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Documenting the first appearance of modern humans in a given
region is key to understanding the dispersal process and the
replacement or assimilation of indigenous human populations
such as the Neanderthals. The Iberian Peninsula was the last
refuge of Neanderthal populations as modern humans advanced
across Eurasia. Here we present evidence of an early Aurignacian
occupation at Lapa do Picareiro in central Portugal. Diagnostic
artifacts were found in a sealed stratigraphic layer dated 41.1 to
38.1 ka cal BP, documenting a modern human presence on the
western margin of Iberia ∼5,000 years earlier than previously
known. The data indicate a rapid modern human dispersal across
southern Europe, reaching the westernmost edge where Neander-
thals were thought to persist. The results support the notion of a
mosaic process of modern human dispersal and replacement of
indigenous Neanderthal populations.
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The dispersal of modern humans across western Eurasia, as-
sociated with the Upper Paleolithic, is well documented

compared to other regions but still susceptible to discoveries that
can overturn prevailing ideas, especially those based on first
appearance dates (1, 2). Current data support an east-west dis-
persal beginning ∼46 ka cal BP in the Balkan Peninsula at Bacho
Kiro (3, 4) (Fig. 1). Subsequently, modern humans spread up the
Danube river basin and along the Mediterranean rim within a
relatively short period (5). The process was likely a mosaic in-
volving dispersal into empty spaces and interaction with indige-
nous Neanderthal populations. At some point, around 43 to 42
ka cal BP, the regional variants of the Initial Upper Paleolithic
coalesced into the Aurignacian technocomplex, appearing syn-
chronously across western Eurasia (6).
The Iberian Peninsula holds a peculiar place in the problem of

modern human dispersal ever since the publication of unex-
pectedly early dates for the first Upper Paleolithic appearance at
El Castillo, l’Arbreda, and Abric Romaní in northern Spain (8,
9). Subsequent dating from these and additional sites has con-
strained the Aurignacian arrival in the region to ∼43.3 to 40.5 ka
cal BP (10–14). These dates verify a rapid modern human dis-
persal and allow for a temporal overlap of ∼1,000 years with
Neanderthals in northern Spain (11), and longer in southern
Iberia. Furthermore, the scenario is complicated by the lack of
associated fossil remains, leaving open the possibility that either
human group created the early Aurignacian assemblages in the
Franco-Cantabrian region (15). Despite this lack of direct asso-
ciation for the early Aurignacian, modern human remains have
been identified in this time frame in Romania (16) and Italy (17,
18). Since no Neanderthal sites contain evidence for the use of
carinated technology to produce bladelets, we can assume that

modern humans were the makers of the entire Aurignacian
cultural complex.
Undeterred by this uncertainty, the early appearance dates for

the Upper Paleolithic and late appearance dates for Middle
Paleolithic Neanderthals in southern Iberia led to the construc-
tion of various models to explain the apparent biogeographic
boundary separating the two populations (19, 20). In these
models, ecological adaptations allowed Neanderthals to survive,
preventing modern human dispersal in southern Iberia until ∼37
to 30 ka cal BP, a period of 6,000 to 12,000 years (21, 22).
The recent dating of Bajondillo cave, on the southern coast of

Spain, arguably demonstrated the first presence of modern hu-
mans at ∼45 to 43 ka cal BP, suggesting an even more expansive
dispersal across Europe in a geological blink of an eye (23). The
new Bajondillo dates pushed the first appearance of modern
humans several thousand years earlier in time, upsetting previ-
ously held views. Critics dismissed the dated lithic assemblage in
level Bj13 as a mixed collection of artifacts from younger and
older occupations or as lacking typological traits of the Proto or
Early Aurignacian technocomplexes (24, 25). Until the Bajon-
dillo publication, the earliest Upper Paleolithic held at ∼35 ka
cal BP at Cova de les Cendres (Mediterranean coast) (26), ∼36.5
ka cal BP, at La Boja (22), (southern Spain), and ∼34.5 ka cal BP
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at Pego do Diabo, (central Portugal) (27), all attributed to the
Evolved/Late Aurignacian.
On the flip side of the problem, the last appearance of Ne-

anderthals and the Middle Paleolithic has also been cast in doubt
(28, 29). The number of “late” Neanderthal sites (<42 ka cal BP)
has diminished substantially since the application of new dating
techniques showed them to be much older (>42 ka cal BP) than
previously thought (30–33). Across central Spain, there are no
Neanderthal remains or Middle Paleolithic sites dated after 42
ka cal BP (34–36). At present, Gruta da Oliveira, Cueva Antón,
and Gorham’s Cave remain the only “late” Neanderthal sites in
southern Iberia dated ∼37 ka cal BP or later (21, 22).
Clearly, sites dated ∼42 to 37 ka cal BP are extremely rare,

suggesting that most of Iberia south of the Ebro basin was a
sparsely, if at all, populated landscape into which modern hu-
mans could have easily dispersed. The lack of archaeological and
fossil evidence for this interval could also be due to climatic and
landscape instability that erased the record or prevented its for-
mation (37, 38). Under these conditions, survivorship is likeliest in
sedimentary traps or sheltered locations where accumulative
processes preserve material evidence. One such place is Lapa do
Picareiro, a limestone cave located 570 m above sea level, on the
west-facing slope of Serra de Aire, a karst mountain north of the
Tagus River valley in west-central Portugal (Fig. 1). The 15 × 15 m
cavern (Fig. 2 A and B and SI Appendix, Fig. S1) is part of a large
(25 × 30 m) bedrock depression with a thick sedimentary fill of
muddy éboulis representing much of the Late Pleistocene. We
have excavated a 10.6-m deep section with 36 Pleistocene-aged
strata (levels E-NN), revealing a thick Upper Paleolithic sequence
(levels E-II) continuing into the Middle Paleolithic (levels JJ-NN)
(39, 40). Age determination of the levels comes from 80 radio-
carbon dates produced over the last 25 y of investigation at the
cave. The stratigraphic sequence in Picareiro has roughly 2 m of

sediment dated ∼45 to 35 ka cal BP, corresponding to the tem-
poral range of the Middle-Upper Paleolithic transition in southern
Iberia (Fig. 2 C–E and SI Appendix, Figs. S2 and S3). As the
ongoing excavation has exposed the deeper deposits in the back of
the cave, evidence for previously undetected Early Upper Paleo-
lithic occupations has emerged.

Results
A series of dates using the ultrafiltration and enhanced collagen
extraction pretreatments on anthropically modified ungulate
bones from the Late Middle and Early Upper Paleolithic levels is
presented here (SI Appendix, Table S1 and Figs. S4–S6). The
results confirm an early Aurignacian presence in the region,
potentially overlapping with level Bj13 from Bajondillo and
positing significant implications for our understanding of
modern human dispersal and late survival of Neanderthals
in Europe.
Fig. 3 shows the plots of stratigraphically distinct lithic artifacts

with associated radiocarbon dates. The levels display a high de-
gree of lithic assemblage integrity supported by the technological
characteristics, raw material representation, and systematic ar-
tifact refitting. The radiocarbon dates also reflect stratigraphic
integrity with no significant inversions between the levels. Fur-
thermore, the dated bone samples have fresh, well-preserved
green bone fractures with no signs of trampling or abrasion (SI
Appendix, Figs. S4–S6) and were taken from deposits with a low
(2°–4°) inclination (40). The sedimentological and geochemical
details published in Benedetti et al. (40) provide additional
support for the integrity of the deposits, which are evidenced by
distinct beds, varying from roughly 5 to 30 cm thick, with uniform
properties of clast size and fine sediment content. Thus, vertical
and nonvertical migration in the matrix appears to have been
negligible. The dates reported here are included with previous

Fig. 1. Map of selected Early Upper Paleolithic (red and pink) and Late Middle Paleolithic (blue) sites in Europe (7). (1) Arbreda, (2) Reclau Viver, (3) Abric
Romaní, (4) Cova Gran, (5) Mallaetes, (6) Cova Foradada, (7) Cova de les Cendres, (8) Sima de las Palomas, (9) Cova Beneito, (10) La Boja, (11) Cueva Antón, (12)
Zafarraya, (13) Bajondillo, (14) Gorham’s Cave, (15) Pego do Diabo, (16) Mira Nascente, (17) Lapa do Picareiro, (18) Gruta da Oliveira, (19) Foz do Enxarrique,
(20) Cardina, (21) A Valiña, (22) La Viña, (23) El Sidrón, (24) El Castillo, (25) Cueva Morín, (26) El Mirón, (27) Labeko Koba, (28) Aitzbitarte III, (29) Isturitz, (30)
Abri Castanet, (31), Abri Pataud, (32) Les Cottés, (33) Kent’s Cavern, (34) Riparo Mochi, (35) Geissenklosterle, (36) Fumane, (37) Willendorf, (38) Grotta del
Cavallo, (39) Pestera cu Oase, and (40) Bacho Kiro.
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determinations in a Bayesian model constructed using the new
IntCal20 in the OxCal program 4.4 (41, 42) (Fig. 4 and SI Ap-
pendix, Table S2). The temporal gaps between the layers reflect
the sampling of archaeological horizons within them, and the
slow rate of sedimentation reported previously (40).

The base of the sequence discussed here, level JJ, is a
∼1-m-thick layer of small-medium limestone clasts with reddish-
brown fine sediment (SI Appendix, Table S3). The deposit con-
tains lithic artifacts made using discoidal core/flake technology
typical of the Middle Paleolithic, dispersed charcoal, and animal
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Fig. 2. (A) Site plan with profile locations shown in red. (B) Orthophoto of the excavation from above. (C) Stratigraphic profiles for the MP-UP sequence in
Lapa do Picareiro. (D) Level X to level II profile in units B8-A8, (B) level GG to level JJ in unit F9, (E) close-up of level GG-II in unit C8.
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bones. The radiocarbon samples were taken from two artifact
horizons separated by a ∼20-cm-thick dark sediment lens. The
lower horizon dates to ∼51.5 to 44.1 ka cal BP and the upper
horizon dates to ∼45.0 to 43.5 ka cal BP. The top 20 to 30 cm of
level JJ, dated 42.9 to 42.4 ka cal BP, contains bones with per-
cussion marks consistent with intentional butchery by humans
but lithic artifacts have not yet been found in this zone (Fig. 5D).
Levels II through GG represent a ∼40-cm-thick, distinct, and

partially cemented portion of the sequence that caps level
JJ. The lower part, level II is a layer of medium and larger clasts
with brown mud cemented by calcite followed by a layer of
medium-sized clasts with brown mud that is uncemented, level
HH. Level GG is a mostly cemented layer of larger limestone
clasts and brown fine sediment that extends across the center of
the cave. In the back of the cave, the calcite cement gradually
disappears. The thick, firmly cemented parts of level GG in the
center of the cave appear to have formed by postdepositional
precipitation from calcium-enriched water penetrating the in-
terstitial spaces between limestone clasts on the cave floor (SI
Appendix, Fig. S4). A sharp peak in magnetic susceptibility values

recorded in level II indicates a brief warm period followed by low
values in levels HH and GG, corresponding to a period of pro-
longed cold, dry conditions during its formation (40). The pre-
cipitation of carbonate cement likely occurred at the end of this
cold episode with the return of humid conditions. The earliest
Aurignacian artifacts are distributed throughout the muddy
matrix from the base of the large clasts of level GG through level
II (Fig. 2 C–E and SI Appendix, Fig. S7). The radiocarbon
samples were taken from the uncemented areas of level GG and
II, in direct association with the levels GG-II artifacts.
Levels GG-II contain a diagnostically Upper Paleolithic lithic

assemblage comprised of small bladelets and carinated end-
scrapers (now recognized as cores) typical of the early Auri-
gnacian (6, 44, 45) (Fig. 5C). The bladelets have the
characteristic dimensions and shape, lacking retouch, similar to
those found in the early Aurignacian assemblages of northern
Iberia (46). This assemblage is made primarily from chert but
also includes a small number of quartz flakes. Accelerator mass
spectrometry (AMS) radiocarbon dating of anthropically modi-
fied, medium-sized ungulate bones provide bracketing ages of

A

B
X-axis p

Y-axis p

Fig. 3. Plots of lithic artifacts along with radiocarbon-dated bone samples from Lapa do Picareiro: (A) X-axis profile of the cave, perpendicular to the central
axis, (B) Y-axis profile of the cave, lengthwise from front to back.

4 of 9 | www.pnas.org/cgi/doi/10.1073/pnas.2016062117 Haws et al.

D
ow

nl
oa

de
d 

at
 a

lm
a 

m
at

er
 u

ni
ve

rs
ita

 d
i b

ol
og

na
 o

n 
S

ep
te

m
be

r 
29

, 2
02

0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016062117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016062117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016062117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2016062117


∼41.9 to 41.1 ka cal BP (terminus post quem or earliest possible
date) and 39.4 to 38.1 ka cal BP (terminus ante quem or latest
possible date). Thus, the assemblage falls within most of the

Proto-Aurignacian and entirely within the Early-Aurignacian
time frame in Europe (11, 47, 48). The artifact deposition
likely took place during the Greenland Stadial (GS)-9 climate

Fig. 4. Bayesian model for the Lapa do Picareiro. Radiocarbon dates are calibrated using IntCal20 (41); the model and boundaries were calculated using
OxCal 4.3 (42), including a general t-type outlier model. Outlier prior and posterior probability are shown in square brackets. Four samples are excluded from
the model iterations by giving them a prior outlier probability of 100% because of the poor collagen preservation. The chronology is compared to the North
Greenland Ice Core Project (NGRIP) Greenland Ice Core Chronology 2005 (GICC05) (43) δ18O paleo-environmental record with Greenland Interstadials (GI) 12
to 3 and Heinrich events (H) 5, 4, and 3 indicated.
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phase associated with Heinrich Event 4 (H4) (39.9 to 38.2 ka) or
GS-10 (40.8 to 40.1 ka), but possibly even earlier during the time
of Greenland Interstadial (GI)-10 (41.4 to 40.8 ka) and GS-11
(42.2 to 41.5 ka) (43). Most of the artifacts plot within a ∼20-cm
linear band between the dated samples, making a more exact age
estimation or paleoclimatic association difficult at this time, but
these still represent the oldest, most precise, and reliable dates
for the Aurignacian in western Iberia.
In stark contrast, overlying sediments of level FF are composed

of loose, small-medium limestone clasts and dark reddish-brown
fine sediment. This layer contains undiagnostic quartz and quartz-
ite flakes, animal bones, and dispersed charcoal dated 38.6 to 36.4
ka cal BP (Fig. 5B). The organic matter content and high magnetic
susceptibility values in level FF reflect a period of relatively mild
climate associated with GI-8 (43).
Level EE is a thin layer (5 to 10 cm) of small clasts with reddish-

brown fine sediment that appears to be archaeologically sterile.
The radiocarbon date for level EE (36.7 to 36.1 ka cal BP) is in-
distinguishable from those of level FF. The dated bone sample
plots in line with those from level FF and, therefore, the MAMS-
44444 (Mannheim AMS lab at the Curt-Engelhorn-Centre for
Archaeometry) specimen may not accurately date level EE.
Level DD is a 20- to 30-cm-thick layer of medium-large

limestone clasts with brown fine sediment. This layer, dated
35.4 to 34.8 ka cal BP, contains a lithic assemblage almost

exclusively on chert, characterized by the production of large
flakes using prismatic core technology (Fig. 5A). The dates for
these levels place them chronologically within the Aurignacian
time frame in western Europe (47, 48) but the assemblages lack
diagnostic pieces for a particular phase. Low magnetic suscep-
tibility values and radiocarbon dates correspond to GS-8 (43).
Despite their small size, comparison of the lithic assemblages

reveals important differences in the frequencies of the different
classes of blanks across all levels (SI Appendix, Table S4). While
levels JJ, FF, and DD are dominated by complete flakes and
flake fragments, the level GG-II assemblage is marked by a high
frequency of bladelets and bladelet fragments. Blades are also
present in the level GG-II assemblage but completely absent
from all of the remaining levels assessed here. Overall, cores and
retouched tools are very rare in all assemblages (SI Appendix,
Table S5). The levels also differ in lithic reduction strategies. In
level JJ, centripetal, subcentripetal, and other reduction patterns
are equally represented, typical of a Mousterian assemblage,
while for all of the overlaying levels unidirectional strategies are
predominant.
Raw material use is also markedly different across levels (SI

Appendix, Fig. S8). Levels JJ and FF are characterized by the use
of quartzite and quartz, with chert representing only 15% in the
Mousterian level JJ, and completely absent from level FF. In
levels GG-II and DD, the scenario is totally different as chert is
the most frequent raw material (>75% of all artifacts), with
milky quartz/rock crystal (in GG-II) and quartzite (in DD)
making up the rest of the assemblages. A noteworthy number
(n = 12) of chert artifacts in level DD refit into four different
sets, revealing both the integrity of the assemblage and the oc-
currence of onsite knapping activities. While no refits have been
made among the chert bladelets and the carinated endscrapers
recovered in level GG-II, comparison between the bladelets and
the last scar on the flaking surface of the carinated elements
suggest a single reduction sequence for producing small bladelets
(SI Appendix, Table S6).
Abundant faunal remains have been recovered in all of the

levels presented here. Preliminary results of ongoing analyses
indicate that large and small mammal taxonomic representation
changed very little across the Late Middle and Early Upper
Paleolithic layers. SI Appendix, Tables S7–S10 provide results of
taxonomic identifications made to date. Large and small mam-
mals for all levels include red deer, ibex, and rabbit. Some of the
ungulate remains show evidence for butchery with cut marks,
percussion scars, and long bone fractures consistent with marrow
removal. Horse was also exploited in the Late Middle Paleolithic
level JJ. The rabbits show little if any direct evidence for human
exploitation but only a very small proportion of the assemblage
has been analyzed in detail. Carnivores are primarily represented
by lynx in levels DD-FF and JJ. Fox also appears in the Late
Middle Paleolithic. A variety of bird taxa are also present in the
assemblages, but it is not clear if the remains were brought to the
cave by humans. Ongoing taphonomic analyses should resolve
this issue. The same can be said for the micromammal and
herpetological taxa.

Discussion
The stratigraphy, techno-typological analysis of the lithic arti-
facts, and radiocarbon dating demonstrate that the level GG-II
assemblage represents a discrete occupation layer, wholly dis-
tinct from those in the levels above and below. The assemblage is
small but consistent with the attributes of the early Aurignacian.
The dates presented here conservatively place the level GG-II
occupation at ∼41.1 to 38.1 ka cal BP.
Our results from Picareiro provide definitive evidence that

modern humans were in western Iberia at a time when, if present
at all, Neanderthal populations would have been extremely
sparse. Our data offer some resolution to the implications of

1 cm

1 cm

A

B

C

D

Fig. 5. Lithic artifacts from the Middle to Upper Paleolithic transition levels
at Lapa do Picareiro. (A) Chert cores and core tablet from level DD. (B)
Quartzite flakes from level FF. (C) Early Aurignacian carinated endscrapers/
cores and bladelets from level GG. (D) Middle Paleolithic core and flakes.
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Wood et al. (29) scenarios for the ∼42 to 37 ka cal BP time
frame. We can discount their scenario in which southern Iberia
was abandoned by both Neanderthals and modern humans and
confirm the one in which modern humans spread into the
southern regions soon after they arrived in northern Iberia. As
for the scenario in which Neanderthals were present in southern
Iberia until very late, the Picareiro data alone cannot resolve this
issue. Middle Paleolithic occupations at Picareiro ended by 42.5
ka cal BP, but they apparently continued until ∼36 ka cal BP at
Gruta da Oliveira just 4.2 km away, based on current evidence
(49, 50).
Our results also cast further doubt on the idea of a “hard

border” or frontier between Neanderthal and modern human
populations between ∼42 and 37 ka cal BP (22, 51). Instead, the
Ebro river valley was likely a permeable landscape feature that
facilitated dispersal (52). Modern humans may have encountered
a few remnant Neanderthal groups but it appears that most of
Iberia south of the Ebro was already depopulated (35). This
pattern is evident in Portugal, where Middle Paleolithic end
dates cluster at ∼45 to 42 ka at Foz do Enxarrique (30), Mira
Nascente (53), Lapa do Picareiro, and Cardina (54), followed by
a nearly total absence of evidence for Neanderthals on the
landscape.
The Picareiro data confirm a rapid modern human dispersal

across Iberia that opens up additional lines of inquiry, testable
hypotheses, and explanatory scenarios for the Middle to Upper
Paleolithic transition. First, the early Aurignacian arrival indi-
cates a substantial time gap between the Picareiro record of
Early Upper Paleolithic occupations and the rest of the region
(27, 54). This may reflect an expansion of small pioneer groups
that did not leave a highly visible footprint due to low population
density (55) or did not establish a permanent foothold in the
region. Alternatively, climate-induced erosive episodes may have
erased much of the archaeological evidence of their presence on
the landscape (37, 38). Either case limits the detectability of the
earliest pioneers. Another possibility is that the evidence exists
among assemblages in the region lacking diagnostic elements
and/or radiometric dates. Picareiro level FF, dated within the
Evolved Aurignacian time frame, exemplifies this case with
simple flakes, mainly quartzite and quartz, and no formal tools.
Aside from its stratigraphic position and radiocarbon dating,
there is nothing diagnostically Aurignacian about the assem-
blage. Level FF represents a low-cost, expedient technology of-
ten attributed to the Middle Paleolithic in Iberian sites dated
∼42 to 32 ka cal BP (56). Assemblages like these may have been
a regular element of the pioneer phase in modern human dis-
persal (55). Just how widespread and common they were during
the Aurignacian time frame remains to be investigated but
similar expedient core reduction strategies are known through-
out the Upper Paleolithic at many sites (57), including Picareiro.
Second, the successive climatic downturns between 44 and 40

ka may have created new opportunities for modern human dis-
persal into the region, as predicted by Banks et al. (47), possibly
following the southward range expansion of familiar Euro-
siberian taxa along the Atlantic margin or the major east-west
river drainages such as the Duero or Tagus (SI Appendix, Fig.
S9). River systems like these played a key role as “communica-
tion corridors and mobility conduits” for the dispersal of modern
humans across Europe (52). A critical aspect of dispersal would
have been the development of cognitive maps to navigate un-
known landscapes, and rivers are the easiest spatial features to
follow (58). New optically-stimulated luminescence (OSL) ages
for Cardina, an open-air site in the Douro drainage basin of
northeast Portugal, show a long hiatus between the last Middle
Paleolithic occupation ∼42.9 ka and the Evolved Aurignacian
occupation ∼33.6 ka (54). The absence of an earlier Aurignacian
occupation could rule out the Douro valley as a dispersal route,
but the area may eventually yield supportive evidence. Rather,

the spread of modern humans across the Iberian Peninsula may
represent a “jump dispersal” through which they avoided or
bypassed unproductive or high-risk areas like the more arid in-
terior of Iberia (2). Along interior river drainages, rapid dispersal
may have been necessary to mitigate water scarcity during ex-
treme droughts associated with Heinrich events, thus explaining
the lack of early Aurignacian sites. Alternatively, the coastal
route hypothesis advanced by Cortés-Sánchez et al. (23) is also
supported by the distribution of Early Upper Paleolithic sites
along the Iberian coast (59). This ecotonal position likely pro-
vided more predictable resources and less ecological risk during
periods of climatic stress. The topography of coasts would have
also facilitated communication and transmission of information
among pioneer groups (55).
Third, Neanderthals and modern humans may have been

contemporary and in close proximity in the limestone massif of
Estremadura in Portugal. If so, there is no evidence that they
were in direct contact as the Picareiro GG-II occupation took
place between the occupations of Gruta da Oliveira levels 9 and
8. However, level FF, without diagnostic artifacts, is contempo-
rary with Oliveira level 8 and could indicate either coexistence or
successive, alternating presence of different populations. The
presence of modern humans overlapping in time lends support to
competitive exclusion as an explanation for Neanderthal ex-
tinction (60, 61). On the other hand, if the Gruta da Oliveira
level 8 dates are erroneously too young, as postulated by Wood
et al. (29), then there are no Neanderthal or Middle Paleolithic
sites in Portugal that postdate ∼42 ka cal BP. Thus, there may be
no temporal overlap or competition between the last Neander-
thals and earliest modern humans in the region.
Lastly, the Picareiro record appears to reflect the pattern

across much of western Eurasia where sterile layers between the
last Neanderthal and modern human occupations have been
linked to millennial-scale climate cycles and environmental
change (62). Depopulation appears to have occurred during se-
vere cold and dry stadials that disrupted and fragmented habitat
patches across western Eurasia, negatively impacting Neander-
thal populations and opening new spaces for modern human
dispersal (63). In Iberia, paleoclimate records show regional
variability in the terrestrial response to GS-12 (44.3 to 43.3 ka),
GS-11 (42.2 to 41.5 ka), and GS-9 or HS-4 (39.9 to 38.2 ka) (64,
65). The archaeological and sedimentological data from Picar-
eiro and other sites are too coarse grained at present, but the
timing of these successive perturbations appear to coincide with
regional Neanderthal depopulation. At Picareiro, the last Middle
Paleolithic occupation corresponds to the beginning of GS-12,
followed by an apparent occupational hiatus in the upper 20 to
30 cm of level JJ, with the subsequent Aurignacian arrival be-
tween GS-11 and GS-9.
Although we may never know the first actual presence (2) of

modern humans or the last actual presence of Neanderthals in
Iberia, south of the Ebro basin, the data from Lapa do Picareiro
expand our knowledge about the dispersal of modern humans.
Based on current understanding of Middle and Upper Paleo-
lithic technological associations, the Picareiro case provides de-
finitive evidence for the early appearance of modern humans in
westernmost Eurasia, disrupting previous models and creating
opportunities for new lines of inquiry. A major gap in our
knowledge of the 42 to 37 ka cal BP interval remains to be filled
with further investigation and continued field work.

Materials and Methods
Excavation Methodology. The excavation is laid out using a 1 × 1 m grid
system. Each unit is excavated according to the natural stratigraphy and
5-cm artificial levels are used within the thicker levels. Artifacts, bones,
features, and stratigraphic topography are mapped in three dimensions
using a total station. All sediment is sieved through 2- and 4-mm mesh
screens. The excavators embed screens to separate the finer sediment from
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the larger fraction which is mostly limestone éboulis. The larger fraction is
sorted in the field. The remaining sediment in the 2-mm screen is water-
sieved in the laboratory in order to recover small bones, lithics, and mac-
robotanical remains. This allows for the recovery of micromammal, am-
phibian, and bird bones, shell fragments, stone chippage, personal
ornaments, and charcoal.

Stratigraphy. Stratigraphic level designations were based on changes in clast
size, color, mud content, and firmness (40). Sediment samples were collected
at 10-cm-depth intervals from the top of the sequence. Clasts were assigned
a modal clast size category (very small to very large) and samples were
measured to calculate a mean large clast size (in millimeters). Analyses were
completed on the <2-mm fraction of the profile samples at the University of
North Carolina Wilmington Soils and Sedimentology Laboratory.

Artifact Analysis. Lithic assemblages were analyzed using a techno-typological
approach focused on raw material use, refitting, core preparation, and
blank or flake attributes including platform type, dimensional analysis, and
retouched tools typology. Artifact analyses were done at the Interdisciplin-
ary Center for Archaeology and Evolution of Human Behavior (ICArEHB) at
the Universidade do Algarve.

Faunal Analysis. Taxonomic identification of the faunal remains was done
using comparative reference collections at the Laboratório de Arqueociências
of the Direcção-Geral do Património Cultural in Lisbon and the Estación
Biológica Doñana of the Consejo Superior de Investigaciones Científicas in
Seville. This work established the taxonomic composition of the assemblages
based on limited analyses of the piece-plotted remains. Only preliminary
results of ongoing analyses are presented here.

Radiocarbon Pretreatment. Bone samples were pretreated at the Department
of Human Evolution at the Max Planck Institute for Evolutionary Anthro-
pology (MPI-EVA), Leipzig, Germany, using methods described previously
(66). First, the outer surface of the bone samples were cleaned by a shot
blaster, and then 500 mg of bone was taken. The samples were decalcified in
0.5 M HCl at room temperature until CO2 effervescence was no longer ob-
served, usually about 4 h. Humics were removed by adding 0.1 M NaOH for
30 min. This was followed by adding 0.5 M HCl for 15 min. The resulting solid
was gelatinized at pH 3 in a heater block at 75 °C for 20 h. The gelatin was
filtered in an Eeze-Filter (Elkay Laboratory Products) to remove small
(<80 μm) particles. The gelatin was then ultrafiltered using Sartorius
“VivaspinTurbo” 30-kDa ultrafilters. The filter was first cleaned to remove
carbon-containing humectants. The samples were lyophilized for 48 h. All
dates were corrected for a residual preparation background estimated from
pretreated 14C-free bone samples, kindly provided by the Mannheim Labo-
ratory, Mannhein, Germany and pretreated in the same way as the

archaeological samples (67). To assess the preservation of the collagen yield,
C:N ratios, together with isotopic values, were evaluated. The C:N ratio
should be between 2.9 and 3.6, and the collagen yield not less than 1% of
the weight (68). The stable isotopic analysis was carried out at the MPI-EVA
(lab code R-EVA) using a ThermoFinnigan Flash EA coupled to a Delta V
isotope ratio mass spectrometer.

Calibration and Bayesian Modeling. We constructed a Bayesian model for the
Lapa do Picareiro using all of the radiocarbon dates produced over the last
25 years of investigation at the cave. The calibration was made using the new
IntCal20 curve within the OxCal 4.4 program (41, 42). We used a general
t-type outlier model with a 5% prior probability for all dates, except for the
four samples that did not pass the acceptable range of the evaluation cri-
teria (yield of collagen less than 1%). In this model, boundaries were set
according to the stratigraphic levels. The phases correspond to the artifact
horizons plotted in the sequence.

Data Availability. All study data are included in the article and SI Appendix.
Additional data are available at Open Science Framework, https://osf.io/
8zrqy/ (69).
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