 955 45 100.0 33

Table EC.5 Results on Class B: Prins et al. (2004) lrp based instances

Name z∗ #r #f #c %UB1 %UB2 %LB1 %LB2 tDA %LBC tC %LB tLB #cuts #cols #N %Opt tTOT

ppw-20-5-0-a 1535 5 2 7 101.2 100.0 95.3 97.0 0.8 95.6 1.4 99.4 0.4 29 342 7 100.0 4

ppw-20-5-0-b 1315 3 1 8 103.3 100.0 93.0 94.4 1.3 99.2 0.6 99.6 7.6 632 3212 5 100.0 13

ppw-20-5-2-a 1488 5 3 11 102.1 100.0 94.8 95.6 2.1 92.4 1.4 97.3 0.4 300 324 133 100.0 11

ppw-20-5-2-b 1085 3 2 11 103.0 100.0 94.7 99.2 1.9 100.0 0.4 100.0 0.2 1 539 1 100.0 4

ppw-50-5-0-a 4159 12 3 12 102.3 100.7 97.5 99.3 1.7 93.5 15.7 99.3 0.9 7 650 645 100.0 96

ppw-50-5-0-b 2638 6 3 15 100.0 104.2 91.0 96.5 17.6 97.0 13.1 97.1 8.5 981 2751 283 97.3 3633

ppw-50-5-2’-a 4488 12 2 8 100.0 100.5 95.2 95.6 19.3 94.7 16.4 98.1 2.0 316 849 1057 100.0 214

ppw-50-5-2’-b 2439 6 1 7 100.9 100.3 90.8 92.5 7.7 97.7 12.1 98.9 9.8 630 2811 847 99.1 3633

ppw-50-5-2-a 3910 12 2 8 101.8 101.0 97.0 98.3 18.5 92.8 11.3 98.3 0.7 342 719 8849 100.0 946

ppw-50-5-2-b 2389 6 2 10 101.1 100.0 90.7 91.8 7.6 93.6 11.2 94.9 12.8 1414 2733 60 95.2 3623

ppw-50-5-3-a 3649 12 4 14 103.8 101.3 95.3 95.7 39.6 93.7 12.8 95.9 0.8 2 673 19638 98.3 3668

ppw-50-5-3-b 2421 6 3 25 100.0 100.6 90.0 93.8 4.1 92.9 5.7 95.7 9.6 1596 3006 199 96.2 3620

ppw-100-5-0-a 8009 25 3 10 101.5 101.1 97.2 98.5 3.1 93.3 210.1 98.7 7.2 11 1262 12954 99.6 3689

ppw-100-5-0-b 4629 11 4 13 100.0 103.7 93.0 95.7 219.0 92.4 116.9 97.3 50.9 3561 4394 38 97.4 3891

ppw-100-5-2-a 6838 24 3 13 104.1 100.0 96.6 97.2 105.8 91.6 169.9 97.3 6.5 645 1672 8072 97.7 3838

ppw-100-5-2-b 3925 11 3 20 100.4 100.0 93.6 94.8 110.1 89.8 133.6 94.9 17.5 657 2893 326 95.1 3793

ppw-100-5-3-a 7184 24 4 15 103.7 102.7 97.0 97.9 18.2 92.0 124.9 98.3 10.2 1291 1617 5523 98.7 3785

ppw-100-5-3-b 4141 11 4 21 100.0 101.5 93.3 95.3 27.3 92.0 133.4 96.1 44.6 3258 5104 50 96.3 3706

ppw-100-10-0-a 7960 24 8 28 101.2 100.0 95.5 96.8 166.0 88.3 109.0 96.8 5.9 2 1030 6269 97.4 3824

ppw-100-10-0-b 4698 26 6 35 100.0 103.6 93.4 95.3 61.8 91.7 164.9 95.6 24.0 274 3132 55 95.8 3721

ppw-100-10-2-a 6883 23 6 24 101.8 100.0 94.9 96.4 115.1 90.8 178.6 96.4 6.5 1 1988 2439 96.6 3831

ppw-100-10-2-b 3984 11 5 22 100.0 100.8 92.5 94.4 95.3 90.1 120.4 94.5 35.3 37 2982 71 94.6 3780

ppw-100-10-3-a 7060 24 9 32 102.3 100.0 95.6 96.4 147.3 87.4 124.5 97.1 10.5 5 1191 3973 97.5 3802

ppw-100-10-3-b 4081 11 6 22 100.0 102.0 92.2 94.1 75.2 90.5 138.9 95.2 68.3 1697 5956 92 95.3 3750
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Table EC.6 Results on Class B: different authors lrp based instances

Name z∗ #r #f #c %UB1 %UB2 %LB1 %LB2 tDA %LBC tC %LB tLB #cuts #cols #N %Opt tTOT

Christ-50x5 3157 5 4 24 100.0 105.3 97.5 98.8 7.0 99.1 10.4 99.6 8.8 1410 2341 27 100.0 125

Christ-50x5 B 3238 5 5 21 103.9 103.0 96.5 98.5 6.7 99.0 8.8 99.3 11.1 1137 2467 63 99.7 3619

Christ-75x10 5241 9 5 17 100.0 101.4 92.1 92.9 60.4 90.8 45.9 94.4 42.1 1498 4130 83 94.6 3697

Christ-75x10 B 5394 9 5 18 100.0 102.5 93.5 94.6 50.8 92.2 37.8 96.0 55.8 1375 4226 3 96.0 3687

Christ-100x10 5377 8 5 34 100.0 103.9 92.3 93.8 70.2 93.3 63.8 94.9 91.9 813 9094 19 94.9 3735

Gaskell-21x5 2057 4 3 14 100.6 104.6 96.8 98.4 1.8 98.3 1.0 99.4 0.4 285 555 5 100.0 5

Gaskell-22x5 3097 3 3 14 105.5 100.0 78.4 75.9 86.7 96.4 0.8 99.6 147.4 560 3709 7 100.0 268

Gaskell-29x5 3035 3 2 5 103.9 105.0 91.4 96.2 103.1 93.7 1.6 99.4 177.0 69 3273 24 99.4 3708

Gaskell-32x5-2 2537 3 1 8 101.7 101.7 89.1 97.2 488.0 98.8 2.1 99.4 262.4 305 2208 39 100.0 1320

Gaskell-32x5 2691 4 2 9 105.1 100.0 97.1 99.2 206.7 99.3 1.7 99.5 55.2 24 2038 7 100.0 314

Gaskell-36x5 2355 4 3 24 109.8 100.0 98.7 98.8 1.3 99.8 3.8 100.0 6.8 1699 2661 5 100.0 19

Min-27x5 20229 4 2 10 103.9 102.2 82.6 93.8 4.0 95.1 1.4 96.5 4.9 368 1738 100 96.9 3848

Perl83-12x2 519 2 2 12 101.2 100.0 99.3 99.4 0.5 100.0 1.0 100.0 0.5 32 151 1 100.0 1

Perl83-55x15 2404 10 7 38 104.1 104.0 98.5 99.0 10.5 98.4 24.7 99.5 3.6 157 1867 137 100.0 221

Perl83-85x7 3994 11 6 33 101.3 101.1 97.1 97.9 44.4 95.3 62.8 98.0 17.1 1136 4049 247 98.3 3745

P111112-100x10 8778 11 6 36 100.0 102.3 93.4 95.2 58.8 92.2 90.8 95.8 43.9 325 5618 47 95.9 3737

P111122-100x20 8364 11 8 34 100.0 103.3 91.5 93.3 89.6 91.5 180.7 95.4 93.8 192 5649 26 95.4 3773

P111212-100x10 8371 10 8 47 100.9 100.0 92.4 94.8 33.2 93.4 163.3 95.2 57.4 2925 5442 21 95.3 3704

P111222-100x20 8732 11 8 44 100.0 105.3 91.2 92.8 43.0 92.2 227.5 95.5 121.6 442 8533 26 95.6 3718

P112112-100x10 8367 11 4 10 100.0 100.4 87.9 91.9 283.2 91.0 155.2 94.4 207.0 4431 8546 15 94.5 3976

P112122-100x20 6856 10 4 14 100.0 102.2 87.7 88.9 213.6 90.5 219.2 94.2 361.7 2199 14341 2 94.2 3905

P112212-100x10 6024 11 2 16 100.9 100.0 91.0 93.3 285.9 91.3 124.7 94.3 52.7 613 5383 274 94.4 3983

P112222-100x20 6869 10 3 15 100.0 103.0 94.4 95.3 91.1 95.0 221.4 96.5 301.9 5200 8629 28 96.6 3743

P113112-100x10 7987 10 3 11 100.6 100.0 86.8 89.0 276.6 87.0 116.8 90.3 150.0 4002 5866 18 90.5 3916

P113122-100x20 7573 11 4 18 100.0 105.4 92.3 93.9 90.0 93.5 176.8 96.7 624.9 8229 13890 13 96.8 3774

P113212-100x10 7888 10 2 6 100.0 106.0 94.9 95.6 258.7 94.6 153.7 97.1 62.6 725 5611 218 97.2 3925

P113222-100x20 7418 10 5 16 100.0 103.5 91.6 93.0 61.9 93.6 260.8 95.0 252.4 1191 8197 20 95.1 3733

P131112-150x10 12681 15 8 43 100.6 100.0 91.7 93.1 119.3 88.9 686.9 93.3 74.6 55 8146 61 93.4 3896

P131122-150x20 11881 16 14 68 100.0 102.6 91.2 93.2 163.5 90.0 917.0 94.2 175.2 225 9803 88 94.3 3978

P131212-150x10 12314 16 5 21 100.0 102.1 93.0 95.8 427.6 90.7 443.6 96.3 132.1 441 10244 24 96.4 4256

P131222-150x20 11858 15 10 74 100.0 102.1 93.6 94.7 159.9 89.3 748.6 95.1 118.1 459 7479 125 95.2 3906

P132112-150x10 11952 16 3 14 100.0 103.5 93.9 95.7 629.4 92.5 879.6 96.1 81.3 358 7255 22 96.2 4478

P132122-150x20 10198 15 7 37 100.0 101.3 90.5 91.3 569.3 90.8 1193.7 93.1 221.5 795 14115 42 93.1 4343

P132212-150x10 8683 16 1 9 100.0 101.1 91.9 93.0 577.9 90.8 893.1 93.7 243.7 2658 9313 25 93.7 4411

P132222-150x20 8218 16 3 20 100.0 102.2 92.8 94.0 543.6 91.1 955.8 94.3 201.0 2589 8535 37 94.3 4397

P133112-150x10 13043 16 5 11 100.0 105.3 91.7 93.3 152.4 92.0 1048.9 94.6 496.3 6615 11122 8 94.6 3970

P133122-150x20 10027 16 6 24 100.0 104.5 92.9 94.0 464.2 91.0 886.2 94.9 149.8 1643 8831 116 95.0 4300

P133212-150x10 8707 16 1 7 100.0 104.0 92.7 93.9 225.6 92.5 778.3 95.2 95.7 1548 7539 189 95.3 4088

P133222-150x20 10822 16 4 11 100.0 103.0 89.9 90.8 355.6 88.2 849.5 91.1 303.4 2350 9247 30 91.2 4209


